JPS6190096A - Intermediate heat exchanger - Google Patents

Intermediate heat exchanger

Info

Publication number
JPS6190096A
JPS6190096A JP59211413A JP21141384A JPS6190096A JP S6190096 A JPS6190096 A JP S6190096A JP 59211413 A JP59211413 A JP 59211413A JP 21141384 A JP21141384 A JP 21141384A JP S6190096 A JPS6190096 A JP S6190096A
Authority
JP
Japan
Prior art keywords
shell
heat exchanger
chamber
intermediate heat
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211413A
Other languages
Japanese (ja)
Inventor
佐橋 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59211413A priority Critical patent/JPS6190096A/en
Publication of JPS6190096A publication Critical patent/JPS6190096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、タンクう°!高速増殖炉において、炉心で加
熱された一次冷却材と二次冷却材との間の熱交換を行な
う中間熱交換器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a tank! The present invention relates to an intermediate heat exchanger that exchanges heat between a primary coolant and a secondary coolant heated in a reactor core in a fast breeder reactor.

〔発明の技術的青用〕[Technical blue use of invention]

第3図はタンク型高速増殖炉の概略構成を不りもので、
主容器1の内部には核反応によって熱エネルギを発生さ
Uる炉心2が構成されている。また主容器1の内部には
一次冷却材としての液体金属(通常液偽りトリウム)を
循環させる複数の一次主循環ポンブ3、−次冷PA祠か
ら二次冷IJl材としての液体金属(通常液体す1−リ
ウム)へ熱エネルギを伝達する複数の中間熱交換器4等
よりなる一次冷却系設備が収容されている。
Figure 3 shows the schematic configuration of a tank-type fast breeder reactor.
A reactor core 2 that generates thermal energy through nuclear reactions is configured inside the main vessel 1 . In addition, inside the main container 1, there are a plurality of primary main circulation pumps 3 that circulate liquid metal (usually liquid false thorium) as a primary coolant, and liquid metal (usually liquid A primary cooling system facility consisting of a plurality of intermediate heat exchangers 4, etc., which transfers thermal energy to the heat exchanger (1-lium) is accommodated.

前記炉心2の下部にはプレナム部5が設【ノられ、炉心
2及びブレナム部5は主容器1内の底部に設けられた炉
心支持体6に支持されている1、また前記炉心2の上方
には多数の窓孔をイ1する炉心上部は構7が配設されて
いる。
A plenum part 5 is provided in the lower part of the core 2, and the core 2 and the plenum part 5 are supported by a core support 6 provided at the bottom of the main vessel 1, and a plenum part 5 is provided above the core 2. A structure 7 is disposed in the upper part of the reactor core, which has a large number of window holes.

ま/、−主容器1の内部には隔壁支持体8△に支持され
た隔壁8が水平方向に配置されている。そして、この隔
壁8により、主容器1内の空間を、上1ノのホットプー
ル9と下刃のコールドプール10とに区画している。
- Inside the main container 1, a partition wall 8 supported by partition wall supports 8Δ is arranged horizontally. The partition wall 8 divides the space inside the main container 1 into an upper hot pool 9 and a lower cold pool 10.

前記複数の一次主循環ボンプ3及び複数の中間熱交換器
4は、いずれも主容器1内に周方向等間隔に配置されて
いる。また各−法主循環ボンプ3の下端には炉内配管1
1を接続し、この配管11の下端部を前記コールドプー
ル10内に延在さU、ブレナム部5に接続さけている。
The plurality of primary main circulation pumps 3 and the plurality of intermediate heat exchangers 4 are arranged in the main container 1 at equal intervals in the circumferential direction. In addition, at the bottom end of each main circulation pump 3, there is a furnace piping 1.
1 is connected, and the lower end of this pipe 11 extends into the cold pool 10 and is connected to the blennium section 5.

そして各−法主循環ボンブ3の下部より炉内配管11に
亘って薄肉円筒体12にて囲み、この円筒体12の下端
を前記隔壁8を口通してコールドプール10内へ導入さ
せ、円筒体12の内部を]−ルドプール10の内部空間
に連通さぽている。
Then, a thin-walled cylindrical body 12 is surrounded from the lower part of each main circulation bomb 3 to the furnace piping 11, and the lower end of this cylindrical body 12 is introduced into the cold pool 10 through the partition wall 8, and the cylindrical body 12 is connected to the interior space of the pool 10.

前記主容器1の外側には、万一の冷W材漏洩事故にI(
iえてガードベッセル13が設(プられている。
The outside of the main container 1 is provided with I(
Additionally, a guard vessel 13 is installed.

そして以上の如くゼ11成された主容器1はキPL:j
イウA−ル14内に収容されている。
And the main container 1 made as above is KiPL:j
It is housed in the I-A-R 14.

また上記キ↑・ビテイウA−ル14の上部間]」はルー
フスラブ15で閉塞されてd3す、主容器1の上部開口
もこのルーフスラブ15で閉塞されている。
Furthermore, the space between the upper parts of the key ↑ and the upper part of the door 14 is closed by a roof slab 15, and the upper opening of the main container 1 is also closed by this roof slab 15.

まLこホットプール9及び]−ルトドプール1には一次
冷却材としての液体金属(通常、液体ナトリウム)6が
収容され、液体金属6の液面とルーフスラブ15との間
にはカバーガスが充填されている。
The hot pool 9 and the hot pool 1 contain liquid metal (usually liquid sodium) 6 as a primary coolant, and a cover gas is filled between the liquid level of the liquid metal 6 and the roof slab 15. has been done.

このように構成された従来のタンク型高速増殖炉は次の
ように動作する。
The conventional tank-type fast breeder reactor configured as described above operates as follows.

まず−次冷却材である液体金属16は炉心2を上方に向
って通過する間に核反応による熱Tネル−1を受けて高
温となり、炉心上部機も17の窓孔を通してホラ1−ブ
ール9内へ流入する。そして中間熱交換器4に複数の吸
込口17より流入し、二次冷却材としての液体金属に熱
エネルギを広げして温度を低下さけながらコールドプー
ル10内へ流下する。一方、コールドプール10内の液
体金属161J−次W1Crポンプ3により胃圧され、
炉内配管11を通ってプレナム部5へ戻される。なお、
中間熱交換器4で加熱された二次冷却材としての液体金
属は主容器1の外部へ導かれ、タービン駆動用蒸気を加
熱することになる。
First, the liquid metal 16, which is the primary coolant, reaches a high temperature as it passes through the reactor core 2 upward as it receives heat from the nuclear reaction. flow inward. Then, it flows into the intermediate heat exchanger 4 through the plurality of suction ports 17, spreads thermal energy to the liquid metal as a secondary coolant, and flows down into the cold pool 10 while avoiding a drop in temperature. On the other hand, the liquid metal 161J in the cold pool 10 is subjected to gastric pressure by the next W1Cr pump 3,
It is returned to the plenum section 5 through the furnace piping 11. In addition,
The liquid metal as a secondary coolant heated in the intermediate heat exchanger 4 is led to the outside of the main container 1 and heats the turbine driving steam.

この中間熱交換器4を第4図により更に説明覆ると、−
次冷却材としての液体金属16は複数の一次冷却材人口
17より中間熱交換器4のシェル18の上部室4a内に
流入し、上部管板19と上部管板23との間の中間室4
b内に取付【ノられた複数の伝熱管20を通って流下し
、その後下部室4Cに流出し、その後−次冷N1月出口
21から流出する。一方、二次冷1.1′l+Aどして
の液体金属(、L二次冷7.II材人口22より中間熱
交換器4内に流入し、下部管板23の上面部分にJ5い
て複数の吹き出し口24から吹き出され、二次側冷7J
]室28内を複数の伝熱管20に沿っで萌述の一次冷却
材どしての液体金属と熱交換しながら上背し、二次冷7
JI Vj戻りD 25 ’r集められ、二次冷lJI
材出口26から流出する。なお27は遮蔽材である。
This intermediate heat exchanger 4 will be further explained with reference to FIG.
The liquid metal 16 as a secondary coolant flows from a plurality of primary coolant populations 17 into the upper chamber 4a of the shell 18 of the intermediate heat exchanger 4, and flows into the intermediate chamber 4a between the upper tube sheet 19 and the upper tube sheet 23.
It flows down through the plurality of heat exchanger tubes 20 installed in the interior of the tube, and then flows out into the lower chamber 4C, and then flows out from the cold N1 outlet 21. On the other hand, liquid metal such as secondary cooling 1.1'l+A flows into the intermediate heat exchanger 4 from the secondary cooling 7.II material population 22, and a plurality of liquid metals such as J5 The air is blown out from the air outlet 24, and the secondary side cold 7J
] Inside the chamber 28, the secondary cooling 7 is carried out while exchanging heat with the liquid metal as the primary coolant described above along the plurality of heat transfer tubes 20.
JI Vj return D 25'r collected, secondary cooling lJI
The material flows out from the material outlet 26. Note that 27 is a shielding material.

〔背?技術の問題点) このように形成されたタンク型高速増殖炉に(1)いて
は、ホットプール9内の液体金属16は運転中高温とな
っており、また常に炉心上部機(147の窓孔から中間
熱交換器4の複数の一次冷却材人口17へ向って高温の
液体金属16が第5図に示すような流線に治って流動し
ている。
[Back? Technical Problems) In the tank-type fast breeder reactor constructed as described above (1), the liquid metal 16 in the hot pool 9 is at a high temperature during operation, and the upper core machine (147 window hole The high-temperature liquid metal 16 flows from there toward the plurality of primary coolant populations 17 of the intermediate heat exchanger 4 in streamlines as shown in FIG.

ところで、原子炉1〜リップ時には、炉心2の核反応が
停止し、発生する熱エネルギが急激に減少し、前jホし
た炉心上部別構7の窓孔から中間熱交換器4の複数の一
次冷却月入口17へ向って流動する液体金属16は、コ
ールドプール10の(B爪に近い低温どなる。この場合
、上部管板1つには′FI教の伝熱管20が接続されて
いるため、上部管板19の部材温度は低温となった液体
金属16が通過する伝熱管20の淘瓜の低下に即応して
急速に低下する。一方、上部管板19が接続されたシェ
ル18の部分の外面に接する液体金属はL;に(1Lf
多動t!ヂ高渦のままで残されているため、シェル18
は比較的長時間高温状態を保つことになる。
By the way, at the time of reactor 1 to lip, the nuclear reaction in the reactor core 2 stops, the generated thermal energy rapidly decreases, and the multiple primary heat exchangers of the intermediate heat exchanger 4 are The liquid metal 16 flowing toward the cooling moon inlet 17 is at a low temperature close to the (B claw) of the cold pool 10. In this case, since one of the upper tube plates is connected to the 'FI heat transfer tube 20, The temperature of the upper tube sheet 19 rapidly decreases in response to the decrease in the temperature of the heat transfer tube 20 through which the low-temperature liquid metal 16 passes. The liquid metal in contact with the outer surface is L; (1Lf
Hyperactivity! Shell 18 is left as it is as a zitaka vortex.
will remain at a high temperature for a relatively long time.

このため、原子炉]・リンプ直後に(、Lシ丁ル18と
上部管板1つの間に大きな温度ガを住じ、これによって
シェル18と上部管板1つの接続部に熱応力が発生しt
M Jji部材の針金性を保つ上で問題となっていIζ
For this reason, immediately after the reactor limp, a large temperature buildup occurs between the L shell 18 and the upper tube sheet, which causes thermal stress at the connection between the shell 18 and the upper tube sheet. t
M Jji There is a problem in maintaining the wire properties of the parts.
.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの点に鑑みてなされたものであり、原子
炉のトリップ直112にFl数の伝熱管の接続された上
部管板の平均温度とこの上部管板に接続されるシェル部
の温度差を小さく覆ることによって上部管板とシェルの
接続部分の熱応力を低減さじることができ信頼性の高い
中間熱交換器を提供することを目的とする。
The present invention has been made in view of these points, and is based on the average temperature of the upper tube sheet to which the heat transfer tubes of Fl number are connected to the trip line 112 of the nuclear reactor, and the temperature of the shell portion connected to this upper tube sheet. The object of the present invention is to provide a highly reliable intermediate heat exchanger that can reduce the thermal stress at the connection portion between the upper tube sheet and the shell by minimizing the difference.

(発明の概要) 本発明の中間熱交換器は円筒状のシェルと、このシェル
内部を上部室、中間室、下部室に仕切る上、下2枚の管
板と、この2枚の管板によって両端を支持され、両管板
に囲まれた中間+i6を出通し、上部室と上部室とを連
絡げる多数の伝熱管と、前記中間室と外部とを連結する
2重管とからなる中間熱交換器にJ3いて、前記下部室
部分に形成されI:冷JJ]材入[1より上jj部分か
ら前記」一部管仮まり下方部分までの前記シ[ルの外側
部分を75うどともに、前記シェルどの間に冷却材が下
部からIYt記冷即材入口を通ってシェル内に流入する
7ニコ′ラス状の冷7J] 44流路を形成り゛るフロ
ースカートを設()て形成したことを特徴とする。
(Summary of the Invention) The intermediate heat exchanger of the present invention includes a cylindrical shell, two upper and lower tube plates that partition the inside of the shell into an upper chamber, an intermediate chamber, and a lower chamber, and these two tube plates. An intermediate tube consisting of a large number of heat transfer tubes that are supported at both ends and are surrounded by both tube sheets, and which connects the upper chamber to the upper chamber, and a double tube that connects the intermediate chamber to the outside. J3 is placed in the heat exchanger, and the outer part of the seal formed in the lower chamber part from the upper part of the cold JJ part to the lower part of the part of the pipe bundle is filled with 75 parts. A flow skirt is provided between the shells to form 44 flow paths, through which the coolant flows into the shell from the bottom through the cold material inlet. It is characterized by what it did.

原子炉トリップ直後には炉心上部様(14より流出する
液体金属が」−ルドプール?品度に近い低温Cあるが、
本発明においては、a(A金属がアニコラス状の冷19
月流路を流れることによって、上部tr(板を接続した
シェルと上部管板とを順番に速やかに温度を均一化し、
シェルと上部管板の接続部分に生じる熱応力を小さく抑
えることができる。
Immediately after the reactor trip, the upper part of the reactor core (liquid metal flowing out from 14 - Rudopool? There is a low temperature C close to the quality,
In the present invention, a (A metal is anicolasic cold 19
By flowing through the moon flow path, the temperature of the upper tr (shell connected to the plate and the upper tube plate) is uniformized quickly in order,
Thermal stress generated at the connection between the shell and the upper tube sheet can be kept to a minimum.

〔発明の実施例〕[Embodiments of the invention]

第1図および第2図は本発明の中間熱交換器の−・実施
例を示し、第4図と同一部分には同一テコタ;を付しで
ある。
1 and 2 show an embodiment of the intermediate heat exchanger of the present invention, and the same parts as in FIG. 4 are marked with the same numerals.

本実施例において、中間熱交換器は第4図に示す従来例
と同様に形成するとともに、更にシェル18の外側にフ
ロースカート2つを設けたbのである。このフロースカ
ート29の上部30は一次冷却材人口17よりも上部位
置においてシェル18に気密に接続されている。一方、
フロースカー1・2つの下部は、上部管板19の位置よ
り近い位置において切断されて開口31を形成している
In this embodiment, the intermediate heat exchanger is formed in the same manner as the conventional example shown in FIG. 4, and further includes two flow skirts provided on the outside of the shell 18. The upper part 30 of the flow skirt 29 is hermetically connected to the shell 18 at a position above the primary coolant population 17. on the other hand,
The lower parts of the flow scars 1 and 2 are cut at a position closer to the upper tube plate 19 to form an opening 31.

そして、フロースカート29はシェル18の外面どの間
で、液体金属16が開口31を通って流入し、続いて一
次冷却材流入口17からシェル18内へ流入するアニユ
ラス状の冷MI +A流路32を形成している。
The flow skirt 29 has an annulus-shaped cold MI +A channel 32 between the outer surface of the shell 18 through which the liquid metal 16 flows through the opening 31 and then flows into the shell 18 from the primary coolant inlet 17. is formed.

また、上部管板19とシェル18の接続部分は、双方の
温度の均一・化速度を大きくするために肉厚を従来より
薄く形成している。
Further, the connecting portion between the upper tube plate 19 and the shell 18 is made thinner than before in order to increase the speed at which the temperatures of the upper tube plate 19 and the shell 18 are uniform.

次に、木実/1色例の作用を説明り−る。Next, the effect of the nut/one color example will be explained.

原子炉通常運転中には、′;A2図に示したように、炉
心上部nM tM 7の窓孔から流j11シた高温の液
体金属16は一旦下降し、フロースカート2つの下部の
開口$1内に流入し、フロースカート2つとシェル18
の外面とからなるアニユラス状の冷741 +、1流路
32を上昇した後、複数の一次玲却(A入口17からシ
ェル18の上部室4a内に流入する。での後、従来と同
様土部管板19に接続された複数の伝熱管20の内部を
通って伝熱管20の外側のニー次冷却材としての液体金
属と熱交換を行なう。
During normal reactor operation, as shown in Figure A2, the high-temperature liquid metal 16 flowing from the window hole in the upper part of the core nM tM 7 once descends and flows through the lower openings of the two flow skirts. 2 flow skirts and shell 18
After ascending through the first flow passage 32, the annulus-shaped cooling 741+ consisting of the outer surface of Heat is exchanged with liquid metal as a secondary coolant outside the heat exchanger tubes 20 through the inside of the plurality of heat exchanger tubes 20 connected to the tube plate 19 .

原子炉トリップ時は、炉心2の核反応が停止し発生する
熱エネルギが急激に減少するため炉心上部は構7の窓孔
から流出する液体金属16の温1αが低下する。この]
−ルトドプール1の温度に近い低温の液体金属16は原
子炉通りδ運転中と同(、丘にホラ1−プール9内を一
旦下降L2、フロースカーi〜29の下部の間[131
内に流入し、)[]−スカー1〜29どシJル18の外
面どからなる冷fJI U流路32を上??し、この間
に通帛運転時には畠?!+aであったシJル18の外面
を冷IJIする。冷却材流路32内を上背した液体金属
16は、複数の一次冷m 44人口17からシェル18
の上部”& 4 aに流入し、上部管板1つに接続され
た複数の伝熱管20の内部を通る。この時、この液体金
属16がlI(渇Cあるため通常運転■1高記であった
上部管板19は′F1教の伝熱管20を通じて冷2JI
される。
During a reactor trip, the nuclear reaction in the reactor core 2 stops and the generated thermal energy rapidly decreases, so that the temperature 1α of the liquid metal 16 flowing out from the window hole of the structure 7 in the upper part of the reactor core decreases. this]
- The liquid metal 16 at a low temperature close to the temperature of the melted pool 1 is the same as during the reactor street δ operation (, once descends inside the hill 1 - pool 9 L2, between the lower part of Flow Scar i ~ 29 [131
) [] - Up the cold fJI U flow path 32 consisting of the outer surface of the scars 1 to 29 18? ? But during this time, when I was driving, was it Hatake? ! The outer surface of the seal 18, which was +a, is subjected to cold IJI. The liquid metal 16 flowing upwardly in the coolant flow path 32 is transferred from a plurality of primary cooling m 44 to a shell 18.
At this time, this liquid metal 16 flows into the upper part of ``&4a'' and passes through a plurality of heat transfer tubes 20 connected to one upper tube plate. At this time, this liquid metal 16 is heated to The upper tube plate 19 is cooled to 2JI through the F1 heat exchanger tube 20.
be done.

このように本実施例にd3いCは、ホットブール9/)
日ら低調の液体金属16の流入する間口31の位置がシ
ェル18内部に接続する上部管板19の位置より下にあ
り、しかも低調の液体金属16が冷却材流路32を上昇
する間にシェル18を冷却するlζめシェル18と上部
管板1つの調度差が小さくなり、従ってシェル18と上
部管板19の接続部に大きな熱応力が生じない。
In this example, d3C is hot boolean 9/)
The position of the opening 31 into which the liquid metal 16 of low temperature flows is located below the position of the upper tube plate 19 connected to the inside of the shell 18, and while the liquid metal 16 of low temperature is rising through the coolant flow path 32, The temperature difference between the lζ-sized shell 18 that cools the shell 18 and the upper tube sheet 18 is reduced, so that no large thermal stress is generated at the joint between the shell 18 and the upper tube sheet 19.

さらに、シェル18と上部管板19の接続部の肉厚を博
くすることによってこの部分の熱容rI+が小となり、
原子炉トリップによる液体金属16のiQ+激な低下に
対して速やかに応答しシェル18と上部管板19どの温
度の均τ化を早期に達成さぜ゛  ることができる。
Furthermore, by increasing the wall thickness of the connecting portion between the shell 18 and the upper tube sheet 19, the heat capacity rI+ of this portion becomes smaller.
It is possible to quickly respond to a drastic drop in iQ+ of the liquid metal 16 due to a reactor trip, and to quickly equalize the temperatures of the shell 18 and the upper tube sheet 19.

〔発明の効果〕〔Effect of the invention〕

このように本発明の中間熱交換器は、原子炉の1へリッ
プ直19に複数の伝熱管の接続された上部管板とこの−
L81!管板に接続されるシェル部との温度差を小さく
することかでき、上部管板どシェルとの接続部分の熱応
力を低減さけることがでさ、熱応力破壊等を起りことが
なく(ルめて15頼性が高くなる等の効果を奏する。
As described above, the intermediate heat exchanger of the present invention has an upper tube plate to which a plurality of heat transfer tubes are connected directly to the lip 19 of a nuclear reactor, and
L81! It is possible to reduce the temperature difference with the shell part connected to the tube sheet, and it is possible to avoid reducing the thermal stress at the connection part of the upper tube sheet and the shell, thereby preventing thermal stress fracture, etc. This brings about effects such as increased reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の中間熱交換器の−・実施例を示J概略
断面図、第2図は本発明の実施例の)D −スカート部
の拡大断面図、第3図は従来のタンク型高速増殖炉の全
体什1成を足す概略断面図、第4図は従来の中間熱交換
器のM4造を示すff、(略断面図、第5図は従来の中
間熱交換器の上部管板部の拡大断面図である。 4・・・中間熱交換器、4a・・・上部室、4b・・・
中間室、4C・・・下部室、17・・・−次冷却祠入[
1,18・・・シェル、19・・・上部管板、29・・
・フロースカート、32・・・冷IJ1材流路。 第1因 第2因 第3図 第4図
Fig. 1 is a schematic sectional view showing an embodiment of the intermediate heat exchanger of the present invention, Fig. 2 is an enlarged sectional view of the skirt portion of the embodiment of the present invention, and Fig. 3 is a conventional tank. Figure 4 is a schematic cross-sectional view showing the M4 structure of a conventional intermediate heat exchanger; It is an enlarged sectional view of a plate part. 4... Intermediate heat exchanger, 4a... Upper chamber, 4b...
Middle chamber, 4C...lower chamber, 17...-Next cooling shrine [
1, 18...Shell, 19...Upper tube plate, 29...
・Flow skirt, 32...cold IJ1 material flow path. 1st cause 2nd cause 3rd figure 4th figure

Claims (1)

【特許請求の範囲】 1、円筒状のシェルと、このシェル内部を上部室、中間
室、下部室に仕切る上、下2枚の管板と、この2枚の管
板によって両端を支持され、両管板に囲まれた中間室を
貫通し、上部室と下部室とを連絡する多数の伝熱管と、
前記中間室と外部とを連結する2重管とからなる中間熱
交換器において、前記上部室部分に形成された冷却材入
口より上方部分から前記上部管板より下方部分までの前
記シェルの外側部分を覆うとともに、前記シェルとの間
に冷却材が下部から前記冷却材入口を通ってシェル内に
流入するアニュラス状の冷却材流路を形成するフロース
カートを設けたことを特徴とする中間熱交換器。 2、上部管板とシェルとの接続部分の肉厚を薄く形成し
たことを特徴とする特許請求の範囲第1項記載の中間熱
交換器。
[Claims] 1. A cylindrical shell, two upper and lower tube plates that partition the inside of the shell into an upper chamber, an intermediate chamber, and a lower chamber, and both ends supported by these two tube plates; A large number of heat transfer tubes passing through an intermediate chamber surrounded by both tube sheets and communicating the upper chamber and the lower chamber,
In an intermediate heat exchanger comprising a double pipe connecting the intermediate chamber and the outside, an outer portion of the shell from a portion above a coolant inlet formed in the upper chamber portion to a portion below the upper tube plate. An intermediate heat exchanger characterized in that a flow skirt is provided between the shell and the shell to form an annulus-shaped coolant flow path through which the coolant flows into the shell from the lower part through the coolant inlet. vessel. 2. The intermediate heat exchanger according to claim 1, wherein the wall thickness of the connection portion between the upper tube plate and the shell is made thin.
JP59211413A 1984-10-11 1984-10-11 Intermediate heat exchanger Pending JPS6190096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211413A JPS6190096A (en) 1984-10-11 1984-10-11 Intermediate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211413A JPS6190096A (en) 1984-10-11 1984-10-11 Intermediate heat exchanger

Publications (1)

Publication Number Publication Date
JPS6190096A true JPS6190096A (en) 1986-05-08

Family

ID=16605542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211413A Pending JPS6190096A (en) 1984-10-11 1984-10-11 Intermediate heat exchanger

Country Status (1)

Country Link
JP (1) JPS6190096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029393A (en) * 2013-05-01 2016-03-03 竹田 眞司 Fast breeder reactor with high safety

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029393A (en) * 2013-05-01 2016-03-03 竹田 眞司 Fast breeder reactor with high safety

Similar Documents

Publication Publication Date Title
US5333681A (en) Heat exchanger of the plate type
US3020024A (en) Heat exchanger construction
US4101377A (en) Fast neutron reactor
JPS6190096A (en) Intermediate heat exchanger
JPS60244891A (en) Fast neutron reactor
US4664876A (en) Fast breeder reactor
JPH0252991A (en) Flow passage control mechanism for heat exchanger
JPS5929799B2 (en) Heat exchanger
JPH07140278A (en) Fast breeder reactor
GB1572315A (en) Annular heat exchanger
JPS60207087A (en) Integrated type fast breeder reactor
JPH07198277A (en) Heat exchanger using two-phase intermediate flow
JP2508538Y2 (en) Fast breeder reactor cooling unit
JPS61176887A (en) Coolant gas extracting piping for high-temperature gas reactor
JPS61130797A (en) Intermediate heat exchanger
JPH04307397A (en) Tank-type high-speed reactor
JPS62170891A (en) Steam generator
JPS61193093A (en) Nuclear reactor
JPS608794A (en) Method and device for preheating reactor vessel of fast neutron type reactor using liquid metal as refrigerant and internal device
JPS6033083A (en) Tank type fast breeder reactor
JPS62186101A (en) Steam generator
JPH03207992A (en) Heat exchanger
JPS6398596A (en) Tank type fast breeder reactor
JPH0660722B2 (en) Steam generator
JPS58221187A (en) Reactor inside heat exchanger of fast breeder