JP2017142183A - Power measurement device and power measurement method - Google Patents

Power measurement device and power measurement method Download PDF

Info

Publication number
JP2017142183A
JP2017142183A JP2016024000A JP2016024000A JP2017142183A JP 2017142183 A JP2017142183 A JP 2017142183A JP 2016024000 A JP2016024000 A JP 2016024000A JP 2016024000 A JP2016024000 A JP 2016024000A JP 2017142183 A JP2017142183 A JP 2017142183A
Authority
JP
Japan
Prior art keywords
voltage line
power
voltage
distribution board
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016024000A
Other languages
Japanese (ja)
Other versions
JP6656009B2 (en
Inventor
正裕 石原
Masahiro Ishihara
正裕 石原
矢部 正明
Masaaki Yabe
正明 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016024000A priority Critical patent/JP6656009B2/en
Publication of JP2017142183A publication Critical patent/JP2017142183A/en
Application granted granted Critical
Publication of JP6656009B2 publication Critical patent/JP6656009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Distribution Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a power measurement device which can accurately measure power supplied from a solar cell power conditioner to a commercial power system.SOLUTION: A power measurement device 6 calculates generated electric power P21 by P21=P2×{V11+V12+R1×(I11×cosθ11+I12×cosθ12)+2×R2×I2}/(V11+V12). V11 is a voltage between a first voltage line L11 and a neutral line N1 of a voltage line 3 for a distribution board. V12 is a voltage between a second voltage line L12 and the neutral line N1 of the voltage line 3 for the distribution board. R1 is the wiring resistance of the voltage line 3 for the distribution board. I11 is a current flowing in the voltage line L11. I12 is a current flowing in the voltage line L12. R2 is the wiring resistance of a voltage line 2 for a PV. I2 is a current flowing in the voltage line 2 for the PV. P2 is the generated electric power of a PV-PCS 4. P21 is the corrected generated electric power of the PV-PCS 4.SELECTED DRAWING: Figure 1

Description

本発明は、ビルまたは家庭に設置される分電盤に接続される電力計測装置および電力計測方法に関する。   The present invention relates to a power measuring device and a power measuring method connected to a distribution board installed in a building or a home.

特許文献1に示す従来の発電システムは、自然エネルギーを用いて発電された電力を電力会社へ売電する電力量を計測する売電電力量計を備える。   The conventional power generation system shown in Patent Document 1 includes a power sale watt-hour meter that measures the amount of power sold to a power company using power generated using natural energy.

当該売電電力量計を代表とする電力計測装置は、一般的に分電盤に設置されている。そして、電力計測装置は、ビル内または住宅内の分電盤に接続される単相3線の主幹電圧線の内、第1の電圧線および中性線の間の相電圧と、第2の電圧線および中性線の間の相電圧とを計測する電圧計測入力手段と、分電盤から負荷側へ流れる電流を計測する複数の電流センサとを備える。   A power measuring device typified by the electricity sales electricity meter is generally installed on a distribution board. Then, the power measuring device includes a phase voltage between the first voltage line and the neutral line of the single-phase three-wire main voltage line connected to the distribution board in the building or house, and the second voltage Voltage measurement input means for measuring the phase voltage between the voltage line and the neutral line, and a plurality of current sensors for measuring the current flowing from the distribution board to the load side are provided.

電圧計測入力手段は分電盤に接続されるのが一般的である。負荷は、ビルまたは住宅に設置された電気機器または家電であり、分電盤に接続されている。   The voltage measurement input means is generally connected to a distribution board. The load is an electrical device or a home appliance installed in a building or a house, and is connected to a distribution board.

このように構成された電力計測装置は、電圧計測入力手段と複数の電流センサを用いることにより、負荷へ供給される電力を精度よく測定できる。   The power measuring device configured as described above can accurately measure the power supplied to the load by using the voltage measurement input means and the plurality of current sensors.

特開2014−135855号公報JP 2014-135855 A

ビルまたは住宅に設置された太陽電池パワーコンディショナの発電電力が商用系統に全量買取される構成においては、単相3線の主幹電圧線が分電盤に接続され、さらに単相3線の主幹電圧線から分岐した分岐電圧線が太陽電池パワーコンディショナに接続される。   In a configuration in which the total amount of power generated by a solar power conditioner installed in a building or house is purchased by a commercial system, a single-phase three-wire main voltage line is connected to a distribution board, and a single-phase three-wire main A branch voltage line branched from the voltage line is connected to the solar battery power conditioner.

このような配線においては、単相3線の主幹電圧線と分岐電圧線との分岐点から分電盤までの電圧線の配線抵抗と、分岐点から太陽電池パワーコンディショナまでの配線抵抗とが存在する。従って、分電盤に設置された電圧計測入力手段で計測される電圧は、これらの配線抵抗による電圧降下分だけ低い値となる。すなわち太陽電池パワーコンディショナから出力される電力と電力計測装置で計測される電力とが異なる値となる。   In such wiring, the wiring resistance of the voltage line from the branch point of the single-phase three-wire main voltage line and the branch voltage line to the distribution board and the wiring resistance from the branch point to the solar cell power conditioner are Exists. Therefore, the voltage measured by the voltage measurement input means installed on the distribution board is a value lower by the voltage drop due to these wiring resistances. That is, the power output from the solar battery power conditioner and the power measured by the power measuring device are different values.

そのため特許文献1に示す従来の発電システムで用いられる電力計測装置では、太陽電池パワーコンディショナから商用系統へ供給される電力を正確に計測できない。従って従来の発電システムでは、全量買取時における太陽電池パワーコンディショナの発電電力を計測するために、太陽電池パワーコンディショナの設置箇所に電力計測装置をもう1台を設置する必要があった。   Therefore, the power measuring device used in the conventional power generation system shown in Patent Document 1 cannot accurately measure the power supplied from the solar cell power conditioner to the commercial system. Therefore, in the conventional power generation system, in order to measure the generated power of the solar battery power conditioner at the time of purchasing the entire amount, it is necessary to install another power measuring device at the installation location of the solar battery power conditioner.

本発明は、上記に鑑みてなされたものであって、太陽電池パワーコンディショナから商用系統へ供給される電力を正確に計測できる電力計測装置を得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the electric power measuring apparatus which can measure correctly the electric power supplied to a commercial system from a solar cell power conditioner.

上述した課題を解決し、目的を達成するために、本発明の電力計測装置は、分電盤に接続され、発電電力を計測する電力計測装置であって、商用系統に接続された単相3線の主幹電圧線の内、分電盤に接続される第1の電圧線と中性線との間の電圧をV11とし、第1の電圧線に流れる電流をI11とし、V11およびI11より演算される第1の電圧線の力率をcosθ11とし、単相3線の主幹電圧線の内、分電盤に接続される第2の電圧線と中性線との間の電圧をV12とし、第2の電圧線に流れる電流をI12とし、V12およびI12より演算される第2の電圧線の力率をcosθ12とし、単相3線の主幹電圧線から分岐して、太陽電池パワーコンディショナに接続される分岐電圧線に流れる電流をI2とし、単相3線の主幹電圧線と分岐電圧線との分岐点から分電盤までの電圧線の配線抵抗をR1とし、分岐電圧線の配線抵抗をR2とし、I2、V11およびV12に基づき演算される太陽電池パワーコンディショナの発電電力をP2とし、P2を補正して得られる太陽電池パワーコンディショナの発電電力をP21としたとき、P21を、P21=P2×{V11+V12+R1×(I11×cossθ11+I12×cosθ12)+2×R2×I2}/(V11+V12)で演算する。   In order to solve the above-described problems and achieve the object, the power measurement device of the present invention is a power measurement device that is connected to a distribution board and measures generated power, and is a single-phase 3 connected to a commercial system. Among the main voltage lines of the line, the voltage between the first voltage line connected to the distribution board and the neutral line is V11, the current flowing through the first voltage line is I11, and calculation is performed from V11 and I11. The power factor of the first voltage line to be set is cos θ11, and the voltage between the second voltage line connected to the distribution board and the neutral line is V12 among the main voltage lines of the single phase three lines, The current flowing through the second voltage line is set as I12, the power factor of the second voltage line calculated from V12 and I12 is set as cos θ12, and the main voltage line is branched from the single-phase three-line main voltage line. The current flowing through the connected branch voltage line is I2, and the main voltage of the single-phase three-wire Of the solar cell power conditioner calculated based on I2, V11, and V12, where R1 is the wiring resistance of the voltage line from the branch point of the line and the branch voltage line to the distribution board, and R2 is the wiring resistance of the branch voltage line. When the generated power is P2, and the generated power of the solar cell power conditioner obtained by correcting P2 is P21, P21 is P21 = P2 × {V11 + V12 + R1 × (I11 × coss θ11 + I12 × cos θ12) + 2 × R2 × I2} / (V11 + V12).

本発明によれば、太陽電池パワーコンディショナから商用系統へ供給される電力を正確に計測できるという効果を奏する。   According to the present invention, it is possible to accurately measure the power supplied from the solar battery power conditioner to the commercial system.

本発明の実施の形態に係る電力計測装置と全量買取構成の太陽電池パワーコンディショナと分電盤とを示す図The figure which shows the electric power measuring device which concerns on embodiment of this invention, the solar cell power conditioner of a whole quantity purchase structure, and a distribution board. 図1に示す電力計測装置の構成例を示す図The figure which shows the structural example of the electric power measurement apparatus shown in FIG. 図1に示す電力計測装置の動作を示すフローチャートThe flowchart which shows operation | movement of the electric power measurement apparatus shown in FIG. 図3に示す配線抵抗演算部で保持される抵抗データの一例を示す図The figure which shows an example of the resistance data hold | maintained at the wiring resistance calculating part shown in FIG. 図2に示すパラメータ入力部、配線抵抗演算部、電力演算部および電力補正部を実現するためのハードウェア構成例を示す図The figure which shows the hardware structural example for implement | achieving the parameter input part, wiring resistance calculating part, electric power calculating part, and electric power correction part which are shown in FIG.

以下に、本発明の実施の形態にかかる電力計測装置および電力計測方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a power measuring device and a power measuring method according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は本発明の実施の形態に係る電力計測装置と全量買取構成の太陽電池パワーコンディショナと分電盤とを示す図である。
Embodiment.
FIG. 1 is a diagram showing a power measuring device, a solar cell power conditioner having a total purchase configuration, and a distribution board according to an embodiment of the present invention.

図1に示す太陽電池パワーコンディショナ(Photo Voltec Power Conditioning System:PV−PCS)4は、ビルまたは住宅に設置される。PV−PCS4は、図示しない太陽電池パネルから出力された直流電力を交流電力に変換して出力する。PV−PCS4には、3本の分岐電圧線であるPV用電圧線2の一端が接続される。分岐電圧線の他端は、単相3線の主幹電圧線1に接続される。   A solar cell power conditioner (PV-PCS) 4 shown in FIG. 1 is installed in a building or a house. PV-PCS4 converts the direct-current power output from the solar cell panel which is not shown in figure into alternating current power, and outputs it. One end of a PV voltage line 2 which is three branch voltage lines is connected to the PV-PCS 4. The other end of the branch voltage line is connected to the main voltage line 1 of a single-phase three line.

PV用電圧線2の内の第1の電圧線L21は、商用系統20に接続される単相3線の主幹電圧線1の内の第1の電圧線L11に接続される。   The first voltage line L21 in the PV voltage line 2 is connected to the first voltage line L11 in the single-phase three-wire mains voltage line 1 connected to the commercial system 20.

PV用電圧線2の内の第2の電圧線L22は、商用系統20に接続される単相3線の主幹電圧線1の内の第2の電圧線L12に接続される。PV用電圧線2の内の中性線N2は、商用系統20に接続される単相3線の主幹電圧線1の内の中性線N1に接続される。   The second voltage line L22 in the PV voltage line 2 is connected to the second voltage line L12 in the single-phase three-line main voltage line 1 connected to the commercial system 20. A neutral line N2 in the PV voltage line 2 is connected to a neutral line N1 in the single-phase three-line main voltage line 1 connected to the commercial system 20.

一般にPV−PCS4から出力される電流は、中性線N1に流れずに第1の電圧線L21および第2の電圧線L22に流れる。そして第1の電圧線L21および第2の電圧線L22に流れる電流の値は等しいため、PV用電圧線2には1つの電流センサを設ければよい。   In general, the current output from the PV-PCS 4 does not flow through the neutral line N1, but flows through the first voltage line L21 and the second voltage line L22. And since the value of the electric current which flows into the 1st voltage line L21 and the 2nd voltage line L22 is equal, what is necessary is just to provide one current sensor in the voltage line 2 for PV.

本実施の形態では、第1の電圧線L21に電流センサであるCT(Current Transformer)2が設けられている。CT2は、PV−PCS4から出力されて第1の電圧線L21に流れる交流電流I2を計測し、その計測値を出力する。CT2で検出された交流電流I2の計測値は電力計測装置6に入力される。   In the present embodiment, a CT (Current Transformer) 2 that is a current sensor is provided on the first voltage line L21. CT2 measures the alternating current I2 that is output from the PV-PCS 4 and flows through the first voltage line L21, and outputs the measured value. The measured value of the alternating current I2 detected by CT2 is input to the power measuring device 6.

本実施の形態では、第1の電圧線L21と中性線N2との印加される交流電圧をV21とし、第2の電圧線L22と中性線N2との印加される交流電圧をV22としている。   In the present embodiment, the AC voltage applied between the first voltage line L21 and the neutral line N2 is V21, and the AC voltage applied between the second voltage line L22 and the neutral line N2 is V22. .

第1の電圧線L11、中性線N1および第2の電圧線L12は、分電盤5に設けられた図示しない主幹開閉器の一次側に接続される。   The first voltage line L11, the neutral line N1, and the second voltage line L12 are connected to the primary side of a main switch (not shown) provided in the distribution board 5.

図1に示す分電盤用電圧線3は、主幹電圧線1の一部であり、主幹電圧線1とPV用電圧線2との分岐点aから分電盤5までに設けられる電圧線である。   A distribution board voltage line 3 shown in FIG. 1 is a part of the main voltage line 1, and is a voltage line provided from a branch point a between the main voltage line 1 and the PV voltage line 2 to the distribution board 5. is there.

分電盤用電圧線3の第1の電圧線L11にはCT11が設けられている。CT11は、分電盤用電圧線3の第1の電圧線L11に流れる交流電流I11を計測し、その計測値を出力する。   CT11 is provided in the 1st voltage line L11 of the voltage line 3 for distribution boards. CT11 measures the alternating current I11 which flows into the 1st voltage line L11 of the voltage line 3 for distribution boards, and outputs the measured value.

分電盤用電圧線3の第2の電圧線L12にはCT12が設けられている。CT12は、分電盤用電圧線3の第2の電圧線L12に流れる交流電流I12を計測し、その計測値を出力する。   CT12 is provided in the 2nd voltage line L12 of the voltage line 3 for distribution boards. CT12 measures the alternating current I12 which flows into the 2nd voltage line L12 of the voltage line 3 for distribution boards, and outputs the measured value.

電気設備の設置環境、すなわちPV−PCS4の設置位置、分電盤5の設置位置または分岐点aの位置により、PV用電圧線2の長さおよび分電盤用電圧線3の長さは数mから数十mまで変化する。   Depending on the installation environment of the electrical equipment, that is, the installation position of the PV-PCS 4, the installation position of the distribution board 5, or the position of the branch point a, the length of the voltage line 2 for PV and the length of the voltage line 3 for distribution board are several. It varies from m to several tens of meters.

本実施の形態では、分岐点aから分電盤5までの分電盤用電圧線3の1本当たりの配線抵抗をR1とし、分岐点aからPV−PCS4までのPV用電圧線2の1本当たりの配線抵抗をR2とする。   In the present embodiment, the wiring resistance per distribution board voltage line 3 from the branch point a to the distribution board 5 is R1, and 1 of the PV voltage line 2 from the branch point a to PV-PCS4. The wiring resistance per book is R2.

電力計測装置6は、3つの電圧入力端子V1,V2,V3を備える。電圧入力端子V1は、分電盤5内に配線された第1の電圧線L11に接続される。電圧入力端子V2は、分電盤5内に配線された中性線N1に接続される。電圧入力端子V3は、分電盤5内に配線された第2の電圧線L12に接続される。   The power measuring device 6 includes three voltage input terminals V1, V2, and V3. The voltage input terminal V1 is connected to a first voltage line L11 wired in the distribution board 5. The voltage input terminal V2 is connected to a neutral line N1 wired in the distribution board 5. The voltage input terminal V3 is connected to a second voltage line L12 wired in the distribution board 5.

電力計測装置6は、電圧入力端子V1と電圧入力端子V2との間に印加される交流電圧、すなわち第1の電圧線L11と中性線N1との間に印加される交流電圧V11を計測する。また電力計測装置6は、電圧入力端子V3と電圧入力端子V2との間に印加される交流電圧、すなわち第2の電圧線L12と中性線N1との間に印加される交流電圧V12を計測する。なお交流電圧V11,V12の計測は、電力計測装置6内の図示しない電圧計測部で計測される。   The power measuring device 6 measures an AC voltage applied between the voltage input terminal V1 and the voltage input terminal V2, that is, an AC voltage V11 applied between the first voltage line L11 and the neutral line N1. . The power measuring device 6 measures an AC voltage applied between the voltage input terminal V3 and the voltage input terminal V2, that is, an AC voltage V12 applied between the second voltage line L12 and the neutral line N1. To do. The AC voltages V11 and V12 are measured by a voltage measuring unit (not shown) in the power measuring device 6.

そして電力計測装置6は、PV−PCS4で発電された発電電力P2をP2=(V11+V12)×I2として演算する。しかしこのように演算される交流電圧V11は、PV−PCS4の交流出力端で検出される交流電圧V21よりも、PV用電圧線2および分電盤用電圧線3における電圧降下分だけ低い値となる。同様に、交流電圧V12は、PV−PCS4の交流出力端で検出される交流電圧V22よりも、PV用電圧線2および分電盤用電圧線3における電圧降下分だけ低い値となる。   The power measuring device 6 calculates the generated power P2 generated by the PV-PCS 4 as P2 = (V11 + V12) × I2. However, the AC voltage V11 calculated in this way is lower than the AC voltage V21 detected at the AC output terminal of the PV-PCS 4 by a voltage drop in the PV voltage line 2 and the distribution board voltage line 3. Become. Similarly, the AC voltage V12 is lower than the AC voltage V22 detected at the AC output terminal of the PV-PCS 4 by a voltage drop in the PV voltage line 2 and the distribution board voltage line 3.

従って、電力計測装置6は、交流電流I2の計測値と交流電圧V11,V12の計測値だけではPV−PCS4の発電電力P2を正確に演算できない。   Therefore, the power measuring device 6 cannot accurately calculate the generated power P2 of the PV-PCS 4 only by the measured value of the alternating current I2 and the measured values of the AC voltages V11 and V12.

以下、PV−PCS4の発電電力P2を正確に演算するための構成例を説明する。   Hereinafter, a configuration example for accurately calculating the generated power P2 of the PV-PCS 4 will be described.

図2は図1に示す電力計測装置の構成例を示す図である。図3は図1に示す電力計測装置の動作を示すフローチャートである。図4は図3に示す配線抵抗演算部で保持される抵抗データの一例を示す図である。   FIG. 2 is a diagram illustrating a configuration example of the power measurement device illustrated in FIG. 1. FIG. 3 is a flowchart showing the operation of the power measuring apparatus shown in FIG. FIG. 4 is a diagram showing an example of resistance data held by the wiring resistance calculation unit shown in FIG.

図2に示すように本実施の形態に係る電力計測装置6は、パラメータ入力部7、配線抵抗演算部8、電力演算部9、電力補正部10および計測値入力部11を備える。   As shown in FIG. 2, the power measurement device 6 according to the present embodiment includes a parameter input unit 7, a wiring resistance calculation unit 8, a power calculation unit 9, a power correction unit 10, and a measurement value input unit 11.

パラメータ入力部7は、インターネットまたはイントラネットといったネットワークに接続可能なインタフェースでもよいし、パーソナルコンピュータ、スマートフォンまたはタブレット端末といった機器を接続可能なインタフェースでもよい。   The parameter input unit 7 may be an interface connectable to a network such as the Internet or an intranet, or may be an interface connectable to a device such as a personal computer, a smartphone, or a tablet terminal.

配線抵抗演算部8は、図4に示すPV用電圧線2および分電盤用電圧線3に関する抵抗データ30を予め保持しており、パラメータ入力部7から入力された各パラメータに対応した配線抵抗R1,R2を演算する。図4に示すように抵抗データ30には、配線の種類と、配線の公称断面積と、配線の1m当たりの抵抗値とが対応付けて記録されている。   The wiring resistance calculation unit 8 holds in advance resistance data 30 regarding the PV voltage line 2 and the distribution board voltage line 3 shown in FIG. 4, and the wiring resistance corresponding to each parameter input from the parameter input unit 7. R1 and R2 are calculated. As shown in FIG. 4, in the resistance data 30, the type of wiring, the nominal cross-sectional area of the wiring, and the resistance value per 1 m of the wiring are recorded in association with each other.

計測値入力部11は、交流電流I2,I11,I12の計測値と、電力計測装置6内の図示しない電圧計測部で計測された交流電圧V11,V12の計測値とをリアルタイムに入力し、これらの計測値を電力演算部9および電力補正部10に送信する。   The measurement value input unit 11 inputs the measurement values of the alternating currents I2, I11, and I12 and the measurement values of the AC voltages V11 and V12 measured by a voltage measurement unit (not shown) in the power measurement device 6 in real time. Are transmitted to the power calculation unit 9 and the power correction unit 10.

電力演算部9は、交流電流I11および交流電圧V11の計測値に基づき、第1の電圧線L11を介して供給される交流電力P11と第1の電圧線L11の力率cosθ11とを演算する。また電力演算部9は、交流電流I12および交流電圧V12の計測値に基づき、第2の電圧線L12を介して供給される交流電力P12と第2の電圧線L12の力率cosθ12とを演算する。さらに電力演算部9は、交流電流I2、交流電圧V11および交流電圧V12の計測値に基づき、PV−PCS4から出力される発電電力P2を演算する。   The power calculation unit 9 calculates the AC power P11 supplied via the first voltage line L11 and the power factor cos θ11 of the first voltage line L11 based on the measured values of the AC current I11 and the AC voltage V11. Further, the power calculation unit 9 calculates the AC power P12 supplied via the second voltage line L12 and the power factor cos θ12 of the second voltage line L12 based on the measured values of the AC current I12 and the AC voltage V12. . Furthermore, the power calculation unit 9 calculates the generated power P2 output from the PV-PCS 4 based on the measured values of the AC current I2, the AC voltage V11, and the AC voltage V12.

なお、第1の電圧線L11の力率cosθ11と第2の電圧線L12の力率cosθ12とは、簡易的にcosθ11=cosθ12=1としてもよい。ただし力率cosθ11,cosθ12を含めて演算する方が後述する補正後の発電電力P21を精度良く演算できる。   The power factor cos θ11 of the first voltage line L11 and the power factor cos θ12 of the second voltage line L12 may be simply set to cos θ11 = cos θ12 = 1. However, the calculation including the power factors cos θ11 and cos θ12 can calculate the corrected generated power P21 described later with higher accuracy.

電力補正部10は、計測値入力部11から送信された計測値に基づいて、電力演算部9で演算された発電電力P2を補正し、補正後の発電電力P21を演算する。   The power correction unit 10 corrects the generated power P2 calculated by the power calculation unit 9 based on the measured value transmitted from the measured value input unit 11, and calculates the corrected generated power P21.

以下に電力計測装置6の動作を説明する。   The operation of the power measuring device 6 will be described below.

電力計測装置6の設置業者またはユーザのよりPV用電圧線2および分電盤用電圧線3に関するパラメータが入力される。パラメータの一例としては、PV用電圧線2および分電盤用電圧線3の配線種類および配線長に関する情報である。ただしパラメータはこれらに限定されず、PV用電圧線2および分電盤用電圧線3の配線径を含めてもよい。   Parameters regarding the PV voltage line 2 and the distribution board voltage line 3 are input by the installer or user of the power measuring device 6. As an example of the parameter, there is information on the wiring type and wiring length of the PV voltage line 2 and the distribution board voltage line 3. However, the parameters are not limited to these, and the wiring diameters of the PV voltage line 2 and the distribution board voltage line 3 may be included.

例えばPV用電圧線2のパラメータとして配線種類「CVケーブル」、配線長「10m」および配線径「22sq」といった情報がパラメータ入力部7に入力される。また分電盤用電圧線3のパラメータとして配線種類「CVケーブル」、配線長「20m」および配線径「22sq」といった情報がパラメータ入力部7に入力される。   For example, information such as the wiring type “CV cable”, the wiring length “10 m”, and the wiring diameter “22 sq” is input to the parameter input unit 7 as parameters of the PV voltage line 2. Information such as the wiring type “CV cable”, the wiring length “20 m”, and the wiring diameter “22 sq” is input to the parameter input unit 7 as parameters of the distribution board voltage line 3.

配線抵抗演算部8では、パラメータ入力部7から送信された各パラメータに対応した配線抵抗R1,R2が演算される(S1)。具体的には、PV用電圧線2および分電盤用電圧線3に関するパラメータとして「CVケーブル」、「22sq」および「10m」といったデータが入力されたとき、配線抵抗演算部8は、これらのデータを抵抗データ30に照合して配線抵抗R1,R2を演算する。   In the wiring resistance calculation unit 8, wiring resistances R1 and R2 corresponding to each parameter transmitted from the parameter input unit 7 are calculated (S1). Specifically, when data such as “CV cable”, “22 sq”, and “10 m” are input as parameters related to the PV voltage line 2 and the distribution board voltage line 3, the wiring resistance calculation unit 8 The wiring resistances R1 and R2 are calculated by checking the data against the resistance data 30.

電力演算部9では、交流電力P11、第1の電圧線L11の力率cosθ11、交流電力P12および第2の電圧線L12の力率cosθ12が演算される(S2)。また電力演算部9ではPV−PCS4から出力される発電電力P2が演算される(S3)。   In the power calculation unit 9, AC power P11, power factor cos θ11 of the first voltage line L11, AC power P12, and power factor cos θ12 of the second voltage line L12 are calculated (S2). Moreover, in the electric power calculating part 9, the generated electric power P2 output from PV-PCS4 is calculated (S3).

電力補正部10では下記(1)式により補正後の発電電力P21が演算される(S4)。
P21=P2×{V11+V12+R1×(I11×cosθ11+I12×cosθ12)+2×R2×I2}/(V11+V12)・・・(1)
The power correction unit 10 calculates the corrected generated power P21 by the following equation (1) (S4).
P21 = P2 × {V11 + V12 + R1 × (I11 × cos θ11 + I12 × cos θ12) + 2 × R2 × I2} / (V11 + V12) (1)

上記(1)式に示すV11、V12、R1、I11、cosθ11、I12、cosθ12、R2およびI2は、以下の通りである。
(a)V11は、分電盤5に接続される分電盤用電圧線3の第1の電圧線L11と中性線N1との間の電圧である。
(b)V12は、分電盤5に接続される分電盤用電圧線3の第2の電圧線L12と中性線N1との間の電圧である。
(c)R1は分岐点aから分電盤5までの電圧線である分電盤用電圧線3の配線抵抗である。
(d)I11は第1の電圧線L11に流れる電流である。
(e)cosθ11は交流電流I11および交流電圧V11より演算される第1の電圧線L11の力率である。
(f)I12は第2の電圧線L12に流れる電流である。
(g)cosθ12は交流電圧V12および交流電流I12より演算される第2の電圧線L12の力率である。
(h)R2はPV用電圧線2の配線抵抗である。
(i)I2はPV用電圧線2に流れる電流である。
(j)P2は交流電流I2、交流電圧V11および交流電圧V12に基づき演算されるPV−PCS4の発電電力である。
(k)P21は、P2を補正して得られるPV−PCS4の発電電力である。
V11, V12, R1, I11, cos θ11, I12, cos θ12, R2, and I2 shown in the above formula (1) are as follows.
(A) V11 is a voltage between the first voltage line L11 of the distribution board voltage line 3 connected to the distribution board 5 and the neutral line N1.
(B) V12 is a voltage between the second voltage line L12 of the distribution board voltage line 3 connected to the distribution board 5 and the neutral line N1.
(C) R1 is the wiring resistance of the distribution board voltage line 3, which is a voltage line from the branch point a to the distribution board 5.
(D) I11 is a current flowing through the first voltage line L11.
(E) cos θ11 is a power factor of the first voltage line L11 calculated from the alternating current I11 and the alternating voltage V11.
(F) I12 is a current flowing through the second voltage line L12.
(G) cos θ12 is a power factor of the second voltage line L12 calculated from the AC voltage V12 and the AC current I12.
(H) R2 is the wiring resistance of the PV voltage line 2.
(I) I2 is a current flowing through the PV voltage line 2.
(J) P2 is the generated power of the PV-PCS 4 calculated based on the alternating current I2, the alternating voltage V11, and the alternating voltage V12.
(K) P21 is the generated power of PV-PCS4 obtained by correcting P2.

図5は図2に示すパラメータ入力部、配線抵抗演算部、電力演算部および電力補正部を実現するためのハードウェア構成例を示す図である。   FIG. 5 is a diagram illustrating a hardware configuration example for realizing the parameter input unit, the wiring resistance calculation unit, the power calculation unit, and the power correction unit illustrated in FIG. 2.

パラメータ入力部7、配線抵抗演算部8、電力演算部9、電力補正部10および計測値入力部11は、プロセッサ51と、RAM(Random Access Memory)またはROM(Read Only Memory)で構成されるメモリ52と、ネットワークに接続するための入出力インタフェース53とにより実現することができる。   The parameter input unit 7, the wiring resistance calculation unit 8, the power calculation unit 9, the power correction unit 10, and the measurement value input unit 11 are a memory including a processor 51 and a RAM (Random Access Memory) or a ROM (Read Only Memory). 52 and an input / output interface 53 for connecting to a network.

プロセッサ51、メモリ52および入出力インタフェース53は、バス50に接続され、バス50を介して相互に情報を伝送する。   The processor 51, the memory 52, and the input / output interface 53 are connected to the bus 50 and transmit information to each other via the bus 50.

例えばパラメータ入力部7および計測値入力部11は入出力インタフェース53により実現される。入出力インタフェース53は、前述したパラメータと、CT11,CT12,CT2で計測された交流電流I11,I12,I2の計測値と、電力計測装置6内の図示しない電圧計測部で計測された交流電圧V11,V12の計測値とを入力する際に利用される。   For example, the parameter input unit 7 and the measured value input unit 11 are realized by the input / output interface 53. The input / output interface 53 includes the parameters described above, the measured values of the alternating currents I11, I12, and I2 measured by CT11, CT12, and CT2, and the alternating voltage V11 measured by a voltage measurement unit (not shown) in the power measuring device 6. , V12 when the measured value is input.

また入出力インタフェース53は、電力補正部10で演算された補正後の発電電力P21の電力情報を図示しない表示器へ出力する際にも利用される。当該表示器はビル内または住宅内のユーザに対してPV−PCS4で発電された発電電力量を提供するものである。   The input / output interface 53 is also used when outputting the corrected power information of the generated power P21 calculated by the power correction unit 10 to a display (not shown). The said display provides the electric power generation amount generated with PV-PCS4 with respect to the user in a building or a house.

配線抵抗演算部8、電力演算部9および電力補正部10を実現する場合、配線抵抗演算部8用のプログラム、電力演算部9用のプログラムと電力補正部10用のプログラムとをメモリ52に格納しておき、これらのプログラムをプロセッサ51が実行することにより、配線抵抗演算部8、電力演算部9および電力補正部10が実現される。   When realizing the wiring resistance calculation unit 8, the power calculation unit 9, and the power correction unit 10, a program for the wiring resistance calculation unit 8, a program for the power calculation unit 9, and a program for the power correction unit 10 are stored in the memory 52. In addition, when the processor 51 executes these programs, the wiring resistance calculation unit 8, the power calculation unit 9, and the power correction unit 10 are realized.

以上に説明したように本実施の形態に係る電力計測装置6によれば、PV−PCS4に接続されるPV用電圧線2と分電盤5に接続される分電盤用電圧線3とにおける電圧降下により、分電盤5に印加される電圧がPV−PCS4の出力端における電圧と異なる場合でも、電圧降下に起因したPV−PCS4の発電電力P2の誤差を補正し、補正後の発電電力P21を演算できる。   As described above, according to the power measuring device 6 according to the present embodiment, in the PV voltage line 2 connected to the PV-PCS 4 and the distribution board voltage line 3 connected to the distribution board 5. Even when the voltage applied to the distribution board 5 is different from the voltage at the output terminal of the PV-PCS 4 due to the voltage drop, the error of the generated power P2 of the PV-PCS 4 due to the voltage drop is corrected, and the generated power after correction is corrected. P21 can be calculated.

従って全量買取構成におけるPV−PCS4の発電電力を計測するために、電力計測装置6と同様の電力計測手段をPV−PCS4に追加して設置する必要がない。そのため、電力計測手段を設けるための設置工事および配線工事といった作業が不要になり、作業コストを低減できるだけでなく、電力計測手段の保守が不要になるためメンテナンスコストの低減が可能である。   Therefore, in order to measure the generated power of the PV-PCS 4 in the total quantity purchase configuration, it is not necessary to additionally install the power measuring means similar to the power measuring device 6 in the PV-PCS 4. Therefore, work such as installation work and wiring work for providing the power measuring means becomes unnecessary, and not only the work cost can be reduced, but also maintenance of the power measuring means becomes unnecessary, so that the maintenance cost can be reduced.

また本実施の形態に係る電力計測装置6は、分岐点aから分電盤5までの分電盤用電圧線3に関するパラメータとPV用電圧線2に関するパラメータとを入力するパラメータ入力部7を備える。パラメータ入力部7を備えることにより、電気設備の設置環境に応じた発電電力Pの補正ができる。従ってパラメータ入力部7を備えない構成に比べて、電力計測装置6で演算される発電電力Pの誤差をより一層低減できる。   The power measuring apparatus 6 according to the present embodiment further includes a parameter input unit 7 for inputting parameters relating to the distribution board voltage line 3 and parameters relating to the PV voltage line 2 from the branch point a to the distribution board 5. . By providing the parameter input unit 7, the generated power P can be corrected according to the installation environment of the electrical equipment. Therefore, the error of the generated power P calculated by the power measuring device 6 can be further reduced as compared with the configuration without the parameter input unit 7.

また本実施の形態に係る電力計測装置6は、パラメータ入力部7に入力されたパラメータに基づき、配線抵抗R1および配線抵抗R2を演算する配線抵抗演算部8を備える。配線抵抗演算部8を備えることにより、図4に示すような配線種類、配線の公称断面積および配線の抵抗率といったユーザが直感的に設定できる情報に基づいて配線抵抗R1,R2の演算が可能となる。従って配線抵抗演算部8を備えない構成に比べて、ユーザの利便性が向上すると共に、より詳細なパラメータに基づき配線抵抗R1,R2の演算ができるため発電電力Pの誤差をより一層低減できる。   The power measuring device 6 according to the present embodiment includes a wiring resistance calculation unit 8 that calculates the wiring resistance R1 and the wiring resistance R2 based on the parameters input to the parameter input unit 7. By providing the wiring resistance calculation unit 8, the wiring resistances R1 and R2 can be calculated based on information that can be intuitively set by the user, such as the wiring type, the nominal cross-sectional area of the wiring, and the wiring resistivity as shown in FIG. It becomes. Accordingly, the convenience of the user is improved as compared with the configuration not including the wiring resistance calculation unit 8, and the calculation of the wiring resistances R1 and R2 can be performed based on more detailed parameters, so that the error of the generated power P can be further reduced.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。   The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

1 主幹電圧線、2 PV用電圧線、3 分電盤用電圧線、4 PV−PCS、5 分電盤、6 電力計測装置、7 パラメータ入力部、8 配線抵抗演算部、9 電力演算部、10 電力補正部、11 計測値入力部、20 商用系統、30 抵抗データ、50 バス、51 プロセッサ、52 メモリ、53 入出力インタフェース、I11,I12,I2 交流電流、L11,L21 第1の電圧線、L12,L22 第2の電圧線、N1,N2 中性線、P 発電電力、P11,P12 交流電力、P2,P21 発電電力、R1,R2 配線抵抗、V1,V2,V3 電圧入力端子、V11,V12,V21,V22 交流電圧、a 分岐点。
1 main voltage line, 2 voltage line for PV, 3 voltage line for distribution board, 4 PV-PCS, 5 distribution board, 6 power measuring device, 7 parameter input section, 8 wiring resistance calculation section, 9 power calculation section, 10 power correction unit, 11 measured value input unit, 20 commercial system, 30 resistance data, 50 bus, 51 processor, 52 memory, 53 input / output interface, I11, I12, I2 AC current, L11, L21 first voltage line, L12, L22 Second voltage line, N1, N2 neutral line, P generated power, P11, P12 AC power, P2, P21 generated power, R1, R2 wiring resistance, V1, V2, V3 voltage input terminal, V11, V12 , V21, V22 AC voltage, a branch point.

Claims (4)

分電盤に接続され、発電電力を計測する電力計測装置であって、
商用系統に接続された単相3線の主幹電圧線の内、前記分電盤に接続される第1の電圧線と中性線との間の電圧をV11とし、
前記第1の電圧線に流れる電流をI11とし、
前記V11および前記I11より演算される前記第1の電圧線の力率をcosθ11とし、
前記主幹電圧線の内、前記分電盤に接続される第2の電圧線と前記中性線との間の電圧をV12とし、
前記第2の電圧線に流れる電流をI12とし、
前記V12および前記I12より演算される前記第2の電圧線の力率をcosθ12とし、
前記主幹電圧線から分岐して、太陽電池パワーコンディショナに接続される分岐電圧線に流れる電流をI2とし、
前記主幹電圧線と前記分岐電圧線との分岐点から前記分電盤までの電圧線の配線抵抗をR1とし、
前記分岐電圧線の配線抵抗をR2とし、
前記I2、前記V11および前記V12に基づき演算される前記太陽電池パワーコンディショナの発電電力をP2とし、
前記P2を補正して得られる前記太陽電池パワーコンディショナの発電電力をP21としたとき、
前記P21をP21=P2×{V11+V12+R1×(I11×cossθ11+I12×cosθ12)+2×R2×I2}/(V11+V12)で演算する電力計測装置。
A power measuring device that is connected to a distribution board and measures generated power,
Among the single-phase three-wire mains voltage lines connected to the commercial system, the voltage between the first voltage line connected to the distribution board and the neutral line is V11,
The current flowing through the first voltage line is I11,
The power factor of the first voltage line calculated from V11 and I11 is cos θ11,
Among the main voltage lines, the voltage between the second voltage line connected to the distribution board and the neutral line is V12,
The current flowing through the second voltage line is I12,
The power factor of the second voltage line calculated from V12 and I12 is cos θ12,
The current branched from the main voltage line and flowing through the branch voltage line connected to the solar battery power conditioner is I2.
R1 is the wiring resistance of the voltage line from the branch point of the main voltage line and the branch voltage line to the distribution board,
The wiring resistance of the branch voltage line is R2,
The generated power of the solar cell power conditioner calculated based on I2, V11, and V12 is P2,
When the generated power of the solar cell power conditioner obtained by correcting the P2 is P21,
A power measuring device that calculates P21 by P21 = P2 × {V11 + V12 + R1 × (I11 × coss θ11 + I12 × cos θ12) + 2 × R2 × I2} / (V11 + V12).
前記分岐点から前記分電盤までの電圧線のパラメータと前記分岐電圧線のパラメータとを入力するパラメータ入力部を備える請求項1に記載の電力計測装置。   The power measuring device according to claim 1, further comprising a parameter input unit configured to input a parameter of a voltage line from the branch point to the distribution board and a parameter of the branch voltage line. 前記パラメータ入力部に入力された2つの前記パラメータに基づき、前記R1および前記R2を演算する配線抵抗演算部を備える請求項2に記載の電力計測装置。   The power measurement device according to claim 2, further comprising: a wiring resistance calculation unit that calculates the R1 and the R2 based on the two parameters input to the parameter input unit. 配線抵抗演算部、電力演算部および電力補正部を備え、分電盤に接続されて商用系統に全量買取される発電電力を計測する電力計測装置で実行される電力計測方法であって、
前記商用系統に接続された単相3線の主幹電圧線の内、前記分電盤に接続される第1の電圧線と中性線との間の電圧をV11とし、
前記第1の電圧線に流れる電流をI11とし、
前記V11および前記I11より演算される前記第1の電圧線の力率をcosθ11とし、
前記主幹電圧線の内、前記分電盤に接続される第2の電圧線と前記中性線との間の電圧をV12とし、
前記第2の電圧線に流れる電流をI12とし、
前記V12および前記I12より演算される前記第2の電圧線の力率をcosθ12とし、
前記主幹電圧線から分岐して、太陽電池パワーコンディショナに接続される分岐電圧線に流れる電流をI2とし、
前記主幹電圧線と前記分岐電圧線との分岐点から前記分電盤までの電圧線の配線抵抗をR1とし、
前記分岐電圧線の配線抵抗をR2とし、
前記I2、前記V11および前記V12に基づき演算される前記太陽電池パワーコンディショナの発電電力をP2とし、
前記P2を補正して得られる前記太陽電池パワーコンディショナの発電電力をP21としたとき、
前記配線抵抗演算部は、前記R1および前記R2を演算し、
前記電力演算部は、前記P2を演算し、
前記電力補正部は、前記配線抵抗演算部で演算された前記R1および前記R2を用いて前記P21をP21=P2×{V11+V12+R1×(I11×cossθ11+I12×cosθ12)+2×R2×I2}/(V11+V12)で演算する電力計測方法。


A power measurement method that includes a wiring resistance calculation unit, a power calculation unit, and a power correction unit, and is executed by a power measurement device that measures the generated power that is connected to the distribution board and purchased in the commercial system.
Of the single-phase three-wire mains voltage lines connected to the commercial system, the voltage between the first voltage line connected to the distribution board and the neutral line is V11,
The current flowing through the first voltage line is I11,
The power factor of the first voltage line calculated from V11 and I11 is cos θ11,
Among the main voltage lines, the voltage between the second voltage line connected to the distribution board and the neutral line is V12,
The current flowing through the second voltage line is I12,
The power factor of the second voltage line calculated from V12 and I12 is cos θ12,
The current branched from the main voltage line and flowing through the branch voltage line connected to the solar battery power conditioner is I2.
R1 is the wiring resistance of the voltage line from the branch point of the main voltage line and the branch voltage line to the distribution board,
The wiring resistance of the branch voltage line is R2,
The generated power of the solar cell power conditioner calculated based on I2, V11, and V12 is P2,
When the generated power of the solar cell power conditioner obtained by correcting the P2 is P21,
The wiring resistance calculation unit calculates the R1 and the R2,
The power calculation unit calculates the P2,
The power correction unit uses the R1 and R2 calculated by the wiring resistance calculation unit to change the P21 to P21 = P2 × {V11 + V12 + R1 × (I11 × coss θ11 + I12 × cos θ12) + 2 × R2 × I2} / (V11 + V12) Power measurement method to calculate with.


JP2016024000A 2016-02-10 2016-02-10 Power measuring device and power measuring method Active JP6656009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024000A JP6656009B2 (en) 2016-02-10 2016-02-10 Power measuring device and power measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024000A JP6656009B2 (en) 2016-02-10 2016-02-10 Power measuring device and power measuring method

Publications (2)

Publication Number Publication Date
JP2017142183A true JP2017142183A (en) 2017-08-17
JP6656009B2 JP6656009B2 (en) 2020-03-04

Family

ID=59627270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024000A Active JP6656009B2 (en) 2016-02-10 2016-02-10 Power measuring device and power measuring method

Country Status (1)

Country Link
JP (1) JP6656009B2 (en)

Also Published As

Publication number Publication date
JP6656009B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
CN107710008B (en) Method and apparatus for commissioning voltage sensors and branch current sensors for branch monitoring systems
US10261112B2 (en) Non-contact type voltage sensor for dual-wire power cable and method for compensating installation position variation thereof
JP6373019B2 (en) Simulated power supply device and normal weighing confirmation device
CN105277794B (en) Cable connector crimps the measuring method and system of resistance
JP5449895B2 (en) Leakage current measuring device
JP5418219B2 (en) High voltage insulation monitoring device
CN107636481B (en) Method and apparatus for commissioning voltage sensors and branch current sensors for branch monitoring systems
US10698012B2 (en) Power measuring system and power measuring method
JP4439350B2 (en) Private power generation system
JP5999406B2 (en) Detection device, inspection device, inspection method, and program
KR101254846B1 (en) Apparatus for measuring generation power and load power for power generation system
JP6656009B2 (en) Power measuring device and power measuring method
JP2011112488A (en) Current sensor
Khodapanah et al. Monitoring of power factor for induction machines using estimation techniques
KR20140018687A (en) Watt-hour-meter and detection method for abnormal status thereof
JP6757272B2 (en) Power measuring device, power measuring method and power measuring program
JP5850234B2 (en) Detection device, inspection device, inspection method, and program
KR20200002226A (en) Apparatus for detecting phase error of watt hour meter and method thereof
TW201514510A (en) Insulation monitoring device
JP5452972B2 (en) Wiring connection inspection method and inspection device for integrated watt-hour meter
JP6599737B2 (en) Power measurement system, power measurement device, and external device
JP6528322B2 (en) Measurement system, distribution board, and construction method of measurement system
WO2013121499A1 (en) Power measuring apparatus
JP2014096923A (en) Power distribution board, power supply system, and data processing device
JP2016140129A (en) Power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6656009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250