JP2017121611A - Electric deionization apparatus, and operation method of electric deionization apparatus - Google Patents

Electric deionization apparatus, and operation method of electric deionization apparatus Download PDF

Info

Publication number
JP2017121611A
JP2017121611A JP2016002108A JP2016002108A JP2017121611A JP 2017121611 A JP2017121611 A JP 2017121611A JP 2016002108 A JP2016002108 A JP 2016002108A JP 2016002108 A JP2016002108 A JP 2016002108A JP 2017121611 A JP2017121611 A JP 2017121611A
Authority
JP
Japan
Prior art keywords
chamber
exchange membrane
water
electrodeionization apparatus
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016002108A
Other languages
Japanese (ja)
Inventor
佐藤 伸
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016002108A priority Critical patent/JP2017121611A/en
Publication of JP2017121611A publication Critical patent/JP2017121611A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric deionization apparatus capable of suppressing proliferation of fungi, microorganisms or the like in the apparatus.SOLUTION: An electric deionization apparatus 1 has concentration chambers 15 and desalination chambers 16 formed alternately by arranging alternately a plurality of anion exchange membranes 13 and cation exchange membranes 14 between electrodes (anode 11 and cathode 12). An ion exchanger is filled in the desalination chambers 16, the concentration chambers 15, an anode chamber 17, and a cathode chamber 18. The cation exchange membrane 14 and anion exchange membrane 13 are made of an ion exchange membrane containing a vinyl acetate component. The ion exchange membrane is especially made of a polymer composed of the vinyl acetate component and a component having an anionic group or a cationic group.SELECTED DRAWING: Figure 1

Description

本発明は、電気脱イオン装置及びその運転方法に関し、特に装置内に発生する微生物等の増殖を抑制可能な電気脱イオン装置及びその運転方法に関する。   The present invention relates to an electrodeionization apparatus and an operation method thereof, and more particularly to an electrodeionization apparatus capable of suppressing the growth of microorganisms and the like generated in the apparatus and an operation method thereof.

電気脱イオン装置は、一般に陰極及び陽極間にカチオン交換膜とアニオン交換膜とを交互に配置し、これらカチオン交換膜及びアニオン交換膜により区画形成することで脱塩室及び濃縮室を形成し、この脱塩室及び前記濃縮室にイオン交換樹脂を充填したものである。そして、従来の電気脱イオン装置においては、カチオン交換膜やアニオン交換膜などのイオン交換膜としては、粉末状のイオン交換樹脂にポリスチレンなどの結合剤を加えて製膜する不均質膜、スチレン−ジビニルベンゼン等の重合によって製膜する均質膜、さらには各種アニオン交換機能あるいはカチオン交換機能を有する単量体をグラフト重合により製膜したものなどが用いられている。   The electrodeionization apparatus generally arranges a cation exchange membrane and an anion exchange membrane alternately between a cathode and an anode, and forms a demineralization chamber and a concentration chamber by partitioning these cation exchange membrane and anion exchange membrane, The desalting chamber and the concentration chamber are filled with an ion exchange resin. In a conventional electrodeionization apparatus, as an ion exchange membrane such as a cation exchange membrane or an anion exchange membrane, a heterogeneous membrane formed by adding a binder such as polystyrene to a powdered ion exchange resin, styrene- Homogeneous membranes formed by polymerization of divinylbenzene or the like, and those obtained by graft polymerization of monomers having various anion exchange functions or cation exchange functions are used.

上述したような電気脱イオン装置において、脱塩室に原水を通過させるとともに濃縮室に濃縮水を通過させ、これに伴い陰極及び陽極間に電流を流すと、脱塩室からイオン交換樹脂を介してアニオン交換膜及びカチオン交換膜を通って濃縮室へとイオンが移動することで、脱塩室から脱イオン水(純水)を得る。また、濃縮室を流れるイオンが濃縮された濃縮水は廃棄されるか、あるいは部分的にリサイクルされる。このような電気脱イオン装置は、種々の産業、例えば半導体チップの製造、発電所の運転、石油化学用途、医薬品製造などに用いる純水製造装置として利用されている。   In the electrodeionization apparatus as described above, when raw water is allowed to pass through the desalting chamber and concentrated water is allowed to pass through the concentrating chamber, and an electric current is passed between the cathode and the anode along with this, the deionizing chamber passes through the ion exchange resin. Then, ions move through the anion exchange membrane and the cation exchange membrane to the concentration chamber, so that deionized water (pure water) is obtained from the demineralization chamber. The concentrated water enriched with ions flowing through the concentration chamber is discarded or partially recycled. Such an electrodeionization apparatus is used as a pure water production apparatus used in various industries such as semiconductor chip production, power plant operation, petrochemical use, pharmaceutical production, and the like.

しかしながら、電気脱イオン装置はその運転により脱イオン水を製造すると、菌類や微生物などが繁殖して汚染される。特に濃縮室やこれに連通するラインでの繁殖が起こりやすく、最悪の場合には濃縮室の閉塞を招くこともある。そこで、電気脱イオン装置の殺菌方法として、加熱水の流通や化学薬品による消毒などが考えられるが、加熱殺菌では加熱水の製造・供給のための手段を別途設ける必要がある、という問題点がある。また、化学薬品による消毒の場合には、化学薬品が電気脱イオン装置内のイオン交換樹脂やイオン交換膜と反応性を有することがあり、電気脱イオン装置の耐用年数の短縮を招く虞がある、という問題点がある。特に、電気脱イオン装置の洗浄頻度はできるだけ少ないのが望ましい。   However, when deionized water is produced by the operation of the electrodeionization apparatus, fungi and microorganisms are propagated and contaminated. In particular, breeding is likely to occur in the concentrating chamber and a line communicating therewith, and in the worst case, the concentrating chamber may be blocked. Thus, as a method of sterilizing the electrodeionization apparatus, it is conceivable to circulate heated water or sterilize with chemicals. However, in heat sterilization, it is necessary to provide a means for producing and supplying heated water separately. is there. In the case of disinfection with a chemical, the chemical may be reactive with the ion exchange resin or ion exchange membrane in the electrodeionization apparatus, which may shorten the service life of the electrodeionization apparatus. There is a problem. In particular, it is desirable that the electrodeionization apparatus be cleaned as little as possible.

本発明は上記課題に鑑みてなされたものであり、装置内に発生する菌類や微生物等の増殖を抑制可能な電気脱イオン装置を提供することを目的とする。また、本発明はかかる電気脱イオン装置の運転方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the electrodeionization apparatus which can suppress the proliferation of fungi, microorganisms, etc. which generate | occur | produce in an apparatus. Another object of the present invention is to provide a method for operating such an electrodeionization apparatus.

上記目的に鑑み、本発明は第一に、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に原水を通水して脱イオン水を取り出す手段とを有する電気脱イオン装置において、前記カチオン交換膜及びアニオン交換膜として、酢酸ビニル成分を含むものを用いたことを特徴とする電気脱イオン装置を提供する(発明1)。   In view of the above object, the present invention firstly provides a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and a detachment formed by the cation exchange membrane and the anion exchange membrane. A salt chamber and a concentrating chamber, wherein the desalting chamber and the concentrating chamber are filled with an ion exchanger, and a concentrated water passing means for passing concentrated water through the concentrating chamber and raw water for the desalting chamber. An electrodeionization apparatus having means for passing deionized water by passing water, an electrodeionization apparatus comprising a vinyl acetate component as the cation exchange membrane and anion exchange membrane. (Invention 1).

かかる発明(発明1)によれば、本発明者が電気脱イオン装置の濃縮室やこれに連通するラインでの菌類や微生物が繁殖しやすい原因について検討したところ、アニオン交換膜及びカチオン交換膜で区画された濃縮室では各種イオンが濃縮されることになるが、不均質膜、均質膜などの汎用的なイオン交換膜(アニオン交換膜及びカチオン交換膜)には、有機物イオンが付着しやすく、これによりの菌類や微生物が繁殖しやすいことがわかった。そこで、酢酸ビニル成分を含む重合体からなる膜は耐有機汚染性に優れており、菌類や微生物も付着しにくいことから、酢酸ビニル成分とアニオン性基あるいはカチオン性基を有する成分とによる重合体を用いたイオン交換膜を用いれば、濃縮室の菌類や微生物の繁殖を抑制でき、濃縮室の閉塞を回避して、電気脱イオン装置の洗浄頻度を少なくすることができる。   According to this invention (Invention 1), the present inventor has examined the cause of fungi and microorganisms easy to propagate in the concentration chamber of the electrodeionization apparatus and the line communicating therewith. Various ions are concentrated in the partitioned concentration chamber, but organic ions tend to adhere to general-purpose ion exchange membranes (anion exchange membranes and cation exchange membranes) such as heterogeneous membranes and homogeneous membranes. As a result, it was found that fungi and microorganisms were easy to propagate. Therefore, a film made of a polymer containing a vinyl acetate component is excellent in organic contamination resistance and hardly adheres to fungi and microorganisms. Therefore, a polymer comprising a vinyl acetate component and a component having an anionic group or a cationic group. The use of an ion exchange membrane using the material makes it possible to suppress the growth of fungi and microorganisms in the concentration chamber, avoid the blockage of the concentration chamber, and reduce the frequency of cleaning the electrodeionization apparatus.

上記発明(発明1)においては、前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水を濃縮水として通水するのが好ましい(発明2)。特に、前記濃縮水通水手段が、前記濃縮水を前記脱塩室の脱イオン水取り出し口に近い側から該濃縮室内に導入すると共に、脱塩室の原水入口に近い側から流出するのが好ましい(発明3)。   In the said invention (invention 1), it is preferable that the said concentrated water flow means passes the deionized water which flowed through the said demineralization chamber as concentrated water (invention 2). In particular, the concentrated water flow means introduces the concentrated water into the concentration chamber from the side near the deionized water outlet of the demineralization chamber and flows out from the side near the raw water inlet of the demineralization chamber. Preferred (Invention 3).

かかる発明(発明2、3)によれば、脱塩室を通水したて脱イオン水を濃縮室に通水することにより、それ自体イオン成分が微量であるので菌類や微生物の繁殖を抑制できる。さらに、電気脱イオン装置においては、脱塩室では脱イオン水取り出し口に近い側に向かうほどイオン濃度は低減する。一方、濃縮室にはイオン濃度が高い濃縮水が流通するので、イオン濃度の格差が大きくなるため、脱イオン水の純度が向上するほどイオンの除去率が上がりにくくなる。そこで、脱イオン水を濃縮室に通水することにより、イオン濃度の格差を低減して、イオンの除去率を向上させることができる。特に脱塩室では脱イオン水取り出し口に近い側に向かうほどイオン濃度は低減するので、これとは逆に脱イオン水取り出し口に近い側から脱イオン水を濃縮室に供給することで、脱塩室と濃縮室のイオン濃度の格差を脱塩室と濃縮室の全域において縮小することができ、イオンの除去率の向上効果が大きい。さらに、濃縮された成分を系外に排出しやすくなる、という効果も奏する。   According to the inventions (Inventions 2 and 3), by passing deionized water through deionized water and passing through deionized water into the concentrating chamber, the amount of ionic components per se is small, so that the growth of fungi and microorganisms can be suppressed. . Furthermore, in the electrodeionization apparatus, the ion concentration decreases toward the side closer to the deionized water outlet in the demineralization chamber. On the other hand, since concentrated water having a high ion concentration circulates in the concentrating chamber, the difference in ion concentration increases, so that the ion removal rate is less likely to increase as the purity of the deionized water increases. Therefore, by passing deionized water through the concentration chamber, the difference in ion concentration can be reduced and the ion removal rate can be improved. In particular, in the demineralization chamber, the ion concentration decreases toward the side closer to the deionized water outlet, and conversely, deionized water is supplied to the concentrating chamber from the side closer to the deionized water outlet. The difference in ion concentration between the salt chamber and the concentration chamber can be reduced over the entire area of the desalting chamber and the concentration chamber, and the effect of improving the ion removal rate is great. Furthermore, there is an effect that the concentrated components can be easily discharged out of the system.

上記発明(発明1〜3)においては、前記カチオン交換膜が、分子中にスルホネート基を有するアニオン性単量体と酢酸ビニルの単量体との共重合体を含むものであるのが好ましい(発明4)。   In the said invention (invention 1-3), it is preferable that the said cation exchange membrane contains the copolymer of the anionic monomer which has a sulfonate group in a molecule | numerator, and the monomer of vinyl acetate (invention 4). ).

かかる発明(発明4)によれば、このようなカチオン交換膜は、カチオン交換能を有するとともに耐有機汚染性に優れているので、菌類や微生物の繁殖を抑制可能であるととともに電気脱イオン装置を構成するカチオン交換膜として好適である。   According to this invention (invention 4), such a cation exchange membrane has a cation exchange ability and is excellent in organic contamination resistance, so that it is possible to suppress the growth of fungi and microorganisms, and an electrodeionization apparatus. It is suitable as a cation exchange membrane constituting

上記発明(発明1〜4)においては、前記アニオン交換膜が、分子中に4級アンモニウム基を有するカチオン性単量体と酢酸ビニルの単量体との共重合体を含むものであるのが好ましい(発明5)。   In the said invention (invention 1-4), it is preferable that the said anion exchange membrane contains the copolymer of the cationic monomer which has a quaternary ammonium group in a molecule | numerator, and the monomer of vinyl acetate ( Invention 5).

かかる発明(発明5)によれば、このようなアニオン交換膜は、アニオン交換能を有するとともに耐有機汚染性に優れているので、菌類や微生物の繁殖を抑制可能であるとともに電気脱イオン装置を構成するアニオン交換膜として好適である。   According to this invention (invention 5), such an anion exchange membrane has anion exchange ability and is excellent in organic contamination resistance. Therefore, it is possible to suppress the growth of fungi and microorganisms and to provide an electrodeionization apparatus. It is suitable as a constituent anion exchange membrane.

また、本発明は第二に、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と該脱塩室に原水を通水して脱イオン水を取り出す手段とを有し、前記カチオン交換膜及びアニオン交換膜として、酢酸ビニル成分を含む重合体からなる膜を用いた電気脱イオン装置の運転方法であって、前記濃縮水として前記脱塩室を通水した脱イオン水の一部を導入することを特徴とする電気脱イオン装置の運転方法を提供する(発明6)。   In addition, the present invention secondly, a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, a desalting chamber partitioned by these cation exchange membrane and anion exchange membrane, and A concentrating chamber, wherein the desalting chamber and the concentrating chamber are filled with an ion exchanger, and a concentrated water passage means for passing the concentrated water to the concentrating chamber and raw water to the desalting chamber. A means for taking out deionized water and using the membrane made of a polymer containing a vinyl acetate component as the cation exchange membrane and the anion exchange membrane, A method of operating an electrodeionization apparatus is provided, wherein a part of deionized water that has passed through the demineralization chamber is introduced (invention 6).

かかる発明(発明6)によれば、酢酸ビニル成分を含む重合体からなる膜は耐有機汚染性に優れていることから、酢酸ビニル成分とアニオン性基あるいはカチオン性基を有する重合成分とによる重合体からなるイオン交換膜を電気脱イオン装置に用いて、前記脱塩室を通水した脱イオン水の一部を濃縮水として導入することにより、脱イオン水はそれ自体イオン成分が微量であるので菌類や微生物の繁殖を抑制できる、高純度の脱イオン水を製造することができる。   According to this invention (Invention 6), since a film made of a polymer containing a vinyl acetate component is excellent in organic contamination resistance, the film formed by a vinyl acetate component and a polymerization component having an anionic group or a cationic group is used. By using a combined ion exchange membrane in an electrodeionization apparatus and introducing a portion of the deionized water that has passed through the demineralization chamber as concentrated water, the deionized water itself has a trace amount of ionic components. Therefore, high-purity deionized water that can suppress the growth of fungi and microorganisms can be produced.

前記発明(発明6)においては、前記濃縮水を前記濃縮室の前記脱塩室の脱イオン水取り出し口に近い側から導入すると共に、前記濃縮室の前記脱塩室の原水入口に近い側から流出させるのが好ましい(発明7)。   In the said invention (invention 6), while introducing the said concentrated water from the side near the deionized water taking-out port of the said demineralization chamber of the said concentration chamber, from the side near the raw | natural water inlet of the said demineralization chamber of the said concentration chamber It is preferable to let it flow out (Invention 7).

かかる発明(発明7)によれば、脱塩室では脱イオン水取り出し口に近い側に向かうほどイオン濃度は低減するので、これとは逆に脱イオン水取り出し口に近い側から脱イオン水を濃縮室に供給することにより、脱塩室と濃縮室のイオン濃度の格差を脱塩室と濃縮室の全域において縮小することができる。   According to this invention (invention 7), in the demineralization chamber, the ion concentration decreases toward the side closer to the deionized water outlet, and conversely, deionized water is supplied from the side closer to the deionized water outlet. By supplying to the concentrating chamber, the difference in ion concentration between the desalting chamber and the concentrating chamber can be reduced throughout the desalting chamber and the concentrating chamber.

本発明によれば、電気脱イオン装置を構成するカチオン交換膜及びアニオン交換膜として、酢酸ビニル成分を含むもの、特に酢酸ビニル成分とアニオン性基あるいはカチオン性基を有する成分とによる重合体からなるイオン交換膜を用いているので、濃縮室における菌類や微生物の繁殖を抑制し、濃縮室の閉塞を回避して、電気脱イオン装置の洗浄頻度を少なく抑制することができる。   According to the present invention, the cation exchange membrane and the anion exchange membrane constituting the electrodeionization apparatus comprise a polymer containing a vinyl acetate component, particularly a vinyl acetate component and an anionic group or a component having a cationic group. Since the ion exchange membrane is used, the propagation of fungi and microorganisms in the concentration chamber can be suppressed, the blockage of the concentration chamber can be avoided, and the frequency of cleaning the electrodeionization apparatus can be suppressed.

本発明の一実施形態による電気脱イオン装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the electrodeionization apparatus by one Embodiment of this invention. 本発明の一実施形態による電気脱イオン装置を示す系統図である。It is a systematic diagram which shows the electrodeionization apparatus by one Embodiment of this invention.

以下、本発明の第一の実施形態による電気脱イオン装置及びこれを用いた電気脱イオンの運転方法について添付図面を参照して説明する。   Hereinafter, an electrodeionization apparatus according to a first embodiment of the present invention and an electrodeionization operation method using the same will be described with reference to the accompanying drawings.

図1は本発明の一実施形態による電気脱イオン装置の構成を示す模式図であり、図1において、電気脱イオン装置1は、電極(陽極11、陰極12)の間に複数のアニオン交換膜13及びカチオン交換膜14を交互に配列して濃縮室15と脱塩室16とを交互に形成したものであり、脱塩室16には、イオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるイオン交換体(アニオン交換体及びカチオン交換体)が混合もしくは複層状に充填されている。また、濃縮室15と、陽極室17及び陰極室18にも、イオン交換体が充填されている。   FIG. 1 is a schematic diagram showing a configuration of an electrodeionization apparatus according to an embodiment of the present invention. In FIG. 1, an electrodeionization apparatus 1 includes a plurality of anion exchange membranes between electrodes (anode 11 and cathode 12). 13 and the cation exchange membrane 14 are alternately arranged to form the concentration chamber 15 and the desalting chamber 16 alternately. The desalting chamber 16 is made of an ion exchange resin, an ion exchange fiber, a graft exchanger or the like. The ion exchangers (anion exchanger and cation exchanger) to be mixed or packed in multiple layers. The concentration chamber 15, the anode chamber 17 and the cathode chamber 18 are also filled with an ion exchanger.

この電気脱イオン装置1には、脱塩室16に被処理水(原水)Wを通水して脱イオン水(処理水)W1を取り出す通水手段(図示せず)と、濃縮室15に濃縮水W2を通水する濃縮水通水手段(図示せず)とが設けられていて、本実施形態においては濃縮水W2を脱塩室16の脱イオン水W1の取り出し口に近い側から濃縮室15内に導入すると共に、脱塩室16の原水入口に近い側から流出する、すなわち脱塩室16における被処理水(原水)Wの流通方向と反対方向から濃縮水W2を濃縮室15に導入して濃縮排水W3を吐出する構成となっている。   In the electrodeionization apparatus 1, a water supply means (not shown) for passing water to be treated (raw water) W through the demineralization chamber 16 and taking out the deionized water (treated water) W 1, and a concentration chamber 15 Concentrated water passing means (not shown) for passing the concentrated water W2 is provided, and in the present embodiment, the concentrated water W2 is concentrated from the side close to the deionized water W1 outlet of the desalting chamber 16. While being introduced into the chamber 15, the concentrated water W 2 flows into the concentrating chamber 15 from the side near the raw water inlet of the desalting chamber 16, that is, from the direction opposite to the flow direction of the treated water (raw water) W in the desalting chamber 16. It is the structure which introduces and discharges the concentrated waste water W3.

具体的には、図2に示すように脱塩室16から得られる脱イオン水の一部を濃縮室15に導入して、濃縮室15の濃縮水W2として脱イオン水W1を用いることで、イオン濃度が低減された濃縮水W2とすることが好ましい。   Specifically, as shown in FIG. 2, by introducing a part of deionized water obtained from the desalting chamber 16 into the concentration chamber 15, and using the deionized water W1 as the concentrated water W2 in the concentration chamber 15, It is preferable that the concentrated water W2 has a reduced ion concentration.

この電気脱イオン装置1において、カチオン交換膜14及びアニオン交換膜13を構成するイオン交換膜としては、酢酸ビニル成分を含むものを用いる。特に酢酸ビニル成分とアニオン性基あるいはカチオン性基を有する重合成分とによる重合体からなるイオン交換膜を用いるのが好ましい。カチオン交換膜14の場合、分子中にスルホネート基を有するアニオン性単量体と酢酸ビニルの単量体との共重合体を製膜したものを用いることができる。また、アニオン交換膜13の場合、分子中に4級アンモニウム基を有するカチオン性単量体と酢酸ビニルの単量体との共重合体を製膜したものを用いることができる。   In this electrodeionization apparatus 1, as the ion exchange membrane constituting the cation exchange membrane 14 and the anion exchange membrane 13, one containing a vinyl acetate component is used. In particular, it is preferable to use an ion exchange membrane made of a polymer of a vinyl acetate component and a polymerization component having an anionic group or a cationic group. In the case of the cation exchange membrane 14, a film obtained by forming a copolymer of an anionic monomer having a sulfonate group in the molecule and a vinyl acetate monomer can be used. In the case of the anion exchange membrane 13, a film obtained by forming a copolymer of a cationic monomer having a quaternary ammonium group in the molecule and a vinyl acetate monomer can be used.

イオン交換膜(アニオン交換膜13及びカチオン交換膜14)として、酢酸ビニル成分を含む重合体からなる膜を用いることにより濃縮室15における微生物の繁殖や菌数の増加を抑制でき、濃縮室15の閉塞を防止し、電気脱イオン装置1の洗浄頻度を低減することができる。   By using a membrane made of a polymer containing a vinyl acetate component as the ion exchange membrane (anion exchange membrane 13 and cation exchange membrane 14), the growth of microorganisms and the increase in the number of bacteria in the concentration chamber 15 can be suppressed. Blockage can be prevented and the frequency of cleaning the electrodeionization apparatus 1 can be reduced.

上述したような酢酸ビニル成分とアニオン性基あるいはカチオン性基を有する重合成分とによる重合体からなるイオン交換膜としては、これら各成分を重合したものを含んでいれば特に制限はないが、例えば特開2015−17419号公報などに記載されたものを好適に適用することができる。   As an ion exchange membrane composed of a polymer composed of a vinyl acetate component as described above and a polymerization component having an anionic group or a cationic group, there is no particular limitation as long as it includes a polymer obtained by polymerizing these components. What was described in Unexamined-Japanese-Patent No. 2015-17419 etc. can be applied suitably.

次に上述したような電気脱イオン装置の運転方法について説明する。まず、被処理水(原水)Wが脱塩室16に導入され、脱塩室16から脱イオン水W1が得られる。本実施形態においては、この脱イオン水W1の一部を濃縮水W2として濃縮室15に脱塩室16の通水方向とは逆方向に向流一過式で通水し、濃縮室15から濃縮排水W3を系外へ排出する。すなわち、本実施形態の電気脱イオン装置1では、濃縮室15と脱塩室16とが交互に並設され、脱塩室16の脱イオン水W1の取り出し側に濃縮室15の流入口となっているとともに脱塩室16の原水流入側に濃縮室15の流出口となっている。なお、脱イオン水W1の一部は陽極室17の入口側に送給され、そして、陽極室17の流出水は、陰極室18の入口側へ送給され、陰極室18の流出水は排水として系外へ排出される。   Next, an operation method of the above-described electrodeionization apparatus will be described. First, water to be treated (raw water) W is introduced into the desalting chamber 16, and deionized water W <b> 1 is obtained from the desalting chamber 16. In the present embodiment, a part of the deionized water W1 is concentrated water W2, and the water is passed through the concentration chamber 15 in a countercurrent and transient manner in a direction opposite to the direction of water flow through the demineralization chamber 16. Concentrated waste water W3 is discharged out of the system. That is, in the electrodeionization apparatus 1 of the present embodiment, the concentration chambers 15 and the demineralization chambers 16 are alternately arranged in parallel, and serve as an inlet of the concentration chamber 15 on the side of the demineralization chamber 16 where the deionized water W1 is taken out. In addition, an outlet of the concentrating chamber 15 is provided on the raw water inflow side of the desalting chamber 16. Part of the deionized water W1 is supplied to the inlet side of the anode chamber 17, and the effluent water of the anode chamber 17 is supplied to the inlet side of the cathode chamber 18, and the effluent water of the cathode chamber 18 is drained. Is discharged outside the system.

このように、濃縮室15に脱イオン水W1を脱塩室16と向流一過式で通水することにより、脱塩室16の脱塩室16の取り出し側ほど濃縮室15内の濃縮排水W3中のイオン濃度が低いものとなり、菌類や微生物の繁殖自体が抑制されるだけでなく、濃度拡散による脱塩室16への影響が小さくなり、イオン除去率、特にシリカ、ホウ素の除去率を飛躍的に高めることができる。しかも脱塩室16から排出した濃縮された成分を系外に排出しやすくなる、という効果も奏する。   In this way, by passing deionized water W1 through the concentration chamber 15 in a counter-current and transient manner with the desalting chamber 16, the concentrated drainage in the concentration chamber 15 is closer to the desalting chamber 16 in the desalting chamber 16. The concentration of ions in W3 is low, and not only the growth of fungi and microorganisms itself is suppressed, but also the influence on the desalting chamber 16 due to concentration diffusion is reduced, and the ion removal rate, particularly the removal rate of silica and boron, is reduced. It can be improved dramatically. In addition, the concentrated component discharged from the desalting chamber 16 can be easily discharged out of the system.

この電気脱イオン装置1の運転方法においては、濃縮室15には脱塩室16から各種のイオンが濃縮されることになり、これらの中には有機物イオンも含まれるため、菌類や微生物が繁殖しやすい。しかしながら、イオン交換膜(アニオン交換膜13及びカチオン交換膜14)として、上述したような酢酸ビニル成分を含む重合体からなる膜を用いており、酢酸ビニル成分を含む重合体は耐有機汚染性に優れているので、有機物イオンはイオン交換膜13、14に付着しにくいため効率よく濃縮排水W3として排出される。これにより、濃縮室15における微生物の繁殖や菌数の増加を抑制でき、濃縮室15の閉塞を防止し、電気脱イオン装置1の洗浄頻度を低減することができる。   In the operation method of the electrodeionization apparatus 1, various ions are concentrated in the concentration chamber 15 from the demineralization chamber 16, and since organic ions are included in these, fungi and microorganisms are propagated. It's easy to do. However, as the ion exchange membrane (anion exchange membrane 13 and cation exchange membrane 14), a membrane made of a polymer containing the vinyl acetate component as described above is used, and the polymer containing the vinyl acetate component is resistant to organic contamination. Since it is excellent, the organic ions are not easily attached to the ion exchange membranes 13 and 14, and thus are efficiently discharged as the concentrated waste water W3. Thereby, propagation of microorganisms in the concentration chamber 15 and an increase in the number of bacteria can be suppressed, the blockage of the concentration chamber 15 can be prevented, and the frequency of cleaning the electrodeionization apparatus 1 can be reduced.

以上、本発明の一実施形態について添付図面を参照して説明してきたが、本発明は、アニオン交換膜13及びカチオン交換膜14として酢酸ビニル成分を含む重合体からなる膜を用いていれば前記実施形態に限定されるものではなく、各種の変形が可能である。例えば、前記実施形態においては、濃縮水W2として脱イオン水W1を用いたが、別途純水を用意してもよい。また、その通水方向は被処理水Wと同じ方向でもよい。   As mentioned above, although one Embodiment of this invention has been demonstrated with reference to an accompanying drawing, if this invention uses the film | membrane which consists of a polymer containing a vinyl acetate component as the anion exchange membrane 13 and the cation exchange membrane 14, the said will be said. The present invention is not limited to the embodiment, and various modifications can be made. For example, in the embodiment, deionized water W1 is used as the concentrated water W2, but pure water may be separately prepared. Further, the water flow direction may be the same direction as the water to be treated W.

以下の具体的実施例により本発明をさらに詳細に説明する。なお、本発明は下記の実施例に限定されるものではない。   The following specific examples further illustrate the present invention. In addition, this invention is not limited to the following Example.

〔実施例1〕
電気脱イオン装置(KCDI−UPz・20H 栗田工業(株)製)において、分子中にスルホネート基を有するアニオン性単量体と酢酸ビニルの単量体との共重合体を含むカチオン交換膜(クラレ(株)製)と分子中に4級アンモニウム基を有するカチオン性単量体と酢酸ビニルの単量体との共重合体を含むアニオン交換膜(クラレ(株)製)を用いて電気脱イオン装置を構成した。
[Example 1]
In an electrodeionization apparatus (KCDI-UPz · 20H, Kurita Kogyo Co., Ltd.), a cation exchange membrane containing a copolymer of an anionic monomer having a sulfonate group in its molecule and a vinyl acetate monomer (Kuraray) And anion exchange membrane (made by Kuraray Co., Ltd.) containing a copolymer of a cationic monomer having a quaternary ammonium group in the molecule and a vinyl acetate monomer. Configured the device.

この電気脱イオン装置を用いて、半導体工場の原水(200μS/cm、TOC3ppm)を逆浸透(RO)膜で処理したものを原水(被処理水W)として、電気脱イオン装置に通水した。処理条件は、脱イオン水(処理水)W1の流量を2m/h、濃縮水W2の流量を0.3m/hとし、濃縮水W2としては脱イオン水W1の一部を用い、脱塩室と向流となるように一過式で濃縮室に通水した。 Using this electrodeionization apparatus, raw water (200 μS / cm, TOC 3 ppm) of a semiconductor factory treated with a reverse osmosis (RO) membrane was passed through the electrodeionization apparatus as raw water (treated water W). The treatment conditions are such that the flow rate of deionized water (treated water) W1 is 2 m 3 / h, the flow rate of concentrated water W2 is 0.3 m 3 / h, and a portion of deionized water W1 is used as the concentrated water W2. Water was passed through the concentration chamber in a transient manner so as to counter flow with the salt chamber.

このような運転を1年間継続したところ、濃縮水W2の差圧は0.2kg/cmでほぼ一定であり、上昇は認められなかった。 When such operation was continued for one year, the differential pressure of the concentrated water W2 was almost constant at 0.2 kg / cm 2 , and no increase was observed.

〔比較例1〕
電気脱イオン装置(KCDI−UPz・20H 栗田工業(株)製)において、ポリスチレンを結合剤とした汎用的な不均質膜を用いたカチオン交換膜及びアニオン交換膜を用いて電気脱イオン装置を構成した。
[Comparative Example 1]
In the electrodeionization device (KCDI-UPz · 20H, Kurita Kogyo Co., Ltd.), the electrodeionization device is composed of a cation exchange membrane and anion exchange membrane using a general-purpose heterogeneous membrane with polystyrene as a binder. did.

この電気脱イオン装置を用いて、半導体工場の原水(200μS/cm、TOC3ppm)を逆浸透(RO)膜で処理したものを原水(被処理水W)として、電気脱イオン装置に通水した。処理条件は、脱イオン水(処理水)W1の流量を2m/h、濃縮水W2の流量を0.3m/hとし、濃縮水W2として被処理水W(RO膜処理水)を用い、脱塩室と同じ方向(並流)となるように一過式で濃縮室に通水した。 Using this electrodeionization apparatus, raw water (200 μS / cm, TOC 3 ppm) of a semiconductor factory treated with a reverse osmosis (RO) membrane was passed through the electrodeionization apparatus as raw water (treated water W). The treatment conditions are such that the flow rate of deionized water (treated water) W1 is 2 m 3 / h, the flow rate of concentrated water W2 is 0.3 m 3 / h, and the treated water W (RO membrane treated water) is used as the concentrated water W2. Then, water was passed through the concentration chamber in a transient manner so as to be in the same direction (cocurrent flow) as the desalting chamber.

このような運転を1年間継続したところ、濃縮水W2の差圧は0.2kg/cmから0.7kg/cmに上昇し、電気脱イオン装置の濃縮室の洗浄が必要となった。 Was continued such an operating one year, the differential pressure of the concentrated water W2 is increased from 0.2 kg / cm 2 to 0.7 kg / cm 2, concentrating compartments washing electrodeionization apparatus is needed.

〔比較例2〕
電気脱イオン装置(KCDI−UPz・20H 栗田工業(株)製)において、ポリスチレンを結合剤とした汎用的な不均質膜を用いたカチオン交換膜及びアニオン交換膜を用いて電気脱イオン装置を構成した。
[Comparative Example 2]
In the electrodeionization device (KCDI-UPz · 20H, Kurita Kogyo Co., Ltd.), the electrodeionization device is composed of a cation exchange membrane and anion exchange membrane using a general-purpose heterogeneous membrane with polystyrene as a binder. did.

この電気脱イオン装置を用いて、半導体工場の原水(200μS/cm、TOC3ppm)を逆浸透(RO)膜で処理したものを原水(被処理水W)として、電気脱イオン装置に通水した。処理条件は、脱イオン水(処理水)W1の流量を2m/h、濃縮水W2の流量を0.3m/hとし、濃縮水W2としては脱イオン水W1の一部を用い、脱塩室と向流となるように一過式で濃縮室に通水した。 Using this electrodeionization apparatus, raw water (200 μS / cm, TOC 3 ppm) of a semiconductor factory treated with a reverse osmosis (RO) membrane was passed through the electrodeionization apparatus as raw water (treated water W). The treatment conditions are such that the flow rate of deionized water (treated water) W1 is 2 m 3 / h, the flow rate of concentrated water W2 is 0.3 m 3 / h, and a portion of deionized water W1 is used as the concentrated water W2. Water was passed through the concentration chamber in a transient manner so as to counter flow with the salt chamber.

このような運転を1年間継続したところ、濃縮水W2の差圧は0.2kg/cmから0.9kg/cmに上昇し、電気脱イオン装置の濃縮室の洗浄が必要となった。 Was continued such an operating one year, the differential pressure of the concentrated water W2 is increased from 0.2 kg / cm 2 to 0.9 kg / cm 2, concentrating compartments washing electrodeionization apparatus is needed.

1…電気脱イオン装置
11…陽極
12…陰極
13…アニオン交換膜
14…カチオン交換膜
15…濃縮室
16…脱塩室
17…陽極室
18…陰極室
W…被処理水(原水)
W1…脱イオン水(処理水)
W2…濃縮水
W3…濃縮排水
DESCRIPTION OF SYMBOLS 1 ... Electrodeionization apparatus 11 ... Anode 12 ... Cathode 13 ... Anion exchange membrane 14 ... Cation exchange membrane 15 ... Concentration chamber 16 ... Desalination chamber 17 ... Anode chamber 18 ... Cathode chamber W ... Water to be treated (raw water)
W1 ... Deionized water (treated water)
W2 ... Concentrated water W3 ... Concentrated drainage

Claims (7)

陰極及び陽極と、
該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、
これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、
前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、
前記濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に原水を通水して脱イオン水を取り出す手段とを有する電気脱イオン装置において、
前記カチオン交換膜及びアニオン交換膜として、酢酸ビニル成分を含むものを用いたことを特徴とする電気脱イオン装置。
A cathode and an anode;
A cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode;
A demineralization chamber and a concentration chamber partitioned by these cation exchange membrane and anion exchange membrane,
The desalting chamber and the concentration chamber are filled with an ion exchanger,
In an electrodeionization apparatus comprising a concentrated water flow means for passing concentrated water through the concentration chamber, and a means for passing raw water through the demineralization chamber and taking out deionized water,
An electrodeionization apparatus comprising a cation exchange membrane and an anion exchange membrane containing a vinyl acetate component.
前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水を濃縮水として通水することを特徴とする請求項1に記載の電気脱イオン装置。   2. The electrodeionization apparatus according to claim 1, wherein the concentrated water passage means passes deionized water that has passed through the demineralization chamber as concentrated water. 前記濃縮水通水手段が、前記濃縮水を前記脱塩室の脱イオン水取り出し口に近い側から該濃縮室内に導入すると共に、脱塩室の原水入口に近い側から流出することを特徴とする請求項2に記載の電気脱イオン装置。   The concentrated water flow means introduces the concentrated water into the concentration chamber from the side near the deionized water outlet of the desalting chamber and flows out from the side near the raw water inlet of the desalting chamber. The electrodeionization apparatus according to claim 2. 前記カチオン交換膜が、分子中にスルホネート基を有するアニオン性単量体と酢酸ビニルの単量体との共重合体を含むことを特徴とする請求項1〜3のいずれかに記載の電気脱イオン装置。   4. The electrodeposition according to claim 1, wherein the cation exchange membrane comprises a copolymer of an anionic monomer having a sulfonate group in the molecule and a vinyl acetate monomer. Ion device. 前記アニオン交換膜が、分子中に4級アンモニウム基を有するカチオン性単量体と酢酸ビニルの単量体との共重合体を含むことを特徴とする請求項1〜4のいずれかに記載の電気脱イオン装置。   The said anion exchange membrane contains the copolymer of the cationic monomer which has a quaternary ammonium group in a molecule | numerator, and the monomer of vinyl acetate, The Claim 1 characterized by the above-mentioned. Electrodeionizer. 陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と該脱塩室に原水を通水して脱イオン水を取り出す手段とを有し、前記カチオン交換膜及びアニオン交換膜として、酢酸ビニル成分を含む重合体からなる膜を用いた電気脱イオン装置の運転方法であって、
前記濃縮水として前記脱塩室を通水した脱イオン水の一部を導入することを特徴とする電気脱イオン装置の運転方法。
A cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and a desalting chamber and a concentrating chamber defined by the cation exchange membrane and the anion exchange membrane, A chamber and the concentration chamber are filled with an ion exchanger, and a concentrated water passage means for passing the concentrated water through the concentration chamber and a means for passing the raw water through the demineralization chamber and taking out the deionized water. And an operation method of an electrodeionization apparatus using a membrane made of a polymer containing a vinyl acetate component as the cation exchange membrane and the anion exchange membrane,
A method of operating an electrodeionization apparatus, wherein a part of deionized water that has passed through the demineralization chamber is introduced as the concentrated water.
前記濃縮水を前記濃縮室の前記脱塩室の脱イオン水取り出し口に近い側から導入すると共に、前記濃縮室の前記脱塩室の原水入口に近い側から流出させることを特徴とする請求項6に記載の電気脱イオン装置の運転方法。   The concentrated water is introduced from a side near the deionized water outlet of the demineralizing chamber of the concentrating chamber, and flows out from a side of the concentrating chamber near the raw water inlet. The operation method of the electrodeionization apparatus of 6.
JP2016002108A 2016-01-07 2016-01-07 Electric deionization apparatus, and operation method of electric deionization apparatus Pending JP2017121611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002108A JP2017121611A (en) 2016-01-07 2016-01-07 Electric deionization apparatus, and operation method of electric deionization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002108A JP2017121611A (en) 2016-01-07 2016-01-07 Electric deionization apparatus, and operation method of electric deionization apparatus

Publications (1)

Publication Number Publication Date
JP2017121611A true JP2017121611A (en) 2017-07-13

Family

ID=59305425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002108A Pending JP2017121611A (en) 2016-01-07 2016-01-07 Electric deionization apparatus, and operation method of electric deionization apparatus

Country Status (1)

Country Link
JP (1) JP2017121611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770785A (en) * 2018-03-02 2020-10-13 利安德巴塞尔乙酰有限责任公司 Method and apparatus for resin wafer enhanced electrodeionization for selective acid separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770785A (en) * 2018-03-02 2020-10-13 利安德巴塞尔乙酰有限责任公司 Method and apparatus for resin wafer enhanced electrodeionization for selective acid separation

Similar Documents

Publication Publication Date Title
Lin et al. Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NF-BMED process
ES2837807T3 (en) Water storage system and method
ES2220928T3 (en) IMPROVEMENTS IN ELECTRODIALYSIS INCLUDING FULL CELL ELECTRODIALYSIS (ELECTRODESIONIZATION).
US9393527B2 (en) Membrane separation devices and water treatment plants
WO2008016055A1 (en) Electrodeionizer
CA2891584C (en) Electrochemical separation systems and methods
CN106315935B (en) Water quality desalting plant and the method for desalinating water quality using the device
JP2004216302A (en) Electrodeionizing apparatus and water treatment apparatus
JP2001087768A (en) Electric deionizing device
JP4499239B2 (en) Deionized water production equipment
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
US8758624B2 (en) Water treatment process, and membrane separation process and water treatment plant suitable therefor
JP2001198577A (en) Electric deionizing device
JP2010042324A (en) Pure water producing apparatus and pure water producing method
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP2008036473A (en) Electric deionizer
JP2017121611A (en) Electric deionization apparatus, and operation method of electric deionization apparatus
WO2014206381A1 (en) The asymmetric ion-exchange membrane and use thereof
JP6571312B2 (en) Pure water production method
JP2009142724A (en) Electrical deionizer and deionized water producing method
JP6188813B2 (en) Electrochemical separator
JPH10323673A (en) Deionized water-producing method
JP2018199136A (en) Pure water production method
JP2012139687A (en) Pure water manufacturing apparatus and pure water manufacturing method
JP2004243194A (en) Membrane treatment apparatus for water treatment