JP2000009887A - Direct contact heat transfer type steam generator - Google Patents

Direct contact heat transfer type steam generator

Info

Publication number
JP2000009887A
JP2000009887A JP10173645A JP17364598A JP2000009887A JP 2000009887 A JP2000009887 A JP 2000009887A JP 10173645 A JP10173645 A JP 10173645A JP 17364598 A JP17364598 A JP 17364598A JP 2000009887 A JP2000009887 A JP 2000009887A
Authority
JP
Japan
Prior art keywords
steam
secondary coolant
water
heat transfer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10173645A
Other languages
Japanese (ja)
Inventor
Yoshihisa Nishi
義久 西
Izumi Kinoshita
泉 木下
Masahiro Furuya
正裕 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP10173645A priority Critical patent/JP2000009887A/en
Publication of JP2000009887A publication Critical patent/JP2000009887A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PROBLEM TO BE SOLVED: To obtain a superheated steam superior in steam conditions by facilitating superheating generated saturated steam. SOLUTION: This steam generator 27 is provided with a vessel 29 in which a primary cooling system piping 28, wherein liquid sodium having passed a core and became a high temperature flows, passes from the top to the bottom, a secondary coolant 30 stored in the vessel and heated by the heat of liquid sodium, a water injection nozzle 6 directly injecting water into the secondary coolant 30, a steam generation part 3 generating steam by direct contact heat transfer between the secondary coolant 30 and the water injected from the injection nozzle 6 in it, a superheated steam generation part 31 exchanging heat between the separated steam from the secondary coolant 30 and the primary coolant flowing through the primary cooling system piping 28 and a steam outlet 7 provided at the upper part of the vessel 29. Steam is generated by the direct contact heat transfer between the secondary coolant 30 heated by the primary coolant in the steam generator 34 and water, and this steam or slightly superheated steam is superheated by the high temperature primary coolant flowing in the primary cooling system piping 28 during rising in the space in the superheated steam generator 31 so that superheated steam superior in steam conditions is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、直接接触伝熱型蒸
気発生器に関する。更に詳述すると、本発明は液体ナト
リウムを冷却材として使用する高速炉の蒸気発生器とし
て好適な直接接触伝熱型蒸気発生器に関するものであ
る。
The present invention relates to a direct contact heat transfer type steam generator. More specifically, the present invention relates to a direct contact heat transfer type steam generator suitable as a steam generator for a fast reactor using liquid sodium as a coolant.

【0002】[0002]

【従来の技術】従来の高速炉の直接接触伝熱型蒸気発生
器として、例えば特開平7−71703号公報に開示さ
れたものがある。この直接接触伝熱型蒸気発生器は、図
4に示すように、容器101内の下側半部に一次冷却材
(液体ナトリウム)を循環させる配管102を通して二
次冷却材である低融点合金103を加熱する低融点合金
熱交換部104を設けると共に、この低融点合金熱交換
部104の上方に注水部材105を設置して溶融した低
融点合金103の中に水を直接注入している。低融点合
金103の中に直接注入された水は蒸気発生部106で
蒸気となり、蒸気空間107を経て蒸気取出口108か
ら取り出される。一次冷却材を循環させる配管102は
注水部材105よりも下方に配置されており、低融点合
金103は内筒109の内側を上昇した後、内筒109
の外側を下降して自然循環する。かかる直接接触伝熱型
蒸気発生器では、液体ナトリウムを使用した二次冷却系
や中間熱交換器等が不要になるので発電プラントの熱輸
送システムをコンパクトにでき、また、液体ナトリウム
と水とが接触し難いのでかかる対策設備を含めた高速炉
の建設コストを低減することが可能になる。
2. Description of the Related Art A conventional direct contact heat transfer type steam generator for a fast reactor is disclosed in, for example, JP-A-7-71703. As shown in FIG. 4, the direct contact heat transfer type steam generator includes a low-melting point alloy 103 as a secondary coolant through a pipe 102 for circulating a primary coolant (liquid sodium) in a lower half portion of a container 101. Is provided, and a water injection member 105 is provided above the low-melting-point alloy heat exchanging section 104 to inject water directly into the molten low-melting-point alloy 103. The water directly injected into the low melting point alloy 103 becomes steam in the steam generator 106 and is taken out from the steam outlet 108 through the steam space 107. The pipe 102 for circulating the primary coolant is disposed below the water injection member 105, and the low melting point alloy 103 rises inside the inner cylinder 109, and then moves to the inner cylinder 109.
Circulates down the outside of the tree. In such a direct contact heat transfer type steam generator, a secondary cooling system using liquid sodium, an intermediate heat exchanger, and the like are not required, so that the heat transport system of the power plant can be made compact, and the liquid sodium and water are separated. Since the contact is difficult, the construction cost of the fast reactor including such countermeasure equipment can be reduced.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
直接接触伝熱型蒸気発生器では、低融点合金103が低
融点合金熱交換部104で加熱された後に水を蒸気に変
えながら一緒に流れて上昇するので、上昇するのに従い
低融点合金103の温度が低下する。このため、低融点
合金103の中に直接注水して液・液直接接触伝熱によ
り飽和蒸気を発生させるまでの過程では優れた能力をも
つものの、発生した飽和蒸気を過熱するのが困難で蒸気
条件に優れた過熱蒸気を得るのには適していなかった。
However, in the above-mentioned direct contact heat transfer type steam generator, after the low melting point alloy 103 is heated in the low melting point alloy heat exchange section 104, it flows together while changing water into steam. As the temperature rises, the temperature of the low melting point alloy 103 decreases as the temperature rises. For this reason, although it has excellent ability in the process of directly injecting water into the low melting point alloy 103 and generating saturated steam by liquid-liquid direct contact heat transfer, it is difficult to superheat the generated saturated steam, It was not suitable for obtaining superheated steam having excellent conditions.

【0004】本発明は、蒸気条件に優れた過熱蒸気を得
るのに適した直接接触伝熱型蒸気発生器を提供すること
を目的とする。
An object of the present invention is to provide a direct contact heat transfer type steam generator suitable for obtaining superheated steam having excellent steam conditions.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに請求項1記載の直接接触伝熱型蒸気発生器は、炉心
を通過して高温となった液体ナトリウムが流れる一次冷
却系配管が上方から下方に向けて通過する容器と、この
容器内に溜められて液体ナトリウムの熱によって暖めら
れる二次冷却材と、この二次冷却材の中に水を直接注入
する注水部材と、二次冷却材とその中に注水部材から直
接注入された水との直接接触伝熱によって蒸気を発生さ
せる蒸気発生部と、二次冷却材から離脱した蒸気と一次
冷却系配管内を流れる一次冷却材との間で熱交換し過熱
蒸気を発生させる過熱蒸気発生部と、容器の上部に設け
られた蒸気出口を備えるようにしている。
In order to achieve the above object, a direct contact heat transfer type steam generator according to the present invention is characterized in that a primary cooling system pipe through which a high temperature liquid sodium flows through a reactor core is arranged upward. , A secondary coolant that is stored in the container and heated by the heat of liquid sodium, a water injection member that directly injects water into the secondary coolant, and a secondary cooling device. A steam generating section that generates steam by direct contact heat transfer between the material and water directly injected from a water injection member therein, and a steam generated from the secondary coolant and the primary coolant flowing in the primary cooling system piping. A superheated steam generation section for exchanging heat between the superheated steams to generate superheated steam, and a steam outlet provided at an upper portion of the container are provided.

【0006】したがって、炉心を通過して高温となった
一次冷却材である液体ナトリウムが一次冷却系配管を流
れて容器内の二次冷却材を間接熱交換によって加熱す
る。そして、蒸気発生部では加熱された二次冷却材はそ
の中に直接注入される水を直接接触伝熱によって沸騰さ
せて蒸発させる。これにより発生した飽和蒸気あるいは
若干過熱された蒸気は過熱蒸気発生部の空間を上昇す
る。この過熱蒸気発生部には一次冷却系配管が上方から
下方に向けて通過しており、二次冷却材の液面から離脱
した飽和蒸気あるいは若干過熱された蒸気は一次冷却系
配管の周囲を上昇しながら液体ナトリウムの熱によって
過熱され、過熱蒸気となって蒸気出口から取り出され
る。一次冷却系配管は上方から下方に向けて通されてお
り、液体ナトリウムは上方から下方に向けて流れるの
で、発生した蒸気は過熱蒸気発生部の空間を上昇すれば
するほど高温の液体ナトリウムで過熱される。
[0006] Therefore, liquid sodium, which is a primary coolant that has passed through the reactor core and has become high temperature, flows through the primary cooling system piping to heat the secondary coolant in the vessel by indirect heat exchange. In the steam generating section, the heated secondary coolant causes water directly injected into the secondary coolant to boil and evaporate by direct contact heat transfer. The generated saturated steam or slightly overheated steam rises in the space of the superheated steam generating section. The primary cooling system pipe passes through this superheated steam generation part from the top to the bottom, and the saturated steam released from the liquid surface of the secondary coolant or the slightly superheated steam rises around the primary cooling system pipe. While being superheated by the heat of the liquid sodium, it is taken out from the steam outlet as superheated steam. The primary cooling system piping is passed from top to bottom, and liquid sodium flows from top to bottom, so the generated steam is superheated by the hotter liquid sodium as the space in the superheated steam generator rises Is done.

【0007】また、請求項2記載の直接接触伝熱型蒸気
発生器は、一次冷却系配管を二重管とし、その内管内に
液体ナトリウムを流すと共に、内管と外管の間に二次冷
却材を充填するものである。
In a direct contact heat transfer type steam generator according to a second aspect of the present invention, the primary cooling system pipe is a double pipe, liquid sodium flows through the inner pipe, and a secondary pipe is provided between the inner pipe and the outer pipe. This is for filling the coolant.

【0008】したがって、二重管の内管内を流れる液体
ナトリウムの熱は内管と外管の間に充填された二次冷却
材を伝わり、過熱蒸気発生部を上昇する蒸気を過熱し、
また、容器内に溜められた二次冷却材を加熱する。一次
冷却系配管は二重管になっており、たとえ内管内を流れ
る液体ナトリウムが漏れたとしても外管の外側を上昇す
る蒸気(水)と接触することがない。
Accordingly, the heat of the liquid sodium flowing in the inner pipe of the double pipe is transmitted through the secondary coolant filled between the inner pipe and the outer pipe, and superheats the steam rising in the superheated steam generating section,
Further, the secondary coolant stored in the container is heated. The primary cooling system pipe is a double pipe, and does not come into contact with steam (water) rising outside the outer pipe even if liquid sodium flowing in the inner pipe leaks.

【0009】[0009]

【発明の実施の形態】以下、本発明の構成を図面に示す
最良の形態に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail based on the best mode shown in the drawings.

【0010】図1に本発明を適用した直接接触伝熱型蒸
気発生器の実施形態の一例を、図2に本発明を適用した
直接接触伝熱型蒸気発生器を高速増殖炉の発電プラント
に組み込んだ場合の熱輸送システムの一例を示す。直接
接触伝熱型蒸気発生器(以下、単に蒸気発生器という)
27は、炉心16を通過して高温となった一次冷却材た
る液体ナトリウムが流れる一次冷却系配管28が上方か
ら下方に向けて通過する容器29と、この容器29内に
溜められて一次冷却系配管28内を通過する液体ナトリ
ウムの熱によって暖められる二次冷却材30と、この二
次冷却材30の中に水を直接注入する注水部材である注
水ノズル6と、二次冷却材30とその中に注水ノズル6
から直接注入された水との直接接触伝熱によって蒸気を
発生させる蒸気発生部34と、二次冷却材30から離脱
した蒸気と一次冷却系配管28内を流れる高温の液体ナ
トリウムとの間で熱交換し過熱蒸気を発生させる過熱蒸
気発生部31と、容器29の上部に設けられた蒸気出口
7を備え、蒸気発生部34で一次冷却材によって加熱さ
れた二次冷却材30と水との直接接触伝熱によって蒸気
を発生させると共に、この蒸気あるいは若干過熱された
蒸気を過熱蒸気発生部31の空間を上昇する間に一次冷
却系配管28を流れる高温の一次冷却材で過熱するもの
である。
FIG. 1 shows an example of an embodiment of a direct contact heat transfer type steam generator to which the present invention is applied. FIG. 2 shows a direct contact heat transfer type steam generator to which the present invention is applied in a power plant of a fast breeder reactor. An example of a heat transport system when incorporated is shown. Direct contact heat transfer type steam generator (hereinafter simply referred to as steam generator)
Reference numeral 27 denotes a container 29 through which a primary cooling system pipe 28 through which liquid sodium, which is a high-temperature primary coolant having passed through the reactor core 16 flows, passes from above to below, and a primary cooling system stored in the container 29. A secondary coolant 30 that is warmed by the heat of the liquid sodium passing through the pipe 28, a water injection nozzle 6 that is a water injection member that directly injects water into the secondary coolant 30, a secondary coolant 30, Water injection nozzle 6 inside
Between the steam released from the secondary coolant 30 and the high-temperature liquid sodium flowing through the primary cooling system pipe 28, and a steam generator 34 that generates steam by direct contact heat transfer with water directly injected from the water. A superheated steam generator 31 for exchanging and generating superheated steam, and a steam outlet 7 provided at an upper portion of the container 29, wherein the secondary coolant 30 heated by the primary coolant in the steam generator 34 and water directly The steam is generated by the contact heat transfer, and the steam or the slightly superheated steam is superheated by the high-temperature primary coolant flowing through the primary cooling system piping 28 while ascending the space of the superheated steam generator 31.

【0011】この蒸気発生器27は、容器29内を多数
の一次冷却系配管28が通過するいわゆるシェルアンド
チューブ型の蒸気発生器である。各一次冷却系配管28
は二重管となっており、各内管2内に液体ナトリウムを
流すと共に、各内管2と各外管4の間に二次冷却材30
を充填している。各内管2の上端は、一次冷却系の主配
管32に接続された入口ヘッダー1に接続されており、
管板13により支持されている。また、各外管4の上端
は管板14に固着され支持されている。
The steam generator 27 is a so-called shell and tube type steam generator in which a number of primary cooling system pipes 28 pass through a vessel 29. Primary cooling system piping 28
Is a double pipe, in which liquid sodium flows through each inner pipe 2 and a secondary coolant 30 is provided between each inner pipe 2 and each outer pipe 4.
Is filled. The upper end of each inner pipe 2 is connected to the inlet header 1 connected to the main pipe 32 of the primary cooling system,
It is supported by a tube sheet 13. The upper end of each outer tube 4 is fixed to and supported by a tube sheet 14.

【0012】各一次冷却系配管28の内管2と外管4の
間及び各管板13,14の間には不活性ガスが封入され
ており、このガス圧を調整することで、過熱蒸気発生部
31に対応する範囲で内管2と外管4の間に二次冷却材
30の液柱33を形成し、これにより、内管2と外管4
との間に二次冷却材30を充填させている。また、各管
板13,14間には検出口12が形成されており、この
検出口12を通じて各管板13,14間の気体の成分例
えば湿分や水素成分等をモニターしておくことで、外管
12の破損を検出する。
An inert gas is sealed between the inner pipe 2 and the outer pipe 4 of each primary cooling system pipe 28 and between the respective tube plates 13 and 14. By adjusting the gas pressure, the superheated steam is A liquid column 33 of the secondary coolant 30 is formed between the inner pipe 2 and the outer pipe 4 in a range corresponding to the generating section 31, whereby the inner pipe 2 and the outer pipe 4 are formed.
Is filled with the secondary coolant 30. Further, a detection port 12 is formed between each of the tube plates 13 and 14, and a gas component between each of the tube plates 13 and 14, such as moisture and a hydrogen component, is monitored through the detection port 12. , The damage of the outer tube 12 is detected.

【0013】各一次冷却系配管28の下端部分は曲げら
れてほぼ水平になっており、各外管4の下端を越流堰1
5の外側の下降流路10内で開口させる一方、各内管2
の下端を容器29の外側の出口ヘッダー3に接続してい
る。各外管4の外周面には、過熱蒸気発生部31内にお
いて蒸気との熱交換を促進するためのフィン32が多数
設けられている。
The lower end of each primary cooling system pipe 28 is bent to be substantially horizontal, and the lower end of each outer pipe 4 is connected to the overflow weir 1.
5, each inner pipe 2 is opened in the descending flow path 10 outside.
Is connected to the outlet header 3 outside the container 29. A large number of fins 32 are provided on the outer peripheral surface of each outer tube 4 for promoting heat exchange with steam in the superheated steam generator 31.

【0014】二次冷却材30は、炉心16を冷却して高
温となった液体ナトリウム(一次冷却材)によって暖め
られる低融点合金であってナトリウムや水と激しく反応
しないもの、例えば鉛・ビスマス合金の使用が好まし
い。ただし、鉛・ビスマス合金に限るものではなく、例
えば水銀,その他の不活性な低融点合金等であっても良
い。液体ナトリウムによって暖められる二次冷却材30
は越流堰15が浸る程度の高さまで溜められており、こ
の部分は二次冷却材溜まり11となっている。
The secondary coolant 30 is a low-melting alloy which is cooled by the liquid sodium (primary coolant) heated to a high temperature after cooling the core 16 and does not react violently with sodium or water, for example, a lead-bismuth alloy The use of is preferred. However, the invention is not limited to the lead-bismuth alloy, but may be, for example, mercury or another inert low melting point alloy. Secondary coolant 30 warmed by liquid sodium
Is stored to a height at which the overflow weir 15 is immersed, and this portion is a secondary coolant reservoir 11.

【0015】注水ノズル6は一次冷却系配管28の下方
に設けられている。注水ノズル6への給水は、給水配管
5から行われる。給水配管5へは給水加熱器22によっ
て高圧下で例えば約200℃に加熱された水が供給さ
れ、二次冷却材30からの直接伝熱によってすぐに沸騰
するようになっている。
The water injection nozzle 6 is provided below the primary cooling system pipe 28. Water is supplied to the water injection nozzle 6 from the water supply pipe 5. Water heated to, for example, about 200 ° C. under high pressure by a feed water heater 22 is supplied to the feed water pipe 5, and the water is immediately boiled by direct heat transfer from the secondary coolant 30.

【0016】炉心16を冷却して高温になった液体ナト
リウムは、一次冷却系の主配管35から入口ヘッダー1
に送られ各一次冷却系配管28の内管2に分配される。
そして、各内管2内に流入した液体ナトリウムは、先ず
過熱蒸気発生部31を通過しながらシェルアンドチュー
ブ型の熱交換システムにより蒸気を過熱し、次に二次冷
却材溜まり11を通過しながらシェルアンドチューブ型
の熱交換システムにより二次冷却材30を加熱する。こ
れにより低温になった液体ナトリウムは、越流堰15を
貫通して容器29の外側の出口ヘッダー3に導かれる。
そして、出口ヘッダー3では各一次冷却系配管28の各
内管2を流れて来た低温の液体ナトリウムが合流し、一
次主循環ポンプ17により圧送されて炉心16へと循環
される。
The liquid sodium heated to a high temperature by cooling the reactor core 16 is supplied from the main pipe 35 of the primary cooling system to the inlet header 1.
And distributed to the inner pipe 2 of each primary cooling system pipe 28.
The liquid sodium flowing into each of the inner tubes 2 first superheats the steam by a shell and tube type heat exchange system while passing through the superheated steam generator 31, and then passes through the secondary coolant reservoir 11. The secondary coolant 30 is heated by a shell and tube type heat exchange system. The liquid sodium which has become low in temperature thereby is guided to the outlet header 3 outside the container 29 through the overflow weir 15.
Then, at the outlet header 3, the low-temperature liquid sodium flowing through each inner pipe 2 of each primary cooling system pipe 28 joins, is pumped by the primary main circulation pump 17, and is circulated to the core 16.

【0017】給水配管5から供給される水は、注水ノズ
ル6から溶融した二次冷却材30の中に直接注入され
る。注水ノズル6には多数のノズル孔が形成されている
ので、二次冷却材溜まり11の越流堰15の内側に満遍
なく水が注入される。注入された水は二次冷却材30の
中で液・液直接接触伝熱により加熱されて蒸発しながら
上昇し、二次冷却材30の液面に到達するまでに飽和蒸
気または若干過熱された蒸気となる。ここで、水と二次
冷却材30とが直接接触伝熱を行う領域で蒸気発生部3
4が構成されている。なお、注水ノズル6は越流堰15
の内側に水を注入するのに対し、各一次冷却系配管28
の外管4の下端は越流堰15の外側に開口しているの
で、水(蒸気)が各外管4と内管2の間に入り込むこと
はなく、液体ナトリウムと水(蒸気)が内管2の管壁1
枚を隔てて存在することはない。このため、ナトリウム
と水との接触が極めて起こり難い構造となっている。
The water supplied from the water supply pipe 5 is directly injected from the water injection nozzle 6 into the molten secondary coolant 30. Since a large number of nozzle holes are formed in the water injection nozzle 6, water is evenly injected into the inside of the overflow weir 15 of the secondary coolant reservoir 11. The injected water is heated by the liquid / liquid direct contact heat transfer in the secondary coolant 30, rises while evaporating, and is saturated steam or slightly overheated before reaching the liquid level of the secondary coolant 30. Turns into steam. Here, in the region where the water and the secondary coolant 30 are in direct contact heat transfer, the steam generator 3
4 are configured. The water injection nozzle 6 is located at the overflow weir 15
Of water in the primary cooling system pipes 28
Since the lower end of the outer pipe 4 is opened outside the overflow weir 15, water (steam) does not enter between each outer pipe 4 and the inner pipe 2, and liquid sodium and water (steam) Tube wall 1 of tube 2
It does not exist between the sheets. For this reason, it has a structure in which contact between sodium and water is extremely unlikely to occur.

【0018】二次冷却材溜まり11の中の蒸気発生部3
4で発生した飽和蒸気または若干過熱された蒸気は、過
熱蒸気発生部31の各一次冷却系配管28の周囲を上昇
する。このとき、蒸気は各一次冷却系配管28の内管2
内を流れる液体ナトリウムの熱によって加熱され、過熱
蒸気となって蒸気出口7より取り出される。各一次冷却
系配管28の内管2と外管4の間には二次冷却材30の
液柱33が存在しているので、液体ナトリウムの熱は外
管4に良好に伝達される。また、液体ナトリウムは上方
から下方に向けて流れているので、蒸気が上昇すればす
るほど高温の液体ナトリウムで過熱されることになる。
したがって、蒸気条件に優れた過熱蒸気を得ることがで
きる。
The steam generator 3 in the secondary coolant reservoir 11
The saturated steam or slightly overheated steam generated in 4 rises around each primary cooling system pipe 28 of the superheated steam generation unit 31. At this time, the steam is supplied to the inner pipe 2 of each primary cooling system pipe 28.
The liquid sodium is heated by the heat of the liquid sodium flowing inside, and is taken out from the steam outlet 7 as superheated steam. Since the liquid column 33 of the secondary coolant 30 exists between the inner pipe 2 and the outer pipe 4 of each primary cooling system pipe 28, the heat of the liquid sodium is transmitted to the outer pipe 4 well. Further, since the liquid sodium flows downward from above, the higher the vapor is, the more the liquid sodium is heated by the high temperature liquid sodium.
Therefore, superheated steam having excellent steam conditions can be obtained.

【0019】蒸気出口7より取り出された過熱蒸気は、
発電器26のタービン24に導かれて発電を行った後に
復水器25で水に戻され、給水ポンプ23により圧送さ
れて再度蒸気発生器27へと循環される。
The superheated steam taken out from the steam outlet 7 is
After being guided by the turbine 24 of the power generator 26 to generate power, the water is returned to water by the condenser 25, pumped by the water supply pump 23, and circulated again to the steam generator 27.

【0020】二次冷却材30は液体ナトリウムから受熱
すると共に注水ノズル6によって注入された水に熱を与
える。二次冷却材溜まり11内の二次冷却材30は、水
が蒸発することにより発生する蒸気泡のために見かけの
密度が低下し、浮力が生じる。そのため、二次冷却材3
0には、越流堰15の内側を上昇し外側を下降する自然
循環流が発生する。液体ナトリウムは越流堰15の内側
を上方から下方に向けて流れるため、越流堰15の内側
では二次冷却材30は上方ほど高温になる。
The secondary coolant 30 receives heat from the liquid sodium and gives heat to the water injected by the water injection nozzle 6. The secondary coolant 30 in the secondary coolant reservoir 11 has a reduced apparent density due to vapor bubbles generated by evaporation of water, and generates buoyancy. Therefore, the secondary coolant 3
At 0, a natural circulation flow is generated that rises inside the overflow weir 15 and descends outside. Since the liquid sodium flows from the inside of the overflow weir 15 downward from above, the secondary coolant 30 inside the overflow weir 15 becomes hotter upward.

【0021】即ち、二次冷却材溜まり11の蒸気発生部
34に注入された水は二次冷却材30の中を蒸気となっ
て上昇するほど高温の二次冷却材30によって加熱さ
れ、さらに過熱蒸気発生部31を上昇するほど高温の液
体ナトリウムによって加熱されて過熱蒸気となる。この
ように、蒸気出口7付近を最も高温にできるので、蒸気
発生器27全体として非常に良好な熱交換性能が得られ
る。即ち、熱交換を行う部分が対向流型の熱交換システ
ムとなり、熱交換効率が良好となる。
That is, the water injected into the steam generating section 34 of the secondary coolant reservoir 11 is heated by the secondary coolant 30 having a higher temperature as it rises as steam in the secondary coolant 30 and is further heated. The higher the temperature of the steam generator 31 is, the higher the temperature of the liquid sodium is. As described above, since the temperature in the vicinity of the steam outlet 7 can be set to the highest temperature, very good heat exchange performance can be obtained for the steam generator 27 as a whole. That is, the heat exchange part is a counter-flow type heat exchange system, and the heat exchange efficiency is improved.

【0022】この蒸気発生器27は、二次冷却材30と
して、液体金属の鉛・ビスマス合金を用い、水と液体金
属の液・液直接接触伝熱の良好な熱交換手法を用いて、
機器のサイズをコンパクトなものにしている。
The steam generator 27 uses a liquid metal lead / bismuth alloy as the secondary coolant 30 and employs a good heat exchange method of liquid / liquid direct contact heat transfer between water and liquid metal.
The size of the equipment is made compact.

【0023】また、一次冷却材である液体ナトリウムが
二次冷却材30を加熱する場所と、この二次冷却材30
が液・液直接接触熱伝熱によって水を加熱する場所とが
同一となっている。したがって、飽和蒸気を発生させる
ために必要な熱交換高さを低くすることができる。
The location where the liquid sodium as the primary coolant heats the secondary coolant 30 and the location where the secondary coolant 30
Is the same as where water is heated by liquid-liquid direct contact heat transfer. Therefore, the heat exchange height required to generate saturated steam can be reduced.

【0024】さらに、一次冷却系配管28は二重管構造
となっており、たとえ内管2内の液体ナトリウムが漏れ
たとしても外管4の外を流れる蒸気(水)に接触するこ
とはなく、ナトリウムと水の接触が極めて起こり難い構
造となっている。また、内管2と外管4の間及び各管板
13,14の間に不活性ガスを充填しておき、この不活
性ガスを検出口12を通じて湿分または水素成分検出器
等によってモニタリングしておくことで、外管4の破損
を検出することができる。
Further, the primary cooling system pipe 28 has a double pipe structure, so that even if liquid sodium in the inner pipe 2 leaks, it does not come into contact with steam (water) flowing outside the outer pipe 4. , So that the contact between sodium and water hardly occurs. An inert gas is filled between the inner tube 2 and the outer tube 4 and between the tube plates 13 and 14, and the inert gas is monitored through a detection port 12 by a moisture or hydrogen component detector or the like. By doing so, breakage of the outer tube 4 can be detected.

【0025】この蒸気発生器27を使用することで、図
2に示すように、高速増殖炉の発電プラントの熱輸送シ
ステムを大幅に合理化することができる。比較のため
に、蒸気発生器27を使用しない場合の同熱輸送システ
ムを図3に示す。図3の場合には必要であった中間熱交
換器18、蒸発器21及び過熱器20を1つにまとめて
蒸気発生器27に置き換えることができ、また、二次主
循環ポンプ19を省略することができるので、熱輸送シ
ステムを大幅に合理化することができる。また、蒸発器
21と過熱器20は液体ナトリウムと水(蒸気)とを管
壁1枚隔てて流す構造であったが、これらを不要にでき
るので、液体ナトリウムと水の反応に対して安全性をよ
り高めることが出来る。
By using this steam generator 27, as shown in FIG. 2, the heat transport system of the power plant of the fast breeder reactor can be greatly rationalized. For comparison, FIG. 3 shows the same heat transport system when the steam generator 27 is not used. In the case of FIG. 3, the intermediate heat exchanger 18, the evaporator 21, and the superheater 20, which were necessary in the case of FIG. 3, can be combined into one and replaced with the steam generator 27, and the secondary main circulation pump 19 is omitted. And can greatly streamline the heat transport system. In addition, the evaporator 21 and the superheater 20 have a structure in which liquid sodium and water (steam) flow through one tube wall, but these can be made unnecessary, so that safety against the reaction of liquid sodium and water is obtained. Can be further increased.

【0026】なお、上述の形態は本発明の好適な形態の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention.

【0027】[0027]

【発明の効果】以上説明したように請求項1記載の直接
接触伝熱型蒸気発生器では、炉心を通過して高温となっ
た液体ナトリウムが流れる一次冷却系配管が上方から下
方に向けて通過する容器と、この容器内に溜められて液
体ナトリウムの熱によって暖められる二次冷却材と、こ
の二次冷却材の中に水を直接注入する注水部材と、二次
冷却材とその中に注水部材から直接注入された水との直
接接触伝熱によって蒸気を発生させる蒸気発生部と、二
次冷却材から離脱した蒸気と一次冷却系配管内を流れる
一次冷却材との間で熱交換し過熱蒸気を発生させる過熱
蒸気発生部と、容器の上部に設けられた蒸気出口を備え
るようにしているので、高速増殖炉の発電プラントの熱
輸送システムをコンパクトにできる直接接触伝熱型蒸気
発生器として、蒸気条件に優れた過熱蒸気を得ることが
できる。
As described above, in the direct contact heat transfer type steam generator according to the first aspect, the primary cooling system pipe through which the high temperature liquid sodium flows through the core passes from the top to the bottom. Container, a secondary coolant that is stored in the container and heated by the heat of liquid sodium, a water injection member that directly injects water into the secondary coolant, and a secondary coolant and water is injected therein. Superheated by exchanging heat between the steam generator that generates steam by direct contact heat transfer with water injected directly from the member and the steam separated from the secondary coolant and the primary coolant flowing in the primary cooling system piping As it has a superheated steam generator that generates steam and a steam outlet provided at the top of the vessel, it can be used as a direct contact heat transfer type steam generator that can make the heat transfer system of the power plant of the fast breeder reactor compact. , Steam It is possible to obtain an excellent superheated steam conditions.

【0028】また、請求項2記載の直接接触伝熱型蒸気
発生器では、一次冷却系配管を二重管とし、その内管内
に液体ナトリウムを流すと共に、内管と外管の間に二次
冷却材を充填するので、たとえ内管内の液体ナトリウム
が漏れたとしても外管の外を流れる蒸気に接触すること
がなく、ナトリウムと水の反応を防止することができ
る。また、内管と外管の間に充填した二次冷却材が液体
ナトリウムの熱を外管に伝達するので、一次冷却系配管
を二重管としても伝熱性能の悪化を防止することができ
る。
Further, in the direct contact heat transfer type steam generator according to the second aspect, the primary cooling system pipe is a double pipe, liquid sodium flows through the inner pipe, and a secondary pipe is provided between the inner pipe and the outer pipe. Since the coolant is filled, even if the liquid sodium in the inner tube leaks, it does not come into contact with the steam flowing outside the outer tube, so that the reaction between sodium and water can be prevented. Further, since the secondary coolant filled between the inner pipe and the outer pipe transfers the heat of the liquid sodium to the outer pipe, deterioration of the heat transfer performance can be prevented even if the primary cooling system pipe is a double pipe. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の直接接触伝熱型蒸気発生器の実施形態
の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an embodiment of a direct contact heat transfer type steam generator of the present invention.

【図2】本発明の直接接触伝熱型蒸気発生器を使用した
高速増殖炉の発電プラントの熱輸送システムの概略構成
図である。
FIG. 2 is a schematic configuration diagram of a heat transfer system of a power plant of a fast breeder reactor using the direct contact heat transfer type steam generator of the present invention.

【図3】直接接触伝熱型蒸気発生器を使用しない場合の
高速増殖炉の発電プラントの熱輸送システムの概略構成
図である。
FIG. 3 is a schematic configuration diagram of a heat transfer system of a power plant of a fast breeder reactor when a direct contact heat transfer type steam generator is not used.

【図4】従来の直接接触伝熱型蒸気発生器の概略構成図
である。
FIG. 4 is a schematic configuration diagram of a conventional direct contact heat transfer type steam generator.

【符号の説明】[Explanation of symbols]

2 内管 4 外管 6 注水ノズル(注水部材) 7 蒸気出口 16 炉心 27 直接接触伝熱型蒸気発生器 28 一次冷却系配管 29 容器 30 二次冷却材 31 過熱蒸気発生部 34 蒸気発生部 2 Inner pipe 4 Outer pipe 6 Water injection nozzle (water injection member) 7 Steam outlet 16 Reactor core 27 Direct contact heat transfer type steam generator 28 Primary cooling system piping 29 Vessel 30 Secondary coolant 31 Superheated steam generator 34 Steam generator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉心を通過して高温となった液体ナトリ
ウムが流れる一次冷却系配管が上方から下方に向けて通
過する容器と、この容器内に溜められて前記液体ナトリ
ウムの熱によって暖められる二次冷却材と、この二次冷
却材の中に水を直接注入する注水部材と、前記二次冷却
材とその中に前記注水部材から直接注入された水との直
接接触伝熱によって蒸気を発生させる蒸気発生部と、前
記二次冷却材から離脱した前記蒸気と前記一次冷却系配
管内を流れる前記一次冷却材との間で熱交換し過熱蒸気
を発生させる過熱蒸気発生部と、前記容器の上部に設け
られた蒸気出口を備えることを特徴とする直接接触伝熱
型蒸気発生器。
1. A container through which a primary cooling system pipe through which a high temperature of liquid sodium flows through a reactor core passes from above to below, and a container which is stored in the container and is heated by the heat of the liquid sodium. Secondary coolant, a water injection member for directly injecting water into the secondary coolant, and steam generated by direct contact heat transfer between the secondary coolant and water directly injected from the water injection member therein. A steam generating unit that generates heat by exchanging heat between the steam separated from the secondary coolant and the primary coolant flowing through the primary cooling system piping, and a superheated steam generating unit that generates superheated steam. A direct contact heat transfer type steam generator comprising a steam outlet provided at an upper portion.
【請求項2】 前記一次冷却系配管を二重管とし、その
内管内に前記液体ナトリウムを流すと共に、前記内管と
外管の間に前記二次冷却材を充填することを特徴とする
請求項1記載の直接接触伝熱型蒸気発生器。
2. The method according to claim 1, wherein the primary cooling system pipe is a double pipe, the liquid sodium flows through the inner pipe, and the secondary coolant is filled between the inner pipe and the outer pipe. Item 6. A direct contact heat transfer type steam generator according to item 1.
JP10173645A 1998-06-19 1998-06-19 Direct contact heat transfer type steam generator Pending JP2000009887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10173645A JP2000009887A (en) 1998-06-19 1998-06-19 Direct contact heat transfer type steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10173645A JP2000009887A (en) 1998-06-19 1998-06-19 Direct contact heat transfer type steam generator

Publications (1)

Publication Number Publication Date
JP2000009887A true JP2000009887A (en) 2000-01-14

Family

ID=15964462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10173645A Pending JP2000009887A (en) 1998-06-19 1998-06-19 Direct contact heat transfer type steam generator

Country Status (1)

Country Link
JP (1) JP2000009887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029393A (en) * 2013-05-01 2016-03-03 竹田 眞司 Fast breeder reactor with high safety

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029393A (en) * 2013-05-01 2016-03-03 竹田 眞司 Fast breeder reactor with high safety

Similar Documents

Publication Publication Date Title
US3979914A (en) Process and apparatus for superheating partly expanded steam
KR102220520B1 (en) Steam generator for a nuclear reactor
JPH1039065A (en) Nuclear reactor
NO159404B (en) DEVICE FOR TRANSFER OF RODS BETWEEN A BORROW HOLE AND EROTIC STORAGE.
US6895068B2 (en) Method for providing a pressurized fluid
US3437077A (en) Once-through vapor generator
US3097630A (en) Steam generator
US3633665A (en) Heat exchanger using thermal convection tubes
US3545412A (en) Molten salt operated generator-superheater using floating head design
JP2000009887A (en) Direct contact heat transfer type steam generator
US3613781A (en) Bayonet tube bank vapor generator
CA2990585C (en) Steam generator
JPS6158721B2 (en)
US3892205A (en) Steam generator
US3434926A (en) Indirect-cycle integral steam cooled nuclear reactor
US3195517A (en) Stable forced circulation boilers
JPH02290478A (en) Direct contact type condenser and heat cycle apparatus using the same
KR102546736B1 (en) Reactor having 2 step heat exchange natural circulation cooling system and method for operating the same reactor
JPH02176596A (en) Decay heat removal system for fast breeder
JP3747283B2 (en) Clean steam generator
JPH08190923A (en) Carburetor for fuel cell
RU2106700C1 (en) Evaporation-reheat process channel of direct-flow water-moderated reactor
JP3586655B2 (en) Nuclear power plant
JPH11311401A (en) Shell-and-tube heat exchanger type horizontal steam generator
KR100230110B1 (en) Refrigerant steam generator