JP2017137976A - ラビリンスシール - Google Patents

ラビリンスシール Download PDF

Info

Publication number
JP2017137976A
JP2017137976A JP2016021012A JP2016021012A JP2017137976A JP 2017137976 A JP2017137976 A JP 2017137976A JP 2016021012 A JP2016021012 A JP 2016021012A JP 2016021012 A JP2016021012 A JP 2016021012A JP 2017137976 A JP2017137976 A JP 2017137976A
Authority
JP
Japan
Prior art keywords
pressure side
low
labyrinth seal
annular groove
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016021012A
Other languages
English (en)
Other versions
JP6654453B2 (ja
Inventor
俊輔 森中
Shunsuke Morinaka
俊輔 森中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016021012A priority Critical patent/JP6654453B2/ja
Publication of JP2017137976A publication Critical patent/JP2017137976A/ja
Application granted granted Critical
Publication of JP6654453B2 publication Critical patent/JP6654453B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

【課題】流体の漏れ量を抑制する。【解決手段】ラビリンスシール30は、段差部40と、高圧側フィン50と、低圧側フィン60と、環状溝70と、を備える。段差部40は、回転体20の外周部に形成される。段差部40よりも高圧側X1に小径部21が形成され、段差部40よりも低圧側X2に大径部22が形成されるように、段差部40は構成される。低圧側フィン60は、段差部40よりも低圧側X2に配置され、静止体10の内周部から径方向内側Y2に延びる。環状溝70は、回転体20の外周部に形成され、段差部40よりも低圧側X2、かつ、低圧側フィン60よりも高圧側X1、の領域の少なくとも一部に配置される。【選択図】図1

