JP2017138108A - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP2017138108A
JP2017138108A JP2016017002A JP2016017002A JP2017138108A JP 2017138108 A JP2017138108 A JP 2017138108A JP 2016017002 A JP2016017002 A JP 2016017002A JP 2016017002 A JP2016017002 A JP 2016017002A JP 2017138108 A JP2017138108 A JP 2017138108A
Authority
JP
Japan
Prior art keywords
measurement
inclination
measuring
measuring apparatus
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016017002A
Other languages
English (en)
Other versions
JP6635811B2 (ja
Inventor
泰幸 郷
Yasuyuki Go
泰幸 郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Integrex Co Ltd
Original Assignee
Nagase Integrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Integrex Co Ltd filed Critical Nagase Integrex Co Ltd
Priority to JP2016017002A priority Critical patent/JP6635811B2/ja
Publication of JP2017138108A publication Critical patent/JP2017138108A/ja
Application granted granted Critical
Publication of JP6635811B2 publication Critical patent/JP6635811B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】低コストで、効率良く且つ精度良く測定面の傾斜を測定できる測定装置を提供する。【解決手段】測定開始点又は測定終了点にパッド302の当接面302aを当接させたときに、エア制御装置311は、エアバッグ304内のエア圧を検出し、所定の圧力になるように配管310を介してエアを送出し、もしくはエアを抜き出す。エアバッグ304内のエア圧が所定値になれば、当接面302aと測定対象面との面圧が一定になる。かかる状態で、水準器の傾きは測定対象面に対して適切となるので、測定対象面の傾きを精度良く検出することができる。【選択図】図6

Description

本発明は、測定装置に関し、鉛直方向に対する測定面の傾きを高精度に測定できる測定装置に関する。
長尺物などの被測定物の面形状や断面直線形状を精度良く測定をするために、基準となる直定規との比較測定を実施することがある。あるいは、光軸の直線性を基準にして、走査方向に被測定面と2点で当接する台上の鏡の傾斜をオートコリメータで測定して、直線形状を算出する方法も用いられている。また、基準が使えないときには、多点法プローブを用いた多点法により、運動誤差と形状誤差を分離する方法がとられる。更には、2点で当接する水準器あるいはタリベルなどで直線形状を求める方法もある。
真直形状や平面形状の測定対象が大型化するのに伴い、基準定規が長尺化し、その作成が困難になってきている。また、空中での光線の揺らぎの影響で光軸の基準も十分な精度を保てない場合もある。このような背景から、多点法を用いた測定の必要性が高まっているが、多点法ではゼロ点調整誤差による放物線誤差の問題があり、しかも長尺になり逐次数が増えるほど放物線誤差が大きくなるという問題がある。
特許文献1には、例えばステージの傾斜を、形状測定における移動開始点と終了点の静止時に計測し、多点法プローブで測定評価した真直形状における両端の傾斜の差に含まれる、多点法プローブのゼロ点調整誤差による放物線誤差の影響を抽出できることを利用して、目的の形状測定データそのものから多点法プローブのゼロ点の校正が出来る、いわゆるその場校正を実現できる技術が開示されている。
特開2009−281768号公報
ところで、多点法プローブのゼロ点調整誤差による放物線誤差の影響を抽出するには、多点法プローブで測定評価した真直形状における測定面両端の傾斜を精度良く測定する必要がある。ここで、多くの水準器は、測定面に当接した状態で、自身の傾きから重力加速度方向に対する測定面の傾きを検出するものであり、一般的には作業者が水準器を測定面に当てて、その傾きを測定している。これに対し、測定の効率化や自動化のために、ロボット等を用いて水準器を位置決めして測定面の傾斜を測定したいという要請がある。
