JP2006346621A - Hydrogen separation membrane and hydrogen separation method - Google Patents

Hydrogen separation membrane and hydrogen separation method Download PDF

Info

Publication number
JP2006346621A
JP2006346621A JP2005177932A JP2005177932A JP2006346621A JP 2006346621 A JP2006346621 A JP 2006346621A JP 2005177932 A JP2005177932 A JP 2005177932A JP 2005177932 A JP2005177932 A JP 2005177932A JP 2006346621 A JP2006346621 A JP 2006346621A
Authority
JP
Japan
Prior art keywords
palladium
hydrogen
separation membrane
hydrogen separation
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005177932A
Other languages
Japanese (ja)
Other versions
JP4759664B2 (en
Inventor
Yasuyuki Matsumura
安行 松村
Eiji Negishi
英二 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Original Assignee
Japan Energy Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Energy Corp
Priority to JP2005177932A priority Critical patent/JP4759664B2/en
Publication of JP2006346621A publication Critical patent/JP2006346621A/en
Application granted granted Critical
Publication of JP4759664B2 publication Critical patent/JP4759664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film of palladium or a palladium alloy highly useful as a hydrogen separation membrane formed on a sintered metal support body, having no defect even with a thin film thickness. <P>SOLUTION: This hydrogen separation membrane comprises the support body comprising a porous sintered metal; a porous layer comprising a polycrystal sintered body of yttrium stabilized zirconia formed on the support body; and the thin film of palladium or a palladium alloy formed on the porous layer comprising the yttrium stabilized zirconia by plating. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素分離膜及び水素の分離方法に関する。   The present invention relates to a hydrogen separation membrane and a hydrogen separation method.

パラジウム又はパラジウム合金の薄膜は、水素の選択的透過性を有するものであり、この特性を利用して水素分離膜として用いられている。   A thin film of palladium or palladium alloy has a selective hydrogen permeability, and is used as a hydrogen separation membrane by utilizing this characteristic.

パラジウム薄膜又はパラジウム合金薄膜を水素分離膜として用いる場合には、膜厚が薄いほど水素の透過速度が向上し、しかも高価なパラジウム等の貴金属使用量が減少する。このため、通常、アルミナ等の多孔性セラミックスを支持体として用い、その表面にめっき法やその他の方法でパラジウム薄膜又はパラジウム合金薄膜を形成して水素分離膜として使用されている(例えば、特許文献1参照)。   When a palladium thin film or a palladium alloy thin film is used as a hydrogen separation membrane, the thinner the film thickness, the higher the permeation rate of hydrogen and the less the amount of expensive noble metal such as palladium used. For this reason, a porous ceramic such as alumina is usually used as a support, and a palladium thin film or a palladium alloy thin film is formed on the surface thereof by plating or other methods and used as a hydrogen separation membrane (for example, patent documents) 1).

しかしながら、アルミナ等の多孔性セラミックスは金属との接合性が悪く、水素分離膜を装置に組み込もうとした場合に金属への特殊継ぎ手が必要となり、その部分のシール・強度等の問題が生じ、実用化の障害となっている。これを改善するため、パラジウム等の水素分離膜の支持体として多孔性焼結金属が使用されることがある。この場合、装置への接合性は極めて良好であるものの多孔性焼結金属は表面が粗く、露出しているガス透過孔は時により数μm以上あって、その上に、直接にパラジウムあるいはパラジウム合金薄膜を形成しようとしても、数μm以上のガス透過孔を封止するためには、通常、20μm以上の膜厚が必要であり、それでも完全に欠陥を無くすことはできない。また、焼結金属としてステンレス等の基材が使用されるが、その成分である鉄やニッケルのパラジウム系水素分離膜への拡散が生じて、水素分離膜としての性能を劣化させることが知られている。そこで、焼結金属上に、例えばシリカ、アルミナ、セリア、ジルコニア等のセラミックスをコーティングして、その上にパラジウム膜あるいはパラジウム合金膜を形成する方法がある。しかし、シリカやアルミナ等の場合、その熱膨張率がパラジウムと大きく異なるため、加熱冷却による膜の損傷が避けられない。その点で、セリアやジルコニアは熱膨張率がパラジウムに近く有利であるが、焼結性が悪く、焼結金属基材にコーティングしても緻密な多孔膜とはならず、その上にめっき等の手法でパラジウム膜を形成しても、欠陥が多く存在し、パラジウム膜厚が5μm以下では高い水素分離の選択性が得られない(例えば非特許文献1、2参照)。
特開平5−137979号公報 Dan Wang, Jianhua Tong, Hengyong Xu and Yasuyuki Matsumura, "Preparation of Palladium Membrane over Porous Stainless Steel Tube Modified with Zirconium Oxide", Catal. Today, 93-95, 689-693 (2004). Jianhua Tong, Hengyong Xu, Dan Wang and Yasuyuki Matsumura, "Preparation of Thin Palladium Membrane on Porous Stainless Steel Support Modified with Cerium Hydroxide", J. Jpn. Petrol. Inst., 47, 64-65 (2004).
However, porous ceramics such as alumina have poor bondability with metal, and when a hydrogen separation membrane is to be incorporated into the device, a special joint to the metal is required, resulting in problems such as sealing and strength of that part. It has become an obstacle to practical use. In order to improve this, a porous sintered metal may be used as a support for a hydrogen separation membrane such as palladium. In this case, although the bonding property to the apparatus is very good, the porous sintered metal has a rough surface, and the exposed gas permeation holes are sometimes several μm or more, and directly on it, palladium or palladium alloy Even if it is going to form a thin film, in order to seal the gas permeation hole of several micrometers or more, the film thickness of 20 micrometers or more is usually required, and even then, the defect cannot be completely eliminated. In addition, a base material such as stainless steel is used as the sintered metal, but it is known that the components such as iron and nickel diffuse into the palladium-based hydrogen separation membrane and deteriorate the performance as a hydrogen separation membrane. ing. Therefore, there is a method in which a ceramic such as silica, alumina, ceria, zirconia is coated on a sintered metal and a palladium film or a palladium alloy film is formed thereon. However, in the case of silica, alumina, or the like, the coefficient of thermal expansion is significantly different from that of palladium. In that respect, ceria and zirconia are advantageous in that they have a thermal expansion coefficient close to that of palladium, but they have poor sinterability and do not form a dense porous film even when coated on a sintered metal substrate. Even if the palladium membrane is formed by this method, there are many defects, and high hydrogen separation selectivity cannot be obtained when the palladium film thickness is 5 μm or less (for example, see Non-Patent Documents 1 and 2).
JP-A-5-137799 Dan Wang, Jianhua Tong, Hengyong Xu and Yasuyuki Matsumura, "Preparation of Palladium Membrane over Porous Stainless Steel Tube Modified with Zirconium Oxide", Catal. Today, 93-95, 689-693 (2004). Jianhua Tong, Hengyong Xu, Dan Wang and Yasuyuki Matsumura, "Preparation of Thin Palladium Membrane on Porous Stainless Steel Support Modified with Cerium Hydroxide", J. Jpn. Petrol. Inst., 47, 64-65 (2004).

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、水素の選択的透過性を有するパラジウム又はパラジウム合金薄膜を利用して、実用性の高い、優れた性能を有する水素分離膜を提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main purpose is to use a palladium or palladium alloy thin film having a selective hydrogen permeability and to be highly practical and excellent. It is to provide a hydrogen separation membrane having performance.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、支持体として多孔性焼結金属体を用い、この上にイットリウム安定化ジルコニアの多結晶焼結体からなる多孔質層を形成し、更に、この上にめっき法によってパラジウム又はパラジウム合金薄膜を形成してなる多層構造の複合体によれば、パラジウム又はパラジウム合金薄膜の膜厚が5μm以下の場合でも無欠陥の薄膜を形成でき、しかも耐久性が飛躍的に向上することを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, a porous sintered metal body was used as a support, a porous layer made of a polycrystalline sintered body of yttrium-stabilized zirconia was formed thereon, and a palladium or palladium alloy thin film was formed thereon by plating. According to the multilayer structure composite formed by forming a defect-free thin film even when the film thickness of the palladium or palladium alloy thin film is 5 μm or less, it has been found that the durability is dramatically improved. The present invention has been completed.

即ち、本発明は、下記の水素分離膜及び水素の分離方法を提供するものである。
1.多孔性焼結金属からなる支持体、
該支持体上に形成されたイットリウム安定化ジルコニアの多結晶焼結体からなる多孔質層、及び
該イットリア安定化ジルコニアの多孔質層上に、めっき法によって形成されたパラジウム又はパラジウム合金薄膜
からなる水素分離膜。
2.イットリウム安定化ジルコニアが、平均細孔径0.01〜0.5μmの多孔質構造を有するものである上記項1に記載の水素分離膜。
3.パラジウム又はパラジウム合金薄膜が、一層又は二層以上からなるものであって、合計膜厚が0.5〜10μmである上記項1又は2に記載の水素分離膜。
4.上記項1〜3のいずれかに記載の水素分離膜により隔離された一方の側に水素含有混合気体を位置させ、該水素分離膜の他方の面側の水素分圧を水素含有混合気体側の水素分圧以下とすることを特徴とする水素含有混合気体からの水素の分離方法。
That is, the present invention provides the following hydrogen separation membrane and hydrogen separation method.
1. A support made of a porous sintered metal,
A porous layer made of a polycrystalline sintered body of yttrium-stabilized zirconia formed on the support, and a palladium or palladium alloy thin film formed by plating on the porous layer of yttria-stabilized zirconia Hydrogen separation membrane.
2. Item 2. The hydrogen separation membrane according to Item 1, wherein the yttrium-stabilized zirconia has a porous structure having an average pore diameter of 0.01 to 0.5 µm.
3. Item 3. The hydrogen separation membrane according to Item 1 or 2, wherein the palladium or palladium alloy thin film comprises one layer or two or more layers, and the total film thickness is 0.5 to 10 µm.
4). The hydrogen-containing mixed gas is positioned on one side separated by the hydrogen separation membrane according to any one of the above items 1 to 3, and the hydrogen partial pressure on the other side of the hydrogen separation membrane is set on the hydrogen-containing mixed gas side. A method for separating hydrogen from a hydrogen-containing mixed gas, characterized by having a partial pressure of hydrogen or lower.

以下、本発明の水素分離膜について具体的に説明する。   Hereinafter, the hydrogen separation membrane of the present invention will be specifically described.

水素分離膜及びその製造方法
本発明の水素分離膜は、多孔性焼結金属からなる支持体、該支持体上に形成されたイットリウム安定化ジルコニアの多結晶焼結体からなる多孔質層、及び該イットリア安定化ジルコニアの多孔質層上に、めっき法によって形成されたパラジウム又はパラジウム合金薄膜、からなるものである。
Hydrogen separation membrane and production method thereof The hydrogen separation membrane of the present invention comprises a support made of a porous sintered metal, a porous layer made of a polycrystalline sintered body of yttrium-stabilized zirconia formed on the support, and It consists of a palladium or palladium alloy thin film formed by a plating method on the yttria-stabilized zirconia porous layer.

この様な構造の水素分離膜によれば、多孔性焼結金属からなる支持体上にイットリウム安定化ジルコニアの多結晶焼結体からなる多孔質層を有することによって、パラジウム又はパラジウム合金薄膜との親和性が向上して、パラジウム又はパラジウム合金膜の付着性が良好となり、膜厚が薄い場合にも欠陥の無い薄膜を形成することが可能となる。また、イットリウム安定化ジルコニアの多結晶焼結体層は、靱性および焼結性が高く、しかも結晶構造が安定化しているため、この上にパラジウム又はパラジウム合金薄膜を形成した水素分離膜は、高温における耐久性が非常に良好である。   According to the hydrogen separation membrane having such a structure, by having a porous layer made of a polycrystalline sintered body of yttrium-stabilized zirconia on a support made of a porous sintered metal, a palladium or palladium alloy thin film can be formed. The affinity is improved, the adhesion of the palladium or palladium alloy film is improved, and a thin film having no defect can be formed even when the film thickness is thin. In addition, the polycrystalline sintered body layer of yttrium-stabilized zirconia has high toughness and sinterability, and has a stable crystal structure. Therefore, a hydrogen separation membrane having a palladium or palladium alloy thin film formed thereon has a high temperature. The durability at is very good.

(1)支持体
支持体として用いる多孔性焼結金属の材質については特に限定はなく、例えば、ステンレス、ハステロイ合金、インコネル合金、ニッケル、ニッケル合金、チタン、チタン合金等を用いることができる。焼結金属の形状についても特に限定はなく、水素分離膜としての使用形態に応じて適宜決めればよいが、通常、板状、中空の管状等として用いられる。多孔性焼結金属は、水素分離膜としての安定性を保持できる厚さであればよく、例えば、0.2〜2mm程度の厚さとすることができる。
(1) Support body There is no limitation in particular about the material of the porous sintered metal used as a support body, For example, stainless steel, a Hastelloy alloy, an Inconel alloy, nickel, a nickel alloy, titanium, a titanium alloy etc. can be used. The shape of the sintered metal is not particularly limited, and may be appropriately determined according to the usage form as the hydrogen separation membrane, but is usually used as a plate shape, a hollow tubular shape, or the like. The porous sintered metal only needs to have a thickness that can maintain stability as a hydrogen separation membrane. For example, the porous sintered metal can have a thickness of about 0.2 to 2 mm.

多孔性焼結金属の細孔径についても特に制限はなく、その上に形成するイットリウム安定化ジルコニア層を安定に保持できれば良い。通常、平均細孔径が1〜50μm程度であればよい。この場合の平均細孔径は、水銀圧入法による測定値である。   The pore diameter of the porous sintered metal is not particularly limited as long as the yttrium-stabilized zirconia layer formed thereon can be stably held. Usually, the average pore diameter may be about 1 to 50 μm. The average pore diameter in this case is a value measured by a mercury intrusion method.

(2)イットリウム安定化ジルコニア層
多孔性焼結金属上に形成するイットリウム安定化ジルコニア層は、多結晶焼結体からなるものである。この場合、イットリウム安定化ジルコニアにおけるイットリウム量は、イットリウムとジルコニウムの総モル数に対して、好ましくは0.3〜15モル%程度、より好ましくは1〜8モル%程度である。
(2) Yttrium-stabilized zirconia layer The yttrium-stabilized zirconia layer formed on the porous sintered metal is made of a polycrystalline sintered body. In this case, the amount of yttrium in the yttrium-stabilized zirconia is preferably about 0.3 to 15 mol%, more preferably about 1 to 8 mol% with respect to the total number of moles of yttrium and zirconium.

イットリウム安定化ジルコニア層は、全体がほぼ均一な焼結体からなるものであっても良いが、例えば、外表面を平滑なものとするため、外表面近傍にあるジルコニアの粒度を内部にあるジルコニアの粒度より小さくしても良い。イットリウム安定化ジルコニアの結晶粒径は、その外表面を走査型電子顕微鏡で観察し、任意の100個の結晶について測定した長辺の長さの平均値を平均結晶粒径とした場合に、その値が0.1〜3μm程度であることが好ましく、0.2〜1μm程度であることがより好ましい。   The yttrium-stabilized zirconia layer may be composed of a substantially uniform sintered body as a whole. For example, in order to make the outer surface smooth, the zirconia particle size in the vicinity of the outer surface is set inside. It may be smaller than the grain size. The crystal grain size of yttrium-stabilized zirconia is obtained by observing the outer surface with a scanning electron microscope, and when the average value of the lengths of the long sides measured for any 100 crystals is defined as the average crystal grain size. The value is preferably about 0.1 to 3 μm, and more preferably about 0.2 to 1 μm.

同様にイットリウム安定化ジルコニア層の細孔径についても、全体がほぼ均一であってもよく、或いは、内部の細孔径が大きく、外表面近傍の細孔径が小さい状態でも良い。但し、いずれの場合にも、イットリウム安定化ジルコニア層の全体について水銀圧入法で測定した平均細孔径が、0.01〜0.5μm程度であることが好ましく、0.05〜0.3μm程度であることがより好ましい。   Similarly, the pore diameter of the yttrium-stabilized zirconia layer may be substantially uniform as a whole, or the internal pore diameter may be large and the pore diameter near the outer surface may be small. However, in any case, the average pore diameter measured by the mercury intrusion method for the entire yttrium-stabilized zirconia layer is preferably about 0.01 to 0.5 μm, and about 0.05 to 0.3 μm. More preferably.

該イットリウム安定化ジルコニア層の厚さについては特に限定的ではないが、厚すぎるとガス拡散が阻害され、薄すぎると焼結金属体表面を完全に被覆することができない。このため、通常、5〜100μm程度であることが好ましく、10〜50μm程度であることがより好ましい。   The thickness of the yttrium-stabilized zirconia layer is not particularly limited, but if it is too thick, gas diffusion is inhibited, and if it is too thin, the surface of the sintered metal body cannot be completely covered. For this reason, it is preferable that it is about 5-100 micrometers normally, and it is more preferable that it is about 10-50 micrometers.

イットリウム安定化ジルコニア層の形成方法については特に限定はなく、公知のセラミックス薄膜の形成方法を適宜使用して、上記した条件を満足する多結晶焼結体からなる該イットリウム安定化ジルコニア層を形成すればよい。   A method for forming the yttrium-stabilized zirconia layer is not particularly limited, and the yttrium-stabilized zirconia layer composed of a polycrystalline sintered body that satisfies the above-described conditions can be formed by appropriately using a known method for forming a ceramic thin film. That's fine.

例えば、目的とする該イットリウム安定化ジルコニア層と同様の組成を有するイットリウム安定化ジルコニアを予め合成し、これを粉砕して適当な粒径の粉末とした後、必要に応じて、水、アルコール、エチレングリコール、ジメチルホルムアミド等の溶媒、スチレン、酢酸ビニル、エチレン、アクリル酸エステル、塩化ビニル等の重合体等を添加して、混練物、スラリーなどの状態として、多孔性焼結金属上に塗布し、焼成して、イットリウム安定化ジルコニアの多孔質層を形成すればよい。この場合の焼成条件については、支持体とする多孔性焼結金属に悪影響の無い温度範囲において、上記した条件を満足するイットリウム安定化ジルコニア層が形成されるように適宜決めればよい。   For example, yttrium-stabilized zirconia having the same composition as the target yttrium-stabilized zirconia layer is synthesized in advance, and pulverized to obtain a powder having an appropriate particle size. Then, if necessary, water, alcohol, Add a solvent such as ethylene glycol or dimethylformamide, a polymer such as styrene, vinyl acetate, ethylene, acrylate ester, or vinyl chloride, and apply it on the porous sintered metal as a kneaded product or slurry. And calcination to form a porous layer of yttrium-stabilized zirconia. The firing conditions in this case may be appropriately determined so that an yttrium-stabilized zirconia layer that satisfies the above-described conditions is formed in a temperature range that does not adversely affect the porous sintered metal used as the support.

他の方法としてイットリウム安定化ジルコニアの微粒子をジルコニウム及びイットリウムの水酸化物等を前駆体とする水熱合成法などで調製し、これを必要に応じて、水、アルコール、エチレングリコール、ジメチルホルムアミド等の溶媒、スチレン、酢酸ビニル、エチレン、アクリル酸エステル、塩化ビニル等の重合体等を添加して、混練物、スラリーなどの状態として、多孔性焼結金属上に塗布し、焼成して、イットリウム安定化ジルコニアの多孔質層を形成しても良い。また、イットリウム安定化ジルコニアの原料となる化合物、例えば水酸化物に、必要に応じて、水、アルコール、エチレングリコール、ジメチルホルムアミド等の溶媒、スチレン、酢酸ビニル、エチレン、アクリル酸エステル、塩化ビニル等の重合体等を添加して、混練物、スラリーなどの状態として、多孔性焼結金属上に塗布し、その後、焼成してイットリウム安定化ジルコニウムの多結晶焼結体とする事も出来る。   As another method, fine particles of yttrium-stabilized zirconia are prepared by a hydrothermal synthesis method using zirconium and yttrium hydroxide as a precursor, etc., and if necessary, water, alcohol, ethylene glycol, dimethylformamide, etc. A solvent such as styrene, vinyl acetate, ethylene, acrylic acid ester, vinyl chloride, etc., and added to a porous sintered metal as a kneaded product, slurry, etc., fired, yttrium A porous layer of stabilized zirconia may be formed. In addition, as a raw material of yttrium-stabilized zirconia, for example, hydroxide, solvent such as water, alcohol, ethylene glycol, dimethylformamide, styrene, vinyl acetate, ethylene, acrylate, vinyl chloride, etc. It is also possible to add a polymer or the like and apply it as a kneaded product or slurry on the porous sintered metal, and then calcinate it to obtain a polycrystalline sintered body of yttrium-stabilized zirconium.

(3)パラジウム又はパラジウム合金薄膜
本発明の水素透過膜は、上記したイットリア安定化ジルコニア層上に、めっき法によって、パラジウム又はパラジウム合金の薄膜を形成したものである。
(3) Palladium or palladium alloy thin film The hydrogen permeable membrane of the present invention is obtained by forming a palladium or palladium alloy thin film on the yttria-stabilized zirconia layer by plating.

上記した多結晶焼結体からなるイットリア安定化ジルコニア層は、パラジウム又はパラジウム合金薄膜との親和性が良好であり、めっき法によってパラジウム又はパラジウム合金薄膜を形成することによって、密着性に優れ、5μm程度以下という薄い膜厚の場合であっても欠陥の無い良好な薄膜を形成することができる。   The above-mentioned yttria-stabilized zirconia layer made of a polycrystalline sintered body has good affinity with a palladium or palladium alloy thin film, and is excellent in adhesion by forming a palladium or palladium alloy thin film by a plating method. Even in the case of a thin film thickness of about or less, a good thin film without defects can be formed.

パラジウム又はパラジウム合金の薄膜の厚さについては、特に限定的ではないが、通常、0.5〜10μm程度であることが好ましく、1〜5μm程度であることがより好ましい。膜厚が薄すぎると水素の選択性及び耐久性が低下し、膜厚が厚すぎると水素透過速度が低下し、しかも経済性が失われるので好ましくない。   The thickness of the palladium or palladium alloy thin film is not particularly limited, but is usually preferably about 0.5 to 10 μm, and more preferably about 1 to 5 μm. If the film thickness is too thin, the selectivity and durability of hydrogen are lowered, and if the film thickness is too thick, the hydrogen permeation rate is lowered and the economy is lost.

尚、パラジウム合金としては、パラジウムと、銀、金、銅、白金、ロジウム及びルテニウムからなる群から選ばれる一種または二種以上の貴金属との合金が好ましい。この様なパラジウム合金中におけるパラジウムの割合は、50重量%以上であることが好ましい。   The palladium alloy is preferably an alloy of palladium and one or more kinds of noble metals selected from the group consisting of silver, gold, copper, platinum, rhodium and ruthenium. The proportion of palladium in such a palladium alloy is preferably 50% by weight or more.

パラジウム又はパラジウム合金薄膜は、無電解めっき法によって形成するが、無電解めっき法によってパラジウム又はパラジウム合金薄膜を形成した後、必要に応じて、電気めっき法又は無電解めっき法によってパラジウム又はパラジウム合金薄膜を形成しても良い。尚、二層以上のパラジウム又はパラジウム合金薄膜を形成する場合には、合計の厚さが0.5〜10μm程度であることが好ましい。   The palladium or palladium alloy thin film is formed by the electroless plating method. After forming the palladium or palladium alloy thin film by the electroless plating method, if necessary, the palladium or palladium alloy thin film is formed by the electroplating method or the electroless plating method. May be formed. In addition, when forming two or more layers of palladium or palladium alloy thin films, it is preferable that the total thickness is about 0.5 to 10 μm.

具体的なめっき条件については、特に限定はなく、目的とするパラジウム又はパラジウム合金の薄膜を形成可能な公知のめっき浴を使用して、公知の条件に従ってめっきを行えばよい。   Specific plating conditions are not particularly limited, and plating may be performed according to known conditions using a known plating bath capable of forming a target palladium or palladium alloy thin film.

パラジウム合金薄膜を形成する場合には、パラジウム化合物と、その他の合金成分を含む化合物とを含有する無電解めっき液を用いて公知の条件に従って無電解めっき法によって合金薄膜を形成すればよいが、パラジウム合金を構成する各金属を一種又は二種以上含む二層以上のめっき皮膜を無電解めっき法又は電気めっき法で形成した後、合金化処理を行ってパラジウム合金薄膜を形成しても良い。この方法では、より安定にパラジウム合金薄膜を形成することができる。合金化は、非酸化性雰囲気中、通常、還元ガス雰囲気下又は不活性ガス雰囲気下で加熱することによって行うことができる。還元ガスとしては、例えば、水素、一酸化炭素、メタノール等の還元性を有する気体を用いることができる。不活性ガスとしては、ヘリウム、窒素、アルゴン等が例示できる。あるいは、真空下で行ってもよい。合金化のための加熱温度は、合金の種類などに応じて適宜設定することができるが、300〜800℃程度とすることが好ましく、400〜700℃程度とすることがより好ましい。合金化の上限温度は基材となる焼結金属の耐熱性も考慮して適宜決めればよい。   In the case of forming a palladium alloy thin film, the alloy thin film may be formed by an electroless plating method according to known conditions using an electroless plating solution containing a palladium compound and a compound containing other alloy components. A palladium alloy thin film may be formed by performing an alloying process after forming a plating film of two or more layers containing one or two or more of each metal constituting the palladium alloy by an electroless plating method or an electroplating method. In this method, the palladium alloy thin film can be formed more stably. Alloying can be performed by heating in a non-oxidizing atmosphere, usually in a reducing gas atmosphere or an inert gas atmosphere. As the reducing gas, for example, a reducing gas such as hydrogen, carbon monoxide, or methanol can be used. Examples of the inert gas include helium, nitrogen, and argon. Alternatively, it may be performed under vacuum. The heating temperature for alloying can be appropriately set according to the type of alloy and the like, but is preferably about 300 to 800 ° C, more preferably about 400 to 700 ° C. The upper limit temperature for alloying may be appropriately determined in consideration of the heat resistance of the sintered metal serving as the base material.

パラジウム又はパラジウム合金薄膜からなるめっき皮膜は、支持体の全面に形成しても良いが、通常は、支持体の形状に応じて、水素分離膜として使用する際に水素含有ガスと接触する面に形成すればよい。例えば、板状の支持体を用いる場合には、水素含有ガスと接触する面にめっき皮膜を形成すれば良く、中空管状の支持体を用いる場合には、例えば、外側の面にめっき皮膜を形成すればよい。   The plating film made of palladium or a palladium alloy thin film may be formed on the entire surface of the support, but usually, depending on the shape of the support, on the surface in contact with the hydrogen-containing gas when used as a hydrogen separation membrane. What is necessary is just to form. For example, when a plate-like support is used, a plating film may be formed on the surface in contact with the hydrogen-containing gas. When a hollow tubular support is used, for example, a plating film is formed on the outer surface. do it.

また、めっき皮膜を形成する際に、めっき液を多孔質体の片方の面から細孔に圧入する方法、多孔質体の一方の面をめっき液と接触させ、他方の面側を減圧してめっき液を吸引する方法等を採用すると、形成されるめっき皮膜の密着性を向上させることができ、更に、支持体表面の欠陥の封止が加速される。   Also, when forming the plating film, a method of pressing the plating solution into the pores from one side of the porous body, contacting one side of the porous body with the plating solution, and reducing the pressure on the other side If a method of sucking the plating solution or the like is adopted, the adhesion of the formed plating film can be improved, and further, sealing of defects on the surface of the support is accelerated.

尚、無電解めっきに先だって、支持体上のイットリウム安定化ジルコニア層に無電解めっき用の触媒を付与する。無電解めっき用触媒の付与方法については、特に限定はなく、触媒成分を含有するコロイド溶液中に浸漬する方法等公知の触媒付与方法を採用できるが、化学蒸着法によってパラジウム化合物をイットリウム安定化ジルコニア層の表面に蒸着し、これを熱分解させた後、還元する方法によって無電解めっき用触媒を付与しても良い。また、化学蒸着の際に、焼結金属側からパラジウム化合物蒸気を吸引するか、或いは、イットリウム安定化ジルコニウム側から加圧すればイットリウム安定化ジルコニウムの細孔にパラジウムが堆積して細孔の封止効果も得ることができ、無電解めっきにより無欠陥な金属膜が形成できる。化学蒸着に用いるパラジウム化合物としては、ビス(アセチルアセトナト)パラジウム(II)、ビス(ヘキサフルオロアセチルアセトナト)パラジウム(II)、酢酸パラジウム、ビス(オキサラト)パラジウム酸カリウム、ビス(ジチオオキサラト)パラジウム酸カリウム、テトラアンミンパラジウム塩化物、ビス(エチレンジアミン)パラジウム塩化物、ビス(2,2'−ビピリジン)パラジウム過塩素酸塩、ビス(1,10−フェナントロリン)パラジウム過塩素酸塩、ビス(ジメチルグリオキシマト)パラジウム(II)、[Pd(PCH]、[Pd(PPhPPh](式中、Phはフェニル基を示す)、ジクロロビス(η−エチレン)パラジウム(II)、テトラクロロジ(η−エチレン)パラジウム(II)、カルボニルジクロロパラジウム(II)、ジカルボニルジクロロパラジウム(II)等を例示することができる。 Prior to electroless plating, a catalyst for electroless plating is applied to the yttrium-stabilized zirconia layer on the support. The method for applying the electroless plating catalyst is not particularly limited, and a known catalyst applying method such as a method of immersing in a colloidal solution containing a catalyst component can be adopted. However, the palladium compound is converted into yttrium-stabilized zirconia by chemical vapor deposition. A catalyst for electroless plating may be applied by a method of reducing the temperature after vapor deposition on the surface of the layer and thermally decomposing it. Also, during chemical vapor deposition, if palladium compound vapor is sucked from the sintered metal side or pressurized from the yttrium stabilized zirconium side, palladium deposits on the pores of the yttrium stabilized zirconium and seals the pores. A stop effect can also be obtained, and a defect-free metal film can be formed by electroless plating. Palladium compounds used for chemical vapor deposition include bis (acetylacetonato) palladium (II), bis (hexafluoroacetylacetonato) palladium (II), palladium acetate, potassium bis (oxalato) palladate, bis (dithiooxalato) palladium acid Potassium, tetraamminepalladium chloride, bis (ethylenediamine) palladium chloride, bis (2,2′-bipyridine) palladium perchlorate, bis (1,10-phenanthroline) palladium perchlorate, bis (dimethylglyoximato ) Palladium (II), [Pd (PCH 3 ) 4 ], [Pd (PPh 2 C 2 H 3 PPh 2 ) 2 ] (wherein Ph represents a phenyl group), dichlorobis (η-ethylene) palladium (II ), Tetrachlorodi (η-ethylene) palladium (II) Carbonyl dichloropalladium (II), can be exemplified dicarbonyl dichloropalladium (II) and the like.

化学蒸着を行う際のパラジウム化合物の気化温度は、用いるパラジウム化合物が気化する温度である限り特に制限されず、パラジウム化合物の種類などに応じて適宜設定することができる。通常40〜250℃程度、好ましくは50〜200℃程度とすればよい。気化したパラジウム化合物は、キャリアガスに同伴させてイットリウム安定化ジルコニア層上に導いてもよい。キャリアガスとしては、例えば、窒素、ヘリウム、アルゴンなどの不活性ガス等を用いることができるが、場合によっては水素や酸素等の反応性を有する気体をキャリアガスとして用いても良い。イットリウム安定化ジルコニウム上における蒸着温度は、パラジウム化合物の気化温度と同等あるいはそれ以上であれば良く、通常40〜600℃程度、好ましくは50〜400℃程度とすればよい。パラジウム化合物を蒸着後、直ちに熱分解させる場合には、蒸着温度は200〜600℃程度とすることが好ましく、250〜400℃程度とすることがより好ましい。   The vaporization temperature of the palladium compound at the time of chemical vapor deposition is not particularly limited as long as it is a temperature at which the palladium compound to be used is vaporized, and can be appropriately set according to the kind of the palladium compound. The temperature is usually about 40 to 250 ° C, preferably about 50 to 200 ° C. The vaporized palladium compound may be introduced onto the yttrium-stabilized zirconia layer in association with a carrier gas. As the carrier gas, for example, an inert gas such as nitrogen, helium, or argon can be used, but in some cases, a reactive gas such as hydrogen or oxygen may be used as the carrier gas. The deposition temperature on the yttrium-stabilized zirconium may be equal to or higher than the vaporization temperature of the palladium compound, and is usually about 40 to 600 ° C., preferably about 50 to 400 ° C. When the palladium compound is thermally decomposed immediately after vapor deposition, the vapor deposition temperature is preferably about 200 to 600 ° C, more preferably about 250 to 400 ° C.

(4)後処理
上記した方法で得られた水素分離膜は、そのまま用いても良いが、熱処理を行うことによって、水素分離膜としての性能を安定化させることができる。熱処理は、非酸化性雰囲気中で行えばよく、通常、還元ガス雰囲気下、或いは不活性ガス雰囲気下で加熱することによって行うことができる。還元ガスとしては、例えば水素、メタノール等の還元性を有する気体を用いることができる。不活性ガスとしてはヘリウム、窒素、アルゴン、水蒸気、等が例示できる。あるいは、真空下で行ってもよい。処理温度は水素分離膜の膜厚、合金の種類などに応じて適宜設定することができるが、200〜800℃程度とすることが好ましく、300〜600℃程度とすることが特に好ましい。処理時間は、通常、1〜100時間程度とすればよい。処理中に水素分離膜表面に付着した有機物を取り除くため、酸素あるいは酸素を含んだ気体と接触させても差し支えない。
(4) Post-treatment The hydrogen separation membrane obtained by the above-described method may be used as it is, but the performance as a hydrogen separation membrane can be stabilized by performing a heat treatment. The heat treatment may be performed in a non-oxidizing atmosphere, and can usually be performed by heating in a reducing gas atmosphere or an inert gas atmosphere. As the reducing gas, for example, a reducing gas such as hydrogen or methanol can be used. Examples of the inert gas include helium, nitrogen, argon, water vapor, and the like. Alternatively, it may be performed under vacuum. The treatment temperature can be appropriately set according to the thickness of the hydrogen separation membrane, the type of alloy, etc., but is preferably about 200 to 800 ° C., particularly preferably about 300 to 600 ° C. The treatment time may normally be about 1 to 100 hours. In order to remove organic substances adhering to the surface of the hydrogen separation membrane during the treatment, it may be brought into contact with oxygen or a gas containing oxygen.

水素分離方法
本発明の水素分離膜は、常法に従って、水素を含有する混合気体から水素のみを分離するために使用できる。例えば、該水素分離膜によって隔離された一方の側に水素含有混合気体を位置させて該水素分離膜の一方の面を水素含有気体と接触させ、他方の面側の水素分圧を水素含有混合気体側の水素分圧以下とすればよい。これにより水素分離膜中を水素が選択的に透過して、水素含有混合気体側にある水素のみを反対側に移動させて分離することができる。この場合の水素分離膜の温度は、通常150℃〜700℃程度、好ましくは300℃〜600℃程度とすればよい。温度が低すぎるとパラジウム又はパラジウム合金薄膜の脆化が生じ易くなり、温度が高すぎると膜の劣化が生じ易くなるので好ましくない。
Hydrogen Separation Method The hydrogen separation membrane of the present invention can be used for separating only hydrogen from a mixed gas containing hydrogen according to a conventional method. For example, a hydrogen-containing mixed gas is positioned on one side separated by the hydrogen separation membrane, one surface of the hydrogen separation membrane is brought into contact with the hydrogen-containing gas, and the hydrogen partial pressure on the other surface side is mixed with the hydrogen-containing mixture. What is necessary is just to be below the hydrogen partial pressure on the gas side. Thereby, hydrogen selectively permeates through the hydrogen separation membrane, and only hydrogen on the hydrogen-containing mixed gas side can be moved to the opposite side for separation. The temperature of the hydrogen separation membrane in this case is usually about 150 ° C. to 700 ° C., preferably about 300 ° C. to 600 ° C. If the temperature is too low, embrittlement of the palladium or palladium alloy thin film tends to occur, and if the temperature is too high, the film tends to deteriorate.

本発明によれば、比較的簡単な方法によって、膜厚が薄い場合であっても欠陥のないパラジウム又はパラジウム合金薄膜を形成できる。この方法は、大規模な製造設備を必要としない方法であり、工程の厳密な管理や歩留まりの悪さから解放され、大量生産が容易となる点等で、非常に有用性が高い方法である。   According to the present invention, a palladium or palladium alloy thin film having no defect can be formed by a relatively simple method even when the film thickness is thin. This method does not require a large-scale manufacturing facility, and is extremely useful because it is free from strict control of processes and poor yield and facilitates mass production.

得られる水素分離膜は、欠陥のないパラジウム又はパラジウム合金薄膜を有することによって、水素以外の気体の透過を完全に防止でき、優れた水素の選択的透過性を有するものであり、水素を含有する混合気体から水素のみを分離するための水素分離膜として有効に利用できる。   The resulting hydrogen separation membrane has a defect-free palladium or palladium alloy thin film so that it can completely prevent the permeation of gases other than hydrogen, has excellent hydrogen selective permeability, and contains hydrogen. It can be effectively used as a hydrogen separation membrane for separating only hydrogen from a mixed gas.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
層厚30μm、平均細孔径0.1μm、イットリウム含有量2モル%、平均結晶粒径0.5μmのイットリウム安定化ジルコニア層を外側に被覆した円筒状ステンレス製焼結金属フィルター(フィルター長3cm、フィルター直径1cm、厚さ0.5mm)をヘキサンで洗浄し脱脂した。次いで、市販のアルカリ性の無電解めっき用触媒付与溶液中に該フィルターを40℃で浸漬して、表面にパラジウム核を付着させた。これを市販の還元剤で還元し、引き続き市販の無電解パラジウムめっき液中に60℃で浸漬して、無電解めっき法によって該フィルターの表面に、膜厚1.7μmのパラジウム薄膜を形成した。
Example 1
Cylindrical stainless steel sintered metal filter with a layer thickness of 30 μm, an average pore diameter of 0.1 μm, an yttrium content of 2 mol%, and an average crystal grain size of 0.5 μm and coated on the outside with a sintered stainless steel metal filter (filter length: 3 cm, filter 1 cm in diameter and 0.5 mm in thickness) was washed with hexane and degreased. Next, the filter was immersed in a commercially available alkaline electroless plating catalyst application solution at 40 ° C. to attach palladium nuclei to the surface. This was reduced with a commercially available reducing agent and subsequently immersed in a commercially available electroless palladium plating solution at 60 ° C. to form a 1.7 μm-thick palladium thin film on the surface of the filter by an electroless plating method.

次いで、これをアルゴン気流下で400℃まで昇温し、引き続き、水素気流下400℃で24時間、加熱処理した。   Next, this was heated to 400 ° C. under an argon stream, and subsequently heat-treated at 400 ° C. for 24 hours under a hydrogen stream.

上記方法で得られた水素分離膜について水素透過試験を行った結果、500℃において水素差圧0.5気圧で、970ml/minの水素透過流量を得た。また、アルゴンについて同様の試験を行ったが、差圧2気圧でアルゴンの透過は検出されず、アルゴンの透過量は0.01ml/min以下であることが確認できた。   As a result of conducting a hydrogen permeation test on the hydrogen separation membrane obtained by the above method, a hydrogen permeation flow rate of 970 ml / min was obtained at 500 ° C. and a hydrogen differential pressure of 0.5 atm. Further, a similar test was performed for argon, but no argon permeation was detected at a differential pressure of 2 atm, and it was confirmed that the amount of argon permeation was 0.01 ml / min or less.

実施例2
実施例1と同様の方法で、円筒状ステンレス製焼結金属フィルター(フィルター長3cm、フィルター直径1cm、厚さ0.5mm)上に被覆した層厚30μm、平均細孔径0.1μm、イットリウム含有量2モル%、平均結晶粒径0.5μmのイットリウム安定化ジルコニア層表面に膜厚1.0μmのパラジウム薄膜を形成した。更に、パラジウム・銀アンミン錯体系の電気めっき浴に入れて、電気めっき法によって、銀が20重量%含まれる厚さ2.0μmのパラジウム・銀合金膜を形成した。これをアルゴン気流下で400℃まで昇温し、引き続き、水素気流下400℃で24時間、加熱処理した。
Example 2
Layer thickness 30 μm, average pore diameter 0.1 μm, yttrium content coated on cylindrical stainless steel sintered metal filter (filter length 3 cm, filter diameter 1 cm, thickness 0.5 mm) in the same manner as in Example 1. A palladium thin film having a film thickness of 1.0 μm was formed on the surface of the yttrium-stabilized zirconia layer having a 2 mol% average grain size of 0.5 μm. Furthermore, it was placed in an electroplating bath of a palladium / silver ammine complex system, and a palladium / silver alloy film having a thickness of 2.0 μm containing 20% by weight of silver was formed by electroplating. This was heated to 400 ° C. under an argon stream, and then heat-treated at 400 ° C. for 24 hours under a hydrogen stream.

上記方法で得られた水素分離膜について水素透過試験を行った結果、350℃において水素差圧1気圧で360ml/minの水素透過流量を得た。また、アルゴンについて同様の試験を行ったが、差圧2気圧でアルゴンの透過は検出されず、アルゴンの透過量は0.01ml/min以下であることが確認できた。   As a result of conducting a hydrogen permeation test on the hydrogen separation membrane obtained by the above method, a hydrogen permeation flow rate of 360 ml / min was obtained at 350 ° C. and a hydrogen differential pressure of 1 atm. Further, a similar test was performed for argon, but no argon permeation was detected at a differential pressure of 2 atm, and it was confirmed that the amount of argon permeation was 0.01 ml / min or less.

実施例3
層厚30μm、平均細孔径0.1μm、イットリウム含有量2モル%、平均結晶粒径0.5μmのイットリウム安定化ジルコニア層を外側に被覆した円筒状ステンレス製焼結金属フィルター(フィルター長3cm、フィルター直径1cm、厚さ0.5mm)をヘキサンで洗浄し脱脂した。次いで、市販のアルカリ性の無電解めっき用触媒付与溶液中に該フィルターを室温で浸漬して、表面にパラジウム核を付着させた。これを市販の還元剤で還元し、引き続き市販の無電解パラジウムめっき液中に60℃で浸漬し、無電解めっき法によって、該フィルターの表面にパラジウム薄膜を形成した。得られたパラジウム薄膜の膜厚は2.7μmであった。
Example 3
Cylindrical stainless steel sintered metal filter with a layer thickness of 30 μm, an average pore diameter of 0.1 μm, an yttrium content of 2 mol%, and an average crystal grain size of 0.5 μm and coated on the outside with a sintered stainless steel metal filter (filter length: 3 cm, filter 1 cm in diameter and 0.5 mm in thickness) was washed with hexane and degreased. Next, the filter was immersed in a commercially available alkaline electroless plating catalyst application solution at room temperature to attach palladium nuclei to the surface. This was reduced with a commercially available reducing agent, subsequently immersed in a commercially available electroless palladium plating solution at 60 ° C., and a palladium thin film was formed on the surface of the filter by an electroless plating method. The film thickness of the obtained palladium thin film was 2.7 μm.

次いで、パラジウム薄膜を形成した金属フィルターを銅アンミン錯体系の電気めっき浴に入れて、電気めっき法によって、厚さ2.5μmの銅皮膜を形成した。これをアルゴン気流下で400℃まで昇温し、引き続き、水素気流下400℃で24時間、加熱処理して膜を合金化した。   Next, the metal filter on which the palladium thin film was formed was placed in a copper ammine complex-based electroplating bath, and a copper film having a thickness of 2.5 μm was formed by electroplating. This was heated to 400 ° C. under an argon stream, and subsequently heat-treated at 400 ° C. for 24 hours under a hydrogen stream to alloy the film.

上記方法で得られた水素分離膜について水素透過試験を行った結果、450℃において水素差圧2気圧で890ml/minの水素透過流量を得た。また、アルゴンについて同様の試験を行ったが、差圧2気圧でアルゴンの透過は検出されず、アルゴンの透過量は0.01ml/min以下であることが確認できた。   As a result of performing a hydrogen permeation test on the hydrogen separation membrane obtained by the above method, a hydrogen permeation flow rate of 890 ml / min was obtained at 450 ° C. and a hydrogen differential pressure of 2 atm. Further, a similar test was performed for argon, but no argon permeation was detected at a differential pressure of 2 atm, and it was confirmed that the amount of argon permeation was 0.01 ml / min or less.

次いで、この水素分離膜の耐久性を確認するため、450℃において水素とアルゴンの交互供給を繰り返し、その水素脆性を評価したところ、400回の繰り返しにおいても、水素透過流量の劣化やアルゴンの透過は認められなかった。   Next, in order to confirm the durability of the hydrogen separation membrane, the alternate supply of hydrogen and argon was repeated at 450 ° C., and the hydrogen embrittlement was evaluated. Was not recognized.

Claims (4)

多孔性焼結金属からなる支持体、
該支持体上に形成されたイットリウム安定化ジルコニアの多結晶焼結体からなる多孔質層、及び
該イットリア安定化ジルコニアの多孔質層上に、めっき法によって形成されたパラジウム又はパラジウム合金薄膜
からなる水素分離膜。
A support made of a porous sintered metal,
A porous layer formed of a polycrystalline sintered body of yttrium-stabilized zirconia formed on the support, and a palladium or palladium alloy thin film formed by plating on the porous layer of yttria-stabilized zirconia. Hydrogen separation membrane.
イットリウム安定化ジルコニアが、平均細孔径0.01〜0.5μmの多孔質構造を有するものである請求項1に記載の水素分離膜。 The hydrogen separation membrane according to claim 1, wherein the yttrium-stabilized zirconia has a porous structure having an average pore diameter of 0.01 to 0.5 µm. パラジウム又はパラジウム合金薄膜が、一層又は二層以上からなるものであって、合計膜厚が0.5〜10μmである請求項1又は2に記載の水素分離膜。 The hydrogen separation membrane according to claim 1 or 2, wherein the palladium or palladium alloy thin film comprises one layer or two or more layers, and the total film thickness is 0.5 to 10 µm. 請求項1〜3のいずれかに記載の水素分離膜により隔離された一方の側に水素含有混合気体を位置させ、該水素分離膜の他方の面側の水素分圧を水素含有混合気体側の水素分圧以下とすることを特徴とする水素含有混合気体からの水素の分離方法。 A hydrogen-containing mixed gas is positioned on one side separated by the hydrogen separation membrane according to any one of claims 1 to 3, and the hydrogen partial pressure on the other surface side of the hydrogen separation membrane is set on the hydrogen-containing mixed gas side. A method for separating hydrogen from a hydrogen-containing mixed gas, characterized by having a partial pressure of hydrogen or lower.
JP2005177932A 2005-06-17 2005-06-17 Hydrogen separation membrane and hydrogen separation method Expired - Fee Related JP4759664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177932A JP4759664B2 (en) 2005-06-17 2005-06-17 Hydrogen separation membrane and hydrogen separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177932A JP4759664B2 (en) 2005-06-17 2005-06-17 Hydrogen separation membrane and hydrogen separation method

Publications (2)

Publication Number Publication Date
JP2006346621A true JP2006346621A (en) 2006-12-28
JP4759664B2 JP4759664B2 (en) 2011-08-31

Family

ID=37643013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177932A Expired - Fee Related JP4759664B2 (en) 2005-06-17 2005-06-17 Hydrogen separation membrane and hydrogen separation method

Country Status (1)

Country Link
JP (1) JP4759664B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161805A (en) * 2006-12-28 2008-07-17 National Institute Of Advanced Industrial & Technology Metal thin tube for separation of hydrogen and its manufacturing method
JP2010036080A (en) * 2008-08-03 2010-02-18 National Institute Of Advanced Industrial & Technology Hydrogen gas separation material with elevated temperature resistance which does not deteriorate under elevated temperature hyperbaric pressure-humid environment for a long term
JP2010042370A (en) * 2008-08-15 2010-02-25 Ngk Insulators Ltd Hydrogen separating member
JP2015147208A (en) * 2014-01-07 2015-08-20 国立研究開発法人産業技術総合研究所 Manufacturing method of hydrogen separation membrane
JP2017124364A (en) * 2016-01-13 2017-07-20 国立研究開発法人産業技術総合研究所 Porous filter, hydrogen separation film with porous filter as support, hydrogen separation method, and manufacturing method of porous filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712807A (en) * 1980-06-09 1982-01-22 Fuaburikashion Dereman Katarit Ultrafiltration membrane and its manufacture
JPH0739732A (en) * 1993-07-21 1995-02-10 Toto Ltd Ceramic separation membrane
JP2002280018A (en) * 2000-12-22 2002-09-27 Nok Corp Solid oxide porous membrane and its manufacturing method
JP2004122006A (en) * 2002-10-03 2004-04-22 National Institute Of Advanced Industrial & Technology Hydrogen separation film, its production method and separation method for hydrogen
JP2004161665A (en) * 2002-11-13 2004-06-10 Japan Carlit Co Ltd:The Raw material solution for forming thin film of multicomponent metal oxide, method for forming thin film using the raw material solution and thin film formed by the method
JP2004216275A (en) * 2003-01-15 2004-08-05 Ngk Insulators Ltd Method of producing hydrogen separator
JP2005262082A (en) * 2004-03-18 2005-09-29 National Institute Of Advanced Industrial & Technology Hydrogen separation membrane, production method therefor, and hydrogen separation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712807A (en) * 1980-06-09 1982-01-22 Fuaburikashion Dereman Katarit Ultrafiltration membrane and its manufacture
JPH0739732A (en) * 1993-07-21 1995-02-10 Toto Ltd Ceramic separation membrane
JP2002280018A (en) * 2000-12-22 2002-09-27 Nok Corp Solid oxide porous membrane and its manufacturing method
JP2004122006A (en) * 2002-10-03 2004-04-22 National Institute Of Advanced Industrial & Technology Hydrogen separation film, its production method and separation method for hydrogen
JP2004161665A (en) * 2002-11-13 2004-06-10 Japan Carlit Co Ltd:The Raw material solution for forming thin film of multicomponent metal oxide, method for forming thin film using the raw material solution and thin film formed by the method
JP2004216275A (en) * 2003-01-15 2004-08-05 Ngk Insulators Ltd Method of producing hydrogen separator
JP2005262082A (en) * 2004-03-18 2005-09-29 National Institute Of Advanced Industrial & Technology Hydrogen separation membrane, production method therefor, and hydrogen separation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161805A (en) * 2006-12-28 2008-07-17 National Institute Of Advanced Industrial & Technology Metal thin tube for separation of hydrogen and its manufacturing method
JP2010036080A (en) * 2008-08-03 2010-02-18 National Institute Of Advanced Industrial & Technology Hydrogen gas separation material with elevated temperature resistance which does not deteriorate under elevated temperature hyperbaric pressure-humid environment for a long term
JP2010042370A (en) * 2008-08-15 2010-02-25 Ngk Insulators Ltd Hydrogen separating member
JP2015147208A (en) * 2014-01-07 2015-08-20 国立研究開発法人産業技術総合研究所 Manufacturing method of hydrogen separation membrane
JP2017124364A (en) * 2016-01-13 2017-07-20 国立研究開発法人産業技術総合研究所 Porous filter, hydrogen separation film with porous filter as support, hydrogen separation method, and manufacturing method of porous filter

Also Published As

Publication number Publication date
JP4759664B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
Nam et al. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition
Nam et al. Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier
JP4250525B2 (en) Separation diffusion metal membrane and manufacturing method thereof
JP4729755B2 (en) Composite membrane, method for producing the same, and hydrogen separation membrane
Pan et al. Thin dense Pd membranes supported on α-Al 2 O 3 hollow fibers
Li et al. Preparation of thin Pd-based composite membrane on planar metallic substrate: Part II. Preparation of membranes by electroless plating and characterization
Zhang et al. Hydrogen transport through thin palladium–copper alloy composite membranes at low temperatures
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP4572385B2 (en) Hydrogen purification separation method
JP4559009B2 (en) Method for forming thermally mechanically stable metal / porous substrate composite film
JP4759664B2 (en) Hydrogen separation membrane and hydrogen separation method
Souleimanova et al. Pd membranes formed by electroless plating with osmosis: H2 permeation studies
Okazaki et al. Importance of the support material in thin palladium composite membranes for steady hydrogen permeation at elevated temperatures
JP5526387B2 (en) Defect-free hydrogen separation membrane, method for producing defect-free hydrogen separation membrane, and hydrogen separation method
JP3117276B2 (en) Hydrogen separation membrane
JP5825465B2 (en) Hydrogen separation membrane, production method thereof, and hydrogen separation method
JP2007069207A (en) Hydrogen separating composite and its production process
JP2005262082A (en) Hydrogen separation membrane, production method therefor, and hydrogen separation method
JP6208067B2 (en) Method for producing composite having thin metal-filled layer inside porous substrate, and composite
JP3755056B2 (en) Hydrogen separation membrane, method for producing the same, and method for separating hydrogen
JP2005254191A (en) Method for producing hydrogen separation metal film using printing and hydrogen separation metal film
JP6561334B2 (en) Method for producing hydrogen separation membrane
JP3174668B2 (en) Hydrogen separation membrane
WO2011122414A1 (en) Porous filter, production method for same, hydrogen separation membrane with porous filter as support body, defect sealing method and hydrogen separation method
JP2006314876A (en) Hydrogen separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100430

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4759664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees