JP2017124364A - Porous filter, hydrogen separation film with porous filter as support, hydrogen separation method, and manufacturing method of porous filter - Google Patents
Porous filter, hydrogen separation film with porous filter as support, hydrogen separation method, and manufacturing method of porous filter Download PDFInfo
- Publication number
- JP2017124364A JP2017124364A JP2016004727A JP2016004727A JP2017124364A JP 2017124364 A JP2017124364 A JP 2017124364A JP 2016004727 A JP2016004727 A JP 2016004727A JP 2016004727 A JP2016004727 A JP 2016004727A JP 2017124364 A JP2017124364 A JP 2017124364A
- Authority
- JP
- Japan
- Prior art keywords
- porous
- porous filter
- metal
- pores
- metal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 86
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 86
- 238000000926 separation method Methods 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 125000004435 hydrogen atom Chemical class [H]* 0.000 title 2
- 229910052751 metal Inorganic materials 0.000 claims abstract description 192
- 239000002184 metal Substances 0.000 claims abstract description 192
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000011148 porous material Substances 0.000 claims abstract description 76
- 239000000919 ceramic Substances 0.000 claims abstract description 69
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 45
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 41
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000012528 membrane Substances 0.000 claims abstract description 32
- 229910001252 Pd alloy Inorganic materials 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims description 94
- 239000010409 thin film Substances 0.000 claims description 47
- 150000004703 alkoxides Chemical class 0.000 claims description 33
- 239000010408 film Substances 0.000 claims description 33
- 239000000835 fiber Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 7
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 238000007654 immersion Methods 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 4
- 230000007062 hydrolysis Effects 0.000 claims description 4
- 238000006460 hydrolysis reaction Methods 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 239000012670 alkaline solution Substances 0.000 claims description 3
- 238000005371 permeation separation Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000010301 surface-oxidation reaction Methods 0.000 claims description 2
- 239000000470 constituent Substances 0.000 abstract description 13
- 230000007547 defect Effects 0.000 abstract description 10
- 239000000243 solution Substances 0.000 description 32
- 239000010410 layer Substances 0.000 description 22
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 19
- 239000010935 stainless steel Substances 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000007769 metal material Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000007772 electroless plating Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- -1 palladium ions Chemical class 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- YOBOXHGSEJBUPB-MTOQALJVSA-N (z)-4-hydroxypent-3-en-2-one;zirconium Chemical compound [Zr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O YOBOXHGSEJBUPB-MTOQALJVSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- JPUHCPXFQIXLMW-UHFFFAOYSA-N aluminium triethoxide Chemical compound CCO[Al](OCC)OCC JPUHCPXFQIXLMW-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- AQEDFGUKQJUMBV-UHFFFAOYSA-N copper;ethane-1,2-diamine Chemical compound [Cu].NCCN AQEDFGUKQJUMBV-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- YPTUAQWMBNZZRN-UHFFFAOYSA-N dimethylaminoboron Chemical compound [B]N(C)C YPTUAQWMBNZZRN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- NREVZTYRXVBFAQ-UHFFFAOYSA-N propan-2-ol;yttrium Chemical compound [Y].CC(C)O.CC(C)O.CC(C)O NREVZTYRXVBFAQ-UHFFFAOYSA-N 0.000 description 1
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 229910002070 thin film alloy Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、多孔性フィルターと、該フィルターを支持体とする水素分離膜、水素分離方法、前記多孔性フィルターの製造方法に関する。 The present invention relates to a porous filter, a hydrogen separation membrane using the filter as a support, a hydrogen separation method, and a method for producing the porous filter.
多孔性セラミックス基材や多孔性金属基材は多孔性フィルターとして気体又は液体の濾過に用いられる他、その上にパラジウムまたはパラジウム合金の薄膜を形成して水素分離膜として用いられたり、その上に多孔性無機薄膜を形成して分子分離膜として用いられたりしている。 Porous ceramic substrates and porous metal substrates can be used as a porous filter for gas or liquid filtration, and can also be used as a hydrogen separation membrane by forming a palladium or palladium alloy thin film on it. A porous inorganic thin film is formed and used as a molecular separation membrane.
多孔性セラミックス基材の表面の細孔径はその用途により異なるが、不純物除去を目的とするフィルター用途では、その不純物粒子に応じて例えば2μm以下の微細孔であることが好ましく、1μm以下の微細孔であることがより好ましい。多孔性セラミックス基材上に水素分離用のパラジウムまたはパラジウム合金の薄膜を形成する場合や、多孔性無機薄膜を形成して分子分離膜とする場合にも10μm以下の薄膜とするためには多孔性セラミックス基材表面の最大細孔径は2μm以下であることが好ましく、1μm以下であることがより好ましい。 Although the pore diameter of the surface of the porous ceramic substrate varies depending on the application, it is preferably a fine pore of 2 μm or less, for example, preferably 1 μm or less, depending on the impurity particles in a filter application for removing impurities. It is more preferable that Even when a palladium or palladium alloy thin film for hydrogen separation is formed on a porous ceramic substrate, or when a porous inorganic thin film is formed to form a molecular separation film, it is porous to make a thin film of 10 μm or less. The maximum pore diameter on the surface of the ceramic substrate is preferably 2 μm or less, and more preferably 1 μm or less.
何れの用途でも、多孔性セラミックス基材を通過する気体や液体など被処理流体の透過速度を高める為に、透過抵抗を小さくして圧力損失を抑制することが必要である。しかし、細孔の微細化は圧力損失の上昇を招き、その構成厚さを薄くせざるを得ないが、そうした薄膜化は構造材としての必要強度を失う結果をもたらす。 In any application, it is necessary to reduce the permeation resistance and suppress the pressure loss in order to increase the permeation speed of the fluid to be treated such as gas or liquid passing through the porous ceramic substrate. However, miniaturization of pores causes an increase in pressure loss, and the thickness of the structure must be reduced. However, such reduction in thickness results in the loss of the necessary strength as a structural material.
そこで、粗い多孔性セラミックス基材の表面に微細孔を有する多孔性セラミック膜を積層することが通常行われる。しかし、セラミック膜は非常に脆く、取扱いによって破損しやすいことから、作業者への負担が大きく、製作コストの上昇や特殊プロセスが必要となる。また、セラミックス材料の基本的な問題として金属材料への接合性があり、特に高温下での使用では金属製装置へのセラミックスの接合は大きな問題となる。 Therefore, it is usual to laminate a porous ceramic film having fine pores on the surface of a rough porous ceramic substrate. However, since the ceramic film is very fragile and easily damaged by handling, the burden on the operator is great, and the manufacturing cost is increased and a special process is required. Further, as a basic problem of ceramic materials, there is a bondability to metal materials. Especially when used at high temperatures, bonding of ceramics to a metal device is a big problem.
一方、金属粒子を焼結した焼結金属体や金属線を網状に焼結した金属メッシュ等の多孔性金属基材の場合、当該基材の表面上に開口する細孔の最大細孔径は2μmを超えるのが通常であり、気体または液体の透過速度は高いものの比較的大きな不純物の除去しか可能ではなく、セラミックス多孔体のような微細な不純物の除去には適していない。また、その表面にパラジウムやパラジウム合金でなる水素分離用の薄膜を形成する場合、前記多孔性金属基材によるものでは、表面層には比較的大きな前記細孔を備えることから、その表面上に配置する前記水素分離用の薄膜が、例えば膜厚さ10μm以下のように薄いものでは、前記細孔の凹凸によって破損やクラック形成しやすくなり、水素の選択的分離が得られない。 On the other hand, in the case of a porous metal substrate such as a sintered metal body obtained by sintering metal particles or a metal mesh obtained by sintering a metal wire in a net shape, the maximum pore diameter of pores opened on the surface of the substrate is 2 μm. In general, the permeation rate of gas or liquid is high, but only relatively large impurities can be removed, and it is not suitable for removing fine impurities such as a ceramic porous body. When a thin film for hydrogen separation made of palladium or palladium alloy is formed on the surface, the surface layer is provided with relatively large pores in the surface of the porous metal substrate. If the thin film for hydrogen separation to be arranged is thin, for example, having a film thickness of 10 μm or less, damage and cracks are easily formed due to the unevenness of the pores, and selective hydrogen separation cannot be obtained.
これを解消するため、前記多孔性金属基材の表面上に微細孔を有する表面平滑な多孔性セラミック膜を形成したものがある(下記特許文献1及び2参照)。この場合、金属製装置への装着が該多孔性金属基材を介して行われる利点がある。 In order to solve this problem, there is one in which a porous ceramic film having a smooth surface having fine pores is formed on the surface of the porous metal substrate (see Patent Documents 1 and 2 below). In this case, there is an advantage that the attachment to the metal device is performed through the porous metal substrate.
しかしながら、粗いセラミックス多孔体表面上に形成する場合と同様に、表面が平滑な多孔性セラミック膜を多孔性金属基材の表面に形成する製作コストは上昇し、また、表面状態が平滑なものでは、その表面上に積層形成する水素透過分離用の薄膜材料の十分な密着性が得られず、良好な結果が得られ難いという問題がある。 However, as in the case of forming on the surface of a rough ceramic porous body, the production cost of forming a porous ceramic film with a smooth surface on the surface of the porous metal substrate increases, and the surface state is not smooth. However, sufficient adhesion of the thin film material for hydrogen permeation separation formed on the surface cannot be obtained, and it is difficult to obtain good results.
本発明は、上記した従来技術の現状に鑑みてなされたもので、金属製装置への接合が容易で、しかも安価に製造できる、例えば2μmを超える細孔を表面に有しない多孔性フィルターと、その製造方法の提供を目的とする。 The present invention was made in view of the current state of the prior art described above, and can be easily joined to a metal device and manufactured at low cost, for example, a porous filter having no pores exceeding 2 μm on the surface, It aims at providing the manufacturing method.
また、本発明は、当該多孔性フィルターを支持体として用いることにより、水素分離膜として有用性が高いパラジウム薄膜またはパラジウム合金薄膜を欠陥無く多孔性フィルター上に形成し、高価なパラジウムの使用量を削減すると同時に、高い水素透過速度と高い水素選択性とを両立させる水素分離膜を提供すると共に、当該水素分離膜を使用して水素を効率よく分離する水素の分離方法を提供することを目的とする。 In addition, the present invention uses the porous filter as a support to form a palladium thin film or a palladium alloy thin film, which is highly useful as a hydrogen separation membrane, on the porous filter without defects, thereby reducing the amount of expensive palladium used. An object of the present invention is to provide a hydrogen separation membrane that simultaneously achieves a high hydrogen permeation rate and high hydrogen selectivity, and to provide a hydrogen separation method that efficiently separates hydrogen using the hydrogen separation membrane. To do.
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、多孔性金属基材の表面に開口する細孔中に金属アルコキシドを満たし、細孔中で金属アルコキシドを加水分解することにより細孔中に金属の水酸化物及び/または酸化物の多孔体を形成すると、表面上に開口する細孔の最大細孔径が2μm以下に微細化でき、金属製装置への接合が容易でしかも安価に製造できる多孔性フィルターが得られること、また、このようにして形成した多孔性フィルターを支持体として、その表面にパラジウム薄膜またはパラジウム合金薄膜を形成すると良好な水素分離膜となることを見出し、ここに本発明を完成するに至った。 The present inventor has intensively studied to achieve the above-described object. As a result, the metal alkoxide is filled in the pores that open to the surface of the porous metal substrate, and the metal alkoxide is hydrolyzed in the pores, so that the metal hydroxide and / or oxide pores are contained in the pores. When the body is formed, the maximum pore diameter of the pores opened on the surface can be miniaturized to 2 μm or less, and a porous filter that can be easily bonded to a metal device and can be manufactured at a low cost is obtained. It was found that forming a palladium thin film or a palladium alloy thin film on the surface of the porous filter formed as described above as a support provides a good hydrogen separation membrane, and the present invention was completed here.
即ち、本発明の前記目的は、多孔性金属基材と、前記多孔性金属基材のいずれか一面側に設けたセラミックス多孔体を備え、該セラミックス多孔体は、前記多孔性金属基材の前記一面側の細孔への浸入と、かつ該細孔を構成する前記多孔性金属基材の構成材の露出表面を連続して覆うとともに、
その外表面は、前記多孔性金属基材の起伏表面に基づく凹部を備えることを特徴とする請求項1の発明に係る多孔性フィルターにより達成される。
That is, the object of the present invention includes a porous metal substrate and a ceramic porous body provided on one side of the porous metal substrate, and the ceramic porous body includes the porous metal substrate. Intrusion into the pores on one side, and continuously covering the exposed surface of the constituent material of the porous metal substrate constituting the pores,
The outer surface is provided with a recess based on the undulating surface of the porous metal substrate, which is achieved by the porous filter according to the invention of claim 1.
そして、本願請求項2の発明は、前記多孔性金属基材は、その金属固有の金属色とは異なる特定色の酸化皮膜で覆われたもの、請求項3の発明は、前記酸化皮膜は、前記特定色がオレンジ系、茶色系、褐色系、赤色系乃至金色系のいずれか色彩を持つ酸化物で構成されることを特徴とする。 The invention of claim 2 of the present application is such that the porous metal substrate is covered with an oxide film having a specific color different from the metal color inherent to the metal, and the invention of claim 3 is characterized in that the oxide film is: The specific color is composed of an oxide having any one of orange, brown, brown, red and gold colors.
更に、請求項4の発明は、前記セラミックス多孔体は、水酸化ジルコニウム及び/またはジルコニアで構成されるものであること、請求項5の発明は、更にイットリウムを含むこと、請求項6の発明は、前記多孔性金属基材は、粗大空孔を持つ支持部と、その一面側上に積層配置されるより微細な空孔をなす微細層との積層焼結体で構成され、前記セラミックス多孔体は前記微細層に設けられてなる前記多孔性フィルターであることを特徴とする。 Furthermore, in the invention of claim 4, the ceramic porous body is composed of zirconium hydroxide and / or zirconia, the invention of claim 5 further contains yttrium, and the invention of claim 6 The porous metal substrate is composed of a laminated sintered body of a support portion having coarse pores and a fine layer forming finer pores laminated on one side thereof, and the ceramic porous body Is the porous filter provided in the fine layer.
また、本請求項7の発明は、前記多孔性金属基材の前記微細層は、所定の繊維径dと該繊維径d以上の平均長さLを持つ直状の金属短繊維のランダムな分布によって、その外表面は非平滑な前記起伏表面を備えるものであることを特徴とする。 In the invention according to claim 7, the fine layer of the porous metal base material has a random distribution of straight metal short fibers having a predetermined fiber diameter d and an average length L equal to or larger than the fiber diameter d. The outer surface is characterized by comprising the non-smooth undulating surface.
また、本発明の前記目的は、前記いずれか記載の多孔性フィルターの起伏表面に、水素分離用のパラジウム薄膜またはパラジウム合金薄膜を備える請求項8の発明に係る水素分離膜により達成される。また、本発明の前記目的は、前記水素分離膜の上流側に位置する水素含有混合気体を、下流側に水素透過して分離するにあたり、下流側の水素分圧を前記上流側の水素分圧未満とすることを特徴とする請求項9の発明に係る水素含有混合気体からの水素の分離方法により達成される。 The object of the present invention is achieved by a hydrogen separation membrane according to the invention of claim 8 comprising a palladium thin film or a palladium alloy thin film for hydrogen separation on the undulating surface of any one of the porous filters. The object of the present invention is to reduce the hydrogen partial pressure on the downstream side to the hydrogen partial pressure on the upstream side when separating the hydrogen-containing mixed gas located on the upstream side of the hydrogen separation membrane by hydrogen permeation to the downstream side. This is achieved by the method for separating hydrogen from the hydrogen-containing mixed gas according to the invention of claim 9.
また、本発明の前記目的は、
(ア) 所定の空孔特性を持つ多孔性金属基材を準備する準備段階と、
(イ) その金属基材を、温度400〜850℃の酸化性雰囲気中での加熱処理、又はアルカリ液への浸漬処理によって、その表面に固有の金属色以外の特定色を持つ酸化皮膜を形成する表面酸化処理の段階と、
(ウ) 該酸化皮膜を備える前記金属基材のいずれか表面側に浸入し、かつ該細孔を構成する前記多孔性金属基材の構成材の露出表面を連続して覆うとともに、その外表面に凹部を備え、前記多孔性金属基材よりも微細な空孔を持つセラミックス多孔体を複合形成する複合処理の段階と、
(エ) その複合処理後に乾燥する乾燥段階を備えること
を特徴とする前記多孔性フィルターの製造方法に係る請求項10の発明により達成される。
The object of the present invention is to
(A) a preparation stage for preparing a porous metal substrate having predetermined pore characteristics;
(B) An oxide film having a specific color other than the intrinsic metal color is formed on the surface of the metal base material by heat treatment in an oxidizing atmosphere at a temperature of 400 to 850 ° C. or immersion treatment in an alkaline solution. A surface oxidation treatment stage,
(C) Continuously covering the exposed surface of the constituent material of the porous metal base material that penetrates into any surface side of the metal base material provided with the oxide film and constitutes the pores, and the outer surface thereof A step of composite processing comprising forming a ceramic porous body having a recess and a finer pore than the porous metal substrate;
(D) It is achieved by the invention of claim 10 according to the method for producing a porous filter, comprising a drying step of drying after the combined treatment.
また、請求項11の発明は、請求項10の発明における前記セラミックス多孔体が、金属アルコキシドの加水分解によるものであることを特徴とする。 The invention of claim 11 is characterized in that the ceramic porous body of the invention of claim 10 is obtained by hydrolysis of a metal alkoxide.
本発明によれば、比較的簡単な方法によって、多孔性金属基材の表面に開口する細孔内をセラミックス多孔体で被覆した多孔性フィルターを得ることができ、この多孔性フィルターを支持体とする水素分離膜では、表面上に形成される水素分離用の薄膜材料が薄いものでも欠陥のない良好な積層状態が形成できる。 According to the present invention, it is possible to obtain a porous filter in which pores opened on the surface of a porous metal substrate are covered with a ceramic porous body by a relatively simple method. This porous filter is used as a support. In the hydrogen separation membrane, a good lamination state without defects can be formed even if the thin film material for hydrogen separation formed on the surface is thin.
また、この多孔性フィルターは、前記多孔性金属基材の表面上の細孔に浸入し、かつその構成材の露出面を被覆するセラミックス多孔体を備えるとともに、その外表面に前記凹部を備えることから、フィルターとしての異物捕集効率を高め、また更にその表面上に水素分離用の薄膜材料を積層形成する場合にも、前記欠陥がなく且つ薄膜化可能なパラジウムやパラジウム合金の膜材を良好に形成でき、また前記凹部によって、該水素分離用の薄膜材料との密着性は大きく向上することができる。 The porous filter includes a ceramic porous body that penetrates into pores on the surface of the porous metal substrate and covers the exposed surface of the constituent material, and includes the concave portion on the outer surface thereof. From the above, it is possible to improve the efficiency of collecting foreign matter as a filter, and even when a thin film material for hydrogen separation is laminated on the surface, the film material of palladium or palladium alloy that does not have the defects and can be thinned is good. In addition, the recesses can greatly improve the adhesion with the thin film material for hydrogen separation.
しかも、その構造は前記多孔性金属基材をベース材料とすることから、これを機械装置として接合や組み立てなどの装置化が容易にできる利点もあり、フィルター装置としてあるいは水素分離用モジュールとして、耐久性に優れ、システム化に有効に利用し得るものである。 In addition, since the structure is based on the porous metal substrate, it has the advantage that it can be easily assembled and assembled as a mechanical device, and is durable as a filter device or a hydrogen separation module. It can be used effectively for systematization.
以下、本発明に係る多孔性フィルター及びその製造方法について説明する。多孔性フィルター1は、多孔性金属基材2と、当該多孔性金属基材2のいずれか一面側に設けたセラミックス多孔体の層3を備える。 Hereinafter, the porous filter and the manufacturing method thereof according to the present invention will be described. The porous filter 1 includes a porous metal substrate 2 and a ceramic porous layer 3 provided on one side of the porous metal substrate 2.
多孔性金属基材2は、図1の拡大模式図(断面図)に示すように、その両面間に通じた複雑流路を持つ多孔質焼結構造体で構成され、その表面上には複数の細孔21を備える。また、前記セラミックス多孔体の層3は、前記多孔性金属基材2の前記細孔21より微細緻密な多孔質構造をなし、本形態は図2のように、該金属基材2の上面側に所定厚さの層状を成すように複合形成したものを示す。 As shown in the enlarged schematic view (cross-sectional view) of FIG. 1, the porous metal substrate 2 is composed of a porous sintered structure having a complicated flow channel that is communicated between both surfaces, and a plurality of porous metal substrates 2 are formed on the surface. The pores 21 are provided. Further, the layer 3 of the ceramic porous body has a finer and finer porous structure than the pores 21 of the porous metal substrate 2, and in this embodiment, the upper surface side of the metal substrate 2 as shown in FIG. Shows a composite formed so as to form a layer having a predetermined thickness.