しかるに、高精度仕様のロボットを用いれば、数値制御により水準器を適切な押圧力で測定面に押し当てて精度良く維持することができるが、ロボット自体が高価であるという難点がある。そこで、より安価な一般汎用ロボットにより保持器を保持して、測定面の傾斜を測定しようとする試みがある。しかしながら一般汎用ロボットは多種多様な性能を有するため、使用したロボットによっては基準位置に対して0.1mmを超える振れが生じる恐れがあり、これにより水準器と測定面との間に作用する力が変化してしまい、精度良く測定面の傾斜を測定できない恐れがある。
本発明は、かかる問題点に鑑み、低コストで、効率良く且つ精度良く測定面の傾斜を測定できる測定装置を提供することを目的とする。
請求項1に記載の測定装置は、搬送機構により位置決めされて、水準器を用いて鉛直方向に対する測定面の傾きを測定可能な測定装置において、
前記搬送機構に連結される連結部と、
前記水準器を保持する保持部と、
前記保持部に取り付けられており、前記測定面に当接することによって前記保持部の鉛直方向に対する傾きを前記測定面に倣わせる当接部と、
前記連結部と前記保持部との間に配置され、前記当接部と前記測定面との間に生じる力を制御する制御部とを有することを特徴とする。
本発明によれば、前記連結部と前記保持部との間に配置された前記制御部が、前記当接部と前記測定面との間に生じる力を制御するので、前記搬送機構により位置決めされた際に、前記測定面に対する前記測定装置の位置が目的位置からずれたとしても、測定時において前記当接部と前記測定面との間に生じる力を適切な値に制御出来るため、前記測定面に対して前記保持器を適切に倣わせることができるから、前記保持器に保持された水準器により前記測定面の傾斜を精度良く測定することができる。尚、「水準器」は、重力加速度方向に対する自身の姿勢を検出できるものであれば好ましく、そのタイプは問わない。
請求項2に記載の測定装置は、請求項1に記載の発明において、前記制御部は、前記連結部と前記保持部との間に配置され,流体を出し入れすることで膨縮可能となっているバッグと、前記バッグ内の流体圧を検出する圧力センサと、前記圧力センサの出力に応じて、前記バッグ内に前記流体を導入し或いは前記バッグ内から前記流体を排出するエア圧調整器とを有することを特徴とする。
前記バッグが流体を出し入れすることで膨縮可能となっているので、前記エア圧調整器が、前記圧力センサの出力に応じて、前記バッグ内に前記流体を導入し或いは前記バッグ内から前記流体を排出することで、測定時において、前記当接部と前記測定面との間に生じる力を略一定に制御することが出来、これにより前記測定面の傾斜を精度良く測定することができる。「流体」としてはエアを用いるのが最も取り扱いが容易であるが、水や油などを用いても良い。
請求項3に記載の測定装置は、請求項1に記載の発明において、前記制御部は、前記連結部と前記保持部との間に配置されて弾性変形可能な可撓性部材を有することを特徴とする。
前記搬送機構により位置決めされた際に、前記測定面に対する前記測定装置の位置が目的位置からずれたとしても、前記制御部として可撓性部材を用いることで、測定時において、前記当接部と前記測定面との間に生じる力の変化を抑えることが出来、これにより前記測定面の傾斜を精度良く測定することができる。尚、可撓性部材とは,例えばゴムや樹脂などを含むものをいう。
請求項4に記載の測定装置は、請求項1〜3のいずれかに記載の発明において、前記搬送機構はロボットであることを特徴とする。
前記搬送機構としてロボットを用いることで、測定の効率化や自動化を促進できる。
本発明によれば、低コストで、効率良く且つ精度良く測定面の傾斜を測定できる測定装置を提供することができる。
本実施の形態にかかる測定装置により測定可能な被測定物OBJの斜視図である。 本実施の形態にかかる測定装置300を、ロボットにより把持した状態で示す図である。 本実施の形態にかかる測定装置300の正面図である。 測定装置300の側面図である。 測定装置300の上面図である。 測定装置300の分解図である。 逐次三点法で測定面の形状を測定できる形状測定装置100の斜視図である。 逐次三点法で測定面の形状を測定できる形状測定装置100の斜視図である。 形状測定装置100の正面図である。 図9の構成をX-X線で切断して矢印方向に見た図である。 (a)はミラーの非反射位置を示し、(b)はミラーの反射位置を示す図である。 測定装置300により面PL2の傾きを測定する状態を示す斜視図である。 測定装置300により面PL2の傾きを測定する状態を示す上面図である。 測定装置300により面PL1の傾きを測定する状態を示す斜視図である。 測定装置300により面PL1の傾きを測定する状態を示す上面図である。 別な実施の形態にかかる測定装置300を、z方向奥側から見た図である。 図16と同じ方向から見たホルダ301を示す図である。 更に別な実施の形態にかかる測定装置300を示す斜視図である。 更に別な実施の形態にかかる測定装置300を分解して示す斜視図である。
以下、図面を参照して本発明の実施の形態を説明する。図1は、本実施の形態にかかる測定装置により測定可能な被測定物OBJの斜視図である。図に示すように、被測定物OBJの両側には、鉛直方向上方及び前方に突出してなる一対の板状部PTが設けられている。各板状部PTの前縁の一部は、直線ブレード状に突出したブレード部ULとなっており、ブレード部ULの内側を向いた面PL1と、面PL1と直交して交差する板状部PTの面PL2が、それぞれ測定面となっている。
図2は、本実施の形態にかかる測定装置300を、ロボットにより把持した状態で示す図である。搬送機構であるロボットRBTは、定盤に設置された基台BSに対して回転可能な回転テーブルTBを備えており、更に回転テーブルTBに対して揺動可能な揺動アームPAが設けられている。揺動アームPAの先端には、伸縮アームEAが揺動可能且つ伸縮可能に連結され、伸縮アームEAの先端には、ハンドHDが揺動可能且つ回転可能に連結されている。尚、ハンドHDは、汎用のチャック機構を用いることで、形状測定装置100も共通して把持可能である。ロボットRBTの構成は以上に限られず、任意の形態が可能である。
ロボットRBTの各部は、制御装置CONTにより数値制御され、不図示のモータ等を介して、所定の精度でハンドHDを任意の3次元位置に置くことが出来、従って被測定物OBJの測定面に沿って図1における鉛直方向に変位させることもできる。このように、ロボットRBTで把持することにより、測定装置300を被測定物OBJの測定面の両端に配置させることができるようになっている。
図3は、本実施の形態にかかる測定装置300の正面図であり、図4は、測定装置300の側面図である。又、図5は、測定装置300の上面図であり、図6は、測定装置300の分解図であるが、水準器は図示を省略している。尚、図3〜6で用いる3次元座標系(XYZ)は、後述する逐次三点法において用いる3次元座標系(xyz)と異なっている。
図6に示すように、扁平の六角柱状であるホルダ301の側面301aに、パッド(脚部)302が2つ、上下に離間して配置されている。パッド302は矩形板状であって、その正面中央に突出した当接面(当接部)302aを全幅で形成している。2つの当接面302aは同一平面(図6でXY平面)内に位置するものとする。これにより2つの当接面302aを測定面に当接させたとき、ホルダ301(及び後述する載置板306)の鉛直方向に対する傾きを測定面に倣わせることができる。
又、ホルダ301の側面301aから1つおいた側面301bに、パッド(脚部)303が2つ、上下に離間して配置されている。パッド303はパッド302と同じ板状であるが、その側面中央に突出した当接面(当接部)303aを全幅で形成している。2つの当接面303aは同一平面(図6でXZ平面)内に位置するものとする。これにより2つの当接面303aを測定面に当接させたとき、ホルダ301(及び後述する載置板306)の鉛直方向に対する傾きを測定面に倣わせることができる。パッド302,303は、ねじ止めもしくは接着等によりホルダ301に取り付けられている。
ホルダ301の側面301a、301bからそれぞれ1つおいた広幅の側面301cには、例えば樹脂製である蛇腹状のエアバッグ304の一方の面が取り付けられている。エアバッグ304の他方の面は、L字状の板材であるブラケット305の裏面に接合された斜板305aに取り付けられている。連結部であるブラケット305の上端近傍は、ロボットRBTのハンドHDによりチャック可能な凹凸部(不図示)を有している。よって、測定装置300は、上述したロボットRBTにより保持されて、測定面の両端に配置可能となっている。
エアバッグ304は、配管310を介して、エア制御装置311に連結されており、その内圧に応じて蛇腹が膨縮可能となっている。エアバッグ304と共に制御部を構成するエア制御装置311は、配管310、すなわちエアバッグ304内の流体圧を検出する圧力センサと、該圧力センサの出力に応じて、エアバッグ304内に配管310を介してエアを導入し或いはエアを排出するエア圧調整器とを有する。エアバッグ304とエア制御装置311とで、制御部を構成する。
ホルダ301の上面301dには、3つのねじ孔301eが設けられている。一方、図6で二点鎖線上に水準器LV(図3,4参照)を取付可能な載置板306は、ねじ孔301eに対向して貫通孔306aを有しており、貫通孔306aに挿通したボルト307をねじ孔301eに螺合させることで、載置板306がホルダ301に取り付け可能となっている。載置板306は、ホルダ301に取り付けた状態でブラケット305と干渉しないようになっている。水準器LVは、鉛直面であるXY平面に対する傾きを測定できる機能を有する。ホルダ301と載置板306とで保持部を構成する。
測定装置300を、図5に示すように上方から見たときに、パッド302の当接面302aを,その直交方向に投影した投影像の範囲(図5でハッチングで示す範囲)内に、ホルダ301、載置板306及び水準器LVを含む組立体の合成重心Gが含まれると、当接面302aを測定面に当接させて傾きを測定するために、ロボットRBTにより測定装置300を測定面に押し当てた際に姿勢変化が起きにくいので好ましい。合成重心Gは、好ましくは投影像の中心に位置すると良い。
次に、逐次三点法で測定面の形状を測定する際に用いる形状測定装置100について説明する。図7,8は、逐次三点法で測定面の形状を測定できる形状測定装置100の斜視図であり、図9は、形状測定装置100の正面図である。形状測定装置100において、板状のベースプレート101の背面にブラケット102を取り付けている。図示していないが、ブラケット102は、ロボットによりチャック可能な凹凸部を有している。よって、形状測定装置100は、上述したごときロボットRBT等により保持されて、測定面に沿って走査変位可能である。
更に、ベースプレート101の背面におけるブラケット102の近傍に、コントローラ104が取り付けられている。コントローラ104は、後述する3つのミラー202A,202B,202Cを一体で移動させる駆動機構(不図示)を駆動制御するものである。
ベースプレート101の正面側には、これに接合されたサブプレート103を介して、3つの光センサ105A,105B,105Cが等間隔に並べられて取り付けられている。サブプレート103は、インバー等の熱膨張係数が低い素材から形成されており、温度変化による光センサ105A,105B,105Cの相対位置変化などの影響を極力抑制して安定した保持に貢献する。直方体状の光センサ105A,105B,105Cは、下方に略V字状の切欠部105aを有しており、図9に示すように、その一方の側面に発光部105bを設け、他方の側面に受光部105cを設けている。外部から光センサ105A,105B,105Cへの給電及び外部への出力転送は、それぞれ連結されたケーブル105dを介して行われる。
隣接する光センサ105A,105B,105Cの間において、ベースプレート101に一端を接合された略L字状のリブ106が、サブプレート103との干渉を回避しつつ上下方向に延在している。
図10は、図9の構成をX-X線で切断して矢印方向に見た図であり、被測定物OBJと共に示している。リブ106の自由端である下端には、軸線が斜めに延在するようにして固定軸106aが形成されている。固定軸106aの周囲には、軸受107を介してローラ108が組み付けられており、固定軸106aに対して回転自在となっている。ローラ108の材質は金属又は樹脂製である。ローラ108を樹脂製とする場合、例えばロックウェル硬さで80以上であるポリプラスチック株式会社製のジュラコン(登録商標)などを用いることが好ましい。
図10に示すように、走査変位の際に、ガイド部材としてのローラ108を測定面である面PL1及び面PL2の双方に当接させて転動させることで、ベースプレート101すなわち光センサ105A,105B,105Cと、面PL1及び面PL2との距離を一定に維持し、これにより例え形状測定装置100をロボット等により把持して走査変位させた場合でも、後述する逐次三点法による測定を可能としている。
図9に示すように、3つのミラー202A,202B,202Cが保持体201により把持されて、不図示のアクチュエータにより、光センサ105A,105B,105Cの下方においてx方向に変位可能とされている。図9に示す状態では、各ミラー202A,202B,202Cは、実線で示すように光センサ105A,105B,105Cの切欠部105a直下よりずれた位置(非反射位置)にあるので、光センサ105A,105B,105Cの発光部105bから出射された光束BMを反射せず、かかる光束BMは図11(a)に示すように下方に向かうこととなる。
よって光センサ105A,105B,105Cの切欠部105aが、測定すべき面PL2に対向しているときは、光束BMは面PL2で反射してミラー202A,202B,202Cで反射することなく、同じ光センサ105A,105B,105Cの受光部105cに直接入射し、その入射位置に基づいて光センサから面PL2の入射点の位置までの距離(後述する出力m1(x)、m2(x)、m3(x)に相当)を求めることができる。この値を用いて、逐次三点法により面PL2の形状測定を行える。
これに対し、コントローラ104からの信号がアクチュエータに送信されると、3つのミラー202A,202B,202Cが保持体201と共に、点線で示す位置へと変位する。このとき、各ミラー202A,202B,202Cは、図9に点線で示すように光センサ105A,105B,105Cの切欠部105a直下の位置(反射位置)にくるので、光センサ105A,105B,105Cの発光部105bから出射された光束BMを反射し、反射された光束BMは図11(b)に示すように側方に向かい、面PL1に入射することとなる。
更に光束BMは面PL1で反射して、再度ミラー202A,202B,202Cで反射され、同じ光センサ105A,105B,105Cの受光部105cに入射し、その入射位置に基づいて光センサから面PL1の入射点の位置までの距離(後述する出力m1(x)、m2(x)、m3(x)に相当)を求めることができる。この値を用いて、逐次三点法により面PL1の形状測定を行える。尚、コントローラ104からの逆特性の信号がアクチュエータに送信されると、3つのミラー202A,202B,202Cが保持体201と共に、実線で示す位置へと復帰する。
次に、逐次三点法により、本実施の形態にかかる形状測定装置100を用いた被測定物の測定方法について説明する。ここでは、ロボットRBTにより把持した形状測定装置100を被測定物OBJに対して相対変位させながら、面PL1又はPL2を測定するものとするが、形状測定装置100は直定規などに沿って移動させても良い。まず、不図示のアクチュエータにより、ミラー202A,202B,202Cを非反射位置に置き、形状測定装置100を面PL2に沿って走査変位させながら、面PL2を測定するものとし、図9で面PL2に直交する方向をz方向、形状測定装置100を走査変位する方向をx方向(被測定物を示す図1における鉛直方向)とする。
形状測定装置100を走査変位する際に微小な変形や傾きが生じると、形状測定装置100全体がz方向に移動したり傾斜したりすることによる運動誤差成分が生じる。ここで、面PL2の表面形状をf(x)、形状測定装置100のz方向への偏心誤差をez(x)とし、走査方向への傾斜誤差をEp(x)とし、各光センサ105A,105B,105Cの出力m1(x)、m2(x)、m3(x)は、以下の式で表せる。
1(x)=f(x−d)+ez(x)−d・Ep(x) (1)
2(x)=f(x)+ez(x) (2)
3(x)=f(x+d)+ez(x)+d・Ep(x) (3)
更に隣り合う光センサ105A,105B,105Cの出力から偏心誤差成分を消去して、次式の差動出力を得る。
μ1(x)=m3(x)−m2(x)=f(x+d)−f(x)+d・Ep(x) (4)
μ2(x)=m2(x)−m1(x)=f(x)−f(x−d)+d・Ep(x) (5)
更に、(4),(5)式の差をΔμ(x)とすると、傾斜誤差成分を除去した以下の式が得られる。
Δμ(x)=μ1(x)−μ2(x)=f(x+d)−2f(x)+f(x−d) (6)
一方、式(1)〜(3)より、f(x)の二階差分を求めると、以下の式(7)となる。
Δ2f(x)
={f(x+d)−2・f(x)+f(x−d)}/d2
=[{f(x+d)−f(x)}−{f(x)−f(x−d)}]/d2
={m3(x)−2・m2(x)−m1(x)}/d2 (7)
よって、Δ2f(x)は、光センサ105A,105B,105Cを取り付けたサブプレート103の並進誤差ez(x)、傾斜誤差Ep(x)の影響を受けることなく、光センサの出力m1(x),m2(x),m3(x)及び間隔dで表されることとなる。
つまり、測定値m1(x)〜m3(x)等により得られたΔ2f(x)を二階積分することにより、面PL2の表面形状f(x)を知ることができる。なお、f(x)の一次以下の項は、面PL2の測定部分の平均的な距離、傾きを表すことになるので、形状測定においては無視することができる。
しかし、実際には、サブプレート103に支持された各光センサ105A,105B,105Cには、測定時の基準点のずれ、いわゆるゼロ点ずれが存在する。例えば、各光センサ105A,105B,105Cのz方向の基準点からのずれを、それぞれ、k1,k2,k3とおいて、式(1)〜(3)を再計算すると、以下の式(1)′〜(3)′となる。
1(x)=f(x−d)+ez(x)−d・Ep(x)+k1 (1)′
2(x)=f(x)+ez(x)+k2 (2)′
3(x)=f(x+d)+ez(x)+d・Ep(x)+k3 (3)′
更に、f(x)の二階差分を取ると、以下の式(7)′となる。
Δ2f(x)
={f(x+d)−2・f(x)+f(x−d)}/d2
={m3(x)−2・m2(x)−m1(x)}/d2−{k3−2・k2+k1}/d2
={m3(x)−2・m2(x)−m1(x)}−k123/d2 (7)′
ただし、式(7)′において、k3−2・k2+k1=k123とした。
さらに、式(7)′に基づいて、Δ2f(x)を二階積分すると、測定値m1(x)〜m3(x)等の項の他に、k123/2d2を係数としたx2に比例する項が生じる。したがって、測定値m1(x)〜m3(x)から得られる値は、表面形状f(x)からk123・x2/2d2の分ずれたものであり、これは、いわゆる放物線誤差として知られるゼロ点ずれに起因する誤差である。かかる放物線誤差をg(x)とする。つまり、光センサ105A,105B,105Cの出力値からは、面PL2の真の面形状f(x)に、放物線誤差g(x)が重畳された、誤差内在形状h(x)=f(x)+g(x)が求められることとなり、よって放物線誤差g(x)を求めない限り、真の被測定物OBJの上面形状f(x)を得ることができないといえる。
そこで、水準器LVを利用して放物線誤差を排除することを考える。(4)、(5)式の差動出力に対して、(5)式にゼロ点誤差の項αを加え、(4)式の差動出力をdだけシフトして、以下の式を得る。
μ1(x+d)=f(x+2d)−f(x+d)+d・Ep(x+d) (4)′
μ2(x)=f(x)−f(x−d)+d・Ep(x)+α (5)′
ここで、αは2つの隣り合う光センサの測定基準を結ぶ線が平行にならないことによるz方向のシフト誤差を、角度に対応させたゼロ点誤差である。(4)′、(5)′式の差をとると、以下の式が得られる。
ΔEp(x)≡d(Ep(x+d)−Ep(x))=μ1(x+d)−μ2(x)+α (8)
(8)式は,隣り合う光センサの傾斜誤差の差分を表しているから、逐次N点加えていくことで、以下の(9)式を得る。
Figure 2017138108
(9)式の左辺におけるEp(0)は、測定開始点(x=0)の傾斜誤差であり、Ep(Nd)は、測定終了点(x=Nd=L)の傾斜誤差である。つまり、測定開始点と測定終了点での形状測定装置100の傾き、すなわち面PL2の測定開始点と測定終了点の傾きを測定すれば、右辺の値、すなわちゼロ点誤差αを理論上求めることができるのである。
図12、13は、測定装置300により面PL2の傾きを測定する状態を示す図であるが、ロボットRBTは省略している。ここでは、パッド302を面PL2に当接させて、その傾きを測定するものとする。ロボットRBTには、予め面PL2の測定開始点と測定終了点の位置を入力しているので、ロボットRBTは、数値制御により面PL2の測定開始点と測定終了点にパッド302が位置するように、測定装置300を姿勢変化させ、また位置決めする。
ロボットRBTにより、測定開始点又は測定終了点にパッド302の当接面302aを当接させ、図13に示すように矢印方向に予圧を付与すると、エア制御装置311は、エアバッグ304内のエア圧を検出し、所定の圧力になるように配管310を介してエアを送出し、もしくはエアを抜き出す。エアバッグ304内のエア圧が所定値になれば、当接面302aと面PL2との面圧が一定になる。かかる状態で、水準器LVの傾きは面PL2に対して適切となるので、面PL2の傾きを精度良く検出することができる。尚、被測定物OBJの幅方向反対側にある面PL2の傾きを測定する場合には、測定装置300を姿勢変化させることなく、平行移動させるのみで可能となる。
これに対し、面PL1の形状測定については、アクチュエータの駆動により、ミラー202A,202B,202Cを反射位置に置き、形状測定装置100を面PL1に沿って走査変位させながら,上述したのと同様に逐次三点法で測定を行うことができる。但し、面PL1に直交する方向をz方向、形状測定装置100を走査変位する方向をx方向とする。又、放物線誤差を排除するために、面PL1の測定開始点と測定終了点の傾きを測定すればよい。
図14、15は、測定装置300により面PL1の傾きを測定する状態を示す図であるが、ロボットRBTは省略している。ここでは、パッド303を面PL1に当接させて、その傾きを測定するものとする。ロボットRBTには、予め面PL1の測定開始点と測定終了点の位置を入力しているので、ロボットRBTは、数値制御により面PL1の測定開始点と測定終了点にパッド303が位置するように、測定装置300を姿勢変化させ、また位置決めする。
ロボットRBTにより、測定開始点又は測定終了点にパッド303の当接面303aを当接させ、図15に示す矢印方向に予圧を付与すると、エア制御装置311は、エアバッグ304内のエア圧を検出し、所定の圧力になるように配管310を介してエアを送出し、もしくはエアを抜き出す。エアバッグ304内のエア圧が所定値になれば、当接面303aと面PL1との面圧が一定になる。但し、面PL2に対して面PL1の幅が狭い場合、面圧を一定にするためにエア圧は,例えば面積比で面PL2の測定時より低くすべきである。かかる状態で、水準器LVの傾きは面PL1に対して適切となるので、面PL1の傾きを精度良く検出することができる。
尚、被測定物OBJの幅方向反対側にある面PL1の傾きを測定する場合には、ロボットRBTのハンドHDを回転させて、天地を逆にするように測定装置300を反転させれば良い。但し、パッド303の両側面に当接面303aを形成すれば、図15に点線で示すように測定装置300を姿勢変化させることなく、平行移動させるのみで、迅速に両方の面PL1の傾きを測定できる。
図16は、別な実施の形態にかかる測定装置300を、Z方向奥側から見た図である。図17は、同方向から見たホルダ301を示す図であるが、載置板306を取り付けた状態で示している。
本実施の形態では、ホルダ301とブラケット305の斜板305aとの間に、エアバッグの代わりに、制御部としての可撓性部材を配置している。より具体的には、図17に示すように、ホルダ301のブラケット305に対向する面301cに、3本の円筒状の固定軸320を植設している。固定軸320の先端には、雄ねじ部320aが形成されている。固定軸320の周囲には、両端にワッシャ321を取り付けた円筒ゴム322が嵌合している。ここでは、円筒ゴム322が可撓性部材を構成する。尚、306bは、外力を受けたときに斜板305aがブラケット305に対して傾かないように補強する為のリブである。
図16に示すように、斜板305aには、固定軸320に対向して貫通孔305bが形成されており、貫通孔305bに固定軸320を挿通させ、露出した雄ねじ部320aにナット323を螺合させて、適切なトルクで締め上げることで、ホルダ301とブラケット305とが連結される。このとき、一方のワッシャ321がホルダ301の面301cに当接し、他方のワッシャ321が斜板305aの対向面に当接し、更に固定軸320を介して軸力が伝達されるので、円筒ゴム322には所定の予圧が付与されるようになっている。それ以外の構成は、上述した実施の形態と同様である。
図12〜15を参照して、ロボットRBTが、測定装置300を測定開始点と測定終了点に位置決めすることによりパッド302,303を面PL2,PL1に当接させたとき、測定装置300が目標位置から多少ずれても、円筒ゴム322が弾性変形することにより、当接面302a、303aと面PL2、PL1との面圧を一定に近づけることができる。これにより、面PL2,PL1の傾きを精度良く検出することができる。又、コントローラ104が不要となるので、よりコスト低減となる。
図18は、更に別な実施の形態にかかる測定装置300を示す斜視図である。図19は、かかる実施の形態にかかる測定装置300を分解して示す斜視図であるが、見る方向を変えて示している。本実施の形態では、図16,17の実施の形態に対して、円筒ゴム322の支持態様が異なっている。
より具体的には、ブラケット305に連結された斜板305aには、ロアステー360が取り付けられており、また斜板305aに対向するホルダ301の面にはアッパステー350が取り付けられている。
ロアステー360は、斜板305aに固定される固定板361と、固定板361から載置板306に平行に延在するように接合された保持板362と、固定板361に対して保持板362を裏面(ここでは下面)で補強するように接合された一対の補強板363とからなる。
一方、アッパステー350は、斜板305aに対向するホルダ301の面に固定される固定板351と、固定板351から載置板306に平行に延在するように接合された保持板352と、固定板351に対して保持板352を裏面(ここでは上面)で補強するように接合された一対の補強板353とからなる。
アッパステー350の保持板352には、4つの貫通孔352aが形成されており、これに対向してロアステー360の保持板362には、4つの貫通孔362aが形成されている。
図19に示すように、可撓性部材である円筒ゴム322の両端中央には、金属製のスタッドボルト354がそれぞれ焼き付け等により一体的且つ同軸に固定され、両スタッドボルト354間にゴムが介在する状態となっている。アッパステー350,ロアステー360,円筒ゴム322により制御部を構成する。
組み付け時には、ホルダ301に対して固定した保持板352の下方から各貫通孔352aを介して、円筒ゴム322の上端側のスタッドボルト354を貫通させ、保持板352の上側でナット355(図18)により螺合させて締結する。
更に、ブラケット305に対して固定した保持板362の上方から各貫通孔362aを介して、円筒ゴム322の下端側のスタッドボルト354を貫通させ、保持板362の下側でナット365により螺合させて締結する。これにより、ホルダ301とブラケット305とがアッパステー350,円筒ゴム322、ロアステー360を介して連結される。それ以外の構成は、上述した実施の形態と同様である。
本実施の形態によれば、スタッドボルト354の軸線、すなわち円筒ゴム322の軸線が全てZ方向を向くので、図18,19に示す姿勢(つまり、Z方向が重力加速度方向と重なる姿勢)で水準器LVを支持したときに、水準器LVの自重が円筒ゴム322に付与されるため、経時変化により円筒ゴム322にヘタリが生じる恐れがある場合でも、その影響を極力抑制することができる。
本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。例えば搬送機構としては、ロボットに限られず、リニアガイドとアクチュエータとを組み合わせたものであっても良い。
100 形状測定装置
300 測定装置
301 ホルダ
301a 側面
301b 側面
301c 側面
301d 上面
301e ねじ孔
302 パッド
302a 当接面
303 パッド
303a 当接面
304 エアバッグ
305 ブラケット
305a 斜板
305b 貫通孔
306 載置板
306a 貫通孔
307 ボルト
310 配管
311 エア制御装置
320 固定軸
320a 雄ねじ部
321 ワッシャ
322 円筒ゴム
323 ナット
350 アッパステー
351 固定板
352 保持板
352a 貫通孔
353 補強板
354 スタッドボルト
355 ナット
360 ロアステー
361 固定板
362 保持板
362a 貫通孔
363 補強板
365 ナット
OBJ 被測定物
RBT ロボット

Claims (4)

  1. 搬送機構により位置決めされて、水準器を用いて鉛直方向に対する測定面の傾きを測定可能な測定装置において、
    前記搬送機構に連結される連結部と、
    前記水準器を保持する保持部と、
    前記保持部に取り付けられており、前記測定面に当接することによって前記保持部の鉛直方向に対する傾きを前記測定面に倣わせる当接部と、
    前記連結部と前記保持部との間に配置され、前記当接部と前記測定面との間に生じる力を制御する制御部とを有することを特徴とする測定装置。
  2. 前記制御部は、前記連結部と前記保持部との間に配置され,流体を出し入れすることで膨縮可能となっているバッグと、前記バッグ内の流体圧を検出する圧力センサと、前記圧力センサの出力に応じて、前記バッグ内に前記流体を導入し或いは前記バッグ内から前記流体を排出するエア圧調整器とを有することを特徴とする請求項1に記載の測定装置。
  3. 前記制御部は、前記連結部と前記保持部との間に配置されて弾性変形可能な可撓性部材を有することを特徴とする請求項1に記載の測定装置。
  4. 前記搬送機構はロボットであることを特徴とする請求項1〜3のいずれかに記載の測定装置。
JP2016017002A 2016-02-01 2016-02-01 測定装置 Active JP6635811B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017002A JP6635811B2 (ja) 2016-02-01 2016-02-01 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017002A JP6635811B2 (ja) 2016-02-01 2016-02-01 測定装置

Publications (2)

Publication Number Publication Date
JP2017138108A true JP2017138108A (ja) 2017-08-10
JP6635811B2 JP6635811B2 (ja) 2020-01-29

Family

ID=59564857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017002A Active JP6635811B2 (ja) 2016-02-01 2016-02-01 測定装置

Country Status (1)

Country Link
JP (1) JP6635811B2 (ja)

Also Published As

Publication number Publication date
JP6635811B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
EP1875158B1 (en) Surface sensing device with optical sensor
EP3182054A1 (en) Optical configuration for measurement device
JP4992078B2 (ja) 傾斜角測定装置、これを搭載した工作機械および工作機械の傾斜角校正方法
Gao et al. Precision measurement of two-axis positions and tilt motions using a surface encoder
CN101166951A (zh) 扫描工件表面的方法
JP2005502876A (ja) 表面形状測定装置
JP2010531239A (ja) 把持精度を改善したマニピュレータロボット用グリッパ、及び少なくとも1つの該グリッパを備えているマニピュレータロボット
JP4542907B2 (ja) 高速走査用プローブ
JP6284771B2 (ja) パラレル機構
JPH08327344A (ja) 多座標走査ヘッド
JP4570437B2 (ja) 表面粗さ/輪郭形状測定装置
JP2012177620A (ja) 計測装置
JP5517062B2 (ja) 法線ベクトル追跡型超精密形状測定方法
US7353616B2 (en) Shape measuring instrument
JP6635811B2 (ja) 測定装置
JP5606039B2 (ja) ステージ装置及び波面収差測定装置
JP2008292236A (ja) 三次元形状測定装置
JPH07178689A (ja) ロボットアームの位置ずれ測定方法およびその位置ずれ補正方法およびその位置ずれ補正システム
CN102967289B (zh) 一种触针式轮廓仪传感器静态及动态特性的检定装置
JP5038481B2 (ja) 多軸加工機の計測装置
US8223346B2 (en) Optics positioning sensor system
US20100182611A1 (en) Displacement measuring apparatus and displacement measuring method
KR101033032B1 (ko) 변위 측정 장치
JP6617033B2 (ja) 測定装置
JP6662089B2 (ja) ステージ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191217

R150 Certificate of patent or registration of utility model

Ref document number: 6635811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250