JP2017124170A - ゲート制御された超音波及び力測定値を使用する、組織の深さの推定 - Google Patents

ゲート制御された超音波及び力測定値を使用する、組織の深さの推定 Download PDF

Info

Publication number
JP2017124170A
JP2017124170A JP2017001824A JP2017001824A JP2017124170A JP 2017124170 A JP2017124170 A JP 2017124170A JP 2017001824 A JP2017001824 A JP 2017001824A JP 2017001824 A JP2017001824 A JP 2017001824A JP 2017124170 A JP2017124170 A JP 2017124170A
Authority
JP
Japan
Prior art keywords
mechanical pressure
tissue
measurements
processor
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017001824A
Other languages
English (en)
Other versions
JP6827816B2 (ja
Inventor
アサフ・ゴバリ
Assaf Govari
アンドレス・クラウディオ・アルトマン
Andres C Altmann
ヤロン・エフラス
Yaron Ephrath
バディム・グリナー
Gliner Vadim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Israel Ltd
Original Assignee
Biosense Webster Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Israel Ltd filed Critical Biosense Webster Israel Ltd
Publication of JP2017124170A publication Critical patent/JP2017124170A/ja
Application granted granted Critical
Publication of JP6827816B2 publication Critical patent/JP6827816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/429Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by determining or monitoring the contact between the transducer and the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4405Device being mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe

Abstract

【課題】 組織の厚さを推定する方法を提供する。【解決手段】 この方法は、複数の測定値を受信することを包含し、各測定値は(i)組織に加えられたそれぞれの機械的圧力、及び(ii)それぞれの機械的圧力の存在下で、組織を横断する超音波の1つ又は2つ以上の往復伝搬時間を示す。一組の測定値が選択され、それは機械的圧力値の特定の部分サブレンジに当てはまる機械的圧力を有する。組織の厚さは、選択された一組の測定値の往復伝搬時間に基づいて推定される。【選択図】 図1

Description

本発明は全体として超音波を使用する組織の測定に関し、特に超音波プローブを使用する組織の深さ及び力の測定に関する。
超音波技術は、組織の深さを測定するカテーテルで使用される。従来技術の例を以下に示す。
米国特許第8,628,473号は細長いカテーテル本体を含む音響モニタリングを備えるアブレーションカテーテルを記載しており、その開示は参照により本明細書に組み込まれる。遠位部材を遠位端に隣接して配置し、及び遠位部材はカテーテル本体の外側の標的部位で生物学的部材を切除するためのアブレーション要素を含む。1つ又は2つ以上の音響トランスデューサは、それぞれの標的アブレーション部位に音響ビームを向けて、そこから反射エコーを受信するようにそれぞれ構成される。
米国特許出願公開第2011/0144491号は医療用挿入器具(MID)で使用するための操向可能な音響トランスデューサアセンブリを記載しており、その開示は参照により本明細書に組み込まれる。一実施形態では、MIDに課される検知された若しくは検出された力又は負荷に反応して、アセンブリは音響信号の標的を定める。操向可能な音響トランスデューサアセンブリは、スイッチアレイ及び複数の指向性音響トランスデューサ要素を含む。スイッチアレイは力又は負荷に反応して、力又は負荷の発生源に最も近い指向性音響トランスデューサ要素を作動させる。スイッチアレイは複数のスイッチを含み、そのうちの少なくとも1つは力又は負荷に反応して、視野内の標的組織を有する指向性音響トランスデューサ要素を作動させることができる。
米国特許出願公開第2011/0028848号は、異なる種類の組織間の、又は組織と体液との間のインターフェースなどの組織表面の空間的位置を測定する装置を記載しており、その開示は参照により本明細書に組み込まれる。前記装置は、遠位端部分を有する細長いカテーテル本体、遠位端部分によって運ばれる複数の位置確認要素、及び遠位端部分によって運ばれる少なくとも1つのパルスエコー音響要素を含む。
米国特許第8,545,408号は、遠位部分に配置されているパルスエコー超音波トランスデューサを含み、音響ビームを発しかつ受信するように配置されたカテーテルを含むアブレーションシステムを記載しており、その開示は参照により本明細書に組み込まれる。トランスデューサは音響パルスを発しかつ受信して、切除される標的組織部位に関するトランスデューサ検出情報を提供する。回転機構は、カテーテルの長手方向軸の周りの少なくとも遠位部分を回転させる。制御及びインタフェースシステムはトランスデューサ検出情報を処理して、アブレーションを制御するために用いられるユーザインタフェース、並びに/又は制御及びインタフェースシステムを介してフィードバックをユーザに提供する。
本特許出願中に参照により援用される文献は、いずれかの用語がこれらの援用文献において本明細書に明確に又は暗示的になされる定義と矛盾する形で定義されている場合には本明細書中の定義のみが考慮されるべきである点を除いて、本出願の一部とみなされるものとする。
本明細書に記載される本発明の実施形態は、組織の厚さを推定する方法を提供する。本方法は、複数の測定値を受信することであって、各測定値が、(i)組織に加えられたそれぞれの機械的圧力、及び(ii)それぞれの機械的圧力の存在下で、組織を横断する超音波の1つ又は2つ以上の往復伝搬時間を示す、ことを含む。機械的圧力値の特定の部分サブレンジに当てはまる機械的圧力を有する、一組の測定値を選択して、組織の厚さは選択された一組の測定値の往復伝搬時間に基づいて推定される。
いくつかの実施形態では、一組の測定値を選択することは、機械的圧力値の2つ又はそれ以上のサブレンジにおける機械的圧力値の安定度を分析することと、最良の安定度を有するサブレンジ内に当てはまる測定値を選択することと、を含む。他の実施態様では、特定の部分サブレンジは、機械的圧力ゼロ付近を含む。更に他の実施形態では、一組の測定値を選択することは、機械的圧力値が選択されたサブレンジ内に当てはまる1つ又は2つ以上の期間を決定することと、期間中に得られた測定値を選択することと、を含む。
一実施形態では、厚さを推定することは、期間内で所定の往復限界の範囲外にある、往復伝搬時間を取り除くことを含む。別の実施形態では、厚さを推定することは、期間中の往復伝搬時間の繰り返し性を分析することを含む。更に別の実施形態では、複数の測定値を受信することは、測定ごとに変化する機械的圧力の測定値を受信することを含む。
更に本発明の一実施形態によれば、組織の厚さを推定するためのシステムが提供される。システムは、インターフェース及びプロセッサを備える。インターフェースは複数の測定値を受信するように構成されており、各測定値は(i)組織に加えられたそれぞれの機械的圧力、及び(ii)それぞれの機械的圧力の存在下で、組織を横断する超音波の1つ又は2つ以上の往復伝搬時間を示す。プロセッサは、機械的圧力値の特定の部分サブレンジに当てはまる機械的圧力を有する、一組の測定値を選択し、組織の厚さを、選択された一組の測定値の往復伝搬時間に基づいて推定するように構成されている。
以下の本開示の実施形態の詳細な説明を図面と併せ読むことで本開示のより完全な理解が得られるであろう。
本発明の実施形態による、カテーテル法システムの概略描写図である。 本発明の実施形態による、評価されている組織と接触するカテーテルの遠位端の概略描写図である。 本発明の実施形態による、カテーテル先端部に加えた力と、組織インターフェースから反射した超音波信号の対応する往復伝搬時間との間の相関を示すグラフである。 本発明の実施形態による、超音波及び力測定を使用して組織の厚さを決定する方法を概略的に示すフローチャートである。
概要
組織の深さの測定は、様々な治療的及び診断的医療処置で使用される。例えば正確なアブレーションのために、組織の深さについての知識は、アブレーション持続期間及び電力などアブレーションパラメータを設定するために重要である。
超音波(US)技術など最小限に侵襲的な測定技術は、カテーテルを使用して適用されることができる。USトランスデューサは問題の組織と結合しており、組織を通るUSパルスを送信して、組織インターフェースから反射されるエコーパルスを検出するUSパルスを送信することと組織のインターフェースからエコーパルスを受信することとの間の伝播遅延を測定する、飛行時間(TOF)技術は、組織の深さを推定するために用いることができる。超音波パルスの伝播速度は既知であるので、USシステムは、測定されたTOF(一方向の伝播遅延の2で割ったもの)から厚さを決定することによって、問題の組織の深さ(又は厚さ)を推定できる。
器官は通常、それぞれのインターフェースにより分離される複数の組織を含む。USパルスのいくつかは問題の組織を通って及びそれを越えて伝播することができ、より深い組織のインターフェースから反射され得る。このような反射は、問題の組織のインターフェースから反射したパルスの検出と干渉し得る。USシステムは無関係の返送パルスをフィルタ処理し、かつ問題の組織のインターフェースから反射されるパルスのみの厚さ推定をベースにする必要がある。加えてUSシステムは、ユーザ(例えば医師)に問題の組織の正確な深さ推定値を提供するように、範囲外の深さ(例えば1〜2cmの深さ範囲が予想される組織の10cmの深さ)に対応するTOF値を取り除く必要がある。
本明細書に記載される本発明の実施形態は、US及び力測定値を使用する組織の深さを推定するために、改良された技術を提供する。いくつかの実施形態では、組織の厚さを推定するシステムは、機械的圧力センサー及びUSトランスデューサを備える。センサーは、カテーテルによって組織に加えられる機械的圧力を測定するように構成されている。圧力は通常、例えば周期的に時間とともに変化する。トランスデューサは、それぞれの機械的圧力の存在下で組織を通ってUSパルスを送信するように、及び問題の組織を横断しかつトランスデューサへ戻る波を受信するように構成されている。
いくつかの実施形態では、システムはプロセッサを備え、それは機械的圧力及び組織インターフェースから反射されるUS波の往復伝搬遅延(例えば、TOF)の値を受信するように、並びに組織の厚さを推定するためこれらの測定値を使用するように構成されている。
特に、本発明者らは、小さな値の機械的圧力値の狭いサブレンジ(例えば機械的圧力値ゼロ付近の狭いサブレンジ)の機械的圧力によってゲート制御される場合、組織の厚さの推定は著しくより安定的かつ信頼性が高くなることを、見出した。したがっていくつかの実施形態では、プロセッサは、圧力測定値のサブレンジを選択し、問題の組織の厚さを推定するためにこのサブレンジに当てはまるTOF値だけを使用する。
換言すれば、プロセッサは、機械的圧力が圧力値の選択された狭いサブレンジ内に当てはまったときに得られたTOF値だけを使用して組織の厚さを推定する。いくつかの実施形態では、圧力値のサブレンジは、安定的なTOF測定値が得られるまで、順応して再選択されることができる(手動で、又はプロセッサによって自動的に)。
システムの説明
図1は、本発明の実施形態による、カテーテル法システム10の概略描写図である。システム10は、挿入部15に示すように、医師16によって患者11の血管系を通って心臓12の心室又は血管構造内に挿入されるカテーテル14を備える。医師はカテーテルの遠位先端部45を心臓壁、例えばアブレーション標的部位と接触させる。システム10の要素を具体化する1つの市販品は、Biosense Webster,Inc.(3333 Diamond Canyon Road,Diamond Bar,CA 91765)より入手可能な、CARTO(登録商標)3システムとして入手可能である。このシステムは、本明細書に説明される本発明の原理を具体化するように、当業者によって変更されてもよい。
例えば電気活動マップの評価により異常であると判断された領域は、心筋に熱エネルギーを加えることによって、例えば遠位先端部45の1つ又は2つ以上の電極にカテーテル内のワイヤを通じて高周波(RF)電流を流すことによってアブレーションされ得る。その開示が参照により本明細書に組み込まれる、米国特許第6,226,542号及び同第6,301,496号、並びに本願と同一譲受人に譲渡された米国特許第6,892,091号に開示される方法にしたがって、電気活動マップは作成され得る。
アブレーションエネルギーは組織に吸収され、組織を電気的興奮性が永久に失われる点(通常60℃超)まで加熱する。支障なく行われた場合、この処置によって心臓組織に非伝導性の破壊部位が形成され、この破壊部位が、不整脈を引き起こす異常な電気経路を遮断する。開示された技術の原理は、不整脈を診断して治療するように、心臓の更なる領域に適用されることができる。
カテーテル14はハンドル20を含み、それはアブレーションのために所望により医師16がカテーテルの遠位端を操舵する、位置決めする及び配向することを可能にする好適な制御部を有する。遠位先端部45は、コンソール24に含まれるプロセッサ22へ信号を伝達する位置センサー(図示せず)を含む。
コンソール24は1つ又は2つ以上のアブレーション発電装置25を更に含み、それはアブレーションエネルギー並びに電気信号をそれぞれ心臓12へ及びそれから伝達するように構成されている。挿入部17を参照すると、発電装置25は、ケーブル34及び遠位先端45で又はその近くに位置する1つ又は2つ以上のアブレーション電極32を介して、心臓12内にアブレーションエネルギーを伝達する。カテーテル14の遠位端は検知電極33を更に含み、それは心臓12から電気信号を検知して、プロセッサ22にケーブル38を介して信号を伝達するように構成されている。
システム10はワイヤ連結部35を更に備え、それはコンソール24を、身体表面電極30並びにカテーテル14の位置座標及び方位座標を測定するための位置決めサブシステムの他の構成要素と連結するように構成される。電極32及び身体表面電極30は、参照により本明細書に組み込まれる、Govariらに発行される米国特許第7,536,218号に教示されるように、アブレーション部位での組織インピーダンスを測定するために使用することができる。いくつかの実施形態では、温度センサー(図示せず)、通常熱電対又はサーミスタを、電極32のそれぞれの上に又はその近くに取り付けることができる。
カテーテル14は、例えばRFエネルギー、超音波エネルギー、及びレーザー生成光エネルギーなどの任意の既知のアブレーション技術を使用して、心臓にアブレーションエネルギーを伝導するために適合されてもよい。このような方法は、参照により本明細書に組み込まれる、本願と同一譲受人に譲渡された、米国特許第6,814,733号、同第6,997,924号、及び同第7,156,816号に開示されている。
一実施形態では、位置決めサブシステムは、磁界生成コイル28を使用して、所定の作業体積内に磁界を生成し、カテーテルでこれらの磁界を検知することによって、カテーテル14の位置及び配向を決定するように構成される、磁気位置追跡装置を含む。位置決めサブシステムは、例えば参照により本明細書に組み込まれる米国特許第7,756,576号、及び上述の米国特許第7,536,218号に記載されている。
プロセッサ22は、通常カテーテル14から信号を受信し、増幅し、フィルタ処理し、デジタル化する信号処理回路(図示せず)を含む。このようなセンサーは例えば、電気センサー、温度センサー及び接触力センサーなどによって生成される信号、並びにカテーテル14の遠位に位置する複数の位置検知電極(図示せず)を含む。デジタル化された信号はコンソール24及び位置決めシステムによって受信され、カテーテル14の位置及び配向を計算し、電気信号を解析するために使用される。
いくつかの実施形態では、プロセッサ22は、電気解剖学的マップ生成器と、画像位置合わせプログラムと、画像又はデータ解析プログラムと、ディスプレイ29上に図形情報を提示するように構成されたグラフィカルユーザインタフェースと、を更に含む。
プロセッサ22は通常、本明細書に記載される機能を実行するようにソフトウェアでプログラムされている汎用プロセッサを含む。ソフトウェアは、例えばネットワークを介して電子形式でコンピュータにダウンロードしてもよく、又は、代替的に若しくは追加的に、磁気、光学、若しくは電子メモリなどの持続性有形媒体上で提供及び/又は格納されてもよい。
簡略化のために図示されないが、システム10は通常追加の要素を備える。例えば、システム10は心電図(ECG)モニタを備えてもよく、これは、ECG同期信号をコンソール24に供給するために、1つ又は2つ以上の身体表面電極から信号を受信するように連結される。システム10は、対象の身体の外面に取り付けられた、外部から貼付された基準パッチ、又は心臓12に対して固定された位置に維持された、心臓12の中に挿入されている、内部に配置されたカテーテル、のどちらかの上に基準位置センサーを更に備えることができる。
アブレーション部位を冷却するための、カテーテル14を通して液体を循環させるための従来のポンプ及びラインが提供される。システム10は、磁気共鳴イメージング(MRI)ユニットなど外部の画像診断法からの画像データを更に受信することができ、画像の生成及び表示用にプロセッサ22によって取り込まれ得る又は呼び出され得る、画像プロセッサを備えることができる。
組織の厚さの推定
医療処置は、組織の厚さの推定を必要としてもよい。組織アブレーションなどの最低限の侵襲的処置の場合、カテーテル14は超音波(US)トランスデューサを含むことができる。操作中、カテーテルを問題の組織と接触させる。トランスデューサは、組織を通って、同様にそれぞれの器官の周囲の組織を通って伝わるUSパルスを送信する。
パルスのいくつかは器官(例えば、問題の組織及び他の組織)の要素に衝突して、返送パルスとしてトランスデューサへ反射する。したがって返送パルスのいくつかは、問題の組織の推定した厚さについて関連しない器官の領域からトランスデューサに戻ることができる。このような無関係の返送パルスを推定に使用することで、厚さ推定にエラーを生じる可能性があり、それぞれの組織のアブレーション用パラメータの間違った設定の理由から、患者の安全性又は治療の有効性が損なわれる可能性がある。組織の厚さの推定に関連する返送パルスだけを獲得かつ選択する技術は、問題の組織の正確な推定を可能にすることにとって重要である。
図2は、本発明の実施形態による、評価されうる組織39と接触するカテーテル37の遠位先端部45の概略描写図である。カテーテル37は図1に示されるカテーテル14を実施するのに使用可能であり、その場合に組織39は心臓12の壁の部位を含む。カテーテル37は超音波トランスデューサ41を含み、それは組織39を横断する超音波を生じるように構成されている。カテーテル37は、遠位先端部45に又はその近くに配置される接触力センサー43を更に含む。
心拍動中、組織39の表面49は、血液が心臓12のそれぞれの心腔内へ/から輸送されるとき、方向47に上下にシフトする。いくつかの実施形態では、先端部45は変化せず、実質的に表面49と直交したままであり、その結果、心拍動中、力センサー43は心拍動に反応して時間周期性力を測定する。血液が心臓12のそれぞれの心腔内に輸送されるとき、心腔は拡大して、センサー43は高い力を測定する。血液が心腔から送りだされるとき、測定された力はほぼゼロである。
他の実施態様では、カテーテル37は方向47に往復運動して、それによって少なくとも先端部45の直下にある組織39の領域を圧迫及び減圧する。カテーテル37の移動は1〜10Hzの周波数で生じ、組織39を0.3〜0.5mm及び最大5mm圧迫するのに十分な力で実施される。カテーテル37の往復運動は、機械的アクチュエータ51によって駆動され得る。
操作中、トランスデューサ41は、上面49から組織インターフェース55である下面に向かって組織39を横断する超音波パルス53を生成し、ここで組織インターフェース55は組織39の反対面である。パルス53はパルス57として反射されて、先端部45の表面に向かって上方へ進む。それぞれの機械的圧力の存在下で、組織を横断する超音波パルスの往復伝搬時間は、飛行時間(TOF)を示す。組織の超音波パルスの既知の速度に基づいて、プロセッサ22は、組織39の測定された深さ又は厚さ内に飛行時間を転換できる。
一実施形態では、厚さの推定の感度を増加させるために、飛行時間の反射の実用範囲は、その中にカテーテル37が位置する腔にしたがって制限され得る。例えば、右心房に対する反射の飛行時間の可能な範囲は、0.25〜7mmの組織の厚さに対応し、超音波トランスデューサの全範囲又は左心室を評価するために必要とされる範囲よりもはるかに少ない。左心室では、反射の飛行時間の可能な範囲は通常、2〜20mmの組織の厚さに対応する。
接触力センサー43に好適なセンサーは、例えば米国特許出願公開第2012/0259194号及び同第2014/0100563号に記載されており、それらは参照により本明細書に組み込まれる。
超音波トランスデューサ41は、10MHzの通常速度で動作モード(Mモード)で超音波パルス53を放つ、既知の単結晶型であり得る。組織39は心室壁であってもよく、組織インターフェース55はその重なる心外膜であってもよい。パルス53、57の飛行時間は、先端部45が接近し、組織インターフェース55から後退することに応じて変化する。
他の反射もまた、トランスデューサ41によって検出され得る。これらは、反射インターフェース59、61により図2に例示されている。インターフェース59、61とそれぞれ関連する飛行時間の変化は、インターフェース55と関連する飛行時間の変化よりも、測定された接触力並びにカテーテル37の運動とあまり相関しない。インターフェース55は、カテーテル37の接触力測定値と最も高い相関性を有する飛行時間を有するように、候補となる反射の中から識別することができる。
図1及び図2に示す、TOF及び接触力測定値の追加の態様は、2014年12月30日出願の米国特許出願第14/585,788号で検討されており、この開示は参照により本明細書に組み込まれる。
図3は本発明の実施形態による、カテーテル先端部45に加えられた機械的な力と、組織インターフェースから反射した超音波のトレース65、67及び69の対応する往復伝搬時間との間の相関を示す1組のグラフである。トレース63は、センサー43によって測定される機械的圧力(また接触力とも称される)を表す。トレース65、67、69は、組織インターフェース55、59及び61(図2)それぞれに関連する飛行時間を表す。トレース65の形態はトレース63のものとよく相関するが、トレース67、69はトレース63と相関しないように見えることは、視診から明らかである。
前記相関は、例えばGovariらに対する米国特許出願第14/585,788号(2014年12月30日出願)に記載されるような相関式を使用してプロセッサ22によって確認されることができ、この開示は参照により本明細書に組み込まれる。通常、トレースの最後の2秒に計算が適用される。しかし、この間隔は重要ではない。相関性に基づき、組織インターフェース55は組織39の遠壁(すなわちインターフェース55)に対応する可能性が最も高いことを、トレース65から結論付けることができる。
挿入部66を参照すると、いくつかの実施形態では、プロセッサ22は、上方管理限界(UCL)62A及び下方管理限界(LCL)62Bを設定して、トレース63で示される力(すなわち、機械的圧力)測定値の部分サブレンジを決定する。通常サブセットの値及び範囲は、力及びTOF値の安定的かつ反復的表示を提供するように選択される。図3の例においてトレース63は、期間68、70、72及び74など複数の別個の期間を通じて収集され、そこで力値は力の部分サブレンジ内に入る。
狭いサブレンジにおける、例えば機械的圧力値ゼロ付近の機械的圧力によってゲート制御される場合、組織の厚さの推定は著しくより安定的かつ信頼性が高くなることを、発明者は見出した。
いくつかの実施形態では、トレース65は、飛行時間(すなわち、往復伝搬時間)値が安定であるとみなされる期間68、70、72及び74内で視診される。場合によっては、考慮される安定的なTOF測定値のサブセットだけが、組織の厚さを推定するために使用され得る。
更に、トレース65のグラフは、選択された期間内で反復的である。例えば限界64Aと64Bとの間に入る、期間68及び70内のトレース65の飛行時間値だけが十分に安定であるとみなされ、組織39の厚さを推定するために使用され得る。一方では、限界64Aと64Bの範囲外にある期間68、70、72及び74内のトレース65の任意のTOF値は取り除かれ、組織39の厚さを推定するために使用されない。
更に他の実施形態では、期間68、70、72及び74内の飛行時間値の大部分が限界64Aと64Bの範囲外にある場合、プロセッサ22は、力測定値の異なる部分サブセットを選択するために限界62A及び62Bの値を更新する。
一実施形態では、TOF測定値の全セットは圧力測定値のサブレンジに当てはまる可能性があり、したがって組織の厚さを推定するために使用され得る。しかし通常TOF測定値の比較的小さい部分だけが、圧力測定値の特定のサブレンジに当てはまる。
図4は、本発明の実施形態による、超音波及び力測定を使用して組織39の厚さを決定する方法を概略的に表すフローチャートである。この方法は、医師16が、接触力センサー43及びUSトランスデューサ41を組み込むカテーテル14の遠位端を、カテーテル挿入工程100で患者の心臓内に挿入することから始まる。
作動工程102において、医師16は、先端部45が組織39と接触するようにカテーテル14をナビゲートして、力センサー43及びUSトランスデューサ41を作動させる。作動させるとき、トランスデューサ41は組織を通してUSパルスを送って、組織インターフェースにより反射される少なくともいくつかのパルスを受信する。獲得工程104において、カテーテル14は、センサー43からの接触力測定値及びトランスデューサ41によって受信された反射パルスに対応する飛行時間測定値を得て、プロセッサ22にケーブル38を介して信号を伝達する。
相関工程105において、プロセッサ22は、接触力測定値と最も相関する飛行時間測定値をあらかじめ選択する。例えば上述の図3を参照すると、プロセッサ22は、組織インターフェース55から反射されるトレース65の飛行時間測定値を選択することができる。組織インターフェース61及び59それぞれから反射される、トレース67及び69の飛行時間測定値は廃棄される。
スライス選択工程106において、一実施形態では、医師16は力測定値の部分サブセットを含む力値のサブレンジ(スライスとも称される)を特定する。代替実施形態では、プロセッサ22は獲得した力値を分析し、限界62Aと62Bとの間の範囲などそれぞれのサブレンジを自動的に特定する。
飛行時間の選択工程108において、プロセッサ22は、測定された力値が、例えば限界62Aと62Bとの間の指定されたサブレンジ内に入る期間(例えば、期間68、70、72及び74)を選択する。プロセッサ22は対応する飛行時間値を選択し、1つ又は2つ以上の期間(例えば、期間68、70、72及び74)に亘るTOF値の繰り返し性及び安定性レベルを分析する。
決定工程110において、プロセッサ22は、選択されたTOF値が組織39の厚さの正確な推定を導くために十分に安定的かつ反復性かどうかをチェックする。一実施形態では、プロセッサ22は、TOF値の繰り返し性レベルを評価するために2つ又はそれ以上の期間(例えば、期間68と70との間)のTOF値の統計的分布を比較できる。他の実施形態では、プロセッサ22は、組織39の厚さを推定するために、圧力測定値のサブレンジに当てはまるTOF値の全セットを使用できる。
更に別の実施形態では、プロセッサ22は限界64A及び64Bを設定して、選択されたTOF値のいずれかが限界64Aと64Bの範囲外にあるかどうかをチェックする。
いくつかの実施形態では、期間中のTOF値が十分に安定的でないことをプロセッサ22が検出するとき、前記方法は異なるスライスを選択するためスライス選択工程106へループバックする。他の実施態様では、プロセッサ22は、限界64Aと64Bの範囲外にあるTOF値を取り除いて、組織深さを推定するための残りのTOF値を使用することができる。フィルタ処理した値は通常、限界64Aと64Bの範囲外にある期間内のTOF値の僅少部分(例えば所与の端数未満)を含む。
場合によっては、例えばトランスデューサ41が一時的に表面49に対して非直交に配置されるとき、1つ又は2つ以上の期間(例えば、期間70)に対応する測定値の大部分(例えば、ほとんど)は、異常なデータを含む場合がある。更に他の実施形態では、プロセッサ22は、異常値を取り除くか又は工程106で異なるスライスを選択するなど別の措置をとるかという、おそらく医師16に対する問い合わせと共に、画面29にこれらの異常値の分析を提示できることができる。
期間中のTOF値が十分に安定しているとプロセッサが判断する場合、組織の厚さの推定工程112で、プロセッサはそれぞれのTOF値を使用して組織39の厚さを推定し、ディスプレイ29に推定した厚さの結果を示す。パラメータ設定工程114において、医師16は、医療処置に必要な1つ又は2つ以上のパラメータ(例えばアブレーションパラメータ)を設定するために推定した厚さを使用する。医師16が推定した厚さに不満足な場合、医師は、例えば組織39に対してカテーテルを再配置することによって、獲得工程104に戻ることができる。別の実施形態では、医師は、限界62Aと62Bを更新することによって他のスライスを選択するように、スライス選択工程106に戻ることができる。
一例として図1〜図4は、心臓12に含まれる組織39の深さ又は厚さを推定するシステム及び手順を示す。しかしながら、本明細書に記載されている技術は、最小侵襲性装置を用いて患者11の他の任意の器官において、又は組織の深さ若しくは厚さを推定することを伴う他の任意の好適な医療処置において、使用され得る。
加えて本明細書に記載されるTOF値に適用される期間選択基準及びフィルタリング技術は例示として提供されており、他の好適な技法も使用され得る。上述の信号獲得技術は超音波方法に限定されず、問題の組織にカテーテルをごく近接して又は直接接触することに関連する、任意の好適な技術を含むことができる。
上記に述べた実施形態は一例として挙げたものであり、本発明は上記に具体的に示し及び記載したものに限定されないことは理解されるであろう。むしろ本発明の範囲は、上述の様々な特徴の組み合わせ及びその一部の組み合わせの両方、並びに上述の説明を読むことで当業者により想到されるであろう、従来技術において開示されていない変形及び修正を含むものである。
〔実施の態様〕
(1) 組織の厚さを推定する方法であって、前記方法が、
複数の測定値を受信することであって、各測定値が、(i)前記組織に加えられたそれぞれの機械的圧力、及び(ii)前記それぞれの機械的圧力の存在下で、前記組織を横断する超音波の1つ又は2つ以上の往復伝搬時間を示す、ことと、
機械的圧力値の特定の部分サブレンジに当てはまる機械的圧力を有する、一組の前記測定値を選択することと、
前記選択された一組の前記測定値の前記往復伝搬時間に基づいて前記組織の厚さを推定することと、
を含む、方法。
(2) 前記一組の測定値を選択することが、前記機械的圧力値の2つ又はそれ以上のサブレンジにおける前記機械的圧力値の安定度を分析することと、最良の安定度を有する前記サブレンジ内に当てはまる測定値を選択することと、を含む、実施態様1に記載の方法。
(3) 前記特定の部分サブレンジが機械的圧力ゼロ付近を含む、実施態様1に記載の方法。
(4) 前記一組の測定値を選択することは、前記機械的圧力値が前記選択されたサブレンジ内に当てはまる、1つ又は2つ以上の期間を決定することと、前記期間中に得られた測定値を選択することと、を含む、実施態様1に記載の方法。
(5) 前記厚さを推定することが、前記期間内で既定の往復限界の範囲外にある、往復伝搬時間を取り除くことを含む、実施態様4に記載の方法。
(6) 前記厚さを推定することが、前記期間中の前記往復伝搬時間の繰り返し性を分析することを含む、実施態様4に記載の方法。
(7) 前記複数の測定値を受信することが、測定ごとに変化する機械的圧力の測定値を受信することを含む、実施態様1に記載の方法。
(8) 組織の厚さを推定するシステムであって、
インターフェースであって、前記インターフェースが複数の測定値を受信するように構成されており、各測定値が(i)前記組織に加えられたそれぞれの機械的圧力、及び(ii)前記それぞれの機械的圧力の存在下で、前記組織を横断する超音波の1つ又は2つ以上の往復伝搬時間を示す、インターフェースと、
プロセッサであって、前記プロセッサが機械的圧力値の特定の部分サブレンジに当てはまる機械的圧力を有する、一組の前記測定値を選択し、前記組織の厚さを、前記選択された一組の測定値の前記往復伝搬時間に基づいて推定するように構成されている、プロセッサと、
を備える、システム。
(9) 前記プロセッサが、前記機械的圧力値の2つ又はそれ以上のサブレンジにおける前記機械的圧力値の安定度を分析し、最良の安定度を有する前記サブレンジ内に入る測定値を選択するように構成されている、実施態様8に記載のシステム。
(10) 前記特定の部分サブレンジが機械的圧力ゼロ付近を含む、実施態様8に記載のシステム。
(11) 前記プロセッサは、前記機械的圧力値が前記選択されたサブレンジ内に入る1つ又は2つ以上の期間を決定し、前記決定された期間中に得られた測定値を分析するように構成されている、実施態様8に記載のシステム。
(12) 前記プロセッサが、前記期間内で既定の往復限界の範囲外にある、往復伝搬時間を取り除くように構成されている、実施態様11に記載のシステム。
(13) 前記プロセッサが、前記期間中の前記往復伝搬時間の繰り返し性を分析するように構成されている、実施態様11に記載のシステム。
(14) 前記インターフェースが、測定ごとに変化する機械的圧力の測定値を受信するように構成されている、実施態様8に記載のシステム。

Claims (14)

  1. 組織の厚さを推定する方法であって、前記方法が、
    複数の測定値を受信することであって、各測定値が、(i)前記組織に加えられたそれぞれの機械的圧力、及び(ii)前記それぞれの機械的圧力の存在下で、前記組織を横断する超音波の1つ又は2つ以上の往復伝搬時間を示す、ことと、
    機械的圧力値の特定の部分サブレンジに当てはまる機械的圧力を有する、一組の前記測定値を選択することと、
    前記選択された一組の前記測定値の前記往復伝搬時間に基づいて前記組織の厚さを推定することと、
    を含む、方法。
  2. 前記一組の測定値を選択することが、前記機械的圧力値の2つ又はそれ以上のサブレンジにおける前記機械的圧力値の安定度を分析することと、最良の安定度を有する前記サブレンジ内に当てはまる測定値を選択することと、を含む、請求項1に記載の方法。
  3. 前記特定の部分サブレンジが機械的圧力ゼロ付近を含む、請求項1に記載の方法。
  4. 前記一組の測定値を選択することは、前記機械的圧力値が前記選択されたサブレンジ内に当てはまる、1つ又は2つ以上の期間を決定することと、前記期間中に得られた測定値を選択することと、を含む、請求項1に記載の方法。
  5. 前記厚さを推定することが、前記期間内で既定の往復限界の範囲外にある、往復伝搬時間を取り除くことを含む、請求項4に記載の方法。
  6. 前記厚さを推定することが、前記期間中の前記往復伝搬時間の繰り返し性を分析することを含む、請求項4に記載の方法。
  7. 前記複数の測定値を受信することが、測定ごとに変化する機械的圧力の測定値を受信することを含む、請求項1に記載の方法。
  8. 組織の厚さを推定するシステムであって、
    インターフェースであって、前記インターフェースが複数の測定値を受信するように構成されており、各測定値が(i)前記組織に加えられたそれぞれの機械的圧力、及び(ii)前記それぞれの機械的圧力の存在下で、前記組織を横断する超音波の1つ又は2つ以上の往復伝搬時間を示す、インターフェースと、
    プロセッサであって、前記プロセッサが機械的圧力値の特定の部分サブレンジに当てはまる機械的圧力を有する、一組の前記測定値を選択し、前記組織の厚さを、前記選択された一組の測定値の前記往復伝搬時間に基づいて推定するように構成されている、プロセッサと、
    を備える、システム。
  9. 前記プロセッサが、前記機械的圧力値の2つ又はそれ以上のサブレンジにおける前記機械的圧力値の安定度を分析し、最良の安定度を有する前記サブレンジ内に入る測定値を選択するように構成されている、請求項8に記載のシステム。
  10. 前記特定の部分サブレンジが機械的圧力ゼロ付近を含む、請求項8に記載のシステム。
  11. 前記プロセッサは、前記機械的圧力値が前記選択されたサブレンジ内に入る1つ又は2つ以上の期間を決定し、前記決定された期間中に得られた測定値を分析するように構成されている、請求項8に記載のシステム。
  12. 前記プロセッサが、前記期間内で既定の往復限界の範囲外にある、往復伝搬時間を取り除くように構成されている、請求項11に記載のシステム。
  13. 前記プロセッサが、前記期間中の前記往復伝搬時間の繰り返し性を分析するように構成されている、請求項11に記載のシステム。
  14. 前記インターフェースが、測定ごとに変化する機械的圧力の測定値を受信するように構成されている、請求項8に記載のシステム。
JP2017001824A 2016-01-11 2017-01-10 ゲート制御された超音波及び力測定値を使用する、組織の深さの推定 Active JP6827816B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/992,389 2016-01-11
US14/992,389 US10034653B2 (en) 2016-01-11 2016-01-11 Tissue depth estimation using gated ultrasound and force measurements

Publications (2)

Publication Number Publication Date
JP2017124170A true JP2017124170A (ja) 2017-07-20
JP6827816B2 JP6827816B2 (ja) 2021-02-10

Family

ID=57758527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001824A Active JP6827816B2 (ja) 2016-01-11 2017-01-10 ゲート制御された超音波及び力測定値を使用する、組織の深さの推定

Country Status (7)

Country Link
US (1) US10034653B2 (ja)
EP (1) EP3189785B1 (ja)
JP (1) JP6827816B2 (ja)
CN (1) CN106963479B (ja)
AU (1) AU2016277627B2 (ja)
CA (1) CA2954112A1 (ja)
IL (1) IL249784B (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494840B1 (en) * 2000-07-31 2002-12-17 The Hong Kong Polytechnic University Portable ultrasonic palpation system
JP2003180684A (ja) * 2001-12-14 2003-07-02 Omron Corp 健康管理指針アドバイス装置
JP2003265471A (ja) * 2002-03-15 2003-09-24 Omron Corp 内部構造検査装置
JP2005021347A (ja) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd 血圧計および血圧測定方法
JP2006263128A (ja) * 2005-03-24 2006-10-05 Citizen Watch Co Ltd 血管弾性率測定方法及び血管弾性率測定装置
US20080214961A1 (en) * 2007-03-02 2008-09-04 Unex Corporation Biological luminal body evaluating apparatus
US20130158418A1 (en) * 2011-12-14 2013-06-20 Seiko Epson Corporation Blood pressure measurement apparatus and blood pressure measurement method
US20150018679A1 (en) * 2013-07-11 2015-01-15 Seiko Epson Corporation Ultrasonic measuring device, ultrasonic image device, and ultrasonic measuring method
WO2015113813A1 (en) * 2014-01-17 2015-08-06 Koninklijke Philips N.V. Ultrasound device and method of assessing a bone of a subject

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301496B1 (en) 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6892091B1 (en) 2000-02-18 2005-05-10 Biosense, Inc. Catheter, method and apparatus for generating an electrical map of a chamber of the heart
US6814733B2 (en) 2002-01-31 2004-11-09 Biosense, Inc. Radio frequency pulmonary vein isolation
EP1541090B1 (en) * 2002-07-31 2019-05-15 Hitachi, Ltd. Ultrasonic diagnosis system and distortion distribution display method
US6997924B2 (en) 2002-09-17 2006-02-14 Biosense Inc. Laser pulmonary vein isolation
US7156816B2 (en) 2002-11-26 2007-01-02 Biosense, Inc. Ultrasound pulmonary vein isolation
US7536218B2 (en) 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
US7756576B2 (en) 2005-08-26 2010-07-13 Biosense Webster, Inc. Position sensing and detection of skin impedance
JP5304986B2 (ja) * 2008-03-31 2013-10-02 株式会社日立メディコ 超音波診断装置
US20110028848A1 (en) 2009-07-31 2011-02-03 Cem Shaquer Methods and Apparatus for Detecting and Mapping Tissue Interfaces
US8715186B2 (en) * 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9907534B2 (en) 2009-12-15 2018-03-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Self-aiming directable acoustic transducer assembly for invasive medical device applications
US8374670B2 (en) 2010-01-22 2013-02-12 Biosense Webster, Inc. Catheter having a force sensing distal tip
US9310473B2 (en) * 2010-02-17 2016-04-12 Hitachi Medical Corporation Method for evaluating image quality of elastic image, and ultrasonic diagnostic apparatus
WO2011137336A1 (en) * 2010-04-30 2011-11-03 President And Fellows Of Harvard College Motion compensating catheter device
JP5787286B2 (ja) 2010-05-31 2015-09-30 国立研究開発法人産業技術総合研究所 超音波生体組織測定装置
US8715183B2 (en) * 2010-06-29 2014-05-06 General Electric Company Methods and apparatus for automated measuring of the interventricular septum thickness
US8628473B2 (en) 2011-04-13 2014-01-14 St. Jude Medical, Inc. Acoustic transducer for pulse-echo monitoring and control of thermally ablative lesioning in layered and nonlayered tissues, catheter contact monitoring, tissue thickness measurement and pre-pop warning
US8545408B2 (en) 2011-05-23 2013-10-01 St. Jude Medical, Inc. Combination catheter for forward and side lesioning with acoustic lesion feedback capability
WO2014056964A1 (en) * 2012-10-09 2014-04-17 Charité - Universitätsmedizin Berlin Ultrasonic palpator, measurement system and kit comprising the same, method for determining a property of an object, method for operating and method for calibrating a palpator
US11096741B2 (en) 2012-10-10 2021-08-24 Biosense Webster (Israel) Ltd. Ablation power control based on contact force
US20140142438A1 (en) * 2012-11-19 2014-05-22 Biosense Webster (Israel), Ltd. Using location and force measurements to estimate tissue thickness
WO2014115056A1 (en) 2013-01-22 2014-07-31 Koninklijke Philips N.V. Ultrasound probe and ultrasound imaging system
WO2015133813A1 (ko) * 2014-03-07 2015-09-11 주식회사 금호에이치티 면발광 램프 및 그 제조방법
US10327734B2 (en) * 2014-12-30 2019-06-25 Biosense Webster (Israel) Ltd. Measurement of tissue thickness using ultrasound and force measurements

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494840B1 (en) * 2000-07-31 2002-12-17 The Hong Kong Polytechnic University Portable ultrasonic palpation system
JP2003180684A (ja) * 2001-12-14 2003-07-02 Omron Corp 健康管理指針アドバイス装置
JP2003265471A (ja) * 2002-03-15 2003-09-24 Omron Corp 内部構造検査装置
JP2005021347A (ja) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd 血圧計および血圧測定方法
JP2006263128A (ja) * 2005-03-24 2006-10-05 Citizen Watch Co Ltd 血管弾性率測定方法及び血管弾性率測定装置
US20080214961A1 (en) * 2007-03-02 2008-09-04 Unex Corporation Biological luminal body evaluating apparatus
JP2008212366A (ja) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology 生体内管腔体評価装置
US20130158418A1 (en) * 2011-12-14 2013-06-20 Seiko Epson Corporation Blood pressure measurement apparatus and blood pressure measurement method
JP2013144098A (ja) * 2011-12-14 2013-07-25 Seiko Epson Corp 血圧計測装置及び血圧計測方法
US20150018679A1 (en) * 2013-07-11 2015-01-15 Seiko Epson Corporation Ultrasonic measuring device, ultrasonic image device, and ultrasonic measuring method
JP2015016144A (ja) * 2013-07-11 2015-01-29 セイコーエプソン株式会社 超音波測定装置、超音波画像装置及び超音波測定方法
WO2015113813A1 (en) * 2014-01-17 2015-08-06 Koninklijke Philips N.V. Ultrasound device and method of assessing a bone of a subject
JP2017505168A (ja) * 2014-01-17 2017-02-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被検者の骨を評価する超音波装置と方法

Also Published As

Publication number Publication date
AU2016277627B2 (en) 2020-12-24
CA2954112A1 (en) 2017-07-11
CN106963479B (zh) 2021-08-31
IL249784A0 (en) 2017-03-30
CN106963479A (zh) 2017-07-21
US10034653B2 (en) 2018-07-31
AU2016277627A1 (en) 2017-07-27
US20170196536A1 (en) 2017-07-13
EP3189785B1 (en) 2023-07-05
IL249784B (en) 2020-01-30
EP3189785A1 (en) 2017-07-12
JP6827816B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
US11638610B2 (en) Using force sensor to give angle of ultrasound beam
JP6294548B2 (ja) 心臓壁の電気双極子密度の幾何学的測定のための装置
EP3412201B1 (en) Probe data mapping using contact information
JP6320721B2 (ja) 組織の厚さを推定するための位置測定値及び力測定値の利用
CN105726065B (zh) 使用超声测量和力测量来测量组织厚度
US11497464B2 (en) Medical ultrasound device with temperature detection at distal end
EP2429384B1 (en) Apparatus, method and computer program for determining a property of a heart
JP6827816B2 (ja) ゲート制御された超音波及び力測定値を使用する、組織の深さの推定
US20210401492A1 (en) Systems and methods for assessing ablation lesions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6827816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250