Description

本発明は、ラビリンスシールに関する。
例えば特許文献1、2には、回転機械を構成する回転体と静止体との間の隙間を通って、高圧側から低圧側に流体が漏れることを抑制するためのラビリンスシールが開示されている。このラビリンスシールは、回転体の外周部に形成された段差部と、段差部よりも低圧側に配置されるとともに静止体の内周部に設けられた低圧側フィンと、を備えている。例えば特許文献1の図1のように、このラビリンスシールでは、低圧側フィンよりも高圧側の空間に渦を発生させ、流体のエネルギー損失を生じさせることで、流体の漏れ量の低減を図っている。
特開2002−228014号公報 実開昭53−104803号公報
特許文献1の図1に記載の技術では、渦を形成する流体が、低圧側フィンに沿って径方向内側に流れ、回転体の外周面に当たる(吹き付けられる)。このとき、流体が、渦に沿う向きの流れと、流出出口に向かう向きの流れと、に分岐する。上記の流出出口とは、低圧側フィンと回転体との隙間である。従来のステップシールでは、流出出口からの流体の漏れ量が大きいことが問題であった。
そこで本発明は、流体の漏れ量を抑制できるラビリンスシールを提供することを目的とする。
本発明のラビリンスシールは、回転機械に設けられる。前記回転機械は、静止体と、回転体と、隙間と、を備える。前記回転体は、前記静止体よりも径方向内側に設けられ、回転軸回りに回転する。前記隙間は、前記静止体の内周部と前記回転体の外周部との間に形成され、高圧側から低圧側に軸方向に流体が流れるように構成される。前記ラビリンスシールは、段差部と、高圧側フィンと、低圧側フィンと、環状溝と、を備える。前記段差部は、前記回転体の外周部に形成され、かつ、高圧側に小径部が形成され低圧側に大径部が形成されるように構成される。前記高圧側フィンは、前記段差部よりも高圧側に配置され、前記静止体の内周部から径方向内側に延びる。前記低圧側フィンは、前記段差部よりも低圧側に配置され、前記静止体の内周部から径方向内側に延びる。前記環状溝は、前記回転体の外周部に形成され、前記段差部よりも低圧側かつ前記低圧側フィンよりも高圧側の領域の少なくとも一部に配置される。
上記構成により、流体の漏れ量を抑制できる。
第1実施形態の回転機械を示す断面図である。 L/G(図1参照)と、漏れ量と、の関係を示すグラフである。 D/H(図1参照)と、漏れ量と、の関係を示すグラフである。 第2実施形態の図1相当図である。 第3実施形態の図1相当図である。 第4実施形態の回転機械を示す断面図である。 第5実施形態の図1相当図である。
(第1実施形態)
図1〜図3を参照して第1実施形態の回転機械1について説明する。
回転機械1は、例えば圧縮機であり、例えばターボ圧縮機などである。回転機械1は、静止体10と、回転体20と、ラビリンスシール30と、を備える。静止体10は、ケーシング(図示なし)内に配置され、ケーシングに固定される。
回転体20は、静止体10よりも径方向内側Y2に設けられ、静止体10との間に隙間25をあけて配置される。回転体20は、軸受(図示なし)を介してケーシングに回転自在に取り付けられ、静止体10に対して回転軸回りに回転する。軸方向X(高圧側X1、低圧側X2)、径方向Y(径方向外側Y1、径方向内側Y2)、および周方向(回転体周方向)は、回転体20の回転軸を基準とする。回転体20は、小径部21と、大径部22と、を備える。大径部22は、小径部21よりも大径であり、小径部21よりも低圧側X2に配置される。
隙間25は、静止体10の内周部(径方向内側Y2部分)と回転体20の外周部(径方向外側Y1部分)との間に形成される。隙間25は、高圧側X1から低圧側X2に流体が隙間25を流れるように構成される。隙間25のうち、高圧側フィン50(下記)と低圧側フィン60(下記)との間の領域を、空間25aとする。
ラビリンスシール30は、高圧側X1から低圧側X2への、隙間25での流体の漏れを抑制する。ラビリンスシール30は、静止体10と回転体20とを接触させることなく(非接触で)、流体の漏れ流れの量(以下、漏れ量ともいう)を抑制するための軸封装置である。ラビリンスシール30は、段差部40と、高圧側フィン50と、低圧側フィン60と、環状溝70と、を備える。
段差部40は、回転体20の外周部に形成される。段差部40よりも高圧側X1の回転体20の外周部に小径部21が形成され、段差部40よりも低圧側X2の回転体20の外周部に大径部22が形成されるように、段差部40が構成される。段差部40は、小径部21の低圧側X2端部と大径部22の高圧側X1端部とをつなぐ。
高圧側フィン50および低圧側フィン60は、静止体10の内周部から径方向内側Y2に延び、回転体20の外周面の近傍まで延び、隙間25を仕切る、リング状の部分である。
高圧側フィン50の先端部(径方向内側Y2端部)と回転体20との間には、径方向Yの隙間δがある。高圧側フィン50は、段差部40よりも高圧側X1に配置され、小径部21と径方向Yに対向する位置に配置される。高圧側フィン50の先端部は、大径部22の外周面よりも径方向内側Y2に配置される。
低圧側フィン60の先端部(径方向内側Y2端部)と回転体20との間には、隙間ε(流体の流出出口)がある。低圧側フィン60は、段差部40よりも低圧側X2に配置される。低圧側フィン60は、大径部22と径方向Yに対向する位置に配置され、環状溝70と径方向Yに対向する位置に配置されてもよい。低圧側フィン60は、高圧側X1の側面である高圧側側面60aと、低圧側X2の側面である低圧側側面60bと、を備える。高圧側側面60aおよび低圧側側面60bは、軸方向Xに直交する面である。上記「直交」は、略直交を含む(以下同様)。
環状溝70は、渦V2(下記)を流入させるための溝である。環状溝70は、環状溝70に囲まれた空間(環状溝70の内部)に渦V2が流入するように構成される。環状溝70は、回転体20の外周部に形成され、大径部22に形成され、大径部22の径方向外側Y1端部よりも径方向内側Y2に凹む。環状溝70は、段差部40よりも低圧側X2、かつ、低圧側フィン60よりも高圧側X1の領域の、少なくとも一部に配置される。環状溝70の一部は、高圧側側面60aよりも低圧側X2に配置されてもよい。環状溝70は、環状であり、周方向に沿って形成される。周方向から見た断面において、環状溝70に囲まれた部分(環状溝70の内部)の形状は、矩形状である。上記「周方向から見た断面」は、回転体20の回転軸と平行かつ回転軸を含む断面である。環状溝70は、高圧側X1の側面である高圧側側面70aと、低圧側X2の側面である低圧側側面70bと、底面70cと、を備える。高圧側側面70aおよび低圧側側面70bは、軸方向Xに直交する面である。底面70cは、環状溝70の径方向内側Y2部分(底部)の面であり、径方向Yに直交する面である。
(流体の流れ)
隙間25を流れる流体は、次のように流れる。流体は、高圧側フィン50よりも高圧側X1から、隙間δを通過し、空間25aに流入し、渦V1を形成する。渦V1は次のように形成される。流体は、小径部21の外周面に沿って低圧側X2に直進し、段差部40に当たり(衝突し)、段差部40に沿って径方向外側Y1に流れる(転向する)。段差部40に沿って流れた流体は、静止体10の内周面に当たり、静止体10の内周面に沿って高圧側X1に流れ、高圧側フィン50に当たり、高圧側フィン50に沿って径方向内側Y2に流れ、小径部21に当たり、低圧側X2に流れる。このように渦V1が形成される。
段差部40に沿って大径部22の外周部の近傍まで達した流体は、渦V1と、渦V1よりも低圧側X2に向かう流れと、に分岐する。分岐した流体は、渦V2を形成する。渦V2は次のように形成される。上記「分岐した流体」は、静止体10の内周面に当たり、静止体10の内周面に沿って低圧側X2に流れ、低圧側フィン60の高圧側側面60aに当たり、高圧側側面60aに沿って径方向内側Y2に流れる。高圧側側面60aに沿って流れた流体は、環状溝70内に流入し、環状溝70の内面に沿って流れ、環状溝70から径方向外側Y1に流れ、環状溝70から流出する。このように渦V2が形成される。
高圧側側面60aに沿って径方向内側Y2に流れた流体は、大径部22に当たり、渦V2と、隙間εに向かう流れ(分岐流F)と、に分岐する。分岐流Fは、隙間εを通過し、低圧側X2に流れることで、空間25aの外に漏れる(流出する)。
高圧側側面60aに沿って径方向内側Y2に流れた流体が、環状溝70に流入することで、分岐流Fの流量が抑制されるので、流体の漏れ量が抑制される。また、空間25aに形成された渦V1および渦V2によって流体間摩擦が発生し、流体のエネルギー損失が生じることによって、流体の漏れ量が抑制される。この流体間摩擦には、流体どうしの摩擦、および、流体と壁面との摩擦が含まれる。上記壁面は、流速がゼロの流体とみなせるものであり、例えば環状溝70の表面などが含まれる。
(寸法について)
段差部40よりも低圧側X2かつ低圧側フィン60よりも高圧側X1の領域の少なくとも一部に環状溝70があれば、環状溝70による効果(漏れ量の抑制)が得られる。さらに、下記の条件を満たすことで環状溝70による効果をより向上させることができる。
周方向から見た断面における、軸方向Xに関する距離を次のように定義する。
距離Eは、段差部40と、環状溝70の径方向外側Y1端部かつ高圧側X1端部と、の軸方向Xにおける距離である。例えば、距離Eは、段差部40と、高圧側側面70aの径方向外側Y1端部と、の軸方向Xにおける距離である。なお、段差部40に軸方向Xの幅がある場合(例えば段差部40に傾斜がある場合など)は、距離Eの高圧側X1の起点は、段差部40の径方向外側Y1端部かつ低圧側X2端部とする(下記の距離G、距離Lについても同様)。
開口幅Wは、環状溝70の開口の軸方向Xにおける幅である。さらに詳しくは、開口幅Wは、環状溝70の径方向外側Y1端部での軸方向Xにおける幅である。
距離Lは、段差部40と、環状溝70の径方向外側Y1端部かつ低圧側X2端部と、の軸方向Xにおける距離である。例えば、距離Lは、段差部40と、低圧側側面70bの径方向外側Y1端部と、の軸方向Xにおける距離である。
距離Gは、段差部40と、低圧側フィン60の先端部かつ高圧側X1端部と、の軸方向Xにおける距離である。例えば、距離Gは、段差部40と、高圧側側面60aの径方向内側Y2端部と、の軸方向Xにおける距離である。
厚さtは、低圧側フィン60の先端部での軸方向Xにおける幅である。
周方向から見た断面における、径方向Yに関する距離を次のように定義する。
高さHは、段差部40の径方向Yにおける幅である。さらに詳しくは、高さHは、小径部21の外周面の低圧側X2端部と、大径部22の外周面の高圧側X1端部と、の径方向Yにおける距離である。
深さDは、環状溝70の径方向Yにおける幅である。さらに詳しくは、深さDは、環状溝70の径方向内側Y2端部(例えば底面70c)と、大径部22の外周面と、の径方向Yにおける距離である。
(距離Eに関する好ましい条件)
高圧側側面60aに対する高圧側側面70aの軸方向Xにおける距離(G−E)を大きくすることで、渦V2を大きく形成できる。その結果、上記のエネルギー損失をより増加させることができる。例えば、0<E/G<0.8、を満たすことが好ましい。
(開口幅Wに関する好ましい条件)
開口幅Wを大きくすることで、渦V2が環状溝70に流入しやすくなり、また、渦V2を大きく形成できる。その結果、上記のエネルギー損失をより増加させることができる。例えば、W/G>0.2、を満たすことが好ましい。
(距離Lに関する好ましい条件)
高圧側側面60aの軸方向X位置に対して、低圧側側面70bの軸方向X位置が、等しい位置(同一面上)、または、低圧側X2であることが好ましい(G≦Lが好ましい)。G≦Lとすることで、低圧側フィン60に沿って径方向内側Y2に流れた渦V2が、環状溝70に流入しやすくなり、分岐流Fの流量を抑制できる。流体が環状溝70に流入しやすいので、渦V2の流速をより速くできる結果、上記のエネルギー損失を大きくすることができる。
高圧側側面70aの位置を固定し、高圧側側面60aと低圧側側面70bとの位置関係、および、漏れ量について調査した。その結果、図2に示すように、L/Gによって漏れ量が変化するという知見を得た。なお、図2においては、縦軸の漏れ量の単位を無次元化した。図2の「従来技術」は、環状溝70を備えないラビリンスシールである。図1に示す高圧側側面60aに対して低圧側側面70bが高圧側X1に離れすぎると、低圧側フィン60に沿って径方向内側Y2に流れた流体が、環状溝70に流入しにくくなる。その結果、漏れ量抑制の効果は小さくなる。また、高圧側側面60aに対して低圧側側面70bが低圧側X2に離れすぎると、低圧側フィン60と回転体20との隙間εが大きくなるので、流体が隙間εを通りやすくなり、漏れ量抑制の効果は小さくなる。そこで、図2に示すように、0<L/G<1.1+t/G、を満たすことが好ましい。この場合、従来技術に比べ、確実に漏れ量を抑制できる。また、0.6<L/G<1.1+t/G、を満たすことがさらに好ましい。この場合、漏れ量をより抑制できる。
(深さDに関する好ましい条件)
図1に示す高さH、深さD、および漏れ量について調査した。その結果、図3に示すようにD/Hによって漏れ量が変化するという知見を得た。なお、図3においては、縦軸の漏れ量の単位を無次元化した。図1に示す深さDが小さいと、環状溝70に流入できる渦V2の流れが少なくなり、分岐流Fの流量が増えるので、漏れ量が増加する。そこで、図3に示すように、0.6<D/H、を満たすことが好ましい。この場合、従来技術に比べ、確実に漏れ量を抑制できる。なお、0<D/Hであれば、従来技術に比べ、漏れ量抑制の効果はある。
(第1の発明の効果)
図1に示すラビリンスシール30による効果は次の通りである。ラビリンスシール30は、回転機械1に設けられる。回転機械1は、静止体10と、回転体20と、隙間25と、を備える。回転体20は、静止体10よりも径方向内側Y2に設けられ、回転軸回りに回転する。隙間25は、静止体10の内周部と回転体20の外周部との間に形成され、高圧側X1から低圧側X2に軸方向Xに流体が流れるように構成される。ラビリンスシール30は、段差部40と、高圧側フィン50と、低圧側フィン60と、環状溝70と、を備える。
[構成1−1]段差部40は、回転体20の外周部に形成される。段差部40は、段差部40よりも高圧側X1に小径部21が形成され、段差部40よりも低圧側X2に大径部22が形成されるように構成される。
[構成1−2]高圧側フィン50は、段差部40よりも高圧側X1に配置され、静止体10の内周部から径方向内側Y2に延びる。低圧側フィン60は、段差部40よりも低圧側X2に配置され、静止体10の内周部から径方向内側Y2に延びる。
[構成1−3]環状溝70は、回転体20の外周部に形成される。環状溝70は、段差部40よりも低圧側X2、かつ、低圧側フィン60よりも高圧側X1、の領域の少なくとも一部に配置される。
上記[構成1−1]および[構成1−2]により、段差部40よりも低圧側X2、かつ、低圧側フィン60よりも高圧側X1の領域に、流体の渦V2が生じる。そこで、ラビリンスシール30は、上記[構成1−3]を備える。よって、渦V2が環状溝70に流入する。よって、渦V2から隙間εに向かって分岐する分岐流Fの量を抑制できるので、隙間25での流体の漏れを抑制できる。また、渦V2が環状溝70に流入するので、渦V2の流量を多くでき、渦V2の流速を速くできる。よって、渦V2とその周辺との流体間摩擦を増大させることができるので、流体のエネルギー損失を増大させることができる。その結果、隙間25での流体の漏れを抑制できる。
(第4の発明の効果)
[構成4]段差部40と、環状溝70の径方向外側Y1端部かつ低圧側X2端部と、の軸方向Xにおける距離をLとする。段差部40と、低圧側フィン60の先端部かつ高圧側X1端部と、の軸方向Xにおける距離をGとする。低圧側フィン60の先端部での軸方向Xの幅をtとする。このとき、0<L/G<1.1+t/G、を満たす。
上記[構成4]により、1.1+t/G≦L/Gの場合に比べ、低圧側フィン60と回転体20との隙間εを小さくできる。よって、隙間εからの流体の漏れを確実に抑制でき、隙間25での流体の漏れをより抑制できる。
(第5の発明の効果)
[構成5]0.6<L/G<1.1+t/G、を満たす。
上記[構成5]により、L/G≦0.6の場合に比べ、環状溝70に流入する渦V2の流量を多くできる。よって、流体のエネルギー損失をより増大させることができ、隙間25での流体の漏れをより抑制できる。
(第6の発明の効果)
[構成6]小径部21の外周面と、大径部22の外周面と、の径方向Yにおける距離をHとする。大径部22の外周面と、環状溝70の底部と、の径方向Yにおける距離をDとする。このとき、0.6<D/H、を満たす。
上記[構成6]により、D/H≦0.6の場合に比べ、環状溝70に流入する渦V2の流量を多くできる。その結果、流体のエネルギー損失をより増大させることができ、隙間25での流体の漏れをより抑制できる。
(第2実施形態)
図4を参照して、第2実施形態のラビリンスシール230について、第1実施形態のラビリンスシール30(図1参照)との相違点を説明する。なお、ラビリンスシール230のうち、第1実施形態のラビリンスシール30(図1参照)との共通点については、第1実施形態と同一の符号を付し、説明を省略した(共通点の説明を省略する点については他の実施形態の説明も同様)。相違点は、環状溝70が、円弧状部270dを備える点である。
円弧状部270dは、環状溝70の底部に設けられる。周方向から見た円弧状部270dの断面は、円弧状である。周方向から見た環状溝70の底部の断面は、円弧状である。周方向から見た円弧状部270dの断面は、半円弧状(円弧の中心角が180°)である。円弧の中心角は180°未満でもよい。上記「円弧状」は、略円弧状(例えば略半円弧状)を含む。なお、図1に示す高圧側側面70aおよび低圧側側面70bは、図4に示す円弧状部270dと連続するように設けられる。図1に示す高圧側側面70aおよび低圧側側面70bは、設けられなくてもよい。
(第2の発明の効果)
図4に示す第2実施形態のラビリンスシール230による効果は次の通りである。
[構成2]周方向から見た環状溝70の底部の断面は、円弧状である(円弧状部270dを参照)。
上記[構成2]では、第1実施形態のように環状溝70(図1参照)の内部が矩形状である場合に比べ、環状溝70の形状が、渦V2の流れの形に近い形状となる。よって、環状溝70の底部に沿って渦V2が流れるので、渦V2の流速を保つことができる。よって、渦V2によるエネルギー損失をより増大できる。
(第3実施形態)
図5を参照して、第3実施形態のラビリンスシール330について、第1実施形態のラビリンスシール30との相違点を説明する。相違点は、環状溝70が、高圧側傾斜部370e(傾斜部)および低圧側傾斜部370f(傾斜部)を備える点である。
高圧側傾斜部370eは、環状溝70の高圧側X1部分に設けられる。周方向から見た断面において、高圧側傾斜部370eの径方向内側Y2端部は、高圧側傾斜部370eの径方向外側Y1端部よりも、低圧側X2(環状溝70の軸方向X中心側)に配置される。周方向から見た断面において、高圧側傾斜部370eは、直線状であり、径方向Yに対して角度θだけ傾く。
低圧側傾斜部370fは、環状溝70の低圧側X2部分に設けられる。周方向から見た断面において、低圧側傾斜部370fの径方向内側Y2端部は、低圧側傾斜部370fの径方向外側Y1端部よりも、高圧側X1(環状溝70の軸方向X中心側)に配置される。周方向から見た断面において、低圧側傾斜部370fは、直線状であり、径方向Yに対して角度φだけ傾く。なお、高圧側傾斜部370eおよび低圧側傾斜部370fのうち、一方のみが設けられてもよい。
(第3の発明の効果)
本実施形態のラビリンスシール330による効果は次の通りである。ラビリンスシール330は、下記[構成3−1]および下記[構成3−2]の少なくともいずれかを備える。
[構成3−1]環状溝70は、環状溝70の高圧側X1部分に設けられる高圧側傾斜部370eを備える。周方向から見た断面において、高圧側傾斜部370eの径方向内側Y2端部は、高圧側傾斜部370eの径方向外側Y1端部よりも、環状溝70の軸方向X中心側に配置される。
[構成3−2]環状溝70は、環状溝70の低圧側X2部分に設けられる低圧側傾斜部370fを備える。周方向から見た断面において、低圧側傾斜部370fの径方向内側Y2端部は、低圧側傾斜部370fの径方向外側Y1端部よりも、環状溝70の軸方向X中心側に配置される。
上記[構成3−1]により、第1実施形態のように環状溝70(図1参照)の内部が矩形状である場合に比べ、環状溝70の形状が、渦V2の流れの形に近い形状となる。よって、渦V2の流れが高圧側傾斜部370eに沿って流れるので、渦V2の流速を保つことができる。よって、渦V2によるエネルギー損失をより増大できる。また、上記[構成3−2]により、上記[構成3−1]と同様の効果が得られる(ただし、高圧側傾斜部370eを低圧側傾斜部370fに読み替える)。
(第4実施形態)
図6を参照して、第4実施形態のラビリンスシール430について、第1実施形態のラビリンスシール30などとの相違点を説明する。相違点は、ラビリンスシール430が、複数段のステップシール(階段状のシール)である点である。ラビリンスシール430は、高圧側X1から低圧側X2に順に配置される単位構造431〜435(431・432・433・434・435)を備える。単位構造431〜435それぞれは(各段の構造は)、第1〜第3実施形態および第5実施形態(下記)のいずれかの実施形態のラビリンスシール(30、230、330、または530)の条件を満たす。単位構造431〜435は、互いに軸方向Xに隣接する。ある単位構造432は、この単位構造432よりも1段だけ高圧側X1の単位構造431に対して、径方向外側Y1にずれるように配置される(単位構造433〜単位構造435についても同様)。単位構造431〜435が上記の条件を満たすように、静止体410と、回転体420と、ラビリンスシール430と、が構成される。
静止体410は、高圧側X1から低圧側X2に径が順次大きくなる静止体径部411〜415(411・412・413・414・415)を備える。回転体420は、高圧側X1から低圧側X2に径が順次大きくなる回転体径部421〜426(421・422・423・424・425・426)を備える。複数の段差部441〜445(441・442・443・444・445)は、上記のように径が順次大きくなる回転体径部421〜426が形成されるように構成される。複数の低圧側フィン461〜465および複数の環状溝471〜475は、複数の段差部441〜445それぞれの低圧側X2に配置される。さらに詳しくは、ある単位構造432の低圧側フィン462および環状溝472は、この単位構造432の段差部442よりも低圧側X2に配置される。ある単位構造432の低圧側フィン462は、この単位構造432よりも1段だけ低圧側X2の単位構造433の高圧側フィン50と兼用される(単位構造433および単位構造434についても同様)。
(第8の発明の効果)
[構成8]段差部441〜445、低圧側フィン461〜465、および環状溝471〜475は、それぞれ複数設けられる。複数の段差部441〜445は、回転体420の外周部の径が高圧側X1から低圧側X2に順次大きくなるように形成される。低圧側フィン461〜465および環状溝471〜475は、複数の段差部441〜445それぞれの低圧側X2に配置される。
上記[構成8]により、段差部441〜445、低圧側フィン461〜465、および環状溝471〜475が1つずつのみ設けられる場合に比べ、隙間25での流体の漏れをより抑制できる。
(第5実施形態)
図7を参照して、第5実施形態のラビリンスシール530について、第1実施形態のラビリンスシール30との相違点を説明する。相違点は、高圧側フィン550および低圧側フィン560の構成である。
低圧側フィン560の先端部は、低圧側フィン560の基端部よりも高圧側X1に配置される。周方向から見た断面において、低圧側フィン560は直線状であり、低圧側フィン560の高圧側側面60aは直線状である。周方向から見た断面において、高圧側側面60aは、径方向Yに対して角度βだけ傾く。なお、周方向から見た断面において、低圧側フィン560は、湾曲形状でもよく、L字形状などの屈曲形状でもよい(高圧側フィン550も同様)。
高圧側フィン550は、例えば低圧側フィン560と同様に構成される。周方向から見た断面において、高圧側フィン550は、径方向Yに対して角度αだけ傾く。角度αは、角度βと同じでもよく、異なってもよい。
(第7の発明の効果)
[構成7]低圧側フィン560の先端部は、低圧側フィン560の基端部よりも高圧側X1に配置される。
上記[構成7]により、渦V2は、低圧側フィン560に沿って径方向内側Y2に流れるとき、高圧側X1に流れる。よって、低圧側X2に向かう分岐流Fの量を抑制でき、かつ、環状溝70に流入する渦V2の流量を多くできる。よって、隙間25での流体の漏れをより抑制できる。
(変形例)
上記の各実施形態は様々に変形されてもよい。
例えば、互いに異なる実施形態の構成要素どうしが組み合わされてもよい。例えば、図4に示す第2実施形態のように円弧状部270dを備える環状溝70に対し、図5に示す第3実施形態の高圧側傾斜部370eおよび低圧側傾斜部370fの少なくともいずれかが付加されてもよい。また例えば、図6では、環状溝471〜475内部の断面形状が矩形状のものを示した。しかし、複数の環状溝471〜475の一部または全部は、円弧状部270d(図4参照)、高圧側傾斜部370e(図5参照)および低圧側傾斜部370f(図5参照)の少なくともいずれかを備えてもよい。また例えば、図7に示すように径方向Yに対して傾く高圧側フィン550および低圧側フィン560の一方が、図1に示すように径方向Yに対して傾かない高圧側フィン50または低圧側フィン60に置換されてもよい。
上記実施形態の構成要素の一部が設けられなくてもよい。上記実施形態の構成要素の数が変更されてもよい。例えば、図6に示す単位構造431〜435の段数は、第4実施形態では5であるが、2以上かつ5以外の数でもよい。
1 回転機械
10 静止体
20 回転体
21 小径部
22 大径部
25 隙間
30、230、330、430、530 ラビリンスシール
40、441〜445 段差部
50、550 高圧側フィン
60、461〜465、560 低圧側フィン
70、471〜475 環状溝
370e 高圧側傾斜部(傾斜部)
370f 低圧側傾斜部(傾斜部)
X1 高圧側
X2 低圧側

Claims (8)

  1. 静止体と、
    前記静止体よりも径方向内側に設けられ、回転軸回りに回転する回転体と、
    前記静止体の内周部と前記回転体の外周部との間に形成され、高圧側から低圧側に軸方向に流体が流れるように構成される隙間と、
    を備える回転機械に設けられるラビリンスシールであって、
    前記回転体の外周部に形成され、かつ、高圧側に小径部が形成され低圧側に大径部が形成されるように構成される段差部と、
    前記段差部よりも高圧側に配置され、前記静止体の内周部から径方向内側に延びる高圧側フィンと、
    前記段差部よりも低圧側に配置され、前記静止体の内周部から径方向内側に延びる低圧側フィンと、
    前記回転体の外周部に形成され、前記段差部よりも低圧側かつ前記低圧側フィンよりも高圧側の領域の少なくとも一部に配置される環状溝と、
    を備える、ラビリンスシール。
  2. 請求項1に記載のラビリンスシールであって、
    回転体周方向から見た前記環状溝の底部の断面は、円弧状である、
    ラビリンスシール。
  3. 請求項1または2に記載のラビリンスシールであって、
    前記環状溝は、前記環状溝の高圧側部分および低圧側部分の少なくともいずれかに設けられる傾斜部を備え、
    回転体周方向から見た断面において、前記傾斜部の径方向内側端部は、前記傾斜部の径方向外側端部よりも、前記環状溝の軸方向中心側に配置される、
    ラビリンスシール。
  4. 請求項1〜3のいずれか1項に記載のラビリンスシールであって、
    前記段差部と、前記環状溝の径方向外側端部かつ低圧側端部と、の軸方向における距離をL、
    前記段差部と、前記低圧側フィンの先端部かつ高圧側端部と、の軸方向における距離をG、
    前記低圧側フィンの先端部での軸方向の幅をt、
    としたとき、0<L/G<1.1+t/G、を満たす、
    ラビリンスシール。
  5. 請求項4に記載のラビリンスシールであって、
    0.6<L/G<1.1+t/G、を満たす、
    ラビリンスシール。
  6. 請求項1〜5のいずれか1項に記載のラビリンスシールであって、
    前記小径部の外周面と、前記大径部の外周面と、の径方向における距離をH、
    前記環状溝の底部と、前記大径部の外周面と、の径方向における距離をD、
    としたとき、0.6<D/H、を満たす、
    ラビリンスシール。
  7. 請求項1〜6のいずれか1項に記載のラビリンスシールであって、
    前記低圧側フィンの先端部は、前記低圧側フィンの基端部よりも高圧側に配置される、
    ラビリンスシール。
  8. 請求項1〜7のいずれか1項に記載のラビリンスシールであって、
    前記段差部、前記低圧側フィン、および前記環状溝は、それぞれ複数設けられ、
    複数の前記段差部は、前記回転体の外周部の径が高圧側から低圧側に順次大きくなるように形成され、
    前記低圧側フィンおよび前記環状溝は、複数の前記段差部それぞれの低圧側に配置される、
    ラビリンスシール。
JP2016021012A 2016-02-05 2016-02-05 ラビリンスシール Expired - Fee Related JP6654453B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021012A JP6654453B2 (ja) 2016-02-05 2016-02-05 ラビリンスシール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021012A JP6654453B2 (ja) 2016-02-05 2016-02-05 ラビリンスシール

Publications (2)

Publication Number Publication Date
JP2017137976A true JP2017137976A (ja) 2017-08-10
JP6654453B2 JP6654453B2 (ja) 2020-02-26

Family

ID=59566702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021012A Expired - Fee Related JP6654453B2 (ja) 2016-02-05 2016-02-05 ラビリンスシール

Country Status (1)

Country Link
JP (1) JP6654453B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130485A (ja) * 2000-08-31 2002-05-09 Atlas Copco Comptec Inc 液体シール
JP2002228014A (ja) * 2001-02-05 2002-08-14 Mitsubishi Heavy Ind Ltd ラビリンスシール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130485A (ja) * 2000-08-31 2002-05-09 Atlas Copco Comptec Inc 液体シール
JP2002228014A (ja) * 2001-02-05 2002-08-14 Mitsubishi Heavy Ind Ltd ラビリンスシール

Also Published As

Publication number Publication date
JP6654453B2 (ja) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6623138B2 (ja) ラビリンスシール
KR102126246B1 (ko) 래비린스 시일
KR102020138B1 (ko) 라비린스 시일
JP6392343B2 (ja) 摺動部品
WO2015115558A1 (ja) シール構造、及び回転機械
JP5972374B2 (ja) 軸流流体機械
WO2015133313A1 (ja) シール構造、及び回転機械
WO2017221771A1 (ja) ラビリンスシール
WO2019049847A1 (ja) 摺動部品
JP6456950B2 (ja) 摺動部品
WO2018070282A1 (ja) ラビリンスシール
JP6975672B2 (ja) ラビリンスシール構造
KR20190027730A (ko) 래비린스 시일 및 래비린스 시일 구조
CN107850221B (zh) 非接触环状密封件及具备该非接触环状密封件的旋转机械
JP2017137976A (ja) ラビリンスシール
JP6824862B2 (ja) ラビリンスシール、および、ラビリンスシール構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200130

R150 Certificate of patent or registration of utility model

Ref document number: 6654453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees