JPH07140278A - Fast breeder reactor - Google Patents

Fast breeder reactor

Info

Publication number
JPH07140278A
JPH07140278A JP5284923A JP28492393A JPH07140278A JP H07140278 A JPH07140278 A JP H07140278A JP 5284923 A JP5284923 A JP 5284923A JP 28492393 A JP28492393 A JP 28492393A JP H07140278 A JPH07140278 A JP H07140278A
Authority
JP
Japan
Prior art keywords
reactor
plenum
flow path
cooling fluid
reactor vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5284923A
Other languages
Japanese (ja)
Inventor
Kengo Iwashige
健五 岩重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5284923A priority Critical patent/JPH07140278A/en
Publication of JPH07140278A publication Critical patent/JPH07140278A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a fast breeder reactor able to reduce temperature difference between a cooling fluid and a plenum fluid when the cooling fluid of reactor wall cooling mechanism is discharged to a high temperature plenum and a low temperature plenum. CONSTITUTION:A cooling fluid flowing in from a low temperature plenum 5 flows upward along the reactor wall 3A by an up-passage 11, flows over a liner plate 21 to flow into a down-passage 12 so as to flow downward, and flows into an intermediate passage 13 from an opening part 22a so as to be led into an intermediate plenum 4 from an opening part 23a. The cooling fluid is then led into a heat exchanging passage 15 from the intermediate plenum 4 to exchange heat with a fluid filled in a high temperature plenum 6 through a liner plate 24, and after temperature rise, discharged to a high temperature plenum 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高速増殖炉に係わり、特
に、液体金属ナトリウムを冷却材に用いる高速増殖炉に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fast breeder reactor, and more particularly to a fast breeder reactor using liquid metal sodium as a coolant.

【0002】[0002]

【従来の技術】液体金属を冷却材に用いる高速増殖炉に
おいて、冷却材としては、液体金属ナトリウム(以下、
適宜ナトリウムという)が最も多く使用されている。
2. Description of the Related Art In a fast breeder reactor in which liquid metal is used as a coolant, liquid metal sodium (hereinafter,
It is called sodium as appropriate) is most often used.

【0003】一般に、液体金属ナトリウムを冷却材とし
て用いる高速増殖炉は、ナトリウムが満たされた原子炉
容器と、原子炉容器の内部に配置された炉心と、通常の
定格運転時において炉心出口の高温ナトリウムと炉心入
口の低温ナトリウムとを分離する中間プレナムと、中間
プレナムの下方に設けられた低温プレナムと、中間プレ
ナムの上方に設けられた高温プレナムと、高温プレナム
の高温から原子炉容器の壁を保護するために原子炉容器
の内側に設けられた原子炉容器の冷却機構(以下適宜、
炉壁冷却機構という)とを有する。また高速増殖炉は、
原子炉容器の上部を閉ざす上蓋であるルーフデッキと、
ルーフデッキに固定して設けられ炉心の上方へ位置する
炉上部機構と、ルーフデッキに貫通して設けられ高温プ
レナムの高温ナトリウムを外部に取り出す配管と、ルー
フデッキに貫通して設けられ外部から低温ナトリウムを
低温プレナムに取り入れる配管と、炉心の下方に設けら
れ配管に接続された高圧プレナムとを有する。
In general, a fast breeder reactor using liquid metal sodium as a coolant has a reactor vessel filled with sodium, a core disposed inside the reactor vessel, and a high temperature at the core outlet during normal rated operation. The intermediate plenum that separates sodium from the low temperature sodium at the core inlet, the low temperature plenum that is provided below the intermediate plenum, the high temperature plenum that is provided above the intermediate plenum, and the reactor vessel wall from the high temperature of the high temperature plenum Cooling mechanism of the reactor vessel provided inside the reactor vessel for protection (hereinafter, as appropriate,
Furnace wall cooling mechanism). The fast breeder reactor
A roof deck that is an upper lid that closes the upper part of the reactor vessel,
A reactor top mechanism fixed to the roof deck and located above the core, a pipe penetrating the roof deck to take out high temperature sodium from the high temperature plenum to the outside, and a pipe penetrating the roof deck to cool from outside It has a pipe for introducing sodium into the low temperature plenum, and a high pressure plenum provided below the core and connected to the pipe.

【0004】上記構成において、通常の定格運転時に
は、高温プレナム内の高温ナトリウムが配管を介し外部
の熱交換器に取り出され冷却されて低温ナトリウムとな
り、外部のポンプにより配管を介し高圧プレナム及び低
温プレナムに送られ、上昇して炉心を冷却し自らは加熱
されて高温プレナムに流出する。
In the above structure, during normal rated operation, the high temperature sodium in the high temperature plenum is taken out to the external heat exchanger via the pipe and cooled to become the low temperature sodium, and the high pressure plenum and the low temperature plenum are passed through the pipe by the external pump. Is sent to the high temperature plenum, where it rises to cool the core and heat itself.

【0005】この炉壁冷却機構付近の構造は、例えば、
米国特許4477410号に記載のように、原子炉容器
の壁の内側にライナ板で仕切られた3つの冷却流路が設
けられる構成がある。すなわち冷却流体は、まず高圧プ
レナムから低温プレナムに導かれた後、低温プレナムか
ら最も外側(炉壁側)の冷却流路を原子炉容器の壁沿い
に上昇して原子炉容器の壁面を冷却し、その冷却流路の
上部においてさらに内側に設けられた冷却流路との境界
面を越流してその内側の冷却流路に流れ込み、その内側
の冷却流路を下降する。その後、またさらに内側に設け
られた冷却流路の下部を通って中間プレナムに入り、中
間プレナムの上部に設けられた排出部から高温プレナム
に排出される。
The structure near the furnace wall cooling mechanism is, for example,
As described in U.S. Pat. No. 4,477,410, there is a configuration in which three cooling flow passages partitioned by a liner plate are provided inside the wall of the reactor vessel. That is, the cooling fluid is first introduced from the high-pressure plenum to the low-temperature plenum, then rises along the wall of the reactor vessel along the outermost (reactor wall side) cooling flow path from the low-temperature plenum to cool the wall surface of the reactor vessel. Further, in the upper part of the cooling flow path, it overflows the boundary surface with the cooling flow path provided further inside, flows into the cooling flow path inside thereof, and descends the cooling flow path inside thereof. After that, it enters the intermediate plenum through the lower part of the cooling passage provided further inside, and is discharged to the high temperature plenum from the discharge part provided at the upper part of the intermediate plenum.

【0006】また炉壁冷却機構付近の他の構造の例とし
て、例えば、米国特許4167445号に記載のよう
に、原子炉容器の壁の内側にライナ板で仕切られた2つ
の冷却流路及び中間プレナムとつながった停留層が設け
られる構成がある。すなわち、冷却流体は、まず高圧プ
レナム底部から最も外側(炉壁側)の冷却流路を原子炉
容器の壁沿いに上昇して原子炉容器の壁面を冷却し、上
部においてその冷却流路のさらに内側に設けられた冷却
流路との境界面を越流してその内側の冷却流路に流れ込
み、その冷却流路を下降した後下方から排出されて低温
プレナムに排出される。
As another example of the structure near the reactor wall cooling mechanism, for example, as described in US Pat. No. 4,167,445, two cooling flow passages and an intermediate portion which are partitioned by a liner plate are provided inside the wall of the reactor vessel. There is a structure in which a stop layer connected to the plenum is provided. That is, the cooling fluid first rises from the bottom of the high-pressure plenum to the outermost (reactor wall side) cooling channel along the wall of the reactor vessel to cool the wall surface of the reactor vessel, and then at the upper part of the cooling channel of the cooling channel. It flows over the boundary surface with the cooling flow path provided inside, flows into the cooling flow path inside thereof, descends through the cooling flow path, and then is discharged from below and discharged to the low temperature plenum.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記公
知技術には、以下の課題が存在する。すなわち、上記高
速増殖炉の炉壁冷却機構に関し、米国特許447741
0号に記載された構造においては、炉壁を冷却した流体
は、中間プレナムの排出部から直接高温プレナムに排出
される。この際排出される流体の温度Tと高温プレナム
の高温流体の温度THとの差TH−Tは150K近くにな
るので、排出部付近にはこの温度差による熱疲労に耐え
ることができる構造材を使用しなければならず、強度上
及びコスト上好ましくない。また米国特許416744
5号に記載された炉壁冷却機構の構造においては、炉壁
を冷却し自らは加熱された流体は、最も外側の冷却流路
の内側に設けられた冷却流路から直接低温プレナムに排
出される。この際排出される流体の温度Tと低温プレナ
ムの低温流体の温度TLとの差T−TLは100K近くに
なり、上記同様に強度上及びコスト上好ましくない。
However, the above-mentioned known techniques have the following problems. That is, regarding the furnace wall cooling mechanism of the fast breeder reactor, US Pat.
In the structure described in No. 0, the fluid that has cooled the furnace wall is discharged directly from the discharge part of the intermediate plenum to the high temperature plenum. At this time, the difference T H −T between the temperature T of the fluid discharged and the temperature T H of the high temperature fluid of the high temperature plenum is close to 150 K, so a structure that can withstand thermal fatigue due to this temperature difference near the discharge part. A material must be used, which is not preferable in terms of strength and cost. Also US Pat.
In the structure of the furnace wall cooling mechanism described in No. 5, the fluid that cools the furnace wall and is heated by itself is discharged to the low temperature plenum directly from the cooling channel provided inside the outermost cooling channel. It At this time, the difference T- TL between the temperature T of the fluid discharged and the temperature TL of the low temperature fluid in the low temperature plenum is close to 100K, which is not preferable in terms of strength and cost as in the above.

【0008】本発明の目的は、炉壁冷却機構の冷却流体
が高温プレナム又は低温プレナムに排出されるときの、
冷却流体とプレナムの流体との温度差を低減することが
できる高速増殖炉を提供することである。
An object of the present invention is when the cooling fluid of the furnace wall cooling mechanism is discharged to the hot plenum or the cold plenum,
It is an object of the present invention to provide a fast breeder reactor capable of reducing a temperature difference between a cooling fluid and a plenum fluid.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、一次系冷却材が満たされた原子炉
容器と、前記原子炉容器の内部に配置された炉心と、前
記原子炉容器の下部に設けられた低温プレナムと、前記
原子炉容器の上部に設けられた高温プレナムと、前記原
子炉容器の下部に設けられ前記一次冷却材を原子炉外部
から前記低温プレナムに取り入れる配管に接続された高
圧プレナムと、前記原子炉容器の炉壁の内側に設けられ
前記高圧プレナムからの冷却流体を導き前記炉壁を冷却
して前記高温プレナム及び低温プレナムの一方へ前記冷
却流体を排出する原子炉容器冷却機構とを有する高速増
殖炉において、前記原子炉容器冷却機構は、前記高温プ
レナム及び低温プレナムの一方へ前記冷却流体が排出さ
れる出口部分に、前記冷却流体と前記高温プレナム及び
低温プレナムの一方の内部に満たされた流体との熱交換
を行う熱交換流路を有することを特徴とする高速増殖炉
が提供される。
In order to achieve the above object, according to the present invention, a reactor vessel filled with a primary coolant, a reactor core arranged inside the reactor vessel, and A low temperature plenum provided in the lower part of the reactor vessel, a high temperature plenum provided in the upper part of the reactor vessel, and the primary coolant provided in the lower part of the reactor vessel is taken into the low temperature plenum from outside the reactor. A high pressure plenum connected to the pipe and a cooling fluid from the high pressure plenum provided inside the reactor wall of the reactor vessel are introduced to cool the reactor wall to cool the cooling fluid to one of the high temperature plenum and the low temperature plenum. In a fast breeder reactor having a reactor vessel cooling mechanism for discharging, the reactor vessel cooling mechanism is at an outlet portion where the cooling fluid is discharged to one of the high temperature plenum and the low temperature plenum, Fast breeder reactor characterized by having a heat exchange passage for heat exchange with the serial filled inside one of the cooling fluid the hot plenum and the cold plenum fluid.

【0010】また上記目的を達成するために、本発明に
よれば、一次系冷却材が満たされた原子炉容器と、前記
原子炉容器の内部に配置された炉心と、前記原子炉容器
の下部に設けられた低温プレナムと、前記原子炉容器の
上部に設けられた高温プレナムと、前記原子炉容器の下
部に設けられ前記一次冷却材を原子炉外部から前記低温
プレナムに取り入れる配管に接続された高圧プレナム
と、前記原子炉容器の炉壁の内側側面に設けられ前記高
圧プレナムから前記低温プレナムを介して冷却流体を導
き前記炉壁を冷却して前記高温プレナムへ前記冷却流体
を排出する原子炉容器冷却機構とを有する高速増殖炉に
おいて、前記原子炉容器冷却機構は、前記高温プレナム
へ前記冷却流体が排出される出口部分に、前記冷却流体
と前記高温プレナム内部に満たされた流体との熱交換を
行う熱交換流路を有することを特徴とする高速増殖炉が
提供される。
Further, in order to achieve the above object, according to the present invention, a reactor vessel filled with a primary coolant, a core arranged inside the reactor vessel, and a lower portion of the reactor vessel A low temperature plenum provided in the reactor vessel, a high temperature plenum provided in the upper portion of the reactor vessel, and a pipe provided in the lower portion of the reactor vessel to take the primary coolant from outside the reactor into the low temperature plenum. A high pressure plenum, and a reactor provided on the inner side surface of the reactor wall of the reactor vessel for guiding a cooling fluid from the high pressure plenum through the low temperature plenum to cool the reactor wall and discharge the cooling fluid to the high temperature plenum. In a fast breeder reactor having a vessel cooling mechanism, the reactor vessel cooling mechanism includes the cooling fluid and the high temperature plenum at an outlet portion where the cooling fluid is discharged to the high temperature plenum. Fast breeder reactor characterized by having a heat exchange passage is provided for heat exchange with the filled fluid to part.

【0011】さらに上記目的を達成するために、本発明
によれば、一次系冷却材が満たされた原子炉容器と、前
記原子炉容器の内部に配置された炉心と、前記原子炉容
器の下部に設けられた低温プレナムと、前記原子炉容器
の上部に設けられた高温プレナムと、前記原子炉容器の
下部に設けられ前記一次冷却材を原子炉外部から前記低
温プレナムに取り入れる配管に接続された高圧プレナム
と、前記原子炉容器の炉壁の内側底面及び内側側面に設
けられ前記高圧プレナムからの冷却流体を導き前記炉壁
を冷却して前記低温プレナムへ前記冷却流体を排出する
原子炉容器冷却機構とを有する高速増殖炉において、前
記原子炉容器冷却機構は、前記低温プレナムへ前記冷却
流体が排出される出口部分に、前記冷却流体と前記低温
プレナム内部に満たされた流体との熱交換を行う熱交換
流路を有することを特徴とする高速増殖炉が提供され
る。
To further achieve the above object, according to the present invention, a reactor vessel filled with a primary system coolant, a reactor core disposed inside the reactor vessel, and a lower portion of the reactor vessel A low temperature plenum provided in the reactor vessel, a high temperature plenum provided in the upper portion of the reactor vessel, and a pipe provided in the lower portion of the reactor vessel to take the primary coolant from outside the reactor into the low temperature plenum. A high pressure plenum and a reactor vessel cooling that is provided on the inner bottom surface and inner side surface of the reactor wall of the reactor vessel, introduces a cooling fluid from the high pressure plenum, cools the reactor wall, and discharges the cooling fluid to the low temperature plenum. In the fast breeder reactor having a mechanism, the reactor vessel cooling mechanism is filled in the cooling fluid and the inside of the low temperature plenum at an outlet portion where the cooling fluid is discharged to the low temperature plenum. Fast breeder reactor is provided characterized by having a heat exchange passage for heat exchange with the fluid.

【0012】好ましくは、上記高速増殖炉において、前
記原子炉容器冷却機構は、前記原子炉容器内の最も炉壁
側に設けられ前記低温プレナムから流入した前記冷却流
体を前記炉壁に沿って上方へ流す上昇流路と、その上昇
流路の内側に設けられ前記上昇流路の上端近傍から流入
した前記冷却流体を下方へ流す下降流路と、その下降流
路の内側に設けられ前記下降流路の下端近傍から流入し
た前記冷却流体を前記低温プレナムと前記高温プレナム
との間に設けられた中間プレナムへ導く中間流路とを有
し、かつ前記熱交換流路は、前記中間プレナム上方の中
間流路の内側に設けられ前記中間プレナムから流入した
前記冷却流体を前記高温プレナムへ導く上昇流路である
ことを特徴とする高速増殖炉が提供される。
[0012] Preferably, in the fast breeder reactor, the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and the cooling fluid flowing from the low temperature plenum is moved upward along the reactor wall. An ascending flow path that flows into the ascending flow path, a descending flow path that is provided inside the ascending flow path and that causes the cooling fluid that flows from near the upper end of the ascending flow path to flow downward, and a descending flow path that is provided inside the descending flow path. An intermediate flow passage for guiding the cooling fluid flowing from near the lower end of the passage to an intermediate plenum provided between the low temperature plenum and the high temperature plenum, and the heat exchange passage is provided above the intermediate plenum. A fast breeder reactor is provided which is provided inside the intermediate flow path and is an ascending flow path for guiding the cooling fluid flowing from the intermediate plenum to the high temperature plenum.

【0013】また好ましくは、上記高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も炉壁側に設けられ前記低温プレナムから流入した前記
冷却流体を前記炉壁に沿って上方へ流す第1の上昇流路
と、その第1の上昇流路の内側に設けられ前記第1の上
昇流路の上端近傍から流入した前記冷却流体を下方へ流
す下降流路とを有し、かつ前記熱交換流路は、前記下降
流路の内側に設けられ前記下降流路の下端近傍から流入
した前記冷却流体を上方へ流す第2の上昇流路と、その
第2の上昇流路と前記高温プレナムとの仕切り面に設け
られた排出口とを有することを特徴とする高速増殖炉が
提供される。
Further preferably, in the fast breeder reactor, the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and the cooling fluid flowing from the low temperature plenum along the reactor wall. A first ascending flow path that flows upward, and a descending flow path that is provided inside the first ascending flow path and that causes the cooling fluid that flows from near the upper end of the first ascending flow path to flow downward The heat exchange flow passage is provided inside the descending flow passage, and a second ascending flow passage is provided for flowing upward the cooling fluid that has flowed in from near the lower end of the descending flow passage, and the second ascending flow passage. And a discharge port provided on the partition surface between the high temperature plenum and the high temperature plenum.

【0014】さらに好ましくは、上記高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も炉壁側に設けられ前記低温プレナムから流入した前記
冷却流体を前記炉壁に沿って上方へ流す上昇流路と、そ
の上昇流路の内側に設けられ前記上昇流路の上端近傍か
ら流入した前記冷却流体を下方へ流す下降流路と、その
下降流路の内側に設けられ前記下降流路の下端近傍から
流入した前記冷却流体を前記低温プレナムと前記高温プ
レナムとの間に設けられた中間プレナムへ導く中間流路
とを有し、かつ前記熱交換流路は、下端が前記中間プレ
ナムの上面近傍にあり上端が前記高温プレナム内へ突出
した少なくとも1つの管路を有することを特徴とする高
速増殖炉が提供される。
More preferably, in the fast breeder reactor, the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and the cooling fluid flowing from the low temperature plenum is passed along the reactor wall. An ascending flow path that flows upward, a descending flow path that is provided inside the ascending flow path and that causes the cooling fluid that flows from near the upper end of the ascending flow path to flow downward, and a descending flow path that is provided inside the descending flow path. An intermediate flow path for guiding the cooling fluid flowing from near the lower end of the flow path to an intermediate plenum provided between the low temperature plenum and the high temperature plenum, and the heat exchange flow path has a lower end of the intermediate flow path. A fast breeder reactor is provided that has at least one conduit near the top surface of the plenum and having an upper end projecting into the hot plenum.

【0015】また好ましくは、上記高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も炉壁側に設けられ前記高圧プレナムから流入した前記
冷却流体を前記炉壁に沿って上方へ流す上昇流路と、そ
の上昇流路の内側に設けられ前記上昇流路の上端近傍か
ら流入した前記冷却流体を下方へ流す第1の下降流路と
を有し、かつ前記熱交換流路は、前記第1の下降流路下
方の前記上昇流路の内側に設けられ前記第1の下降流路
から流入した前記冷却流体を前記低温プレナムへ導く第
2の下降流路であることを特徴とする高速増殖炉が提供
される。
Further preferably, in the fast breeder reactor, the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and causes the cooling fluid flowing from the high pressure plenum to flow along the reactor wall. The heat exchange flow has an upward flow path that flows upward, and a first downward flow path that is provided inside the upward flow path and that flows downward the cooling fluid that has flowed from near the upper end of the upward flow path. The passage is a second descending passage that is provided inside the ascending passage below the first descending passage and that guides the cooling fluid flowing from the first descending passage to the low temperature plenum. A featured fast breeder reactor is provided.

【0016】さらに好ましくは、上記高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も前記炉壁側に設けられ前記高圧プレナムから流入した
前記冷却流体を前記炉壁に沿って上方へ流す上昇流路
と、その上昇流路の内側に設けられ前記上昇流路の上端
近傍から流入した前記冷却流体を下方へ流す下降流路と
を有し、かつ前記熱交換流路は、前記下降流路下方の前
記上昇流路の内側に設けられ前記下降流路から流入した
前記冷却流体を前記低温プレナムへ導く水平方向の流路
であることを特徴とする高速増殖炉が提供される。
More preferably, in the fast breeder reactor, the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and the cooling fluid flowing from the high pressure plenum along the reactor wall. And an ascending flow path that flows upward, and a descending flow path that is provided inside the ascending flow path and that causes the cooling fluid that has flowed in from near the upper end of the ascending flow path to flow downward, and that the heat exchange flow path is A fast breeder reactor is provided inside the ascending passage below the descending passage and is a horizontal passage that guides the cooling fluid flowing from the descending passage to the low temperature plenum. It

【0017】また好ましくは、前記高速増殖炉におい
て、前記中間流路と前記熱交換流路との第1の仕切面
と、前記熱交換流路と前記高温プレナムとの第2の仕切
面とはそれぞれ水平断面において前記原子炉容器の炉壁
と同心の円をなし、かつ前記熱交換流路は第1の仕切面
と第2の仕切面とに挟まれた環状空間を形成することを
特徴とする高速増殖炉が提供される。
Further, preferably, in the fast breeder reactor, the first partition surface between the intermediate flow path and the heat exchange flow path and the second partition surface between the heat exchange flow path and the high temperature plenum. In a horizontal cross section, each of them forms a circle concentric with the reactor wall of the reactor vessel, and the heat exchange flow passage forms an annular space sandwiched between the first partition surface and the second partition surface. A fast breeder reactor is provided.

【0018】さらに好ましくは、前記高速増殖炉におい
て、前記下降流路と前記熱交換流路との第3の仕切面
と、前記熱交換流路と前記高温プレナムとの第4の仕切
面とはそれぞれ水平断面において前記原子炉容器の炉壁
と同心の円をなし、かつ前記熱交換流路は第3の仕切面
と第4の仕切面とに挟まれた環状空間を形成することを
特徴とする高速増殖炉が提供される。
More preferably, in the fast breeder reactor, the third partition surface between the descending passage and the heat exchange passage, and the fourth partition surface between the heat exchange passage and the high temperature plenum. Each has a circle concentric with the reactor wall of the reactor vessel in a horizontal cross section, and the heat exchange channel forms an annular space sandwiched between the third partition surface and the fourth partition surface. A fast breeder reactor is provided.

【0019】また好ましくは、前記高速増殖炉におい
て、前記上昇流路と前記下降流路との第5の仕切面と、
前記熱交換流路と前記低温プレナムとの第6の仕切面と
はそれぞれ水平断面において前記原子炉容器の炉壁と同
心の円をなし、かつ前記熱交換流路は第5の仕切面と第
6の仕切面とに挟まれた環状空間を形成することを特徴
とする高速増殖炉が提供される。
Further preferably, in the fast breeder reactor, a fifth partition surface between the ascending passage and the descending passage,
The heat exchange passage and the sixth partition surface of the low temperature plenum form a circle concentric with the reactor wall of the reactor vessel in a horizontal cross section, and the heat exchange passage has a fifth partition surface and a fifth partition surface. There is provided a fast breeder reactor, which is characterized by forming an annular space sandwiched between 6 partition surfaces.

【0020】[0020]

【作用】以上のように構成した本発明においては、原子
炉容器冷却機構の冷却流体が排出される出口部分に設け
られた熱交換流路で冷却流体と高温・低温プレナム内の
流体との熱交換を行うことにより、冷却流体が高温プレ
ナムに排出される場合には排出前に予め熱交換流路で加
熱された後に排出され、また冷却流体が低温プレナムに
排出される場合には排出前に予め熱交換流路で冷却され
た後に排出されるので、従来の熱交換流路のない原子炉
容器冷却機構から排出される場合に比し、冷却流体と高
温・低温プレナム内の流体との温度差を低減することが
できる。
In the present invention configured as described above, the heat of the cooling fluid and the fluid in the high temperature / low temperature plenum is generated in the heat exchange passage provided at the outlet of the reactor vessel cooling mechanism where the cooling fluid is discharged. By performing the exchange, when the cooling fluid is discharged to the high temperature plenum, it is discharged after being heated in the heat exchange passage before being discharged, and when the cooling fluid is discharged to the low temperature plenum, before being discharged. The temperature of the cooling fluid and that of the fluid in the high-temperature and low-temperature plenums is higher than that of the conventional reactor vessel cooling mechanism that does not have a heat-exchange passage because it is discharged after being cooled in the heat-exchange passage in advance. The difference can be reduced.

【0021】また本発明においては、原子炉容器冷却機
構の冷却流体が排出される出口部分に設けられた熱交換
流路で冷却流体と高温プレナム内の流体との熱交換を行
うことにより、排出前に予め熱交換流路で加熱された後
に排出されるので、従来の熱交換流路のない原子炉容器
冷却機構から排出される場合では150K近くあった冷
却流体温度Tと高温プレナム内流体温度THとの差TH
Tを低減することができる。
Further, in the present invention, the heat is exchanged between the cooling fluid and the fluid in the high temperature plenum in the heat exchange passage provided in the outlet portion of the reactor vessel cooling mechanism where the cooling fluid is discharged. Since it is discharged after being heated in advance in the heat exchange flow path, the cooling fluid temperature T and the fluid temperature in the high temperature plenum that were close to 150 K when discharged from a conventional reactor vessel cooling mechanism without a heat exchange flow path the difference between the T H T H -
T can be reduced.

【0022】さらに本発明においては、原子炉容器冷却
機構の冷却流体が排出される出口部分に設けられた熱交
換流路で冷却流体と低温プレナム内の流体との熱交換を
行うことにより、排出前に予め熱交換流路で冷却された
後に排出されるので、従来の熱交換流路の内原子炉容器
冷却機構から排出される場合に100K近くあった冷却
流体温度Tと低温プレナム内流体温度TLとの差T−TL
を低減することができる。
Further, according to the present invention, the heat is exchanged between the cooling fluid and the fluid in the low temperature plenum in the heat exchange passage provided in the outlet portion of the reactor vessel cooling mechanism where the cooling fluid is discharged. Since it is discharged after being previously cooled in the heat exchange channel, the cooling fluid temperature T and the fluid temperature in the low temperature plenum that were close to 100K when discharged from the conventional reactor vessel cooling mechanism in the heat exchange channel the difference T-T L and T L
Can be reduced.

【0023】また、原子炉容器冷却機構の構造の例とし
ては、原子炉容器内の最も炉壁側に設けられた上昇流路
で冷却流体を炉壁に沿って上方へ流し、さらに上昇流路
の内側に設けられた下降流路で冷却流体を下方へ流し、
さらに下降流路の内側に設けられた中間流路で冷却流体
を中間プレナムへ導き、さらに中間プレナム上方の中間
流路の内側に設けられた熱交換流路で冷却流体を高温プ
レナムへ排出する構成や、原子炉容器内の最も炉壁側に
設けられた第1の上昇流路で冷却流体を炉壁に沿って上
方へ流し、さらに第1の上昇流路の内側に設けられた下
降流路で冷却流体を下方へ流し、さらに下降流路の内側
に設けられた熱交換流路の第2の上昇流路で冷却流体を
上方へ流すとともに仕切り面に設けられた熱交換流路の
排出口で冷却流体を高温プレナムへ排出する構成、若し
くは、原子炉容器内の最も炉壁側に設けられた上昇流路
で冷却流体を炉壁に沿って上方へ流し、さらに上昇流路
の内側に設けられた下降流路で冷却流体を下方へ流し、
さらに下降流路の内側に設けられた中間流路で冷却流体
を中間プレナムへ導き、さらに、下端が中間プレナムの
上面近傍にあり上端が高温プレナム内へ突出した管路で
ある熱交換流路で冷却流体を高温プレナムを排出する構
成、若しくは、原子炉容器内の最も炉壁側に設けられた
上昇流路で冷却流体を炉壁に沿って上方へ流し、さらに
上昇流路の内側に設けられた第1の下降流路で冷却流体
を下方へ流し、さらに第1の下降流路下方の上昇流路の
内側に設けられた第2の下降流路である熱交換流路で冷
却流体を低温プレナムへ排出する構成、若しくは、原子
炉容器内の最も炉壁側に設けられた上昇流路で冷却流体
を炉壁に沿って上方へ流し、さらに上昇流路の内側に設
けられた下降流路で冷却流体を下方へ流し、さらに下降
流路下方の上昇流路の内側に設けられた水平方向の流路
でる熱交換流路で冷却流体を低温プレナムへ排出する構
成がある。
Further, as an example of the structure of the reactor vessel cooling mechanism, the cooling fluid is caused to flow upward along the reactor wall in the ascending passage provided on the most reactor wall side in the reactor vessel, and the ascending passage is further provided. The cooling fluid is made to flow downward in the descending passage provided inside the
Further, the cooling fluid is guided to the intermediate plenum by the intermediate flow passage provided inside the descending flow passage, and the cooling fluid is discharged to the high temperature plenum by the heat exchange flow passage provided inside the intermediate flow passage above the intermediate plenum. Or, the cooling fluid flows upward along the furnace wall in the first ascending passage provided closest to the reactor wall in the reactor vessel, and further the descending passage provided inside the first ascending passage. To flow the cooling fluid downward, and further to flow the cooling fluid upward in the second ascending passage of the heat exchanging passage provided inside the descending passage, and at the outlet of the heat exchanging passage provided at the partition surface. To discharge the cooling fluid to the high temperature plenum, or to make the cooling fluid flow upward along the reactor wall in the rising passage provided on the most reactor wall side in the reactor vessel, and to be installed inside the rising passage. Cooling fluid flows downward in the descending flow path,
Further, the cooling fluid is guided to the intermediate plenum by the intermediate flow passage provided inside the descending flow passage, and further, the lower end is near the upper surface of the intermediate plenum and the upper end is a pipe that projects into the high temperature plenum. The cooling fluid is discharged from the high temperature plenum, or the cooling fluid is caused to flow upward along the reactor wall in the ascending passage provided on the most reactor wall side in the reactor vessel, and is further provided inside the ascending passage. The cooling fluid is made to flow downward in the first descending passage, and the cooling fluid is cooled to a low temperature in the heat exchanging passage which is the second descending passage provided inside the ascending passage below the first descending passage. A structure in which the cooling fluid is discharged to the plenum, or the cooling fluid flows upward along the furnace wall in the ascending flow path provided on the most reactor wall side in the reactor vessel, and the descending flow path is provided inside the ascending flow path. Flow the cooling fluid downward, and then the ascending flow below the descending flow path. There is a configuration in which the discharging horizontal flow path exiting the heat exchange passage in the cooling fluid provided inside the low-temperature plenum.

【0024】さらに、熱交換流路の構造の例として、水
平断面において原子炉容器の炉壁と同心の円をなす中間
流路・熱交換流路間の第1の仕切面及び熱交換流路・高
温プレナム間の第2の仕切面に挟まれ環状空間を形成し
ている構成、若しくは、水平断面において原子炉容器の
炉壁と同心の円をなす下降流路・熱交換流路間の第3の
仕切面及び熱交換流路・高温プレナム間の第4の仕切面
とに挟まれ環状空間を形成している構成、若しくは、水
平断面において原子炉容器の炉壁と同心の円をなす上昇
流路・下降流路間の第5の仕切面及び熱交換流路・低温
プレナム間の第6の仕切面とに挟まれ環状空間を形成し
ている構成がある。
Further, as an example of the structure of the heat exchange passage, the first partition surface between the intermediate passage and the heat exchange passage forming a circle concentric with the reactor wall of the reactor vessel in the horizontal section and the heat exchange passage.・ The structure is such that it is sandwiched between the second partition surfaces between the high temperature plenums to form an annular space, or the first passage between the descending passage and the heat exchanging passage forming a circle concentric with the reactor wall of the reactor vessel in the horizontal cross section No. 3 partition surface and the fourth partition surface between the heat exchange passage and the high-temperature plenum to form an annular space, or in a horizontal cross section, rise in a circle concentric with the reactor wall of the reactor vessel. There is a configuration in which an annular space is formed by being sandwiched between the fifth partition surface between the flow path and the descending flow path and the sixth partition surface between the heat exchange flow path and the low temperature plenum.

【0025】[0025]

【実施例】以下、本発明の実施例を図1〜図9により説
明する。本発明の第1の実施例を図2〜図4により説明
する。本実施例の高速増殖炉を図2に示す。図2におい
て、本実施例の高速増殖炉は、ナトリウムが満たされた
原子炉容器3と、原子炉容器3の内部に配置された炉心
1と、原子炉容器3の下部に設けられた低温プレナム5
と、原子炉容器3の上部に設けられた高温プレナム6
と、通常の定格運転時において炉心1出口の高温ナトリ
ウムと炉心入口1の低温ナトリウムとを分離する中間プ
レナム4と、原子炉容器3の下部に設けられナトリウム
を原子炉外部から低温プレナム5に取り入れる配管9
と、炉心1の下方に設けられ配管9に接続された高圧プ
レナム16と、原子炉容器3の炉壁の内側側面に設けら
れ高圧プレナム16から低温プレナム5を介して冷却流
体を導き炉壁を冷却して高温プレナム6へ冷却流体を排
出する炉壁冷却機構10とを有する。
Embodiments of the present invention will be described below with reference to FIGS. A first embodiment of the present invention will be described with reference to FIGS. The fast breeder reactor of this example is shown in FIG. In FIG. 2, the fast breeder reactor according to the present embodiment includes a reactor vessel 3 filled with sodium, a core 1 disposed inside the reactor vessel 3, and a low temperature plenum provided below the reactor vessel 3. 5
And a high temperature plenum 6 provided on top of the reactor vessel 3.
And an intermediate plenum 4 for separating high temperature sodium at the core 1 outlet and low temperature sodium at the core inlet 1 during normal rated operation, and sodium provided at the bottom of the reactor vessel 3 to the low temperature plenum 5 from outside the reactor. Piping 9
And a high pressure plenum 16 provided below the core 1 and connected to the piping 9, and a cooling fluid is guided from the high pressure plenum 16 provided on the inner side surface of the reactor wall of the reactor vessel 3 via the low temperature plenum 5 to the reactor wall. A furnace wall cooling mechanism 10 for cooling and discharging the cooling fluid to the high temperature plenum 6.

【0026】また高速増殖炉は、原子炉容器3の上部を
閉ざす上蓋であるルーフデッキ7と、ルーフデッキ7に
固定して設けられ炉心1の上方へ位置する炉上部機構2
と、ルーフデッキ7に貫通して設けられ高温プレナム6
の高温ナトリウムを外部に取り出す配管8とを有する。
Further, the fast breeder reactor is a roof deck 7 which is an upper lid for closing the upper part of the reactor vessel 3, and a reactor upper mechanism 2 which is fixed to the roof deck 7 and is located above the core 1.
And a high temperature plenum 6 which is provided so as to penetrate the roof deck 7.
And a pipe 8 for taking out high temperature sodium from the outside.

【0027】上記構成において、一次冷却材である液体
ナトリウムの流れは、通常の定格運転時には高温プレナ
ム6内の高温ナトリウムが配管8を介し外部の熱交換器
に取り出され冷却されて低温ナトリウムとなり、外部の
ポンプにより配管9を介し高圧プレナム16及び低温プ
レナム5に送られ、上昇して炉心1を冷却し自らは加熱
されて高温プレナム6に流出する。
In the above structure, the flow of liquid sodium as the primary coolant is such that during normal rated operation, the high temperature sodium in the high temperature plenum 6 is taken out to the external heat exchanger via the pipe 8 and cooled to become low temperature sodium, It is sent to the high-pressure plenum 16 and the low-temperature plenum 5 via the pipe 9 by an external pump, rises, cools the core 1, is heated by itself, and flows out to the high-temperature plenum 6.

【0028】次に、本実施例の要部である炉壁冷却機構
10の詳細構造を図1に示す。図1において、炉壁冷却
機構10は、原子炉容器3内の最も炉壁3A側に設けら
れた上昇流路11と、上昇流路11の内側(図中左側)
に設けられた下降流路12と、下降流路12の内側(図
中左側)に設けられた中間流路13とを有する。また炉
壁冷却機構10は、高温プレナム6へ冷却流体が排出さ
れる出口部分に熱交換流路15を有する。熱交換流路1
5は、中間プレナム4の上方、中間流路13の内側に設
けられており、中間プレナム4から流入した冷却流体を
高温プレナム6へ導く上昇流路を形成している。このと
き、中間流路13と熱交換流路15との仕切面であるラ
イナ板23と、熱交換流路15と高温プレナム6との仕
切面であるライナ板24とは、それぞれ水平断面(図中
では左右方向の直線による断面)において原子炉容器3
の炉壁3Aと同心の円をなす。すなわち、熱交換流路1
5はライナ板23とライナ板24とに挟まれた環状空間
を形成している。
Next, FIG. 1 shows a detailed structure of the furnace wall cooling mechanism 10 which is a main part of this embodiment. In FIG. 1, the furnace wall cooling mechanism 10 includes an ascending flow path 11 provided on the most reactor wall 3A side in the reactor vessel 3 and an inside of the ascending flow path 11 (left side in the drawing).
And the intermediate flow path 13 provided inside the down flow path 12 (on the left side in the drawing). Further, the furnace wall cooling mechanism 10 has a heat exchange flow path 15 at an outlet portion where the cooling fluid is discharged to the high temperature plenum 6. Heat exchange channel 1
The reference numeral 5 is provided above the intermediate plenum 4 and inside the intermediate flow passage 13, and forms an ascending flow passage for guiding the cooling fluid flowing from the intermediate plenum 4 to the high temperature plenum 6. At this time, the liner plate 23, which is a partition surface between the intermediate flow path 13 and the heat exchange flow path 15, and the liner plate 24, which is a partition surface between the heat exchange flow path 15 and the high temperature plenum 6, each have a horizontal cross section (FIG. The reactor vessel 3 in
It forms a circle concentric with the furnace wall 3A. That is, the heat exchange channel 1
Reference numeral 5 forms an annular space sandwiched between the liner plate 23 and the liner plate 24.

【0029】上記した炉壁冷却機構10の構成におい
て、高圧プレナム16から低温プレナム5を介して導か
れ上昇流路11に流入した冷却流体は、図中→で示すよ
うに、上昇流路11によって炉壁3Aに沿って上方へ流
され、上昇流路11の上端近傍からライナ板21を越流
して下降流路12に流入する。さらに下降流路12によ
って下方へ流された冷却流体は、下降流路12の下端近
傍のライナ板22の開口部22aから中間流路13へ流
入する。さらに中間流路13は停留した流体で満たされ
ており、下降流路12から中間流路13へ流入した冷却
流体は、この停留流体の下部を横断する形で中間流路1
3の下端近傍のライナ板23の開口部23aから中間プ
レナム4へ導かれる。そして冷却流体は中間プレナム4
から熱交換流路15へと導かれ、熱交換流路15におい
てライナ板24を介し高温プレナム6の内部に満たされ
た流体との熱交換を行って高温プレナム6内の流体を冷
却するとともに自らは加熱されて昇温した後、高温プレ
ナム6に排出される。
In the structure of the furnace wall cooling mechanism 10 described above, the cooling fluid introduced from the high pressure plenum 16 through the low temperature plenum 5 and flowing into the ascending passage 11 is caused by the ascending passage 11 as shown by → in the figure. It flows upward along the furnace wall 3A, flows over the liner plate 21 from the vicinity of the upper end of the ascending flow path 11, and flows into the descending flow path 12. Further, the cooling fluid flowed downward by the descending passage 12 flows into the intermediate passage 13 from the opening 22 a of the liner plate 22 near the lower end of the descending passage 12. Further, the intermediate flow path 13 is filled with the stagnant fluid, and the cooling fluid flowing from the descending flow path 12 into the intermediate flow path 13 traverses a lower portion of the stagnant fluid 1 and the intermediate flow path 1
3 is guided to the intermediate plenum 4 from the opening 23 a of the liner plate 23 near the lower end of the liner 3. And the cooling fluid is the intermediate plenum 4
Is guided to the heat exchange flow passage 15 and exchanges heat with the fluid filled in the high temperature plenum 6 via the liner plate 24 in the heat exchange flow passage 15 to cool the fluid in the high temperature plenum 6 and After being heated and heated, it is discharged to the high temperature plenum 6.

【0030】次に、本実施例の作用を図3及び図4を用
いて説明する。本実施例の比較例として従来技術におけ
る高速増殖炉の炉壁冷却機構810を図3に示す。図1
に示す本実施例と共通する部品は、800番台の同一番
号で対応させて示す。図3において、図1に示す本実施
例の炉壁冷却機構10と異なる点は、上昇流路811、
下降流路812、中間流路813を経て中間プレナム8
04へ流入した冷却流体が、中間プレナム804の上部
に設けられた開口部である排出部814から直ちに上方
の高温プレナム806へと排出されることである。これ
によって、排出される流体の温度Tと高温プレナムの高
温流体の温度THとの差TH−Tは150K近くになり、
排出部付近にはこの温度差による熱疲労に耐えることが
できる構造材を使用しなければならず、強度上及びコス
ト上好ましくなかった。
Next, the operation of this embodiment will be described with reference to FIGS. As a comparative example of this embodiment, a furnace wall cooling mechanism 810 of a conventional fast breeder reactor is shown in FIG. Figure 1
Parts common to those of the present embodiment shown in FIG. 3 is different from the furnace wall cooling mechanism 10 of this embodiment shown in FIG.
The intermediate plenum 8 through the descending flow path 812 and the intermediate flow path 813.
That is, the cooling fluid that has flowed into 04 is immediately discharged to the high temperature plenum 806, which is an upper opening of the intermediate plenum 804, from the discharge portion 814. Thus, the difference T H -T between the temperature T H of the hot fluid temperature T and the hot plenum of the fluid to be discharged becomes near 150K,
A structural material capable of withstanding thermal fatigue due to this temperature difference must be used near the discharge part, which is not preferable in terms of strength and cost.

【0031】しかしながら、図1に示す本実施例の炉壁
冷却機構10においては、冷却流体が高温プレナム6へ
と排出される出口部分に設けられた熱交換流路15で冷
却流体と高温プレナム6内の流体との熱交換を行うこと
により、冷却流体は予め熱交換流路15で加熱されてか
ら排出されるので、従来の熱交換流路のない炉壁冷却機
構810(図3参照)から排出される場合に比し冷却流
体温度Tと高温プレナム内流体温度THとの差TH−Tを
低減することができる。このことを図4を用いてさらに
詳細に説明する。
However, in the furnace wall cooling mechanism 10 of the present embodiment shown in FIG. 1, the cooling fluid and the high temperature plenum 6 are provided in the heat exchange passage 15 provided at the outlet portion where the cooling fluid is discharged to the high temperature plenum 6. By exchanging heat with the fluid inside, the cooling fluid is heated in advance in the heat exchange passage 15 and then discharged, so that the conventional furnace wall cooling mechanism 810 (see FIG. 3) having no heat exchange passage is used. it is possible to reduce the difference T H -T between the cooling fluid temperature T and the hot plenum fluid temperature T H than when discharged. This will be described in more detail with reference to FIG.

【0032】熱交換流路15の鉛直方向長さを変化させ
た場合における、熱交換流路15出口部の冷却流体温度
Tと高温プレナム6内流体温度THとの差TH−Tの変化
を図4に示す。ここで図4は、熱交換流路15の内径
(ライナ板24の原子炉容器3の軸心からの距離)を1
0m、外径(ライナ板23の原子炉容器3の軸心からの
距離)を10.1m(すなわち熱交換流路15の幅を0.
05m)とし、熱交換流路15の構成材の板厚を5m
m、熱交換流路15に流入する冷却流体の流量を100
kg/s、高温プレナム6内の流体と熱交換流路15の
入口における冷却流体との間の温度差を150K、ライ
ナ板24を介した高温プレナム6から熱交換流路への熱
通過率を2000W/m2Kと見積った場合の値を示
す。また縦軸は、温度差TH−Tを、熱交換流路がない
従来技術(図3参照)の中間プレナム804の排出部8
14における冷却流体温度ToとTHとの温度差TH−To
で無次元化した値(TH−T)/(TH−To)で示す。図4
において、熱交換流路15の鉛直方向長さが長いほど
(TH−T)/(TH−To)の値が減少し、熱交換流路15
出口部の冷却流体温度Tと高温プレナム6内流体温度T
Hとの差が低減されることがわかる。すなわち例えば、
熱交換流路15の鉛直方向長さを3mとした場合におい
ては(TH−T)/(TH−To)≒0.2となり、排出される
冷却流体の温度Tと高温プレナム6内の流体の温度TH
との差TH−Tが熱交換流路15がない場合の温度差TH
−Toの約20%程度にまで低減できる。
[0032] in the case of changing the vertical length of the heat exchange passage 15, the change of the difference T H -T between the cooling fluid temperature T and the hot plenum 6 in fluid temperature T H of the heat exchange passage 15 outlet Is shown in FIG. Here, in FIG. 4, the inner diameter of the heat exchange channel 15 (the distance of the liner plate 24 from the axis of the reactor vessel 3) is set to 1
0 m, outer diameter (distance of the liner plate 23 from the axis of the reactor vessel 3) is 10.1 m (that is, the width of the heat exchange passage 15 is 0.1 m).
05m), and the plate thickness of the constituent material of the heat exchange channel 15 is 5m.
m, the flow rate of the cooling fluid flowing into the heat exchange passage 15 is 100
kg / s, the temperature difference between the fluid in the high temperature plenum 6 and the cooling fluid at the inlet of the heat exchange passage 15 is 150K, the heat transfer rate from the high temperature plenum 6 to the heat exchange passage through the liner plate 24 is The value when estimated to be 2000 W / m 2 K is shown. The vertical axis, the temperature difference T H -T, discharge portion 8 of the intermediate plenum 804 without heat exchange passage prior art (see FIG. 3)
Temperature difference T H -To the cooling fluid temperature To and T H in 14
In shown in dimensionless value (T H -T) / (T H -To). Figure 4
In, the longer the vertical length of the heat exchange passage 15 is,
(T H -T) / value of (T H -To) is decreased, the heat exchange passage 15
Cooling fluid temperature T at outlet and fluid temperature T in high temperature plenum 6
It can be seen that the difference from H is reduced. That is, for example,
In the case where the vertical length of the heat exchange passage 15 was set to 3m is (T H -T) / (T H -To) ≒ 0.2 , and the temperature T and the hot plenum 6 of the cooling fluid discharged Fluid temperature TH
The difference T H -T is when there is no heat exchange passage 15 the temperature difference T H between the
-It can be reduced to about 20% of To.

【0033】以上説明したように、本実施例の高速増殖
炉によれば、炉壁冷却機構10の冷却流体が高温プレナ
ム6へ排出される出口部分に設けられた熱交換流路15
によって冷却流体と高温プレナム6内の流体との熱交換
を行うので、従来の高速増殖炉における熱交換流路のな
い炉壁冷却機構810から排出される場合に比し、冷却
流体温度と高温プレナム内流体温度との差を、例えば2
0%程度に(TH−To≒150KからTH−T≒30K
に)低減することができる。よって出口部分付近に使用
する構造材の強度条件が緩和されるとともに、従来と同
一の構造材を使用した場合でも強度が向上して寿命が延
びるので、コストダウンを図ることができる。
As described above, according to the fast breeder reactor of this embodiment, the heat exchange flow passage 15 provided at the outlet portion where the cooling fluid of the furnace wall cooling mechanism 10 is discharged to the high temperature plenum 6.
Since the cooling fluid and the fluid in the high temperature plenum 6 are heat-exchanged with each other, the temperature of the cooling fluid and the high temperature plenum are higher than those in the case where the cooling fluid is discharged from the furnace wall cooling mechanism 810 having no heat exchange passage in the conventional fast breeder reactor. The difference from the internal fluid temperature is, for example, 2
To about 0% from (T H -To ≒ 150K T H -T ≒ 30K
Can be reduced. Therefore, the strength condition of the structural material used near the outlet portion is relaxed, and even when the same structural material as the conventional one is used, the strength is improved and the life is extended, so that the cost can be reduced.

【0034】本発明の第2の実施例を図5により説明す
る。本実施例は、異なる炉壁冷却機構を有する高速増殖
炉の実施例である。本実施例の高速増殖炉の炉壁冷却機
構を図5に示す。第1の実施例と共通の部品については
共通の番号で示す。図5において、本実施例における炉
壁冷却機構210が第1の実施例の炉壁冷却機構10と
異なる点は、下降流路12の内側(図中左側)に中間流
路でなく熱交換流路215が設けられており、冷却流体
は下降流路12から開口部22aを通って熱交換流路2
15に流入することである。すなわち熱交換流路215
は、下降流路12の内側に設けられ冷却流体を上方へ流
す上昇流路213と、熱交換流路215と高温プレナム
6との仕切面であるライナ板224に設けられた排出口
224aとを有し、冷却流体はライナ板224を介して
高温プレナム6内の流体と熱交換を行った後排出口22
4aから高温プレナム6へ排出される。またこのとき、
下降流路12と熱交換流路215との仕切面であるライ
ナ板22とライナ板224とは、それぞれ水平断面(図
中では左右方向の直線による断面)において原子炉容器
3の炉壁3Aと同心の円をなし、熱交換流路215はラ
イナ板22とライナ板224とに挟まれた環状空間を形
成している。本実施例におけるその他の構成は第1の実
施例とほぼ同様である。
A second embodiment of the present invention will be described with reference to FIG. This example is an example of a fast breeder reactor having different furnace wall cooling mechanisms. The furnace wall cooling mechanism of the fast breeder reactor of this embodiment is shown in FIG. Parts common to the first embodiment are designated by common numbers. In FIG. 5, the furnace wall cooling mechanism 210 in the present embodiment differs from the furnace wall cooling mechanism 10 in the first embodiment in that inside the descending flow path 12 (left side in the figure), not the intermediate flow path, but the heat exchange flow. A passage 215 is provided so that the cooling fluid flows from the descending passage 12 through the opening 22 a to the heat exchange passage 2
It is to flow into 15. That is, the heat exchange channel 215
Is an ascending flow path 213 that is provided inside the descending flow path 12 and that causes a cooling fluid to flow upward, and an exhaust port 224a that is provided in a liner plate 224 that is a partition surface between the heat exchange flow path 215 and the high temperature plenum 6. The cooling fluid has heat exchange with the fluid in the high temperature plenum 6 via the liner plate 224, and then the discharge port 22.
4a is discharged to the high temperature plenum 6. Also at this time,
The liner plate 22 and the liner plate 224, which are the partition surfaces of the descending flow path 12 and the heat exchange flow path 215, are respectively separated from the reactor wall 3A of the reactor vessel 3 in a horizontal cross section (a cross section along a straight line in the horizontal direction in the drawing). The heat exchange flow paths 215 form concentric circles, and form an annular space sandwiched between the liner plate 22 and the liner plate 224. Other configurations in this embodiment are almost the same as those in the first embodiment.

【0035】以上において、熱交換流路215の内径
(ライナ板224の原子炉容器3の軸心からの距離)を
9.9m、外径(ライナ板22の原子炉容器3の軸心か
らの距離)を10m(すなわち流路幅0.05m)、熱
交換流路215の構成材の板厚を5mm、熱交換流路2
15に流入する冷却流体の流量を100kg/s、高温
プレナム6内の流体と熱交換流路215の入口における
冷却流体との間の温度差を150Kとし、ライナ板22
4を介した高温プレナム6から熱交換流路への熱通過率
を2000W/m2Kと見積ると、熱交換流路215の
鉛直方向長さを変化させた場合における、熱交換流路2
15出口部の冷却流体温度Tと高温プレナム6内流体温
度THとの差TH−Tの変化は図4とほぼ同じとなり、例
えば、熱交換流路215の鉛直方向長さを3mとした場
合、(TH−T)/(TH−To)≒0.2となり、排出される
冷却流体の温度Tと高温プレナム6内の流体の温度TH
との差TH−Tは熱交換流路215がない場合の温度差
H−Toの約20%程度にまで低減できる。すなわち、
本実施例によっても、第1の実施例と同様の効果を得る
ことができる。
In the above, the inner diameter of the heat exchange passage 215 (the distance of the liner plate 224 from the axis of the reactor vessel 3) is 9.9 m, and the outer diameter (the distance of the liner plate 22 from the axis of the reactor vessel 3). The distance) is 10 m (that is, the channel width is 0.05 m), the plate thickness of the constituent material of the heat exchange channel 215 is 5 mm, and the heat exchange channel 2 is
The flow rate of the cooling fluid flowing into 15 is 100 kg / s, the temperature difference between the fluid in the high temperature plenum 6 and the cooling fluid at the inlet of the heat exchange passage 215 is 150 K, and the liner plate 22
Estimating the heat transfer rate from the high temperature plenum 6 to the heat exchange flow path through 2000 is 2000 W / m 2 K, the heat exchange flow path 2 when the vertical length of the heat exchange flow path 215 is changed.
Change in the difference T H -T between the cooling fluid temperature T and the hot plenum 6 in fluid temperature T H of 15 outlet portion becomes substantially the same as FIG. 4, for example, the vertical length of the heat exchange passage 215 was 3m If, (T H -T) / ( T H -To) ≒ 0.2 , and the temperature T H of the fluid temperature T and the hot plenum 6 of the cooling fluid discharged
The difference between T H -T can be reduced to approximately 20% of the temperature difference T H -To in the absence of heat exchange passage 215. That is,
According to this embodiment, the same effect as that of the first embodiment can be obtained.

【0036】本発明の第3の実施例を図6により説明す
る。本実施例は、異なる炉壁冷却機構を有する高速増殖
炉の実施例である。本実施例の高速増殖炉の炉壁冷却機
構を図6に示す。第1及び第2の実施例と共通の部品に
ついては共通の番号で示す。図6において、本実施例に
おける炉壁冷却機構310が第1の実施例の炉壁冷却機
構10と異なる点は、熱交換流路として中間流路13の
内側に上昇流路が設けられるのではなく、本実施例の熱
交換流路315は、下端が中間プレナム4の上面近傍に
あり上端が高温プレナム6内へ突出した少なくとも1つ
の管路(この実施例では3つの管路315a〜cを1組
としたものを数カ所設けたもの)を有することである。
すなわち、冷却流体は中間プレナム4の上面近傍から熱
交換流路315としての3つの管路315a〜cに流入
し、これら管路315a〜cのそれぞれの管壁を介して
高温プレナム6内の流体と熱交換を行った後高温プレナ
ム6に排出される。その他の構成は第1の実施例とほぼ
同様である。
A third embodiment of the present invention will be described with reference to FIG. This example is an example of a fast breeder reactor having different furnace wall cooling mechanisms. FIG. 6 shows the furnace wall cooling mechanism of the fast breeder reactor of this embodiment. Parts common to those of the first and second embodiments are designated by common numbers. In FIG. 6, the furnace wall cooling mechanism 310 in the present embodiment is different from the furnace wall cooling mechanism 10 in the first embodiment in that an ascending flow path is provided inside the intermediate flow path 13 as a heat exchange flow path. In the heat exchange flow passage 315 of the present embodiment, at least one pipe (the three pipes 315a to 315c in this embodiment are provided with the lower end near the upper surface of the intermediate plenum 4 and the upper end protruding into the high temperature plenum 6). It is to have a set of several places).
That is, the cooling fluid flows from the vicinity of the upper surface of the intermediate plenum 4 into the three pipes 315a to 315c as the heat exchange flow passage 315, and the fluid in the high temperature plenum 6 passes through the respective pipe walls of these pipes 315a to 315c. After exchanging heat with the above, it is discharged to the high temperature plenum 6. The other structure is almost the same as that of the first embodiment.

【0037】以上において、熱交換流路315として内
径0.3m板厚5mmの7本の管路を1組とした管束を
高温プレナム6内に突出させて4箇所設け、熱交換流路
315に流入する冷却流体の流量を100kg/s、高
温プレナム6内の流体と熱交換流路315の入口におけ
る冷却流体との間の温度差を150Kとし、4カ所の管
束の管壁を介した高温プレナム6から熱交換流路315
への熱通過率を1500W/m2Kと見積ると、熱交換
流路315出口部の冷却流体温度Tと高温プレナム6内
流体温度THとの差TH−Tの変化は図4とほぼ同じ傾向
を示し、例えば、熱交換流路315に用いる管1本の鉛
直方向長さが4.5mの場合、(TH−T)/(TH−To)≒
0.2となり、排出される冷却流体の温度Tと高温プレ
ナム6内の流体の温度THとの差TH−Tは熱交換流路3
15がない場合の温度差TH−Toの約20%程度にまで
低減できる。すなわち、本実施例によっても、第1の実
施例と同様の効果を得ることができる。
In the above, as the heat exchange flow passage 315, a tube bundle having seven pipe passages each having an inner diameter of 0.3 m and a plate thickness of 5 mm as one set is protruded into the high temperature plenum 6 and provided at four places. The flow rate of the inflowing cooling fluid is 100 kg / s, the temperature difference between the fluid in the high temperature plenum 6 and the cooling fluid at the inlet of the heat exchange passage 315 is 150 K, and the high temperature plenum via the tube walls of the four tube bundles is used. 6 to heat exchange channel 315
It is estimated as 1500 W / m 2 K The heat transfer coefficient for the change of the difference T H -T between the cooling fluid temperature T and the hot plenum 6 in fluid temperature T H of the heat exchange passage 315 outlet portion approximately the 4 showed the same trend, for instance, when the vertical length of the tube one used for the heat exchange passage 315 is 4.5m, (T H -T) / (T H -To) ≒
The difference T H −T between the temperature T of the discharged cooling fluid and the temperature T H of the fluid in the high temperature plenum 6 becomes 0.2.
15 can be reduced to about 20% of the temperature difference T H -To in the absence. That is, according to this embodiment, the same effect as that of the first embodiment can be obtained.

【0038】本発明の第4の実施例を図7により説明す
る。本実施例は、異なる炉壁冷却機構を有する高速増殖
炉の実施例である。本実施例の高速増殖炉の炉壁冷却機
構を図7に示す。第1〜第3の実施例と共通の部品につ
いては共通の番号で示す。図7において、炉壁冷却機構
410は、原子炉容器403の炉壁403Aの内側底面
及び内側側面に設けられ高圧プレナム416から冷却流
体を導き炉壁403Aを冷却して低温プレナム405へ
冷却流体を排出するものであり、原子炉容器403内の
最も炉壁403A側に設けられた上昇流路411と、上
昇流路411の内側(図中左側)に設けられた下降流路
412とを有する。また炉壁冷却機構410は、低温プ
レナム405へ冷却流体が排出される出口部分に熱交換
流路415を有する。熱交換流路415は、下降流路4
12下方の上昇流路411の内側に設けられており、下
降流路412から流入した冷却流体を低温プレナム40
5へ導く下降流路を形成している。このとき、上昇流路
411と下降流路412との仕切面であるライナ板42
1と、熱交換流路415と低温プレナム405との仕切
面であるライナ板424とは、それぞれ水平断面(図中
では左右方向の直線による断面)において原子炉容器4
03の炉壁403Aと同心の円をなす。すなわち、熱交
換流路415はライナ板421とライナ板424とに挟
まれた環状空間を形成している。
A fourth embodiment of the present invention will be described with reference to FIG. This example is an example of a fast breeder reactor having different furnace wall cooling mechanisms. FIG. 7 shows the furnace wall cooling mechanism of the fast breeder reactor of this embodiment. Parts common to those of the first to third embodiments are designated by common numbers. In FIG. 7, a reactor wall cooling mechanism 410 is provided on the inner bottom surface and inner side surface of the reactor wall 403A of the reactor vessel 403, guides the cooling fluid from the high pressure plenum 416, cools the reactor wall 403A, and supplies the cooling fluid to the low temperature plenum 405. It is to be discharged, and has an ascending flow path 411 provided on the most furnace wall 403A side in the reactor vessel 403 and a descending flow path 412 provided inside the ascending flow path 411 (left side in the figure). Further, the furnace wall cooling mechanism 410 has a heat exchange flow passage 415 at the outlet portion where the cooling fluid is discharged to the low temperature plenum 405. The heat exchange flow path 415 is the downflow path 4
12 is provided inside the ascending flow path 411 below the cooling flow plenum 40.
5, a descending flow path leading to No. 5 is formed. At this time, the liner plate 42 which is a partition surface between the ascending flow path 411 and the descending flow path 412.
1 and the liner plate 424, which is a partition surface between the heat exchange passage 415 and the low temperature plenum 405, respectively, in a horizontal cross section (a cross section along a straight line in the horizontal direction in the drawing).
It forms a circle concentric with the furnace wall 403A of No. 03. That is, the heat exchange flow passage 415 forms an annular space sandwiched between the liner plate 421 and the liner plate 424.

【0039】上記した炉壁冷却機構410の構成におい
て、冷却流体は、図中→で示すように、高圧プレナム4
16から上昇流路411に流入し、上昇流路411によ
って炉壁403Aに沿って上方へ流され、上昇流路41
1の上端近傍からライナ板421を越流して下降流路4
12に流入する。さらに下降流路412によって下方へ
流された冷却流体は下降流路412の下端から熱交換流
路415へ流入し、熱交換流路415においてライナ板
424を介し低温プレナム405の内部に満たされた流
体との熱交換を行って低温プレナム5内の流体から冷却
され降温した後、低温プレナム405に排出される。
In the structure of the furnace wall cooling mechanism 410 described above, the cooling fluid is the high pressure plenum 4 as shown by → in the figure.
16 flows into the ascending flow path 411 and is caused to flow upward along the furnace wall 403A by the ascending flow path 411.
1 overflows the liner plate 421 from the vicinity of the upper end of the downward flow path 4
It flows into 12. Further, the cooling fluid flowed downward by the descending passage 412 flows into the heat exchange passage 415 from the lower end of the descending passage 412, and is filled in the low temperature plenum 405 via the liner plate 424 in the heat exchanging passage 415. After exchanging heat with the fluid, the fluid in the low temperature plenum 5 is cooled and cooled, and then discharged to the low temperature plenum 405.

【0040】また本実施例の高速増殖炉における炉壁冷
却機構410以外の構造、例えば、炉心・高温プレナム
・中間プレナム等の構造は、下降流路412の内側に中
間プレナム404とつながった停留層413が設けられ
ていることのほかは、第1〜第3の実施例とほぼ同様で
ある。
Further, the structure other than the reactor wall cooling mechanism 410 in the fast breeder reactor of this embodiment, for example, the structure such as the core, the high temperature plenum, the intermediate plenum, etc., is a retaining layer connected to the intermediate plenum 404 inside the descending flow passage 412. Except that 413 is provided, it is almost the same as the first to third embodiments.

【0041】次に、本実施例の作用を図8を用いて説明
する。本実施例の比較例として従来技術における高速増
殖炉の炉壁冷却機構910を図8に示す。図7に示す本
実施例と共通する部品は、400番台の番号を900番
台の番号で対応させて示す。図8において、図7に示す
本実施例の炉壁冷却機構410と異なる点は、上昇流路
911を経て下降流路912へ流入した冷却流体が、下
降流路912の下端から直ちに下方の低温プレナム90
5へと排出されることである。これによって、排出され
る流体の温度Tと低温プレナムの低温流体の温度TL
の差T−TLは100K近くになり、排出部付近にはこ
の温度差による熱疲労に耐えることができる構造材を使
用しなければならず、強度上及びコスト上好ましくなか
った。
Next, the operation of this embodiment will be described with reference to FIG. As a comparative example of this embodiment, FIG. 8 shows a furnace wall cooling mechanism 910 of a fast breeder reactor in the prior art. The parts common to the present embodiment shown in FIG. 7 are shown by associating the numbers in the 400s with the numbers in the 900s. In FIG. 8, the difference from the furnace wall cooling mechanism 410 of the present embodiment shown in FIG. 7 is that the cooling fluid flowing into the descending flow passage 912 through the ascending flow passage 911 is at a low temperature immediately below the lower end of the descending flow passage 912. Plenum 90
It is to be discharged to 5. Structure Thus, the difference T-T L between the temperature T L of the low-temperature fluid temperature T and cold plenum of fluid discharged becomes near 100K, the vicinity of the discharge portion that can withstand the thermal fatigue due to the temperature difference A material must be used, which is not preferable in terms of strength and cost.

【0042】しかしながら、図7に示す本実施例の炉壁
冷却機構410においては、冷却流体が低温プレナム4
05へと排出される出口部分に設けられた熱交換流路4
15で冷却流体と低温プレナム405内の流体との熱交
換を行うことにより、冷却流体は予め熱交換流路415
で冷却されてから排出されるので、従来の熱交換流路の
ない炉壁冷却機構910(図8参照)から排出される場
合に比し冷却流体温度Tと低温プレナム内流体温度TL
との差T−TLを低減することができる。
However, in the furnace wall cooling mechanism 410 of this embodiment shown in FIG. 7, the cooling fluid is the low temperature plenum 4.
Heat exchange flow path 4 provided at the outlet portion discharged to 05
By exchanging heat between the cooling fluid and the fluid in the low temperature plenum 405 at 15, the cooling fluid is preliminarily exchanged in the heat exchange passage 415.
Therefore, the cooling fluid temperature T and the low-temperature plenum fluid temperature T L are lower than those in the case of being discharged from the conventional furnace wall cooling mechanism 910 (see FIG. 8) having no heat exchange flow path.
It is possible to reduce the difference T- TL with the difference.

【0043】すなわち、本実施例の高速増殖炉の炉壁冷
却機構410において、熱交換流路415の内径(ライ
ナ424の原子炉容器403の軸心からの距離)を10
m、外径(ライナ板421の原子炉容器403の軸心か
らの距離)を10.1m(すなわち流路幅0.05m)、
熱交換流路415の構成材の板厚を5mm、熱交換流路
415に流入する冷却流体の流量を100kg/s、低
温プレナム405内の流体と熱交換流路415入口にお
ける冷却流体との間の温度差を100Kとし、ライナ板
424を介した熱交換流路415から低温プレナム40
5への熱通過率を200W/m2Kと見積もると、熱交
換流路415の鉛直方向長さを変化させた場合におけ
る、低温プレナム405内流体温度TLと熱交換流路4
15出口部の冷却流体温度Tとの差T−TLの変化は、
図4に示した第1の実施例におけるTH−Tの変化とほ
ぼ同じ傾向を示し、例えば、熱交換流路415の鉛直方
向長さを2mとした場合においては(T−TL)/(To−
L)≒0.35となり、排出される冷却流体の温度Tと
低温プレナム405内の流体の温度TLとの差T−TL
熱交換流路415がない場合の温度差To−TLの約35
%程度にまで低減できる。すなわち、本実施例によって
も、第1の実施例と同様の効果を得ることができる。
That is, in the reactor wall cooling mechanism 410 of the fast breeder reactor of this embodiment, the inner diameter of the heat exchange passage 415 (the distance of the liner 424 from the axis of the reactor vessel 403) is set to 10.
m, the outer diameter (distance from the axis of the reactor vessel 403 of the liner plate 421) is 10.1 m (that is, the flow passage width is 0.05 m),
Between the fluid in the low temperature plenum 405 and the cooling fluid at the inlet of the heat exchange flow passage 415, the plate thickness of the constituent material of the heat exchange flow passage 415 is 5 mm, the flow rate of the cooling fluid flowing into the heat exchange flow passage 415 is 100 kg / s. The temperature difference of 100 K from the heat exchange passage 415 through the liner plate 424 to the low temperature plenum 40.
Estimating the heat transfer rate to 200 to 200 W / m 2 K, the fluid temperature T L in the low temperature plenum 405 and the heat exchange flow path 4 when the vertical length of the heat exchange flow path 415 is changed.
15 The change in the difference T− TL with the cooling fluid temperature T at the outlet is
It shows almost the same tendency as the change of T H -T in the first embodiment shown in FIG. 4, and for example, when the vertical length of the heat exchange channel 415 is 2 m, (T-T L ) / (To-
T L ) ≈0.35, and the difference T−T L between the temperature T of the discharged cooling fluid and the temperature T L of the fluid in the low temperature plenum 405 is the temperature difference To−T when the heat exchange flow passage 415 is not provided. About 35 of L
% Can be reduced. That is, according to this embodiment, the same effect as that of the first embodiment can be obtained.

【0044】本発明の第5の実施例を図9により説明す
る。本実施例は、異なる炉壁冷却機構を有する高速増殖
炉の実施例である。本実施例の高速増殖炉の炉壁冷却機
構を図5に示す。第1の実施例と共通の部品については
共通の番号で示す。図9において、本実施例における炉
壁冷却機構510が第4の実施例の炉壁冷却機構410
と異なる点は、下降流路412の下方に設けられた熱交
換流路515のライナ板524は、上昇流路411と下
降流路412との仕切板であるライナ板421と平行に
設けられずにこれと直交する水平方向(図中左右方向)
に設けられており、すなわち熱交換流路515は、下降
流路412から流入した冷却流体を低温プレナム405
へ導く水平方向の流路である。その他の点は、第4の実
施例の炉壁冷却機構410と同様である。
A fifth embodiment of the present invention will be described with reference to FIG. This example is an example of a fast breeder reactor having different furnace wall cooling mechanisms. The furnace wall cooling mechanism of the fast breeder reactor of this embodiment is shown in FIG. Parts common to the first embodiment are designated by common numbers. In FIG. 9, the furnace wall cooling mechanism 510 according to the present embodiment is the furnace wall cooling mechanism 410 according to the fourth embodiment.
The difference is that the liner plate 524 of the heat exchange channel 515 provided below the descending channel 412 is not provided in parallel with the liner plate 421 which is a partition plate for the ascending channel 411 and the descending channel 412. Horizontal direction (right and left direction in the figure)
That is, the heat exchange flow passage 515 is provided in the low temperature plenum 405 to cool the cooling fluid flowing from the descending flow passage 412.
It is a horizontal flow path leading to. Other points are the same as the furnace wall cooling mechanism 410 of the fourth embodiment.

【0045】以上において、第4の実施例と同様に熱交
換流路515の流路幅を0.05m、熱交換流路515
の構成材の板厚を5mm、熱交換流路515に流入する
冷却流体の流量を100kg/s、低温プレナム405
内の流体と熱交換流路515入口における冷却流体との
間の温度差を100Kとし、ライナ板524を介した熱
交換流路515から低温プレナム405への熱通過率を
200W/m2Kと見積もると、熱交換流路515の水
平方向長さを変化させた場合における、低温プレナム4
05内流体温度TLと熱交換流路515出口部の冷却流
体温度Tとの差T−TLの変化は、図4に示した第1の
実施例におけるTH−Tの変化とほぼ同じ傾向を示し、
例えば、熱交換流路515の水平方向長さを2mとした
場合においては(T−TL)/(To−TL)≒0.35とな
り、排出される冷却流体の温度Tと低温プレナム405
内の流体の温度TLとの差T−TLは熱交換流路515が
ない場合の温度差To−TLの約35%程度にまで低減で
きる。すなわち、本実施例によっても、第1の実施例と
同様の効果を得ることができる。
In the above, as in the fourth embodiment, the heat exchange flow passage 515 has a flow passage width of 0.05 m and a heat exchange flow passage 515.
The thickness of the component material of 5 mm, the flow rate of the cooling fluid flowing into the heat exchange passage 515 is 100 kg / s, and the low temperature plenum 405.
The temperature difference between the fluid inside and the cooling fluid at the inlet of the heat exchange flow passage 515 is 100 K, and the heat transfer rate from the heat exchange flow passage 515 to the low temperature plenum 405 via the liner plate 524 is 200 W / m 2 K. It is estimated that the low-temperature plenum 4 when the horizontal length of the heat exchange channel 515 is changed.
Change in the difference T-T L of 05 in the fluid temperature T L and the cooling fluid temperature T of the heat exchange passage 515 outlet portion is substantially the same as the change in T H -T in the first embodiment shown in FIG. 4 Show trends,
For example, when the horizontal length of the heat exchange flow path 515 is 2 m, (T− TL ) / (To− TL ) ≈0.35, and the temperature T of the discharged cooling fluid and the low temperature plenum 405.
The difference T-T L between the temperature T L of the fluid of the inner can be reduced to the order of about 35% of the temperature difference the To-T L in the absence of heat exchange passage 515. That is, according to this embodiment, the same effect as that of the first embodiment can be obtained.

【0046】[0046]

【発明の効果】本発明によれば、原子炉容器冷却機構の
冷却流体が排出される出口部分に設けられた熱交換流路
によって冷却流体と高温・低温プレナム内の流体との熱
交換を行うので、従来の熱交換流路のない原子炉容器冷
却機構から排出される場合に比し、冷却流体と高温・低
温プレナム内の流体との温度差を低減することができ
る。よって、出口部分付近に使用する構造材の強度条件
が緩和されるとともに、従来と同一の構造材を使用した
場合でも強度が向上して寿命が延びるので、コストダウ
ンを図ることができる。
According to the present invention, heat exchange between the cooling fluid and the fluid in the high temperature / low temperature plenum is performed by the heat exchange flow passage provided at the outlet of the reactor vessel cooling mechanism where the cooling fluid is discharged. Therefore, the temperature difference between the cooling fluid and the fluid in the high-temperature / low-temperature plenum can be reduced as compared with the case where the cooling fluid is discharged from the conventional reactor vessel cooling mechanism having no heat exchange passage. Therefore, the strength condition of the structural material used near the outlet portion is relaxed, and even when the same structural material as the conventional one is used, the strength is improved and the life is extended, so that the cost can be reduced.

【0047】また本発明によれば、原子炉容器冷却機構
の冷却流体が排出される出口部分に設けられた熱交換流
路で冷却流体と高温プレナム内の流体との熱交換を行う
ので、従来の熱交換流路のない原子炉容器冷却機構から
排出される場合では150K近くあった冷却流体温度T
と高温プレナム内流体温度THとの差TH−Tを低減する
ことができる。よって、出口部分付近に使用する構造材
の強度条件が緩和されるとともに、従来と同一の構造材
を使用した場合でも強度が向上して寿命が延びるので、
コストダウンを図ることができる。
Further, according to the present invention, heat exchange between the cooling fluid and the fluid in the high temperature plenum is performed in the heat exchange passage provided at the outlet of the reactor vessel cooling mechanism where the cooling fluid is discharged. Cooling fluid temperature T, which was close to 150 K when discharged from the reactor vessel cooling mechanism with no heat exchange flow path
It is possible to reduce the difference T H -T the hot plenum fluid temperature T H and. Therefore, the strength condition of the structural material used near the outlet is relaxed, and even when the same structural material as the conventional one is used, the strength is improved and the life is extended.
The cost can be reduced.

【0048】さらに本発明によれば、原子炉容器冷却機
構の冷却流体が排出される出口部分に設けられた熱交換
流路で冷却流体と低温プレナム内の流体との熱交換を行
うので、従来の熱交換流路の内原子炉容器冷却機構から
排出される場合に100K近くあった冷却流体温度Tと
低温プレナム内流体温度TLとの差T−TLを低減するこ
とができる。よって、出口部分付近に使用する構造材の
強度条件が緩和されるとともに、従来と同一の構造材を
使用した場合でも強度が向上して寿命が延びるので、コ
ストダウンを図ることができる。
Further, according to the present invention, heat exchange between the cooling fluid and the fluid in the low temperature plenum is performed in the heat exchange passage provided at the outlet of the reactor vessel cooling mechanism where the cooling fluid is discharged. it is possible to reduce the difference T-T L between the cooling fluid temperature T and the low temperature plenum fluid temperature T L that was near 100K when discharged from the inner reactor vessel cooling mechanism of the heat exchange passage. Therefore, the strength condition of the structural material used near the outlet portion is relaxed, and even when the same structural material as the conventional one is used, the strength is improved and the life is extended, so that the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 1 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a first embodiment of the present invention.

【図2】高速増殖炉の構造図である。FIG. 2 is a structural diagram of a fast breeder reactor.

【図3】従来技術における高速増殖炉の炉壁冷却機構の
構造図である。
FIG. 3 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor in the related art.

【図4】熱交換流路出口部の冷却流体温度と高温プレナ
ム内流体温度との差の変化を示した図である。
FIG. 4 is a diagram showing changes in the difference between the cooling fluid temperature at the heat exchange passage outlet and the fluid temperature in the high temperature plenum.

【図5】本発明の第2の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 5 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a second embodiment of the present invention.

【図6】本発明の第3の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 6 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a third embodiment of the present invention.

【図7】本発明の第4の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 7 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a fourth embodiment of the present invention.

【図8】従来技術における高速増殖炉の炉壁冷却機構の
構造図である。
FIG. 8 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor in the related art.

【符号の説明】[Explanation of symbols]

1 炉心 3 原子炉容器 3A 炉壁 4 中間プレナム 5 低温プレナム 6 高温プレナム 9 配管 10 炉壁冷却機構(原子炉容器冷却機構) 11 上昇流路(第1の上昇流路) 12 下降流路 13 中間流路 15 熱交換流路 16 高圧プレナム 22 ライナ面(第3の仕切面) 23 ライナ面(第1の仕切面) 24 ライナ面(第2の仕切面) 210 炉壁冷却機構(原子炉容器冷却機構) 213 上昇流路(第2の上昇流路) 215 熱交換流路 224 ライナ面(第4の仕切面) 224a 排出口 310 炉壁冷却機構(原子炉容器冷却機構) 315 熱交換流路 315a〜c 管路 403A 炉壁 405 低温プレナム 406 高温プレナム 410 炉壁冷却機構(原子炉容器冷却機構) 411 上昇流路 412 下降流路(第1の下降流路) 415 熱交換流路(第2の下降流路) 416 高圧プレナム 421 ライナ面(第5の仕切面) 424 ライナ面(第6の仕切面) 510 炉壁冷却機構(原子炉容器冷却機構) 515 熱交換流路 1 Core 3 Reactor Vessel 3A Reactor Wall 4 Intermediate Plenum 5 Low Temperature Plenum 6 High Temperature Plenum 9 Piping 10 Reactor Wall Cooling Mechanism (Reactor Vessel Cooling Mechanism) 11 Ascending Flow Path (First Ascending Flow Path) 12 Downflow Flow Path 13 Intermediate Flow path 15 Heat exchange flow path 16 High pressure plenum 22 Liner surface (third partition surface) 23 Liner surface (first partition surface) 24 Liner surface (second partition surface) 210 Reactor wall cooling mechanism (reactor vessel cooling Mechanism) 213 Ascending flow path (second rising flow path) 215 Heat exchange flow path 224 Liner surface (fourth partition surface) 224a Discharge port 310 Reactor wall cooling mechanism (reactor vessel cooling mechanism) 315 Heat exchange flow path 315a To c pipe 403A furnace wall 405 low temperature plenum 406 high temperature plenum 410 furnace wall cooling mechanism (reactor vessel cooling mechanism) 411 ascending flow path 412 descending flow path (first descending flow path) 415 heat Exchange channel (second descending channel) 416 High-pressure plenum 421 Liner surface (fifth partition surface) 424 Liner surface (sixth partition surface) 510 Reactor wall cooling mechanism (reactor vessel cooling mechanism) 515 Heat exchange flow Road

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月23日[Submission date] May 23, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 1 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a first embodiment of the present invention.

【図2】高速増殖炉の構造図である。FIG. 2 is a structural diagram of a fast breeder reactor.

【図3】従来技術における高速増殖炉の炉壁冷却機構の
構造図である。
FIG. 3 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor in the related art.

【図4】熱交換流路出口部の冷却流体温度と高温プレナ
ム内流体温度との差の変化を示した図である。
FIG. 4 is a diagram showing changes in the difference between the cooling fluid temperature at the heat exchange passage outlet and the fluid temperature in the high temperature plenum.

【図5】本発明の第2の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 5 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a second embodiment of the present invention.

【図6】本発明の第3の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 6 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a third embodiment of the present invention.

【図7】本発明の第4の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 7 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a fourth embodiment of the present invention.

【図8】従来技術における高速増殖炉の炉壁冷却機構の
構造図である。
FIG. 8 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor in the related art.

【図9】本発明の第5の実施例の高速増殖炉の炉壁冷却
機構の構造図である。
FIG. 9 is a structural diagram of a furnace wall cooling mechanism of a fast breeder reactor according to a fifth embodiment of the present invention.

【符号の説明】 1 炉心 3 原子炉容器 3A 炉壁 4 中間プレナム 5 低温プレナム 6 高温プレナム 9 配管 10 炉壁冷却機構(原子炉容器冷却機構) 11 上昇流路(第1の上昇流路) 12 下降流路 13 中間流路 15 熱交換流路 16 高圧プレナム 22 ライナ面(第3の仕切面) 23 ライナ面(第1の仕切面) 24 ライナ面(第2の仕切面) 210 炉壁冷却機構(原子炉容器冷却機構) 213 上昇流路(第2の上昇流路) 215 熱交換流路 224 ライナ面(第4の仕切面) 224a 排出口 310 炉壁冷却機構(原子炉容器冷却機構) 315 熱交換流路 315a〜c 管路 403A 炉壁 405 低温プレナム 406 高温プレナム 410 炉壁冷却機構(原子炉容器冷却機構) 411 上昇流路 412 下降流路(第1の下降流路) 415 熱交換流路(第2の下降流路) 416 高圧プレナム 421 ライナ面(第5の仕切面) 424 ライナ面(第6の仕切面) 510 炉壁冷却機構(原子炉容器冷却機構) 515 熱交換流路[Explanation of Codes] 1 core 3 reactor vessel 3A reactor wall 4 intermediate plenum 5 low temperature plenum 6 high temperature plenum 9 piping 10 reactor wall cooling mechanism (reactor vessel cooling mechanism) 11 ascending channel (first ascending channel) 12 Downward flow path 13 Intermediate flow path 15 Heat exchange flow path 16 High pressure plenum 22 Liner surface (third partition surface) 23 Liner surface (first partition surface) 24 Liner surface (second partition surface) 210 Furnace wall cooling mechanism (Reactor vessel cooling mechanism) 213 Ascending channel (second ascending channel) 215 Heat exchange channel 224 Liner surface (fourth partition surface) 224a Discharge port 310 Reactor wall cooling mechanism (reactor vessel cooling mechanism) 315 Heat exchange flow passage 315a-c Pipe 403A Furnace wall 405 Low temperature plenum 406 High temperature plenum 410 Reactor wall cooling mechanism (reactor vessel cooling mechanism) 411 Upward flow passage 412 Downward flow passage (first descending flow) Passage 415 heat exchange passage (second descending passage) 416 high-pressure plenum 421 liner surface (fifth partition surface) 424 liner surface (sixth partition surface) 510 reactor wall cooling mechanism (reactor vessel cooling mechanism) 515 heat exchange channel

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 一次系冷却材が満たされた原子炉容器
と、前記原子炉容器の内部に配置された炉心と、前記原
子炉容器の下部に設けられた低温プレナムと、前記原子
炉容器の上部に設けられた高温プレナムと、前記原子炉
容器の下部に設けられ前記一次冷却材を原子炉外部から
前記低温プレナムに取り入れる配管に接続された高圧プ
レナムと、前記原子炉容器の炉壁の内側に設けられ前記
高圧プレナムからの冷却流体を導き前記炉壁を冷却して
前記高温プレナム及び低温プレナムの一方へ前記冷却流
体を排出する原子炉容器冷却機構とを有する高速増殖炉
において、 前記原子炉容器冷却機構は、前記高温プレナム及び低温
プレナムの一方へ前記冷却流体が排出される出口部分
に、前記冷却流体と前記高温プレナム及び低温プレナム
の一方の内部に満たされた流体との熱交換を行う熱交換
流路を有することを特徴とする高速増殖炉。
1. A reactor vessel filled with a primary system coolant, a reactor core disposed inside the reactor vessel, a low temperature plenum provided at a lower portion of the reactor vessel, and a reactor vessel of the reactor vessel. A high temperature plenum provided in an upper part, a high pressure plenum provided in a lower part of the reactor vessel and connected to a pipe for introducing the primary coolant from the outside of the reactor into the low temperature plenum, and an inside of a reactor wall of the reactor vessel A fast breeder reactor having a reactor vessel cooling mechanism which is installed in the high pressure plenum to guide the cooling fluid to cool the reactor wall and discharge the cooling fluid to one of the high temperature plenum and the low temperature plenum. The container cooling mechanism is configured such that at the outlet portion where the cooling fluid is discharged to one of the high temperature plenum and the low temperature plenum, the cooling fluid and one of the high temperature plenum and the low temperature plenum Fast breeder reactor characterized by having a heat exchange passage for heat exchange with the filled fluid.
【請求項2】 一次系冷却材が満たされた原子炉容器
と、前記原子炉容器の内部に配置された炉心と、前記原
子炉容器の下部に設けられた低温プレナムと、前記原子
炉容器の上部に設けられた高温プレナムと、前記原子炉
容器の下部に設けられ前記一次冷却材を原子炉外部から
前記低温プレナムに取り入れる配管に接続された高圧プ
レナムと、前記原子炉容器の炉壁の内側側面に設けられ
前記高圧プレナムから前記低温プレナムを介して冷却流
体を導き前記炉壁を冷却して前記高温プレナムへ前記冷
却流体を排出する原子炉容器冷却機構とを有する高速増
殖炉において、 前記原子炉容器冷却機構は、前記高温プレナムへ前記冷
却流体が排出される出口部分に、前記冷却流体と前記高
温プレナム内部に満たされた流体との熱交換を行う熱交
換流路を有することを特徴とする高速増殖炉。
2. A reactor vessel filled with a primary coolant, a reactor core arranged inside the reactor vessel, a low temperature plenum provided at a lower portion of the reactor vessel, and a reactor vessel of the reactor vessel. A high temperature plenum provided in an upper part, a high pressure plenum provided in a lower part of the reactor vessel and connected to a pipe for introducing the primary coolant from the outside of the reactor into the low temperature plenum, and an inside of a reactor wall of the reactor vessel In a fast breeder reactor having a reactor vessel cooling mechanism which is provided on a side surface and which guides a cooling fluid from the high-pressure plenum through the low-temperature plenum to cool the furnace wall and discharge the cooling fluid to the high-temperature plenum, The furnace vessel cooling mechanism is a heat exchange flow for exchanging heat between the cooling fluid and the fluid filled in the high temperature plenum at an outlet portion where the cooling fluid is discharged to the high temperature plenum. Fast breeder reactor characterized by having a.
【請求項3】 一次系冷却材が満たされた原子炉容器
と、前記原子炉容器の内部に配置された炉心と、前記原
子炉容器の下部に設けられた低温プレナムと、前記原子
炉容器の上部に設けられた高温プレナムと、前記原子炉
容器の下部に設けられ前記一次冷却材を原子炉外部から
前記低温プレナムに取り入れる配管に接続された高圧プ
レナムと、前記原子炉容器の炉壁の内側底面及び内側側
面に設けられ前記高圧プレナムからの冷却流体を導き前
記炉壁を冷却して前記低温プレナムへ前記冷却流体を排
出する原子炉容器冷却機構とを有する高速増殖炉におい
て、 前記原子炉容器冷却機構は、前記低温プレナムへ前記冷
却流体が排出される出口部分に、前記冷却流体と前記低
温プレナム内部に満たされた流体との熱交換を行う熱交
換流路を有することを特徴とする高速増殖炉。
3. A reactor vessel filled with a primary coolant, a reactor core arranged inside the reactor vessel, a low temperature plenum provided in the lower portion of the reactor vessel, and a reactor vessel of the reactor vessel. A high temperature plenum provided in an upper part, a high pressure plenum provided in a lower part of the reactor vessel and connected to a pipe for introducing the primary coolant from the outside of the reactor into the low temperature plenum, and an inside of a reactor wall of the reactor vessel A fast breeder reactor having a reactor vessel cooling mechanism which is provided on a bottom surface and an inner side surface, introduces a cooling fluid from the high pressure plenum, cools the reactor wall, and discharges the cooling fluid to the low temperature plenum, The cooling mechanism has a heat exchange passage for exchanging heat between the cooling fluid and the fluid filled in the low temperature plenum at an outlet portion where the cooling fluid is discharged to the low temperature plenum. Fast breeder reactor, wherein the door.
【請求項4】 請求項1又は2記載の高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も炉壁側に設けられ前記低温プレナムから流入した前記
冷却流体を前記炉壁に沿って上方へ流す上昇流路と、そ
の上昇流路の内側に設けられ前記上昇流路の上端近傍か
ら流入した前記冷却流体を下方へ流す下降流路と、その
下降流路の内側に設けられ前記下降流路の下端近傍から
流入した前記冷却流体を前記低温プレナムと前記高温プ
レナムとの間に設けられた中間プレナムへ導く中間流路
とを有し、かつ前記熱交換流路は、前記中間プレナム上
方の中間流路の内側に設けられ前記中間プレナムから流
入した前記冷却流体を前記高温プレナムへ導く上昇流路
であることを特徴とする高速増殖炉。
4. The fast breeder reactor according to claim 1 or 2, wherein the reactor vessel cooling mechanism is provided closest to a reactor wall in the reactor vessel, and the cooling fluid flowing from the low temperature plenum is supplied to the reactor vessel. An ascending flow path that flows upward along the wall, a descending flow path that is provided inside the ascending flow path and that causes the cooling fluid that flows from near the upper end of the ascending flow path to flow downward, and an inside of the descending flow path. There is an intermediate flow path that guides the cooling fluid that has flowed in from near the lower end of the descending flow path to an intermediate plenum provided between the low temperature plenum and the high temperature plenum, and the heat exchange flow path, A fast breeder reactor, which is provided inside the intermediate flow path above the intermediate plenum and is an ascending flow path for guiding the cooling fluid flowing from the intermediate plenum to the high temperature plenum.
【請求項5】 請求項1又は2記載の高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も炉壁側に設けられ前記低温プレナムから流入した前記
冷却流体を前記炉壁に沿って上方へ流す第1の上昇流路
と、その第1の上昇流路の内側に設けられ前記第1の上
昇流路の上端近傍から流入した前記冷却流体を下方へ流
す下降流路とを有し、かつ前記熱交換流路は、前記下降
流路の内側に設けられ前記下降流路の下端近傍から流入
した前記冷却流体を上方へ流す第2の上昇流路と、その
第2の上昇流路と前記高温プレナムとの仕切り面に設け
られた排出口とを有することを特徴とする高速増殖炉。
5. The fast breeder reactor according to claim 1 or 2, wherein the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and the cooling fluid flowing from the low temperature plenum is supplied to the reactor vessel. A first ascending flow path that flows upward along the wall, and a descending flow path that is provided inside the first ascending flow path and that causes the cooling fluid that has flowed in from near the upper end of the first ascending flow path to flow downward. And a second ascending flow path that is provided inside the descending flow path and that causes the cooling fluid that has flowed in from near the lower end of the descending flow path to flow upward. And a discharge port provided on a partition surface of the high temperature plenum.
【請求項6】 請求項1又は2記載の高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も炉壁側に設けられ前記低温プレナムから流入した前記
冷却流体を前記炉壁に沿って上方へ流す上昇流路と、そ
の上昇流路の内側に設けられ前記上昇流路の上端近傍か
ら流入した前記冷却流体を下方へ流す下降流路と、その
下降流路の内側に設けられ前記下降流路の下端近傍から
流入した前記冷却流体を前記低温プレナムと前記高温プ
レナムとの間に設けられた中間プレナムへ導く中間流路
とを有し、かつ前記熱交換流路は、下端が前記中間プレ
ナムの上面近傍にあり上端が前記高温プレナム内へ突出
した少なくとも1つの管路を有することを特徴とする高
速増殖炉。
6. The fast breeder reactor according to claim 1 or 2, wherein the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and cools the cooling fluid flowing from the low temperature plenum to the reactor. An ascending flow path that flows upward along the wall, a descending flow path that is provided inside the ascending flow path and that causes the cooling fluid that flows from near the upper end of the ascending flow path to flow downward, and an inside of the descending flow path. There is an intermediate flow path that guides the cooling fluid that has flowed in from near the lower end of the descending flow path to an intermediate plenum provided between the low temperature plenum and the high temperature plenum, and the heat exchange flow path, A fast breeder reactor having a lower end near the upper surface of the intermediate plenum and an upper end having at least one conduit projecting into the high temperature plenum.
【請求項7】 請求項1又は3記載の高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も炉壁側に設けられ前記高圧プレナムから流入した前記
冷却流体を前記炉壁に沿って上方へ流す上昇流路と、そ
の上昇流路の内側に設けられ前記上昇流路の上端近傍か
ら流入した前記冷却流体を下方へ流す第1の下降流路と
を有し、かつ前記熱交換流路は、前記第1の下降流路下
方の前記上昇流路の内側に設けられ前記第1の下降流路
から流入した前記冷却流体を前記低温プレナムへ導く第
2の下降流路であることを特徴とする高速増殖炉。
7. The fast breeder reactor according to claim 1 or 3, wherein the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and the cooling fluid flowing from the high pressure plenum is supplied to the reactor vessel. An ascending flow path that flows upward along the wall, and a first descending flow path that is provided inside the ascending flow path and that causes the cooling fluid that has flowed in from near the upper end of the ascending flow path to flow downward, and The heat exchange passage is provided inside the ascending passage below the first descending passage, and is a second descending passage that guides the cooling fluid flowing from the first descending passage to the low temperature plenum. Is a fast breeder reactor.
【請求項8】 請求項1又は3記載の高速増殖炉におい
て、前記原子炉容器冷却機構は、前記原子炉容器内の最
も前記炉壁側に設けられ前記高圧プレナムから流入した
前記冷却流体を前記炉壁に沿って上方へ流す上昇流路
と、その上昇流路の内側に設けられ前記上昇流路の上端
近傍から流入した前記冷却流体を下方へ流す下降流路と
を有し、かつ前記熱交換流路は、前記下降流路下方の前
記上昇流路の内側に設けられ前記下降流路から流入した
前記冷却流体を前記低温プレナムへ導く水平方向の流路
であることを特徴とする高速増殖炉。
8. The fast breeder reactor according to claim 1 or 3, wherein the reactor vessel cooling mechanism is provided on the most reactor wall side in the reactor vessel, and cools the cooling fluid flowing from the high pressure plenum. An ascending flow path that flows upward along the furnace wall, and a descending flow path that is provided inside the ascending flow path and that causes the cooling fluid that has flowed in from near the upper end of the ascending flow path to flow downward, and that The exchange flow passage is a horizontal flow passage that is provided inside the ascending flow passage below the descending flow passage and guides the cooling fluid flowing from the descending flow passage to the low temperature plenum. Furnace.
【請求項9】 請求項4記載の高速増殖炉において、前
記中間流路と前記熱交換流路との第1の仕切面と、前記
熱交換流路と前記高温プレナムとの第2の仕切面とはそ
れぞれ水平断面において前記原子炉容器の炉壁と同心の
円をなし、かつ前記熱交換流路は第1の仕切面と第2の
仕切面とに挟まれた環状空間を形成することを特徴とす
る高速増殖炉。
9. The fast breeder reactor according to claim 4, wherein a first partition surface between the intermediate flow path and the heat exchange flow path, and a second partition surface between the heat exchange flow path and the high temperature plenum. Is a circle concentric with the reactor wall of the reactor vessel in a horizontal cross section, and the heat exchange passage forms an annular space sandwiched between the first partition surface and the second partition surface. Characteristic fast breeder reactor.
【請求項10】 請求項5記載の高速増殖炉において、
前記下降流路と前記熱交換流路との第3の仕切面と、前
記熱交換流路と前記高温プレナムとの第4の仕切面とは
それぞれ水平断面において前記原子炉容器の炉壁と同心
の円をなし、かつ前記熱交換流路は第3の仕切面と第4
の仕切面とに挟まれた環状空間を形成することを特徴と
する高速増殖炉。
10. The fast breeder reactor according to claim 5,
The third partition surface between the descending flow path and the heat exchange flow path and the fourth partition surface between the heat exchange flow path and the high temperature plenum are concentric with the reactor wall of the reactor vessel in a horizontal cross section. And has a third partition surface and a fourth partition surface.
A fast breeder reactor characterized by forming an annular space sandwiched between the partition surface and the partition surface.
【請求項11】 請求項7記載の高速増殖炉において、
前記上昇流路と前記下降流路との第5の仕切面と、前記
熱交換流路と前記低温プレナムとの第6の仕切面とはそ
れぞれ水平断面において前記原子炉容器の炉壁と同心の
円をなし、かつ前記熱交換流路は第5の仕切面と第6の
仕切面とに挟まれた環状空間を形成することを特徴とす
る高速増殖炉。
11. The fast breeder reactor according to claim 7,
The fifth partition surface of the ascending flow path and the descending flow path and the sixth partition surface of the heat exchange flow path and the low temperature plenum are concentric with the reactor wall of the reactor vessel in a horizontal cross section. A fast breeder reactor characterized by forming a circle, and the heat exchange flow path forming an annular space sandwiched between a fifth partition surface and a sixth partition surface.
JP5284923A 1993-11-15 1993-11-15 Fast breeder reactor Pending JPH07140278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5284923A JPH07140278A (en) 1993-11-15 1993-11-15 Fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5284923A JPH07140278A (en) 1993-11-15 1993-11-15 Fast breeder reactor

Publications (1)

Publication Number Publication Date
JPH07140278A true JPH07140278A (en) 1995-06-02

Family

ID=17684813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5284923A Pending JPH07140278A (en) 1993-11-15 1993-11-15 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JPH07140278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021874A (en) * 2010-07-14 2012-02-02 Mitsubishi Heavy Ind Ltd Reactor vessel structure and reactor operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021874A (en) * 2010-07-14 2012-02-02 Mitsubishi Heavy Ind Ltd Reactor vessel structure and reactor operation method

Similar Documents

Publication Publication Date Title
KR100935089B1 (en) Passive safety-grade decay heat removal system from a sodium freezing issue at the intermediate heat removal sodium loop
JPH02242088A (en) Steam condenser
KR101408551B1 (en) Steam generator
JPS5815754B2 (en) Ekita Kinzokurayakiyakugenshiro
US4101377A (en) Fast neutron reactor
JPH07140278A (en) Fast breeder reactor
US8672021B2 (en) Simplified flow shell and tube type heat exchanger for transfer line exchangers and like applications
US4295934A (en) Liquid-metal-cooled nuclear reactor
US4664876A (en) Fast breeder reactor
JPS6190096A (en) Intermediate heat exchanger
US9644246B2 (en) Degasser snorkel with serpentine flow path cooling
JPH08136687A (en) Cooling structure for vessel wall of reactor vessel
JPH07104091A (en) Vessel wall cooling structure for reactor vessel
JP2002005592A (en) Multipipe heat exchanger
JPS5929799B2 (en) Heat exchanger
JPH0227351Y2 (en)
JPS6038587A (en) Heat exchanger
KR810001336B1 (en) Pressurized water reactor flow arrangement
JPS60178391A (en) Method of operating heat exchanger for cooling auxiliary core of fast breeder reactor
JPS61217698A (en) Thermal shielding method for heat exchanger
JPH04177199A (en) Reactor structure for fast breeder reactor
JPH0361155B2 (en)
JPH0527837B2 (en)
JPS5971996A (en) Heat exchanger
JPS61130797A (en) Intermediate heat exchanger