その形成状態は、該金属基材2の少なくとも表面側の前記細孔21内に浸入し、かつこの細孔21を構成する前記多孔性金属基材の構成材2Aの露出表面を含めて連続して被包するとともに、その外表面は、該金属基材2の起伏表面に基づく凹部31を備えるものとしている。なお、図1及び図2は、構成の理解を容易にするためのより好ましい形態の一例であって、実寸比ではなく部分的に拡大又は縮小されているが、本発明はこれに限らず、前記セラミックス多孔体の層3を例えば前記金属基材2の一定深さに亙って形成するものを含み、また前記一面側から他面側に向かって徐々にその分布密度を減じた、勾配分布にすることもできる。 The state of formation is continuous, including the exposed surface of the component 2A of the porous metal substrate that penetrates into the pores 21 at least on the surface side of the metal substrate 2 and constitutes the pores 21. And the outer surface thereof is provided with a recess 31 based on the undulating surface of the metal substrate 2. 1 and 2 are examples of a more preferable form for facilitating understanding of the configuration, and are not enlarged but partially enlarged or reduced, but the present invention is not limited to this. Gradient distribution including the layer 3 of the ceramic porous body formed, for example, over a certain depth of the metal substrate 2, and gradually reducing the distribution density from the one surface side toward the other surface side. It can also be.
前記多孔性金属基材2は、例えば金属粉末や金属短繊維等を構成材2Aとして、これを所定の空孔特性を備えるように成形した焼結金属体の他、金属メッシュ等を例示することができる。その金属材料には、ステンレス、ハステロイ合金、インコネル合金、ニッケル、ニッケル合金、チタン、チタン合金等を例示できる。本形態の前記構成材は、所定の繊維径dとその繊維径d以上の平均長さLを持つ、直状の前記金属短繊維のランダム方向への分布によって、その外表面の起伏状態を高めた粗表面にすることで、より有効な前記凹部をもたらすことができる。また、その成形体は所定の空孔特性を持つように焼結成形することで多孔性金属基材2として用いられる。 Examples of the porous metal base material 2 include a metal mesh and the like in addition to a sintered metal body formed by using, for example, a metal powder or a short metal fiber as a constituent material 2A so as to have predetermined pore characteristics. Can do. Examples of the metal material include stainless steel, hastelloy alloy, inconel alloy, nickel, nickel alloy, titanium, and titanium alloy. The constituent material of the present embodiment enhances the undulation state of the outer surface by the distribution in the random direction of the straight short metal fibers having a predetermined fiber diameter d and an average length L equal to or greater than the fiber diameter d. By making the surface rough, the more effective concave portion can be provided. Moreover, the molded body is used as the porous metal substrate 2 by sintering and molding so as to have predetermined pore characteristics.
前記細孔21の細孔径は特に制限されず、その用途により適宜選択すべきであるが、例えば最大細孔径が10μm以下、好ましくは5μm以下とし、その計測は例えばバブルポイント試験で決定できる。 The pore diameter of the pore 21 is not particularly limited and should be appropriately selected depending on the application. For example, the maximum pore diameter is 10 μm or less, preferably 5 μm or less, and the measurement can be determined by, for example, a bubble point test.
また、多孔性金属基材2は、その全体を通じて一種類の前記特性を備えるもので構成できる他、例えば、比較的粗大な空孔特性を持つ支持体を第一の多孔性金属基材2aとし、その上面側により微細な空孔特性の前記細孔径を持つ比較的薄く形成した第二の多孔性金属基材2bを重ね合わせて一体にした複合構造体の使用も好ましい。このような複合構造体では、前記第二の金属基材2bの厚さを必要最小限に薄くすることができ、多孔質構造の金属基材として、微細な空孔特性を有しながらも低い圧力損失で、かつ必要十分な構造強度を備える利点がある。 In addition, the porous metal substrate 2 can be constituted by one having the above-mentioned characteristics throughout, and for example, a support having relatively coarse pore characteristics is used as the first porous metal substrate 2a. Further, it is also preferable to use a composite structure in which the second porous metal base material 2b formed relatively thin with the pore diameter having fine pore characteristics on the upper surface side is superposed and integrated. In such a composite structure, the thickness of the second metal substrate 2b can be reduced to the minimum necessary, and as a metal substrate having a porous structure, it is low while having fine pore characteristics. There is an advantage of providing a necessary and sufficient structural strength with pressure loss.
より具体的なものとして、前記第一の金属基材2aは、例えば粒子径が数十乃至数百μmの比較的粗大粒子の粉末材料で構成した支持体と、その表面上に前記構成の第二金属基材2bを備える。この第二多孔性金属基材2bは、所定の繊維径dと該繊維径d以上の平均長さLを持つ金属短繊維のランダムな分布によって、その外表面は非平滑な起伏表面を形成しており、例えば平均直径dが10μm以下(好ましくは0.01〜5μm)で、かつその径の1〜20倍の範囲の平均長さLを持つ、前記金属短繊維をランダムに分布した焼結体を用いることが推奨される。なお、これら粒子径や平均直径、平均長さは画一的なものではなく、そのロット内ではばらつきを有する。例えば金属短繊維の平均直径は、各短繊維について各々横断面の縦横両方向の寸法を統計学的に平均化したものとし、また平均長さについても、同様に任意の各短繊維について各々繊維長さを求めて統計処理された寸法で示される。 More specifically, the first metal substrate 2a is composed of, for example, a support made of a powder material of relatively coarse particles having a particle diameter of several tens to several hundreds of μm, and the first metal substrate 2a having the above structure on the surface thereof. A bimetallic substrate 2b is provided. This second porous metal substrate 2b has a non-smooth undulation surface on the outer surface due to a random distribution of short metal fibers having a predetermined fiber diameter d and an average length L equal to or greater than the fiber diameter d. For example, the short metal fibers are randomly distributed with an average diameter d of 10 μm or less (preferably 0.01 to 5 μm) and an average length L in the range of 1 to 20 times the diameter. It is recommended to use a ligation. These particle diameters, average diameters, and average lengths are not uniform and vary within the lot. For example, the average diameter of the short metal fibers is the average of the dimensions of the transverse and longitudinal directions of each short fiber, and the average length is also the same for each arbitrary short fiber. It is shown in the dimension which is statistically processed for the thickness.
このような複合構造の金属基材は、前記第二金属基材2bの微細表面層で濾過する表面濾過用フィルターとして好適であり、またその構造や種類、成形厚さは制限されず、その構造が安定に保持できれば良い。多孔性金属基材2は、例えば0.3〜3mmの厚さが例示され、前記複合構造では、第2金属基材2bは0.05〜0.5mm程度の厚さが好ましい。またその成形形状も、例えば、板状、中空の管状、有底筒状等の種々形状が例示されるが、これに限るものではない。 Such a composite-structured metal substrate is suitable as a surface filtration filter for filtering with the fine surface layer of the second metal substrate 2b, and its structure, type and molding thickness are not limited. Can be held stably. For example, the porous metal substrate 2 has a thickness of 0.3 to 3 mm, and in the composite structure, the second metal substrate 2b preferably has a thickness of about 0.05 to 0.5 mm. Moreover, the shape of the shape is exemplified by various shapes such as a plate shape, a hollow tubular shape, and a bottomed tubular shape, but is not limited thereto.
セラミックス多孔体の層3を構成するセラミックス多孔体3Aは、例えば水酸化ジルコニウム、ジルコニア、イットリウム、セリウム、チタニウム、アルミニウム、シリコンのいずれか一種又は二種以上から選択される酸化物及び/または水酸化物、乃至これらの混合物や混合酸化物等の多孔質構造体が例示できる。その中で、特に、水酸化ジルコニウム及び/またはジルコニアを主成分とするものは、容易に焼結して良好なセラミックス多孔体が形成でき、熱膨張率が金属に近いので金属との親和性が高い特徴がある。その場合、該セラミックス多孔体はその固化状態において、水酸化ジルコニウム及び/またはジルコニアを、例えば60%以上含有することが好ましい。また、更に前記イットリウムを含有するものは 結晶構造が安定化し耐熱性が向上する効果があるため、より好ましい。その場合の該イットリウムの含有量は、例えば1〜30wt%、好ましくは2〜15wt%とすることが推奨される。これら組成によるセラミックス多孔体は、本発明に好適するものとなる。 The ceramic porous body 3A constituting the layer 3 of the ceramic porous body is, for example, an oxide selected from one or more of zirconium hydroxide, zirconia, yttrium, cerium, titanium, aluminum, and silicon, and / or hydroxylated. And porous structures such as mixtures and mixed oxides thereof. Among them, in particular, those mainly composed of zirconium hydroxide and / or zirconia can be easily sintered to form a good ceramic porous body, and since the coefficient of thermal expansion is close to that of metal, it has an affinity for metal. There are high features. In that case, the ceramic porous body preferably contains, for example, 60% or more of zirconium hydroxide and / or zirconia in the solidified state. Further, those containing yttrium are more preferred because they have the effect of stabilizing the crystal structure and improving the heat resistance. In that case, the content of the yttrium is recommended to be, for example, 1 to 30 wt%, preferably 2 to 15 wt%. The ceramic porous body with these compositions is suitable for the present invention.
従来、例えば、セラミックス微粒子やゾル状やゲル状のセラミックス微粒子前駆体の分散スラリ
ーを多孔性金属基材上へスプレー、スクリーン印刷、浸漬法等の方法でコーティングしたり、泳動電着やガスデポジションのような方法を用いたりしてセラミックスの膜材が形成されて来た。しかしながら、このような方法の場合、多孔性金属基材2の比較的大きい表面細孔21を閉塞するためには多孔性金属基材2表面をセラミックス層で表面が平滑になるまで完全に被覆する必要があり、多大な費用と労力が要求される。
Conventionally, for example, a dispersion slurry of ceramic fine particles or a sol-like or gel-like ceramic fine particle precursor is coated on a porous metal substrate by a method such as spraying, screen printing, dipping, electrophoretic electrodeposition or gas deposition. A ceramic film material has been formed by using such a method. However, in the case of such a method, in order to close the relatively large surface pores 21 of the porous metal substrate 2, the surface of the porous metal substrate 2 is completely covered with a ceramic layer until the surface becomes smooth. It is necessary and requires a great deal of cost and labor.
そこで、本発明では、このような微細な多孔質部を形成するものとして、金属アルコキシドを選択し、これを溶媒に溶解したもの(金属アルコキシド溶液)を多孔性金属基材2の表面上に塗布形成するとともに、水蒸気及び/または水が存在する条件下に置くことで金属アルコキシドを多孔性金属基材2表面にある細孔21中で加水分解して金属水酸化物及び/または酸化物を生成させ、一方の反応生成物であるアルコールや金属アルコキシドの溶媒を除去するという方法により、所定のセラミックス多孔体の層3が良好に形成できることを確認したもので、前記多孔性金属基材2の表面上に開口する細孔21と、その細孔21を構成する前記金属基材1の構成材2Aの露出表面を含めて連続して被覆することで構成される。 Therefore, in the present invention, a metal alkoxide is selected to form such a fine porous portion, and a solution (metal alkoxide solution) dissolved in a solvent is applied onto the surface of the porous metal substrate 2. And forming a metal hydroxide and / or oxide by hydrolyzing the metal alkoxide in the pores 21 on the surface of the porous metal substrate 2 by placing it under conditions where water vapor and / or water are present. And confirming that the layer 3 of the predetermined ceramic porous body can be satisfactorily formed by the method of removing the alcohol or metal alkoxide solvent as one of the reaction products. It is configured by continuously covering the pores 21 that open upward and the exposed surfaces of the constituent material 2A of the metal substrate 1 that constitutes the pores 21.
なお、セラミックス多孔体3Aの前記多孔性金属基材2に対する親和性を高めるため、予め、該多孔性金属基材2の表面に所定の酸化皮膜を形成しておくことが好ましい。その酸化皮膜は、例えばその金属材料が持つ本来の固有金属色以外の特定色を有するものとし、その最適な酸化処理方法としては、例えば該金属基材2を水酸化ナトリウム、水酸化カリウムなどのアルカリ溶液やその他種々の酸化処理用液中に浸漬、乃至は塗布することで生ずる化学反応、乃至は例えば空気のような酸化性雰囲気中での加熱処理による熱反応によって容易に形成することができる。その金属材料が持つ前記固有の金属色は、例えばこれを破砕、切断、乃至は表面洗浄処理等した状態での色彩のものとして確認される。 In order to increase the affinity of the ceramic porous body 3A for the porous metal substrate 2, it is preferable to form a predetermined oxide film on the surface of the porous metal substrate 2 in advance. The oxide film has, for example, a specific color other than the original intrinsic metal color of the metal material. As an optimal oxidation treatment method, for example, the metal substrate 2 is made of sodium hydroxide, potassium hydroxide or the like. It can be easily formed by a chemical reaction caused by immersion or application in an alkaline solution or other various oxidation treatment liquids, or a thermal reaction by heat treatment in an oxidizing atmosphere such as air. . The unique metal color of the metal material is confirmed as a color in a state in which the metal material is crushed, cut, or surface-cleaned, for example.
こうした酸化皮膜は、前記セラミックス多孔体の形成時の処理流体とのなじみ性を向上し、また表面状態はダル仕上げ状態に粗面化でき、両者の結合性が向上する。また、後者の酸化性雰囲気中での加熱処理によるもので、その金属基材2がステンレス鋼のものでは、例えば空気中400〜850℃、好ましくは500〜700℃での加熱により、例えば1分〜5時間程度保持される。その処理によって、該金属基材2は例えばオレンジ系、茶色系、褐色系、赤色系、乃至金色系のいずれかテンパーカラーを持つ酸化被膜が形成される。このような、色彩変化は前記化学反応による場合も同様に見られる現象で、同様の酸化皮膜が形成される。 Such an oxide film improves the compatibility with the processing fluid at the time of forming the ceramic porous body, and the surface state can be roughened to a dull finish state, thereby improving the bonding property between the two. Further, when the latter is a heat treatment in an oxidizing atmosphere and the metal substrate 2 is made of stainless steel, for example, 1 minute by heating at 400 to 850 ° C. in air, preferably 500 to 700 ° C. Hold for ~ 5 hours. By the treatment, an oxide film having a temper color of, for example, orange, brown, brown, red, or gold is formed on the metal base 2. Such a color change is a phenomenon that is also observed in the case of the chemical reaction, and a similar oxide film is formed.
その色彩は、該金属基材を構成する金属材料の種類やその処理条件、酸化程度によって種々変化し、同時に酸化皮膜の膜厚の変化をもたらす。例えば前記ステンレス鋼の加熱処理では、500℃台でオレンジ乃至金色〜赤色、600℃台では褐色〜赤褐色、700℃では紫褐色のように、テンパーカラーは加熱条件の増大に伴って濃色化し、それに伴って酸化量も増大するが、一方で該色彩は特定数値化がし難いこともあるため、それらの中間色を含むものとする。この酸化皮膜は、前記セラミックス多孔体とのなじみ性の向上以外に、例えば表面保護や処理の識別管理ができるなどの利点もある。 The color changes variously depending on the type of metal material constituting the metal substrate, its processing conditions, and the degree of oxidation, and at the same time changes the thickness of the oxide film. For example, in the heat treatment of the stainless steel, the temper color is darkened with increasing heating conditions, such as orange to gold to red at 500 ° C., brown to reddish brown at 600 ° C., purple brown at 700 ° C., Along with this, the amount of oxidation also increases, but on the other hand, the colors may be difficult to be converted into specific numerical values, and therefore include intermediate colors thereof. In addition to improving the compatibility with the ceramic porous body, this oxide film also has advantages such as surface protection and process identification management.
また、上述の金属アルコキシドとしては、ジルコニウムプロポキシド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムt−ブトキシド、イットリウムイソプロポキシド、チタンイソプロポキシド、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムブトキシド、メチルシリケートといった化合物が例示されるが、その他の金属アルコキシドでも良い。金属アルコシドの溶媒としては、金属アルコシドと反応性が無いものであれば良く、水分含有量が小さいものが好ましい。このような溶媒としては、メタノール、エタノール、プロパノールといったアルコールの脱水物が例示されるが、その他の溶媒でも良い。 Examples of the metal alkoxide include zirconium propoxide, zirconium isopropoxide, zirconium butoxide, zirconium t-butoxide, yttrium isopropoxide, titanium isopropoxide, aluminum ethoxide, aluminum isopropoxide, aluminum butoxide, and methyl silicate. These compounds are exemplified, but other metal alkoxides may be used. The metal alkoxide solvent may be any one that is not reactive with the metal alkoxide, and preferably has a low water content. Examples of such a solvent include alcohol dehydrates such as methanol, ethanol, and propanol, but other solvents may be used.
また、溶媒中にイットリウム、セリウム、ジルコニウムといった金属の塩や錯体を溶解しても良い。このような化合物として硝酸イットリウム、硝酸セリウム、イットリウムアセチルアセトナート、ジルコニウムアセチルアセトナートが例示される。これらの化合物には結晶水が含まれることがあるが、そのような場合、溶媒に溶解後、モレキュラーシーブスのような脱水剤により溶媒を脱水すればよい。ここで、金属アルコキシドを溶媒に溶解した金属アルコキシド溶液おける金属アルコキシドの濃度やその付与条件は、これを金属基材に形成する際の浸透深さに影響を及ぼすこととなり、例えば、2〜30重量%の範囲に設定することが好ましい。 Further, a metal salt or complex such as yttrium, cerium, or zirconium may be dissolved in a solvent. Examples of such compounds include yttrium nitrate, cerium nitrate, yttrium acetylacetonate, and zirconium acetylacetonate. These compounds may contain water of crystallization. In such a case, after dissolving in a solvent, the solvent may be dehydrated with a dehydrating agent such as molecular sieves. Here, the concentration of the metal alkoxide in the metal alkoxide solution in which the metal alkoxide is dissolved in the solvent and the conditions for applying the metal alkoxide will affect the penetration depth when the metal alkoxide is formed on the metal substrate. It is preferable to set in the range of%.
多孔性金属基材2の表面に開口する細孔21への前記金属アルコキシド溶液の導入は、例えば多孔性金属基材2を金属アルコキシド溶液に浸漬した後、空気中に引き上げることによって達成できる。また、該セラミック多孔体3Aは、前記溶液中への浸漬方法以外に、例えば塗布やスプレーによってその一面側に設ける他、例えばその毛細管現象や更にその他面側からの減圧吸引によって、所定深さ(H)に浸透させたり、その表面側から徐々に分布量を減じる濃度勾配的に設けたりすることもできる。 The introduction of the metal alkoxide solution into the pores 21 opened on the surface of the porous metal substrate 2 can be achieved, for example, by immersing the porous metal substrate 2 in the metal alkoxide solution and then pulling it up in the air. In addition to the immersion method in the solution, the ceramic porous body 3A is provided on the one surface side by, for example, coating or spraying, for example, by the capillary phenomenon or further by vacuum suction from the other surface side, to a predetermined depth ( It is possible to infiltrate into H) or to provide a concentration gradient that gradually reduces the distribution amount from the surface side.
その形成厚さは、例えば前記濃度調整によって0.5〜50μm、好ましくは1〜20μm以下とし、その形成厚さHは、例えば図2のように、その厚さ方向の断面を拡大した時の、表面側の凸部と凹部(谷部)を平均化した仮想上面と、該セラミックス多孔体の層3の最下面との間の平均寸法で示すものとし、その計測幅は例えば2mmとする。 The formation thickness is, for example, 0.5 to 50 μm, preferably 1 to 20 μm or less by adjusting the concentration, and the formation thickness H is, for example, as shown in FIG. 2 when the cross section in the thickness direction is enlarged. The average dimension between the virtual upper surface obtained by averaging the convex portions and the concave portions (valley portions) on the surface side and the lowermost surface of the layer 3 of the ceramic porous body is shown, and the measurement width is, for example, 2 mm.
こうして、細孔21内に浸入した金属アルコキシド溶液は、空気中にある水分と反応して固化が開始する。空気中に置く時間は、金属アルコキシド溶液の反応性、濃度、空気の湿度、温度により適宜調整すれば良いが、通常30分以上であることが好ましい。これより短いと金属アルコキシド溶液の固化が不十分な場合がある。また、固化を完全なものとするには長時間、空気中に置けばよいが、より完全に加水分解を進行させるためにスチームに接触させたり、水に浸漬したりすることもできる。一方の反応生成物であるアルコールや金属アルコキシドの溶媒の除去は加熱及び/または減圧による脱気によって行えば良い。 Thus, the metal alkoxide solution that has entered the pores 21 reacts with moisture in the air and starts to solidify. The time for placing in the air may be appropriately adjusted depending on the reactivity, concentration, air humidity, and temperature of the metal alkoxide solution, but it is usually preferably 30 minutes or longer. If it is shorter than this, solidification of the metal alkoxide solution may be insufficient. Further, in order to complete the solidification, it may be placed in the air for a long time. However, in order to proceed the hydrolysis more completely, it can be brought into contact with steam or immersed in water. Removal of the alcohol or metal alkoxide solvent, which is one of the reaction products, may be performed by degassing by heating and / or decompression.
更に、ここで形成されたセラミックス多孔体3Aをより強固なものとし、また乾燥するために、例えば400℃以下の比較的低温の加熱(焼結)を更に行うこともできる。加熱温度、加熱時間は得られる多孔性フィルター1に求められる物性に応じて適宜調整すれば良い。また、セラミックス多孔体3Aは、多孔性金属基材2の表面側に開口する細孔21内に浸入し、かつその構成材2Aの露出表面を含めて被覆するとともに、その最外面には、該多孔性金属基材の前記細孔21の表面状態、起伏表面に応じた凹部31が形成される。 Furthermore, in order to make the ceramic porous body 3A formed here stronger and dry, it is possible to further perform heating (sintering) at a relatively low temperature of, for example, 400 ° C. or lower. What is necessary is just to adjust a heating temperature and a heating time suitably according to the physical property calculated | required by the porous filter 1 obtained. Moreover, the ceramic porous body 3A penetrates into the pores 21 opened on the surface side of the porous metal substrate 2 and covers the exposed surface of the constituent material 2A. Concave portions 31 corresponding to the surface state of the pores 21 and the undulating surface of the porous metal substrate are formed.
この凹部31の大きさを小さくするには、前記の金属アルコキシドへの浸漬に引き続く一連の工程を繰り返せば良い。この時、多孔性金属基材2の他面側から減圧して細孔21への金属アルコキシド溶液の導入を促進してもよい。 In order to reduce the size of the concave portion 31, a series of steps subsequent to the immersion in the metal alkoxide may be repeated. At this time, the introduction of the metal alkoxide solution into the pores 21 may be promoted by reducing the pressure from the other surface side of the porous metal substrate 2.
ここで、前記凹部31については、例えば所定凹部を観察したときの平均最大径(多孔性フィルター1を平面視で見た場合における凹部31の最大径;図2に示す左右方向の最大寸法)と、その凹部が持つ最大深さ(図2に示す上下方向の最大寸法)で判断される。その検証は、例えば該多孔性フィルターについて任意に抽出した観察視野を拡大観察し、その視野内に確認される前記凹部の有無で行われる。その視野数は、例えば3〜10点程度とし、レーザー顕微鏡やSEM等を用いて計測される。また、簡易法として例えばその凹部を持つ面の表面粗さで検証することもできる。 Here, for the concave portion 31, for example, an average maximum diameter when a predetermined concave portion is observed (maximum diameter of the concave portion 31 when the porous filter 1 is viewed in a plan view; a maximum dimension in the left-right direction shown in FIG. 2) The maximum depth (the maximum dimension in the vertical direction shown in FIG. 2) of the concave portion is determined. The verification is performed by, for example, observing the observation field arbitrarily extracted with respect to the porous filter by the presence or absence of the concave portion confirmed in the field of view. The number of visual fields is, for example, about 3 to 10 points, and is measured using a laser microscope, SEM, or the like. As a simple method, for example, the surface roughness of the surface having the concave portion can be verified.
該凹部31の前記最大径は、例えば該多孔性金属部材を構成する前記金属粉末や短繊維材料の直径の0.5倍以上の大きさで、かつその表面上に配置される水素分離用の薄膜材料を形成する観点から20μm以下となるように設定され、他方、その最大深さは、例えば1〜20μmの範囲、好ましくは上限10μm以下とされる。 The maximum diameter of the recess 31 is, for example, 0.5 times or more the diameter of the metal powder or short fiber material constituting the porous metal member, and for hydrogen separation disposed on the surface thereof. From the viewpoint of forming a thin film material, the thickness is set to 20 μm or less, and the maximum depth is, for example, in the range of 1 to 20 μm, preferably 10 μm or less.
この凹部は、ベースの前記多孔質金属基材2の細孔21を含む起伏表面に基づき形成されるもので、例えば図1のような任意の拡大断面図に見られるように、多孔性金属基材2の表面上に開口する細孔21は、その深さが深いものや浅いものが混在していることから、多孔性金属基材2を被包する前記セラミック多孔体3Aにおいて、深さが浅い細孔21上には、当該細孔21に対応する凹部31が形成されない場合が発生し得る。したがって、多孔性金属基材2の表面上に開口する細孔21の個数に対して、多孔性金属基材2の表面上に開口する細孔21に基づくセラミックス多孔体3Aにおける凹部31の個数の比率が小さ過ぎると、多孔性フィルター1の表面上に、更にパラジウムまたはパラジウム合金等の水素分離膜を形成する際に、高い密着性を確保することが困難となる懸念が生じるが、多孔性金属基材2の表面上に開口する細孔21に基づいて形成される前記凹部31の個数が、多孔性金属基材2の表面上に開口する細孔21の個数に対して、例えば、30%以上の個数となるように構成することが好ましい。より好ましくは、例えば50個/mm2以上の前記凹部31を設けることで、多孔性フィルター1上に前記水素分離膜を形成する際の密着性を高めることが可能となる。 This concave portion is formed based on the undulating surface including the pores 21 of the porous metal base 2 of the base. As shown in, for example, an arbitrary enlarged cross-sectional view as shown in FIG. Since the pores 21 opened on the surface of the material 2 are mixed with deep and shallow ones, in the ceramic porous body 3A encapsulating the porous metal substrate 2, the depth is small. On the shallow pore 21, there may be a case where the concave portion 31 corresponding to the pore 21 is not formed. Therefore, the number of the recesses 31 in the ceramic porous body 3A based on the pores 21 opened on the surface of the porous metal substrate 2 is larger than the number of the pores 21 opened on the surface of the porous metal substrate 2. If the ratio is too small, there is a concern that it is difficult to ensure high adhesion when a hydrogen separation membrane such as palladium or palladium alloy is further formed on the surface of the porous filter 1. The number of the recesses 31 formed based on the pores 21 opened on the surface of the substrate 2 is, for example, 30% with respect to the number of the pores 21 opened on the surface of the porous metal substrate 2. It is preferable to configure so that the number becomes the above. More preferably, for example, by providing 50 / mm 2 or more of the concave portions 31, it is possible to improve the adhesion when the hydrogen separation membrane is formed on the porous filter 1.
こうして得られた多孔性フィルター1は、結果的に、金属アルコキシド溶液に浸漬された多孔性金属基材2の表面層の全面に亙って、前記細孔21及びその構成材2Aの露出表面をセラミックス多孔体3Aが連続して被包する構造を有する。該構成材の露出表面上の被覆厚さは、例えば5μm以下、好ましくは3μm以下、より好ましくは1μm以下である。なお、被覆厚さとは、多孔性金属基材2の構成材2A(短繊維)の最表面を覆う被覆厚さを意味する。 As a result, the porous filter 1 thus obtained has the exposed surfaces of the pores 21 and the constituent material 2A thereof over the entire surface layer of the porous metal substrate 2 immersed in the metal alkoxide solution. The ceramic porous body 3A is continuously encapsulated. The coating thickness on the exposed surface of the constituent material is, for example, 5 μm or less, preferably 3 μm or less, more preferably 1 μm or less. The coating thickness means the coating thickness that covers the outermost surface of the constituent material 2A (short fiber) of the porous metal substrate 2.
本発明の多孔性フィルター1は、多孔性金属基材2の表面上に開口する細孔21を、更に前記セラミックス多孔体3Aで微細化する層状の前記複合構造によって、被処理流体の流動を円滑化し、耐食性向上に寄与する。また、前記水素分離膜をその表面上に積層形成する場合も、該セラミックス多孔体3Aの介在によって、隣接する金属材料同士の拡散を抑制する遮蔽効果を備え、耐久性を合わせ持つことができる。 The porous filter 1 of the present invention smoothes the flow of the fluid to be treated by the layered composite structure in which the pores 21 opening on the surface of the porous metal substrate 2 are further refined by the ceramic porous body 3A. And contributes to the improvement of corrosion resistance. Also, when the hydrogen separation membrane is laminated on the surface thereof, the presence of the porous ceramic body 3A can provide a shielding effect for suppressing diffusion of adjacent metal materials, and can have durability.
次に、前記多孔性フィルターを用いた水素分離膜及びその製造方法について説明する。本発明の水素分離膜5は、図3に示すように、前記多孔性フィルター1を支持体として、その起伏表面上にパラジウム薄膜又はパラジウム合金薄膜4が形成されているものである。なお、図3は、構成の理解を容易にするため、実寸比ではなく部分的に拡大又は縮小されている。 Next, a hydrogen separation membrane using the porous filter and a manufacturing method thereof will be described. As shown in FIG. 3, the hydrogen separation membrane 5 of the present invention has a palladium thin film or a palladium alloy thin film 4 formed on the undulating surface of the porous filter 1 as a support. Note that FIG. 3 is partially enlarged or reduced rather than the actual size ratio in order to facilitate understanding of the configuration.
パラジウム合金薄膜としては、パラジウムと、銀、金、銅、ニッケル、白金、ロジウム及びルテニウムからなる群から選ばれる一種または二種以上の金属との合金(パラジウム合金)が好ましい。この様なパラジウム合金中におけるパラジウムの割合は、40重量%以上であることが好ましい。パラジウム薄膜又はパラジウム合金薄膜の平均膜厚は、例えば0.5〜10μm、好ましくは1〜7μmに設定される。膜厚がこれより小さいと膜のピンホールが増加して水素分離膜としての水素選択性が確保され難く、膜厚がこれより大きいと水素透過速度が小さくなって実用性を失う。 The palladium alloy thin film is preferably an alloy (palladium alloy) of palladium and one or more metals selected from the group consisting of silver, gold, copper, nickel, platinum, rhodium and ruthenium. The proportion of palladium in such a palladium alloy is preferably 40% by weight or more. The average film thickness of the palladium thin film or the palladium alloy thin film is set to, for example, 0.5 to 10 μm, preferably 1 to 7 μm. If the film thickness is smaller than this, the pinholes of the film increase and it is difficult to ensure hydrogen selectivity as a hydrogen separation membrane. If the film thickness is larger than this, the hydrogen permeation rate is reduced and the practicality is lost.
多孔性フィルター1の表面への直接のパラジウム薄膜またはパラジウム合金薄膜の形成は、例えば無電解めっき法、化学蒸着法、マグネトロンスパッタリングといった公知の方法によれば良い。パラジウム合金薄膜を形成する場合、パラジウム合金を構成する金属薄膜同士を積層し、その後、加熱により合金化しても良い。多孔性フィルター1への1層目の金属薄膜の形成後は表面が導電性を有するので電気めっき法も製膜に用いることができる。その1層目の金属薄膜はパラジウムを含有する薄膜であることが好ましい。なお、1層目の金属薄膜がパラジウムを含有しない薄膜である場合も、その上方にパラジウムを含有する薄膜が形成されていれば、後段の加熱による合金化により、パラジウム合金薄膜とすることができる。 The formation of the palladium thin film or the palladium alloy thin film directly on the surface of the porous filter 1 may be performed by a known method such as electroless plating, chemical vapor deposition, or magnetron sputtering. When forming a palladium alloy thin film, the metal thin films constituting the palladium alloy may be laminated and then alloyed by heating. After the formation of the first metal thin film on the porous filter 1, the electroplating method can be used for film formation because the surface has conductivity. The first metal thin film is preferably a thin film containing palladium. Even when the first metal thin film is a thin film containing no palladium, a palladium alloy thin film can be formed by alloying by subsequent heating if a thin film containing palladium is formed thereabove. .
ここで、多孔性フィルター1の表面にパラジウム薄膜またはパラジウム合金薄膜を形成する前段階として、多孔性フィルター1の表面に存在する欠陥をパラジウム等の金属で予め封止してもよい。封止方法は、従来から公知の方法を採用することができる。例えば、まず、多孔性フィルター1におけるセラミックス多孔体の層3の表面に対して、無電解めっき用触媒を付与した後、当該めっき用触媒の還元を行う。その後、パラジウムイオン等の金属イオンおよび還元剤を含む無電解めっき液を、多孔性フィルター1の多孔性金属基材2側に配置すると共に、セラミックス多孔体の層3側にグルコース等の濃厚溶液を配置して、無電解めっき液をセラミックス多孔体の層3の表面に存在する欠陥に導き、ここで金属(パラジウム等)を析出させることにより欠陥を封止することができる。このように表面の欠陥がパラジウム等の金属により封止された多孔性フィルター1を水素分離膜の支持体として用いる場合、支持体上に形成されたパラジウム薄膜またはパラジウム合金薄膜のピンホール生成を抑制でき、その結果として従来に比べて薄膜化が可能となる。なお、水素分離膜の支持体として多孔性フィルター1を用いる場合、例えば特開2007−90294公報が開示するように、有底筒状にモジュール化することが一般的に行われている。 Here, as a pre-stage for forming the palladium thin film or the palladium alloy thin film on the surface of the porous filter 1, defects existing on the surface of the porous filter 1 may be sealed in advance with a metal such as palladium. A conventionally known method can be adopted as the sealing method. For example, first, after applying an electroless plating catalyst to the surface of the ceramic porous body layer 3 in the porous filter 1, the plating catalyst is reduced. Thereafter, an electroless plating solution containing metal ions such as palladium ions and a reducing agent is disposed on the porous metal substrate 2 side of the porous filter 1, and a concentrated solution such as glucose is applied to the layer 3 side of the ceramic porous body. Arranging and guiding the electroless plating solution to defects present on the surface of the layer 3 of the ceramic porous body, where the defects can be sealed by depositing metal (palladium or the like). When the porous filter 1 whose surface defects are sealed with a metal such as palladium is used as a support for the hydrogen separation membrane, pinhole generation in the palladium thin film or palladium alloy thin film formed on the support is suppressed. As a result, the film thickness can be reduced as compared with the prior art. When the porous filter 1 is used as a support for the hydrogen separation membrane, for example, as disclosed in Japanese Patent Application Laid-Open No. 2007-90294, it is generally performed to form a module in a bottomed cylindrical shape.
このように構成された水素分離膜5は、前記公報が開示するようなモジュールを構成し、水素を含有する混合気体から水素のみを分離するために使用できる。例えば、該水素分離膜によって隔離された上流側に水素含有混合気体を供給し、該水素分離膜を介して下流側に透過分離させるもので、該下流側の水素含有混合気体の水素分圧を、上流側の水素分圧未満に設定することで達成される。 The thus configured hydrogen separation membrane 5 constitutes a module as disclosed in the above publication, and can be used to separate only hydrogen from a mixed gas containing hydrogen. For example, a hydrogen-containing mixed gas is supplied to the upstream side separated by the hydrogen separation membrane and permeated to the downstream side through the hydrogen separation membrane, and the hydrogen partial pressure of the downstream hydrogen-containing mixed gas is reduced. This is achieved by setting it to be lower than the hydrogen partial pressure on the upstream side.
これにより水素分離膜中を水素が選択的に透過して、水素含有混合気体側にある水素のみを反対側に移動させて分離することができる。この場合の水素分離膜の温度は、通常150℃〜700℃程度、好ましくは300℃〜600℃程度とすればよい。温度が低すぎるとパラジウムまたはパラジウム合金薄膜の脆化が生じ易くなり、温度が高すぎると膜の劣化が生じ易くなるので好ましくない。 Thus, hydrogen selectively permeates through the hydrogen separation membrane, and only hydrogen on the hydrogen-containing mixed gas side can be moved to the opposite side for separation. The temperature of the hydrogen separation membrane in this case is usually about 150 ° C. to 700 ° C., preferably about 300 ° C. to 600 ° C. If the temperature is too low, embrittlement of the palladium or palladium alloy thin film tends to occur, and if the temperature is too high, the film tends to deteriorate, which is not preferable.
以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
<実施例1>
外径15mm、肉厚2mm、長さ45mmの有底筒型に成形したステンレス粉末焼結体を支持体として、その外周表面上に、平均繊維径3μm,平均長さ15μmのステンレス製短繊維を構成材とする微細層を形成し、一体に積層焼結した多孔性金属基材を用いた。該短繊維による微細層は、構成厚さ0.2mmで、その層全体を通じて2.5μm程度の均一な微細細孔を有し、またその外表面には、該短繊維がランダム状に分布することで起伏した起伏表面を成すものであった。そして、この金属基材を空気中600℃で5時間加熱し、表面に茶色〜褐色の酸化皮膜を備えるものであった。(ステップ1)
<Example 1>
Stainless steel sintered body having an average fiber diameter of 3 μm and an average length of 15 μm is formed on the outer peripheral surface of a stainless powder sintered body formed into a bottomed cylindrical shape having an outer diameter of 15 mm, a thickness of 2 mm, and a length of 45 mm. A porous metal substrate formed with a fine layer as a constituent material and integrally laminated and sintered was used. The fine layer of short fibers has a structure thickness of 0.2 mm and uniform fine pores of about 2.5 μm throughout the layer, and the short fibers are randomly distributed on the outer surface. It was what formed the undulating surface. And this metal base material was heated in air at 600 degreeC for 5 hours, and was equipped with the brown-brown oxide film on the surface. (Step 1)
次に、このステンレス製焼結金属フィルター(多孔性金属基材)を、金属アルコキシドであるジルコニウムプロポキシドを17重量%含有する1−プロパノール溶液(金属アルコキシド溶液)に浸漬した後、これを引き上げ、50rpmの回転速度で5分間軸回転して、付着した溶液を金属基材の外周面側に均一に分散させた(ステップ2)。その後、室温で空気中に1時間放置した。この回転処理は、前記金属基材の細孔内部への過剰の浸入を防ぐとともに、表面側の前記凹部の形成にも寄与する。 Next, this stainless steel sintered metal filter (porous metal base material) was immersed in a 1-propanol solution (metal alkoxide solution) containing 17% by weight of zirconium propoxide, which is a metal alkoxide, and then pulled up. The shaft was rotated at a rotational speed of 50 rpm for 5 minutes to uniformly disperse the adhered solution on the outer peripheral surface side of the metal substrate (Step 2). Then, it was left in the air at room temperature for 1 hour. This rotation treatment prevents excessive penetration of the metal base material into the pores and contributes to the formation of the concave portion on the surface side.
次に市販のスチーム洗浄器で表面にスチームを吹きかけて表面を洗浄し、ジルコニウムプロポキシド(金属アルコキシド)の加水分解をより完全なものとした後、アセトンに浸漬し空気中に取り出した(ステップ3)。そして、空気中80℃で1h乾燥した。(ステップ4)。 Next, steam was sprayed onto the surface with a commercially available steam washer to clean the surface, and the hydrolysis of zirconium propoxide (metal alkoxide) was made more complete, then immersed in acetone and taken out into the air (step 3). ). And it dried for 1 h at 80 degreeC in the air. (Step 4).
次いで、ステップ2〜4の工程を繰り返し、そして、空気中、200℃で10時間、加熱することにより実施例1に係る多孔性フィルターを得た。なお、この繰り返し処理によって、前記セラミックス多孔体が金属基材との接合界面での隙間を確実に閉塞し、多孔体としての特性向上を図ることができた。ここで、実施例1に係る多孔性フィルターは、有底筒型のステンレス製焼結金属フィルター(多孔性金属基材)の外表面をセラミックス多孔体の層により被覆される構造を有するものとなる。 Next, the steps 2 to 4 were repeated, and the porous filter according to Example 1 was obtained by heating in air at 200 ° C. for 10 hours. By this repeated treatment, the ceramic porous body reliably closed the gap at the joint interface with the metal substrate, and the characteristics as a porous body could be improved. Here, the porous filter according to Example 1 has a structure in which the outer surface of a bottomed cylindrical stainless steel sintered metal filter (porous metal substrate) is covered with a layer of a ceramic porous body. .
<実施例2>
前記実施例1に係る多孔性フィルターに対して、再度ステップ2〜4の工程を2回実施した。但し、この実施例では、前記ステップ2はジルコニウムプロポキシド(金属アルコキシド)を13重量%含有する1−プロパノール溶液(金属アルコキシド溶液)にステンレス製焼結金属フィルターを浸漬し、該ジルコニウムプロポキシドの加水分解による該セラミックス多孔質体を形成した後、空気中200℃で10時間加熱し乾燥した。そして、この得られた成形品に対して今一度ステップ2〜4の工程を2回実施した。但し、今一度実施されるステップ2ではジルコニウムプロポキシドを6重量%含有する1−プロパノール溶液にステンレス製焼結金属フィルター内部を減圧しながら浸漬した。そして空気中、200℃で10時間、加熱することにより実施例2に係る多孔性フィルターを得た。
<Example 2>
For the porous filter according to Example 1, Steps 2 to 4 were repeated twice. However, in this example, in the step 2, the sintered metal filter made of stainless steel is immersed in a 1-propanol solution (metal alkoxide solution) containing 13% by weight of zirconium propoxide (metal alkoxide), and the zirconium propoxide is hydrolyzed. After the ceramic porous body was formed by decomposition, it was heated in air at 200 ° C. for 10 hours and dried. And the process of steps 2-4 was once implemented twice with respect to this obtained molded article. However, in step 2 performed once again, the inside of the stainless steel sintered metal filter was immersed in a 1-propanol solution containing 6% by weight of zirconium propoxide while reducing the pressure. And the porous filter which concerns on Example 2 was obtained by heating at 200 degreeC for 10 hours in the air.
このようにして形成された多孔性フィルターの表面を走査電子顕微鏡で観察した結果、図4に示すように、多孔性金属基材における表面上の細孔の露出面が層状のセラミックス多孔体で被覆されつつも、多孔性金属基材の表面に開口する細孔に基づく凹部が形成されていることが確認された。 As a result of observing the surface of the porous filter thus formed with a scanning electron microscope, as shown in FIG. 4, the exposed surface of the pores on the surface of the porous metal substrate is covered with a layered ceramic porous body. In spite of this, it was confirmed that a concave portion based on pores opened on the surface of the porous metal substrate was formed.
また、図5に示すセラミックス多孔体で被覆する前のステンレス製焼結金属フィルター(多孔性金属基材)の走査電子顕微鏡像にみられるように、ステンレス製焼結金属フィルター(多孔性金属基材)を構成する金属短繊維の線幅との比較により、ステンレス製焼結金属フィルター(多孔性金属基材)上にある層状のセラミックス多孔体の厚みは2μm以下であることがわかる。また、バブルポイント試験によるこの多孔性フィルターにおける表面に開口する細孔の最大細孔径は0.7μmであった。 Further, as seen in a scanning electron microscope image of the stainless sintered metal filter (porous metal substrate) before being covered with the ceramic porous body shown in FIG. 5, the stainless sintered metal filter (porous metal substrate) The thickness of the layered ceramic porous body on the stainless sintered metal filter (porous metal substrate) is 2 μm or less. Further, the maximum pore diameter of pores opening on the surface of this porous filter by the bubble point test was 0.7 μm.
<実施例3>
実施例1のステップ2にて用いられる溶液として、ジルコニウムプロポキシド(金属アルコキシド)を13重量%含有する1−プロパノール溶液(金属アルコキシド溶液)を使用し実施例1に示したステップ1〜4を行い、さらにステップ2〜4をもう1回行った。その後、空気中、400℃で10時間、加熱した後、再度、ステップ2〜4の工程を2回繰り返した。但し、ステップ2において、ジルコニウムプロポキシドを7重量%含有する1−プロパノール溶液中にステンレス製焼結金属フィルター内部を減圧しながら浸漬した。更に、再度、空気中、400℃で10時間、加熱後、今一度、ステップ2〜4の工程を2回繰り返し実施例3に係る多孔性フィルターを得た。この時、ステップ2において、ジルコニウムプロポキシドを8重量%、硝酸イットリウムを0.1重量%含有する1−プロパノール溶液にステンレス製焼結金属フィルター内部を減圧しながら浸漬した。
<Example 3>
As the solution used in Step 2 of Example 1, a 1-propanol solution (metal alkoxide solution) containing 13% by weight of zirconium propoxide (metal alkoxide) was used, and Steps 1 to 4 shown in Example 1 were performed. Further, Steps 2 to 4 were performed once more. Then, after heating at 400 degreeC in the air for 10 hours, the process of step 2-4 was repeated twice again. However, in Step 2, the inside of the stainless steel sintered metal filter was immersed in a 1-propanol solution containing 7% by weight of zirconium propoxide while reducing the pressure. Further, after heating again in air at 400 ° C. for 10 hours, the steps 2 to 4 were repeated twice to obtain a porous filter according to Example 3. At this time, in Step 2, the stainless steel sintered metal filter was immersed in a 1-propanol solution containing 8% by weight of zirconium propoxide and 0.1% by weight of yttrium nitrate while reducing the pressure.
次いで、形成された多孔性フィルターの表面(セラミックス多孔体の層の表面)に存在する欠陥を封止するために、以下の封止工程を実施した。まず、実施例3に係る有底筒状の多孔性フィルターを市販のアルカリ触媒液(奥野製薬工業株式会社、OPC−50インデューサー)中に50℃で浸漬して、その外表面(セラミックス多孔体の層の表面)にパラジウムイオンを付着させた。引き続き、市販のジメチルアミノボランを含有する還元液(奥野製薬工業株式会社、OPC−150クリスターMU)に浸漬してパラジウムイオンを還元することにより、その外表面にパラジウムを付与した後、市販の無電解パラジウムめっき液(奥野製薬工業株式会社、パラトップ)を有底筒状の多孔性フィルターの内部に満たし、当該多孔性フィルターの外表面(セラミックス多孔体の層の表面)をグルコース濃度4mol/Lの水溶液中に50℃で浸漬し、無電解パラジウムめっき液を多孔性フィルターの内側から外側に移動させ、多孔性フィルター外表面の欠陥部位を通じて流出させることにより、多孔性フィルター外表面の欠陥部にパラジウム金属を析出させ、外表面に開口する欠陥を金属で閉塞及び/または被覆した。この一連の封止工程を2回実施した。 Subsequently, in order to seal the defect which exists in the surface (surface of the ceramic porous body layer) of the formed porous filter, the following sealing processes were implemented. First, the bottomed cylindrical porous filter according to Example 3 was immersed in a commercially available alkaline catalyst solution (Okuno Pharmaceutical Co., Ltd., OPC-50 inducer) at 50 ° C., and its outer surface (ceramic porous body) Palladium ions were adhered to the surface of the layer. Subsequently, palladium was added to the outer surface by dipping in a reducing solution containing a commercially available dimethylaminoborane (Okuno Pharmaceutical Co., Ltd., OPC-150 Cryster MU) to reduce palladium ions. An electrolytic palladium plating solution (Okuno Pharmaceutical Co., Ltd., Paratop) is filled into the bottomed cylindrical porous filter, and the outer surface of the porous filter (the surface of the ceramic porous layer) has a glucose concentration of 4 mol / L. In an aqueous solution of 50 ° C, the electroless palladium plating solution is moved from the inside to the outside of the porous filter and flows out through the defective portion of the outer surface of the porous filter. Palladium metal was deposited, and defects opening on the outer surface were closed and / or covered with metal. This series of sealing steps was performed twice.
上記封止工程が完了した実施例3に係る多孔性フィルターを水洗した後、市販のアルカリ触媒液中に50℃で浸漬して、外表面にパラジウムイオンを付着させ、引き続き、市販の還元液中で還元し、引き続き50℃の市販の無電解パラジウムめっき液中に支持体の外表面を浸漬し、多孔性フィルター外表面にパラジウムを析出させた。 After the porous filter according to Example 3 in which the sealing step was completed was washed with water, it was immersed in a commercially available alkaline catalyst solution at 50 ° C. to allow palladium ions to adhere to the outer surface, and subsequently in a commercially available reducing solution. Then, the outer surface of the support was immersed in a commercially available electroless palladium plating solution at 50 ° C. to deposit palladium on the outer surface of the porous filter.
得られたパラジウム含有薄膜の平均膜厚は2.5μmであった。そして、パラジウム含有薄膜が外表面に形成された多孔性フィルターを銅のエチレンジアミン錯体からなる電気めっき液に浸漬して銅の電気めっきを行い、パラジウム薄膜上に銅含有薄膜を形成した。これを洗浄・乾燥後にアルゴン気流下で400℃まで昇温し、引き続き、水素気流下400℃で24時間、加熱処理して多孔性フィルターを支持体とする膜厚5μmのパラジウム・銅合金薄膜からなる水素分離膜5を得た。 The average film thickness of the obtained palladium-containing thin film was 2.5 μm. And the porous filter in which the palladium containing thin film was formed in the outer surface was immersed in the electroplating liquid which consists of a copper ethylenediamine complex, the copper electroplating was performed, and the copper containing thin film was formed on the palladium thin film. After washing and drying, the temperature was raised to 400 ° C. under an argon stream, followed by heat treatment at 400 ° C. for 24 hours under a hydrogen stream to obtain a 5 μm-thick palladium / copper alloy thin film using a porous filter as a support. A hydrogen separation membrane 5 was obtained.
パラジウムを主成分とする水素分離膜の水素透過速度(k)は一般にシーベルト則に従う。即ち、
k=J/(p10.5−p20.5)
となる。ここでJは水素透過流速(mmol/s/m2)、p1は入口側水素分圧(Pa)、p2は出口側水素分圧(Pa)である。
The hydrogen permeation rate (k) of a hydrogen separation membrane containing palladium as a main component generally follows the Sievert law. That is,
k = J / (p1 0.5 -p2 0.5 )
It becomes. Here, J is the hydrogen permeation flow rate (mmol / s / m 2 ), p1 is the inlet-side hydrogen partial pressure (Pa), and p2 is the outlet-side hydrogen partial pressure (Pa).
そこで、上記方法で得られた水素分離膜の性能を評価するため、水素差圧0〜2気圧の範囲で水素透過試験を行った結果、400℃において0.6mmol/s/m2/Pa0.5の水素透過速度を得た。尚、アルゴンの透過試験を行ったところアルゴンの顕著な透過はなかった。また、パラジウム薄膜の剥離等は見られず、良好な密着性を有するものであった。 Therefore, in order to evaluate the performance of the hydrogen separation membrane obtained by the above method, a hydrogen permeation test was performed in the range of a hydrogen differential pressure of 0 to 2 atm. As a result, 0.6 mmol / s / m 2 / Pa 0 at 400 ° C. A hydrogen permeation rate of .5 was obtained. In addition, when the permeation | transmission test of argon was done, there was no remarkable permeation | transmission of argon. Moreover, peeling of the palladium thin film or the like was not observed, and the film had good adhesion.
1 多孔性フィルター
2 多孔性金属基材
2A 構成材
21 多孔性金属基材における表面に開口する細孔
3A セラミックス多孔体
3 セラミックス多孔体の層
31 凹部
5 水素分離膜
DESCRIPTION OF SYMBOLS 1 Porous filter 2 Porous metal base material 2A Constituent material 21 Pore 3A opened to the surface in a porous metal base material Ceramic porous body 3 Ceramic porous body layer 31 Recessed part 5 Hydrogen separation membrane
Claims (11)
該セラミックス多孔体は、前記多孔性金属基材の前記一面側の細孔への浸入と、該細孔を構成する前記多孔性金属基材の構成材の露出表面を連続して覆うとともに、その外表面は、前記多孔性金属基材の起伏表面に基づく凹部を備えることを特徴とする多孔性フィルター。 A porous metal substrate, and a ceramic porous body provided on any one side of the porous metal substrate;
The ceramic porous body continuously covers the porous metal base material into the pores on the one surface side and the exposed surface of the porous metal base material constituting the pores. The outer surface has a recess based on the undulating surface of the porous metal substrate.
イ)その金属基材を、温度400〜850℃の酸化雰囲気中での加熱処理、又はアルカリ液への浸漬処理によって、その表面に固有金属色以外の特定色を持つ酸化皮膜を形成する表面酸化処理の段階と、
ウ)該酸化皮膜を備える前記金属基材のいずれか一面側の細孔に浸入し、かつ該細孔を構成する前記多孔性金属基材の構成材の露出表面を連続して覆うとともに、その外表面に凹部を備え、前記多孔性金属基材よりも微細な空孔を持つセラミックス多孔体を複合形成する複合処理の段階と、
エ)その複合処理の後に乾燥する乾燥段階とを備えること、
を特徴とする多孔性フィルターの製造方法。 A) a preparation stage of preparing a porous metal substrate having predetermined pore characteristics;
B) Surface oxidation that forms an oxide film having a specific color other than the intrinsic metal color on the surface of the metal substrate by heat treatment in an oxidizing atmosphere at a temperature of 400 to 850 ° C. or immersion treatment in an alkaline solution. Processing stage,
C) The porous metal base material that penetrates into the pores on one side of the metal base material provided with the oxide film and continuously covers the exposed surface of the porous metal base material constituting the pores; A step of a composite treatment comprising a recess on the outer surface and forming a composite ceramic porous body having finer pores than the porous metal substrate;
D) providing a drying step for drying after the combined treatment;
A method for producing a porous filter characterized by the above.
The method for producing a porous filter according to claim 10, wherein the ceramic porous body is obtained by hydrolysis of a metal alkoxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016004727A JP6808156B2 (en) | 2016-01-13 | 2016-01-13 | A porous filter, a hydrogen separation membrane using a porous filter as a support, a hydrogen separation method, and a method for manufacturing a porous filter. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016004727A JP6808156B2 (en) | 2016-01-13 | 2016-01-13 | A porous filter, a hydrogen separation membrane using a porous filter as a support, a hydrogen separation method, and a method for manufacturing a porous filter. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017124364A true JP2017124364A (en) | 2017-07-20 |
JP6808156B2 JP6808156B2 (en) | 2021-01-06 |
Family
ID=59364785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016004727A Active JP6808156B2 (en) | 2016-01-13 | 2016-01-13 | A porous filter, a hydrogen separation membrane using a porous filter as a support, a hydrogen separation method, and a method for manufacturing a porous filter. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6808156B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109868158A (en) * | 2019-02-28 | 2019-06-11 | 北京三聚环保新材料股份有限公司 | A kind of ceramic membrane and its method of modifying, filter and filtration system |
US11583810B2 (en) | 2020-12-14 | 2023-02-21 | Industrial Technology Research Institute | Porous substrate structure and manufacturing method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003135943A (en) * | 2001-11-06 | 2003-05-13 | Japan Pionics Co Ltd | Hydrogen separating membrane and method for manufacturing the same |
JP2005028248A (en) * | 2003-07-09 | 2005-02-03 | Toyota Central Res & Dev Lab Inc | Fluid separating filter, its manufacturing method and fuel cell system |
JP2006346621A (en) * | 2005-06-17 | 2006-12-28 | National Institute Of Advanced Industrial & Technology | Hydrogen separation membrane and hydrogen separation method |
US20100071556A1 (en) * | 2008-06-30 | 2010-03-25 | The Ohio State University | STABLE SUPPORTED Pd-ALLOY MEMBRANES |
KR101146137B1 (en) * | 2010-06-08 | 2012-05-16 | 한국생산기술연구원 | Oxygen permeable tube and Manufacturing method thereof |
JP2012152701A (en) * | 2011-01-27 | 2012-08-16 | National Institute Of Advanced Industrial Science & Technology | Hydrogen separation membrane, method of manufacturing the same, and hydrogen separation method |
JP2012152727A (en) * | 2011-01-28 | 2012-08-16 | Tokyo Electron Ltd | Filtration filter, and method for producing filtration filter |
JP2015024363A (en) * | 2013-07-25 | 2015-02-05 | 住友電気工業株式会社 | Fluid separation material and method of manufacturing the same |
JP2015521576A (en) * | 2012-06-15 | 2015-07-30 | インテレクチュアル ディスカバリー カンパニー リミテッド | Substrate having at least one surface partially or entirely flat and use thereof |
-
2016
- 2016-01-13 JP JP2016004727A patent/JP6808156B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003135943A (en) * | 2001-11-06 | 2003-05-13 | Japan Pionics Co Ltd | Hydrogen separating membrane and method for manufacturing the same |
JP2005028248A (en) * | 2003-07-09 | 2005-02-03 | Toyota Central Res & Dev Lab Inc | Fluid separating filter, its manufacturing method and fuel cell system |
JP2006346621A (en) * | 2005-06-17 | 2006-12-28 | National Institute Of Advanced Industrial & Technology | Hydrogen separation membrane and hydrogen separation method |
US20100071556A1 (en) * | 2008-06-30 | 2010-03-25 | The Ohio State University | STABLE SUPPORTED Pd-ALLOY MEMBRANES |
KR101146137B1 (en) * | 2010-06-08 | 2012-05-16 | 한국생산기술연구원 | Oxygen permeable tube and Manufacturing method thereof |
JP2012152701A (en) * | 2011-01-27 | 2012-08-16 | National Institute Of Advanced Industrial Science & Technology | Hydrogen separation membrane, method of manufacturing the same, and hydrogen separation method |
JP2012152727A (en) * | 2011-01-28 | 2012-08-16 | Tokyo Electron Ltd | Filtration filter, and method for producing filtration filter |
JP2015521576A (en) * | 2012-06-15 | 2015-07-30 | インテレクチュアル ディスカバリー カンパニー リミテッド | Substrate having at least one surface partially or entirely flat and use thereof |
JP2015024363A (en) * | 2013-07-25 | 2015-02-05 | 住友電気工業株式会社 | Fluid separation material and method of manufacturing the same |
Non-Patent Citations (1)
Title |
---|
松村安行: "多孔質金属管を支持体とする水素分離膜", 表面技術, vol. 59, no. 1, JPN6019030329, 2008, JP, pages 13 - 17, ISSN: 0004092917 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109868158A (en) * | 2019-02-28 | 2019-06-11 | 北京三聚环保新材料股份有限公司 | A kind of ceramic membrane and its method of modifying, filter and filtration system |
CN109868158B (en) * | 2019-02-28 | 2024-04-02 | 北京海新能源科技股份有限公司 | Ceramic membrane, modification method thereof, filter comprising ceramic membrane and filter system comprising ceramic membrane |
US11583810B2 (en) | 2020-12-14 | 2023-02-21 | Industrial Technology Research Institute | Porous substrate structure and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6808156B2 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4729755B2 (en) | Composite membrane, method for producing the same, and hydrogen separation membrane | |
JP4528785B2 (en) | Metal palladium composite membrane or alloy palladium composite membrane and method for producing the same | |
US6828037B2 (en) | Hydrogen-permeable structure and method for manufacture thereof or repair thereof | |
JP4998881B2 (en) | High durability hydrogen separation membrane and method for producing the same | |
WO2010096988A1 (en) | Process for preparing supported palladium or palladium alloy membrane | |
JP6808156B2 (en) | A porous filter, a hydrogen separation membrane using a porous filter as a support, a hydrogen separation method, and a method for manufacturing a porous filter. | |
CN105774171A (en) | Palladium or palladium alloy composite film on porous support surface and preparation method thereof | |
US9149762B2 (en) | Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method | |
KR101261994B1 (en) | Filmy self-supporting thin metal film for hydrogen separation and process for producing the same | |
CN107376661A (en) | A kind of preparation method of palladium base composite membrane | |
WO2013133771A1 (en) | Catalytic hollow fibers | |
JP2002355537A (en) | Hydrogen permeable film and producing method thereof | |
JP4909600B2 (en) | Hydrogen separator and method for producing the same | |
JP4759664B2 (en) | Hydrogen separation membrane and hydrogen separation method | |
JP5891512B2 (en) | Porous filter, manufacturing method thereof, hydrogen separation membrane using porous filter as support, defect sealing method, and hydrogen separation method | |
TWI442966B (en) | Methods of fabricating porous media and inorganic selective film | |
CN1299807C (en) | Preparation method of filter membrane of palladium-based alloy/aperture gradient titanium-aluminum intermetallic compound homogeneous support body for hydrogen separation | |
JP2005262082A (en) | Hydrogen separation membrane, production method therefor, and hydrogen separation method | |
JP2004089838A (en) | Separation membrane module and its manufacturing method | |
CN116685388A (en) | Ultra-thin diaphragm fabrication | |
JP6561334B2 (en) | Method for producing hydrogen separation membrane | |
KR20080078294A (en) | A preparation method of metallic nano porous membranes | |
WO2005075060A1 (en) | Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use | |
KR100531130B1 (en) | Preparation of composite palladium membranes using etching process of metal chlorides | |
JP2006181568A (en) | Hydrogen separating body and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190814 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20191012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201009 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6808156 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |