JP2012139687A - Pure water manufacturing apparatus and pure water manufacturing method - Google Patents

Pure water manufacturing apparatus and pure water manufacturing method Download PDF

Info

Publication number
JP2012139687A
JP2012139687A JP2012067327A JP2012067327A JP2012139687A JP 2012139687 A JP2012139687 A JP 2012139687A JP 2012067327 A JP2012067327 A JP 2012067327A JP 2012067327 A JP2012067327 A JP 2012067327A JP 2012139687 A JP2012139687 A JP 2012139687A
Authority
JP
Japan
Prior art keywords
water
electrodeionization
chamber
concentration
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012067327A
Other languages
Japanese (ja)
Other versions
JP5158393B2 (en
Inventor
Kunihiro Iwasaki
邦博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012067327A priority Critical patent/JP5158393B2/en
Publication of JP2012139687A publication Critical patent/JP2012139687A/en
Application granted granted Critical
Publication of JP5158393B2 publication Critical patent/JP5158393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pure water manufacturing apparatus capable of manufacturing pure water with an extremely low boron concentration by a high water recovery rate, and a method for manufacturing the pure water.SOLUTION: The pure water manufacturing apparatus includes: a pre-treating apparatus 5 for treating raw water W0; a first electric deionization apparatus 6A which receives treated water W1 from the pre-treating apparatus 5 into a desalination chamber 11A and performs a deionization treatment to eliminate boron; and a second electric deionization apparatus 6B which receives concentrated water W4 obtained by introducing a part of the desalinated water from the first electric desalination apparatus 6A into a concentration chamber of the first electric deionization apparatus 6A into a desalination chamber 11B, and performs deionization treatment to eliminate boron, and supplies the desalinated water W5 from the second electric deionization apparatus 6B to a front stage of the first electric deionization apparatus 6A.

Description

本発明は、超純水製造システム等に組み込むのに好適な純水製造装置に関し、特にホウ素濃度の低い純水を製造するための純水製造装置に関する。また、本発明は、超純水製造システム等に好適な純水製造方法に関し、特にホウ素濃度の低い純水を製造するための純水製造方法に関する。   The present invention relates to a pure water production apparatus suitable for incorporation into an ultrapure water production system or the like, and more particularly to a pure water production apparatus for producing pure water having a low boron concentration. The present invention also relates to a pure water production method suitable for an ultrapure water production system or the like, and more particularly to a pure water production method for producing pure water having a low boron concentration.

超純水製造システムは、通常、前処理システム、一次純水システム、及びサブシステムより構成される。前処理システムは、凝集濾過、MF膜(精密濾過膜)、UF膜(限外濾過膜)等による除濁処理装置、活性炭等による脱塩素処理装置により構成される。   The ultrapure water production system is generally composed of a pretreatment system, a primary pure water system, and a subsystem. The pretreatment system is composed of a turbidity treatment device such as coagulation filtration, MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane), etc., and a dechlorination treatment device such as activated carbon.

一次純水システムは、RO(逆浸透膜)装置、脱気膜装置、電気脱イオン装置等により構成され、かかる一次純水システムにより、ほとんどのイオン成分やTOC成分が除去される。また、サブシステムは、UV装置(紫外線酸化装置)、非再生型イオン交換装置、UF装置(限外濾過装置)等により構成され、微量イオンの除去、特に低分子の微量有機物の除去、微粒子の除去が行われる。このサブシステムで作られた超純水は、ユースポイントに送水され、余剰の超純水はサブシステムの前段のタンクに返送されるのが一般的である。   The primary pure water system is composed of an RO (reverse osmosis membrane) device, a degassing membrane device, an electrodeionization device, and the like, and most of the ion components and TOC components are removed by the primary pure water system. In addition, the subsystem is composed of a UV device (ultraviolet oxidation device), a non-regenerative ion exchange device, a UF device (ultrafiltration device), etc., and removes trace ions, particularly low-molecular trace organic substances, and particulates. Removal is performed. In general, the ultrapure water produced by this subsystem is sent to the point of use, and the excess ultrapure water is generally returned to the tank in the previous stage of the subsystem.

ところで、超純水の要求水質は年々厳しくなり、現在、最先端の電子産業分野ではホウ素濃度1ppt以下の超純水が要求されるようになってきている。このホウ素は、超純水中ではほとんどホウ酸イオンとして存在することになるが、このホウ酸イオンは弱イオンであるので除去するのが難しい。そこで、ホウ素濃度の低い純水を製造するために、RO装置の給水をpH10以上にしてRO装置でのホウ素除去率を向上させることが提案されている(特許文献1参照)。   By the way, the required water quality of ultrapure water becomes stricter year by year, and ultrapure water having a boron concentration of 1 ppt or less is now required in the state-of-the-art electronics industry. This boron exists almost as borate ions in ultrapure water, but these borate ions are weak ions and are difficult to remove. Therefore, in order to produce pure water with a low boron concentration, it has been proposed to improve the boron removal rate in the RO device by setting the water supply of the RO device to pH 10 or higher (see Patent Document 1).

また、前処理後の処理水をホウ素選択性イオン交換樹脂と接触させること(特許文献2参照)、原水をRO装置等の脱塩装置で脱塩した後、ホウ素吸着樹脂塔に通水することが提案されている(特許文献3参照)。   Also, the treated water after pretreatment is brought into contact with a boron-selective ion exchange resin (see Patent Document 2), and the raw water is desalted with a desalinator such as an RO device and then passed through a boron adsorption resin tower. Has been proposed (see Patent Document 3).

さらに、原水を前処理装置、2段RO装置、電気再生式脱塩装置等に通水させた処理水を、ホウ素選択性イオン交換樹脂に接触させる超純水製造装置が提案されている(特許文献4参照)。   Furthermore, an ultrapure water production apparatus has been proposed in which treated water obtained by passing raw water through a pretreatment device, a two-stage RO device, an electric regeneration type desalination device, etc. is brought into contact with a boron selective ion exchange resin (patent) Reference 4).

特許第3321179号公報Japanese Patent No. 3321179 特許第3200301号公報Japanese Patent No. 3200301 特開平8−89956号公報JP-A-8-89956 特開平9−192661号公報JP-A-9-192661

特許文献1に記載された純水製造方法では、RO装置の給水をpH10以上に調整するためにアルカリを使用するか、アニオン交換樹脂塔を設ける必要があり、薬品コスト又は装置的負荷がかかる上に、連続運転ができないという問題点がある。   In the pure water production method described in Patent Document 1, it is necessary to use an alkali or to provide an anion exchange resin tower in order to adjust the feed water of the RO device to pH 10 or higher, which increases chemical costs or equipment load. However, there is a problem that continuous operation is not possible.

また、特許文献2〜4に記載された純水製造方法は、処理水をホウ素選択性イオン交換樹脂やホウ素吸着樹脂に流通することにより、ホウ素を除去するものであるが、被処理水のホウ素濃度が高いと、これらのホウ素吸着樹脂等が短期間で破過してしまい、被処理水のホウ素濃度が例えば10ppb以下程度の低濃度であるとホウ素除去率が低下してしまうという問題点がある。さらに、ホウ素吸着樹脂からのTOCの溶出のおそれもあるため、ホウ素吸着樹脂の洗浄、コンディショニングが必要であるという問題点もある。   Moreover, although the pure water manufacturing method described in patent documents 2-4 distribute | circulates treated water to boron selective ion exchange resin or boron adsorption resin, it removes boron, If the concentration is high, these boron adsorbent resins and the like break through in a short period of time, and if the boron concentration of the water to be treated is low, for example, about 10 ppb or less, the boron removal rate is lowered. is there. Furthermore, since there is a possibility that the TOC is eluted from the boron adsorbing resin, there is a problem that the boron adsorbing resin needs to be washed and conditioned.

さらに、電気脱イオン装置を用い、陰イオンであるホウ酸イオンを同時に除去することが考えられるが、ホウ酸イオンは弱イオンであるので、電気脱イオン装置の電流密度を上げて運転しても除去率を90%以上にすることは困難である。また、RO装置を組み合わせてもホウ素除去率を98%以上にすることが困難である。   Furthermore, it is conceivable to simultaneously remove borate ions, which are anions, using an electrodeionization device. However, borate ions are weak ions, so even if the current density of the electrodeionization device is increased and operated. It is difficult to make the removal rate 90% or more. In addition, it is difficult to increase the boron removal rate to 98% or more even when the RO device is combined.

近年、超純水の要求水質は年々厳しくなり、ホウ素濃度100ppt以下、最先端の電子産業分野ではホウ素濃度10ppt以下、場合によっては1ppt以下の水質が要求されるにもかかわらず、簡単な構造でこれを達成できる純水製造装置はなかった。これを、電気脱イオン装置を用いて達成するためには、少なくとも電気脱イオン装置におけるホウ素除去率を99%以上、特に99.5%以上にすることが必要である。   In recent years, the required water quality of ultrapure water has become stricter year by year. Even though the water concentration of boron concentration of 100 ppt or less, boron concentration of 10 ppt or less, and in some cases 1 ppt or less is required in the state-of-the-art electronics industry, it has a simple structure. There was no pure water production apparatus that could achieve this. In order to achieve this using an electrodeionization apparatus, it is necessary that at least the boron removal rate in the electrodeionization apparatus is 99% or more, particularly 99.5% or more.

電気脱イオン装置における99%以上のホウ素除去率を達成するためには、純水製造装置系内のホウ素濃縮を抑制すべく、水回収率を約80%程度に設定して電気脱イオン装置を運転し、約20%の濃縮水を系外に排出する必要がある。そのため、電気脱イオン装置を用いると水回収率が低いという問題点があった。   In order to achieve a boron removal rate of 99% or more in the electrodeionization apparatus, the electrodeionization apparatus is set by setting the water recovery rate to about 80% in order to suppress boron concentration in the pure water production system. It is necessary to operate and to discharge about 20% concentrated water out of the system. For this reason, there is a problem that the water recovery rate is low when the electrodeionization apparatus is used.

本発明は、上記課題に鑑みてなされたものであり、ホウ素濃度の極めて低い純水を、高い水回収率で製造することのできる純水製造装置を提供することを目的とする。また、本発明は、ホウ素濃度の低い純水を、高い水回収率で製造することのできる純水製造方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the pure water manufacturing apparatus which can manufacture the pure water with very low boron concentration with a high water recovery rate. Another object of the present invention is to provide a pure water production method capable of producing pure water having a low boron concentration with a high water recovery rate.

上記課題を解決するために、第一に本発明は、原水を処理する前処理装置と、前記前処理装置からの処理水を脱塩室に受け入れて脱イオン処理を行う第1の電気脱イオン装置と、前記第1の電気脱イオン装置からの濃縮水を脱塩室に受け入れて脱イオン処理を行う第2の電気脱イオン装置とを備え、前記第2の電気脱イオン装置からの脱塩水を前記第1の電気脱イオン装置の前段に供給することを特徴とする純水製造装置を提供する(発明1)。   In order to solve the above-mentioned problems, first, the present invention provides a pretreatment device for treating raw water, and a first electrodeionization treatment in which deionization treatment is performed by receiving treated water from the pretreatment device in a demineralization chamber. A deionized water from the second electrodeionization device, and a second electrodeionization device that receives the concentrated water from the first electrodeionization device in a demineralization chamber and performs a deionization process. Is provided to the front stage of the first electrodeionization apparatus (Invention 1).

純水製造装置における水回収率を向上させるためには、電気脱イオン装置からの濃縮水を廃棄することなく、純水製造装置の系内に返送することが考えられるが、かかる濃縮水はホウ素を高濃度で含有しているため、そのまま返送すると系内のホウ素濃度が上昇してしまう。しかしながら、上記発明(発明1)によれば、第1の電気脱イオン装置からの濃縮水を第2の電気脱イオン装置にて処理することで、前処理装置からの処理水よりもホウ素濃度を低減させた脱塩水を得ることができるため、かかる脱塩水を第1の電気脱イオン装置の前段に供給することで、純水製造装置による生産水(脱塩水)のホウ素濃度を効果的に低減しつつ、水回収率を向上させることができる。   In order to improve the water recovery rate in the pure water production apparatus, it is conceivable that the concentrated water from the electrodeionization apparatus is returned to the pure water production system without being discarded. Since it is contained at a high concentration, if it is returned as it is, the boron concentration in the system will increase. However, according to the said invention (invention 1), the concentration of boron from the first electrodeionization device is processed by the second electrodeionization device, so that the boron concentration is higher than the treatment water from the pretreatment device. Since reduced demineralized water can be obtained, supplying the demineralized water to the first stage of the first electrodeionization device effectively reduces the boron concentration of the production water (demineralized water) produced by the pure water production apparatus. However, the water recovery rate can be improved.

上記発明(発明1)においては、前記第2の電気脱イオン装置からの濃縮水を脱塩室に受け入れて脱イオン処理を行う第3の電気脱イオン装置をさらに備え、前記第2の電気脱イオン装置からの脱塩水及び前記第3の電気脱イオン装置からの脱塩水を、前記第1の電気脱イオン装置の前段に供給するのが好ましい(発明2)。   The above invention (Invention 1) further includes a third electrodeionization apparatus that receives the concentrated water from the second electrodeionization apparatus in a demineralization chamber and performs a deionization process, and further includes the second electrodeionization apparatus. It is preferable to supply demineralized water from the ion device and demineralized water from the third electrodeionization device to the first stage of the first electrodeionization device (Invention 2).

第2の電気脱イオン装置からの濃縮水から、さらにホウ素を除去することで、前処理装置の処理水よりもホウ素濃度を低減させた脱塩水を得ることができるため、上記発明(発明2)によれば、かかる脱塩水を第1の電気脱イオン装置の前段に供給することで、さらに水回収率を向上させることができる。   By removing further boron from the concentrated water from the second electrodeionization apparatus, demineralized water having a boron concentration lower than that of the pretreatment apparatus can be obtained. According to the above, by supplying the demineralized water to the front stage of the first electrodeionization device, the water recovery rate can be further improved.

上記発明(発明2)においては、前記第1の電気脱イオン装置の脱塩室に受け入れられる前記前処理装置からの処理水のシリカ濃度が、30ppb(SiO換算)以下であるのが好ましい(発明3)。 In the above invention (invention 2), the silica concentration in the treated water from the pre-processing device is received in the desalting compartment of the first electrodeionization apparatus is preferably not more than 30 ppb (SiO 2 equivalent) ( Invention 3).

シリカを含有する被処理水を電気脱イオン装置にて処理すると、1体の電気脱イオン装置あたりシリカ濃度が5倍に濃縮され、電気脱イオン装置にて処理する被処理水のシリカ濃度が基準値の800ppbを超えると、当該電気脱イオン装置においてシリカスケールが生じてしまうおそれがある。しかしながら、上記発明(発明3)のように、前処理装置の処理水のシリカ濃度が30ppb(SiO換算)以下であることで、第3の電気脱イオン装置の脱塩室に受け入れられる被処理水(第2の電気脱イオン装置からの濃縮水)のシリカ濃度を800ppb以下とすることができるため、電気脱イオン装置(特に、第3の電気脱イオン装置)でのシリカスケールの発生を防止することができ、純水製造装置を安定的に運転することができる。 When treated water containing silica is treated with an electrodeionization device, the silica concentration is concentrated five times per one electrodeionization device, and the silica concentration of the treated water treated with the electrodeionization device is the standard. If the value exceeds 800 ppb, silica scale may be generated in the electrodeionization apparatus. However, as in the above invention (Invention 3), when the silica concentration of the treated water in the pretreatment device is 30 ppb (SiO 2 equivalent) or less, the treatment to be received in the demineralization chamber of the third electrodeionization device. Since the silica concentration of water (concentrated water from the second electrodeionization device) can be 800 ppb or less, generation of silica scale in the electrodeionization device (particularly the third electrodeionization device) is prevented. It is possible to operate the pure water production apparatus stably.

上記発明(発明1〜3)においては、前記第1の電気脱イオン装置の後段に設けられ、前記第1の電気脱イオン装置からの脱塩水を脱塩室に受け入れて脱イオン処理を行う第4の電気脱イオン装置をさらに備え、前記第4の電気脱イオン装置からの濃縮水を前記第1の電気脱イオン装置の前段に供給するのが好ましい(発明4)。   In the said invention (invention 1-3), it is provided in the back | latter stage of the said 1st electrodeionization apparatus, deionized water from the said 1st electrodeionization apparatus is received in a desalination chamber, and a deionization process is performed. 4 is further provided, and the concentrated water from the fourth electrodeionization device is preferably supplied to the front stage of the first electrodeionization device (Invention 4).

第4の電気脱イオン装置からの濃縮水は、前段の第1の電気脱イオン装置にてホウ素が除去されていることで、前処理装置の処理水よりもホウ素濃度が低いものとなるため、上記発明(発明4)によれば、第4の電気脱イオン装置からの濃縮水を第1の電気脱イオン装置の前段に供給することで、さらに水回収率を向上させることができるとともに、第1の電気脱イオン装置からの脱塩水をさらに第4の電気脱イオン装置にて処理することで、極めて低いホウ素濃度の生産水(脱塩水)を製造することができる。   Concentrated water from the fourth electrodeionization device has a lower boron concentration than the treated water of the pretreatment device because boron has been removed by the first electrodeionization device in the previous stage. According to the said invention (invention 4), while supplying the concentrated water from a 4th electrodeionization apparatus to the front | former stage of a 1st electrodeionization apparatus, while being able to improve a water recovery rate further, By further treating the demineralized water from the one electrodeionization apparatus with the fourth electrodeionization apparatus, production water (demineralized water) having an extremely low boron concentration can be produced.

上記発明(発明1〜4)においては、前記電気脱イオン装置の脱塩室内には、前記脱塩室内を複数の小室に区画する区画部材が設けられているのが好ましい(発明5)。   In the said invention (invention 1-4), it is preferable that the demineralization chamber of the said electrodeionization apparatus is provided with the division member which divides the said demineralization chamber into several small chambers (invention 5).

上記発明(発明5)によれば、脱塩室内において、各小室内の略全体に被処理水を通水することができるため、被処理水の短絡を防止することができ、これにより脱塩室内にイオン交換体を充填した場合に、当該イオン交換体と被処理水とをより効果的に接触させて脱塩室内でのホウ素の移動を促進させることができるため、よりホウ素濃度を低減させた生産水(脱塩水)を製造することができる。   According to the above invention (Invention 5), in the desalting chamber, since the water to be treated can be passed through substantially the entire interior of each small chamber, a short circuit of the water to be treated can be prevented, and thereby the desalting is performed. When the chamber is filled with an ion exchanger, the ion exchanger and the water to be treated can be more effectively brought into contact with each other to promote the movement of boron in the desalting chamber, thereby further reducing the boron concentration. Production water (demineralized water) can be produced.

上記発明(発明1〜5)においては、前記電気脱イオン装置からの脱塩水の一部を、当該電気脱イオン装置の濃縮室に前記脱塩室への処理水の導入方向と反対方向から一過式に導入するのが好ましい(発明6)。   In the said invention (invention 1-5), a part of demineralized water from the said electrodeionization apparatus is made into the concentration chamber of the said electrodeionization apparatus from the direction opposite to the introduction direction of the treated water to the said demineralization chamber. It is preferably introduced excessively (Invention 6).

水質の良好な脱塩室からの排出水(脱塩水)を脱塩室の出口側から入口側の方向に向けて濃縮室に導入することにより、脱塩室と濃度室との間のホウ素の濃度勾配を緩和することができ、特に向流一過式に脱塩水を濃縮室に導入することで濃縮室における脱塩室出口側での濃縮水のホウ素濃度が低くなり、濃度拡散による脱塩室側への影響(濃縮室側から脱塩室側へのホウ素の拡散)を抑制することができるため、上記発明(発明6)によれば、電気脱イオン装置によるホウ素の除去率を飛躍的に向上させることができる。   By introducing drainage water (demineralized water) from a desalting chamber with good water quality from the outlet side of the desalting chamber toward the inlet side, the concentration of boron between the desalting chamber and the concentration chamber is increased. The concentration gradient can be relaxed. In particular, by introducing desalted water into the concentrating chamber in a countercurrent transient manner, the boron concentration of the concentrated water at the outlet side of the desalting chamber in the concentrating chamber is reduced, and desalination by concentration diffusion is performed. Since the influence on the chamber side (diffusion of boron from the concentrating chamber side to the desalting chamber side) can be suppressed, according to the invention (Invention 6), the boron removal rate by the electrodeionization device is dramatically improved. Can be improved.

第二に本発明は、原水を前処理装置で処理した処理水を第1の電気脱イオン装置の脱塩室に導入して脱イオン処理を行う純水製造方法であって、前記第1の電気脱イオン装置からの濃縮水を、第2の電気脱イオン装置の脱塩室に導入し、前記第2の電気脱イオン装置からの脱塩水を、前記第1の電気脱イオン装置の前段に導入することを特徴とする純水製造方法を提供する(発明7)。   Second, the present invention is a pure water production method for performing deionization treatment by introducing treated water obtained by treating raw water with a pretreatment device into a demineralization chamber of a first electrodeionization device, Concentrated water from the electrodeionization apparatus is introduced into the demineralization chamber of the second electrodeionization apparatus, and the demineralized water from the second electrodeionization apparatus is placed upstream of the first electrodeionization apparatus. A pure water production method is provided (Invention 7).

上記発明(発明7)によれば、第1の電気脱イオン装置からの濃縮水を第2の電気脱イオン装置にて処理することで、前処理装置の処理水よりもホウ素濃度を低減させた脱塩水を得ることができる。そのため、かかる脱塩水を第1の電気脱イオン装置の前段に供給することで、生産水(脱塩水)のホウ素濃度を効果的に低減しつつ、水回収率を向上させることができる。   According to the said invention (invention 7), the concentration of boron from the first electrodeionization apparatus was processed by the second electrodeionization apparatus, thereby reducing the boron concentration compared to the treated water of the pretreatment apparatus. Demineralized water can be obtained. Therefore, by supplying such demineralized water to the first stage of the first electrodeionization apparatus, the water recovery rate can be improved while effectively reducing the boron concentration of the production water (demineralized water).

上記発明(発明7)においては、前記第2の電気脱イオン装置からの濃縮水を、第3の電気脱イオン装置の脱塩室に導入し、前記第2の電気脱イオン装置からの脱塩水及び前記第3の電気脱イオン装置からの脱塩水を、前記第1の電気脱イオン装置の前段に導入するのが好ましい(発明8)。   In the said invention (invention 7), the concentrated water from said 2nd electrodeionization apparatus is introduce | transduced into the demineralization chamber of a 3rd electrodeionization apparatus, and the desalination water from said 2nd electrodeionization apparatus It is preferable to introduce demineralized water from the third electrodeionization apparatus into the front stage of the first electrodeionization apparatus (Invention 8).

第2の電気脱イオン装置からの濃縮水から、さらにホウ素を除去することで、前処理装置の処理水よりもホウ素濃度を低減させた脱塩水を得ることができるため、上記発明(発明8)によれば、かかる脱塩水を第1の電気脱イオン装置の前段に供給することで、さらに水回収率を向上させることができる。   By removing further boron from the concentrated water from the second electrodeionization apparatus, demineralized water having a boron concentration lower than the treated water of the pretreatment apparatus can be obtained, so that the above invention (Invention 8) According to the above, by supplying the demineralized water to the front stage of the first electrodeionization device, the water recovery rate can be further improved.

上記発明(発明7,8)においては、前記第1の電気脱イオン装置の脱塩室に導入される処理水のシリカ濃度が30ppb(SiO換算)以下となるように、前記前処理装置にて原水を処理するのが好ましい(発明9)。 In the above inventions (Inventions 7 and 8), the pretreatment apparatus is configured so that the silica concentration of the treated water introduced into the demineralization chamber of the first electrodeionization apparatus is 30 ppb (SiO 2 equivalent) or less. It is preferable to treat the raw water (Invention 9).

上記発明(発明9)のように、第1の電気脱イオン装置の脱塩室に導入される処理水のシリカ濃度が30ppb(SiO換算)以下となるように前処理装置にて原水を処理することで、第3の電気脱イオン装置の脱塩室に導入される被処理水(第2の電気脱イオン装置からの濃縮水)のシリカ濃度を800ppb以下とすることができるため、電気脱イオン装置でのシリカスケールの発生を防止することができ、ホウ素濃度の低い生産水(脱塩水)を安定的に製造することができる。 As in the above invention (Invention 9), the raw water is treated in the pretreatment device so that the silica concentration of the treatment water introduced into the demineralization chamber of the first electrodeionization device is 30 ppb (SiO 2 equivalent) or less. As a result, the silica concentration of the water to be treated (concentrated water from the second electrodeionization device) introduced into the demineralization chamber of the third electrodeionization device can be 800 ppb or less. Generation of silica scale in the ion device can be prevented, and production water (desalted water) having a low boron concentration can be stably produced.

上記発明(発明7〜9)においては、前記第1の電気脱イオン装置からの脱塩水を、第4の電気脱イオン装置の脱塩室に導入し、前記第4の電気脱イオン装置からの濃縮水を、前記第1の電気脱イオン装置の前段に導入するのが好ましい(発明10)。   In the said invention (invention 7-9), the demineralized water from the said 1st electrodeionization apparatus is introduce | transduced into the demineralization chamber of a 4th electrodeionization apparatus, It is preferable to introduce the concentrated water into the first stage of the first electrodeionization apparatus (Invention 10).

第4の電気脱イオン装置の脱塩室に導入する第1の電気脱イオン装置からの脱塩水が、十分にホウ素が除去された脱塩水であることで、第4の電気脱イオン装置からの濃縮水は、前処理装置の処理水よりもホウ素濃度が低いものとなるため、上記発明(発明10)によれば、第4の電気脱イオン装置からの濃縮水を第1の電気脱イオン装置の前段に供給することで、さらに水回収率を向上させることができるとともに、第1の電気脱イオン装置からの脱塩水をさらに第4の電気脱イオン装置にて処理することで、極めて低いホウ素濃度の生産水(脱塩水)を製造することができる。   Since the demineralized water from the first electrodeionization apparatus introduced into the demineralization chamber of the fourth electrodeionization apparatus is demineralized water from which boron has been sufficiently removed, the deionized water from the fourth electrodeionization apparatus Since the concentrated water has a lower boron concentration than the treated water of the pretreatment device, according to the above invention (Invention 10), the concentrated water from the fourth electrodeionization device is used as the first electrodeionization device. The water recovery rate can be further improved by supplying it to the front stage, and the deionized water from the first electrodeionization apparatus is further processed by the fourth electrodeionization apparatus, so that extremely low boron Concentrated production water (demineralized water) can be produced.

上記発明(発明7〜10)においては、前記電気脱イオン装置からの脱塩水の一部を、当該電気脱イオン装置の濃縮室に前記脱塩室への処理水の導入方向と反対方向から一過式に導入するのが好ましい(発明11)。   In the above inventions (Inventions 7 to 10), a part of the demineralized water from the electrodeionization device is introduced into the concentration chamber of the electrodeionization device from the direction opposite to the direction in which treated water is introduced into the demineralization chamber. It is preferably introduced excessively (Invention 11).

水質の良好な脱塩室からの排出水(脱塩水)を脱塩室の出口側から入口側の方向に向けて濃縮室に導入することにより、脱塩室と濃度室との間のホウ素の濃度勾配を緩和することができ、特に一過式に脱塩水を濃縮室に導入することで濃縮室における脱塩室出口側での濃縮水のホウ素濃度が低くなり、濃度拡散による脱塩室側への影響(濃縮室側から脱塩室側へのホウ素の拡散)を抑制することができるため、上記発明(発明11)によれば、電気脱イオン装置によるホウ素の除去率を飛躍的に向上させることができ、よりホウ素濃度の低い生産水(脱塩水)を製造することができる。   By introducing drainage water (demineralized water) from a desalting chamber with good water quality from the outlet side of the desalting chamber toward the inlet side, the concentration of boron between the desalting chamber and the concentration chamber is increased. The concentration gradient can be relaxed, and the concentration of boron in the concentrated water at the outlet side of the desalting chamber in the concentrating chamber is lowered by introducing the desalting water into the concentrating chamber in a transient manner. Can be suppressed (diffusion of boron from the concentrating chamber side to the desalting chamber side), so according to the invention (Invention 11), the removal rate of boron by the electrodeionization device is dramatically improved. Production water (desalted water) having a lower boron concentration can be produced.

本発明によれば、ホウ素濃度の低い純水を、高い水回収率で製造することのできる純水製造装置を提供することができる。また、本発明によれば、ホウ素濃度の低い純水を、高い水回収率で製造することができる純水製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pure water manufacturing apparatus which can manufacture the pure water with low boron concentration with a high water recovery rate can be provided. Moreover, according to this invention, the pure water manufacturing method which can manufacture the pure water with low boron concentration with a high water recovery rate can be provided.

本発明の一実施形態に係る純水製造装置を示すフロー図である。It is a flowchart which shows the pure water manufacturing apparatus which concerns on one Embodiment of this invention. 同実施形態における電気脱イオン装置を示す概略構成図である。It is a schematic block diagram which shows the electrodeionization apparatus in the same embodiment. 同実施形態における電気脱イオン装置の脱塩室に配設される区画部材を示す概略構成図である。It is a schematic block diagram which shows the partition member arrange | positioned in the demineralization chamber of the electrodeionization apparatus in the same embodiment. 実施例1の純水製造装置を示すフロー図である。It is a flowchart which shows the pure water manufacturing apparatus of Example 1. FIG.

以下、本発明の純水製造装置の一実施形態について、図面に基づいて詳細に説明する。
図1は、本実施形態に係る純水製造装置を示すフロー図であり、図2は、本実施形態における第1〜第4の電気脱イオン装置を示す概略構成図である。
Hereinafter, an embodiment of a pure water production apparatus of the present invention will be described in detail based on the drawings.
FIG. 1 is a flowchart showing a pure water production apparatus according to the present embodiment, and FIG. 2 is a schematic configuration diagram showing first to fourth electrodeionization apparatuses in the present embodiment.

図1に示すように、純水製造装置10は、活性炭装置1と、ヒータ2と、膜式濾過装置3と、原水タンク4と、前処理装置5と、貯水タンクT1〜T3と、第1〜第4の電気脱イオン装置6A〜6Dと、一次純水のサブタンク7とから構成されている。   As shown in FIG. 1, the pure water production apparatus 10 includes an activated carbon device 1, a heater 2, a membrane filtration device 3, a raw water tank 4, a pretreatment device 5, water storage tanks T <b> 1 to T <b> 3, To fourth electrodeionization devices 6A to 6D and a primary pure water sub-tank 7.

本実施形態において、前処理装置5は、第1の逆浸透膜(RO)装置51と、第2の逆浸透膜(RO)装置52と、脱炭酸膜装置53とにより構成されている。この前処理装置5は、原水W0の水質に応じて、シリカ濃度30ppb(SiO換算)以下の処理水W1が第1の電気脱イオン装置6Aの脱塩室に導入されるように設計されていればよい。 In the present embodiment, the pretreatment device 5 includes a first reverse osmosis membrane (RO) device 51, a second reverse osmosis membrane (RO) device 52, and a decarbonation membrane device 53. This pretreatment device 5 is designed so that treated water W1 having a silica concentration of 30 ppb (SiO 2 equivalent) or less is introduced into the demineralization chamber of the first electrodeionization device 6A according to the quality of the raw water W0. Just do it.

上述したような純水製造装置10において、第1〜第4の電気脱イオン装置6A〜6Dは、図2に示すように、陽極15A〜15Dと陰極16A〜16Dとの間に複数のアニオン交換膜13A〜13Dとカチオン交換膜14A〜14Dとを交互に配列し、これらのアニオン交換膜13A〜13D及びカチオン交換膜14A〜14Dにより区画されてなる脱塩室11A〜11Dと濃縮室12A〜12Dとを備えている。   In the pure water production apparatus 10 as described above, the first to fourth electrodeionization apparatuses 6A to 6D have a plurality of anion exchanges between the anodes 15A to 15D and the cathodes 16A to 16D, as shown in FIG. Desalination chambers 11A to 11D and concentration chambers 12A to 12D, in which membranes 13A to 13D and cation exchange membranes 14A to 14D are alternately arranged, and are partitioned by these anion exchange membranes 13A to 13D and cation exchange membranes 14A to 14D And.

第1の電気脱イオン装置6Aの脱塩室11Aの入口側には、前処理装置5からの処理水W1の流路R11が接続され、脱塩室11Aの出口側には、脱塩水W2の流路R12が接続されており、前処理装置5からの処理水W1を処理し、脱塩水W2として取り出すことのできる構成となっている。   The flow path R11 of the treated water W1 from the pretreatment device 5 is connected to the inlet side of the demineralized chamber 11A of the first electrodeionization device 6A, and the demineralized water W2 is connected to the outlet side of the demineralized chamber 11A. The flow path R12 is connected, and the treated water W1 from the pretreatment device 5 can be treated and taken out as demineralized water W2.

流路R12の途中には、流路R12から分岐して濃縮室12Aに接続する分岐流路R13が設けられており、脱塩室11Aからの脱塩水W2の一部を、脱塩室11Aの出口側から入口側の方向に向けて濃縮室12Aに導入することができる。脱塩水W2の一部を濃縮室12Aに導入する場合、一過式に導入するのが好ましい。このように濃縮室12Aに脱塩水W2の一部を向流一過式に導入することで、濃縮室12Aにおける脱塩室11A出口側での濃縮水のホウ素濃度が低くなり、濃度拡散による脱塩室11A側への影響(濃縮室12A側から脱塩室11A側へのホウ素の拡散)を抑制することができるため、ホウ素除去率を飛躍的に向上させることができる。   A branch flow path R13 branched from the flow path R12 and connected to the concentration chamber 12A is provided in the middle of the flow path R12, and a part of the desalted water W2 from the desalination chamber 11A is supplied to the desalination chamber 11A. It can be introduced into the concentrating chamber 12A from the outlet side toward the inlet side. When a part of the desalted water W2 is introduced into the concentration chamber 12A, it is preferably introduced in a transient manner. In this way, by introducing a part of the desalted water W2 into the concentrating chamber 12A in a countercurrent and transient manner, the concentration of boron in the concentrated water at the outlet side of the desalting chamber 11A in the concentrating chamber 12A is lowered, and deconcentration due to concentration diffusion is performed. Since the influence on the salt chamber 11A side (diffusion of boron from the concentration chamber 12A side to the desalting chamber 11A side) can be suppressed, the boron removal rate can be dramatically improved.

濃縮室12Aの出口側には、濃縮水の流路R14を介して貯水タンクT2が接続されており、濃縮室12Aから排出された濃縮水W4が流路R14を通じて貯水タンクT2に貯留されるように構成されている。   A water storage tank T2 is connected to the outlet side of the concentrating chamber 12A via a flow path R14 of concentrated water so that the concentrated water W4 discharged from the concentrating chamber 12A is stored in the water storage tank T2 through the flow path R14. It is configured.

第2の電気脱イオン装置6Bの脱塩室11Bの入口側には、流路R21を介して貯水タンクT2が接続されており、これにより、第1の電気脱イオン装置6Aの濃縮室12Aから排出された濃縮水W4が、流路R21を通じて脱塩室11Bに導入されるように構成されている。   A water storage tank T2 is connected to the inlet side of the demineralization chamber 11B of the second electrodeionization device 6B via a flow path R21, so that from the concentration chamber 12A of the first electrodeionization device 6A. The discharged concentrated water W4 is configured to be introduced into the desalting chamber 11B through the flow path R21.

第2の電気脱イオン装置6Bの脱塩室11Bの出口側には、脱塩水W5の流路R22を介して貯水タンクT1が接続されており、脱塩室11Bからの脱塩水W5が流路R22を通じて貯水タンクT1に貯留されるように構成されている。   A water storage tank T1 is connected to the outlet side of the demineralization chamber 11B of the second electrodeionization apparatus 6B via a flow path R22 of the demineralized water W5, and the demineralized water W5 from the demineralization chamber 11B flows through the flow path. It is configured to be stored in the water storage tank T1 through R22.

流路R22の途中には、流路R22から分岐して濃縮室12Bに接続する分岐流路R23が設けられており、脱塩室11Bからの脱塩水W5の一部を、脱塩室11Bの出口側から入口側の方向に向けて濃縮室12Bに導入することができる。脱塩水W5の一部を濃縮室12Bに導入する場合、一過式に導入するのが好ましい。このように濃縮室12Bに脱塩水W5の一部を向流一過式に導入することで、濃縮室12Bにおける脱塩室11B出口側での濃縮水のホウ素濃度が低くなり、濃度拡散による脱塩室11B側への影響(濃縮室12B側から脱塩室11B側へのホウ素の拡散)を抑制することができるため、ホウ素除去率を飛躍的に向上させることができる。   A branch flow path R23 branched from the flow path R22 and connected to the concentration chamber 12B is provided in the middle of the flow path R22, and a part of the desalted water W5 from the desalination chamber 11B is supplied to the desalination chamber 11B. It can be introduced into the concentration chamber 12B from the outlet side toward the inlet side. When a part of the desalted water W5 is introduced into the concentration chamber 12B, it is preferably introduced in a transient manner. In this way, by introducing a part of the desalted water W5 into the concentrating chamber 12B in a countercurrent transient manner, the boron concentration of the concentrated water at the outlet side of the desalting chamber 11B in the concentrating chamber 12B is reduced, and deconcentration by concentration diffusion is performed. Since the influence on the salt chamber 11B side (diffusion of boron from the concentration chamber 12B side to the desalting chamber 11B side) can be suppressed, the boron removal rate can be dramatically improved.

濃縮室12Bの出口側には、濃縮水の流路R24を介して貯水タンクT3が接続されており、濃縮室12Bから排出された濃縮水W6が流路R24を通じて貯水タンクT3に貯留されるように構成されている。   A water storage tank T3 is connected to the outlet side of the concentrating chamber 12B through a flow path R24 of concentrated water so that the concentrated water W6 discharged from the concentrating chamber 12B is stored in the water storage tank T3 through the flow path R24. It is configured.

第3の電気脱イオン装置6Cの脱塩室11Cの入口側には、流路R31を介して貯水タンクT3が接続されており、これにより、第2の電気脱イオン装置6Bの濃縮室12Bから排出された濃縮水W6が、流路31を通じて脱塩室11Cに導入されるように構成されている。   A water storage tank T3 is connected to the inlet side of the demineralization chamber 11C of the third electrodeionization device 6C via a flow path R31, so that from the concentration chamber 12B of the second electrodeionization device 6B. The discharged concentrated water W6 is configured to be introduced into the desalting chamber 11C through the flow path 31.

第3の電気脱イオン装置6Cの脱塩室11Cの出口側には、脱塩水W7の流路R32を介して貯水タンクT1が接続されており、脱塩室11Cからの脱塩水W7が流路R32を通じて貯水タンクT1に貯留されるように構成されている。   A water storage tank T1 is connected to the outlet side of the demineralization chamber 11C of the third electric deionization device 6C via a flow path R32 of demineralized water W7, and the demineralized water W7 from the demineralization chamber 11C flows through the flow path. It is configured to be stored in the water storage tank T1 through R32.

流路R32の途中には、流路32から分岐して濃縮室12Cに接続する分岐流路R33が設けられており、脱塩室11Cからの脱塩水W7の一部を、脱塩室11Cの出口側から入口側の方向に向けて濃縮室12Cに導入することができる。脱塩水W7の一部を濃縮室12Cに導入する場合、一過式に当該脱塩水W7の一部を導入するのが好ましい。このように濃縮室12Cに脱塩水W7の一部を向流一過式に導入することで、濃縮室12Cにおける脱塩室11C出口側での濃縮水の濃度が低くなり、濃度拡散による脱塩室11C側への影響(濃縮室12C側から脱塩室11C側へのホウ素の拡散)を抑制することができるため、ホウ素除去率を飛躍的に向上させることができる。   In the middle of the flow path R32, a branch flow path R33 branched from the flow path 32 and connected to the concentration chamber 12C is provided, and a part of the demineralized water W7 from the demineralization chamber 11C is supplied to the demineralization chamber 11C. It can be introduced into the concentration chamber 12C from the outlet side toward the inlet side. When a part of the desalted water W7 is introduced into the concentration chamber 12C, it is preferable to introduce a part of the desalted water W7 in a transient manner. In this way, by introducing a portion of the desalted water W7 into the concentrating chamber 12C in a countercurrent and transient manner, the concentration of the concentrated water at the outlet side of the desalting chamber 11C in the concentrating chamber 12C is reduced, and desalting due to concentration diffusion Since the influence on the chamber 11C side (diffusion of boron from the concentration chamber 12C side to the desalting chamber 11C side) can be suppressed, the boron removal rate can be greatly improved.

第4の電気脱イオン装置6Dの脱塩室11Dの入口側には、第1の電気脱イオン装置6Aからの脱塩水W2の流路R41(R12)が接続され、脱塩室11Dの出口側には、脱塩水W8の流路R42が接続されている。これにより、脱塩水W2を第4の電気脱イオン装置6Dにて処理し、脱塩水(最終生産水)W8として取り出すことができる構成となっている。   A flow path R41 (R12) of demineralized water W2 from the first electrodeionization device 6A is connected to the inlet side of the demineralization chamber 11D of the fourth electrodeionization device 6D, and the outlet side of the desalination chamber 11D Is connected to a flow path R42 of demineralized water W8. Thereby, it has the structure which can process the desalted water W2 with the 4th electrodeionization apparatus 6D, and can take out as desalted water (final production water) W8.

流路R42の途中には、流路R42から分岐して濃縮室12Dに接続する分岐流路R43が設けられており、脱塩室11Dからの脱塩水W8の一部を、脱塩室11Dの出口側から入口側の方向に向けて濃縮室12Dに導入することができる。脱塩水W8の一部を濃縮室12Dに導入する場合、一過式に当該脱塩水W8の一部を導入するのが好ましい。このように濃縮室12Dに脱塩水W8の一部を向流一過式に導入することで、濃縮室12Dにおける脱塩室11D出口側での濃縮水の濃度が低くなり、濃度拡散による脱塩室11D側への影響(濃縮室12D側から脱塩室11D側へのホウ素の拡散)を抑制することができるため、ホウ素除去率を飛躍的に向上させることができる。   In the middle of the flow path R42, a branch flow path R43 branched from the flow path R42 and connected to the concentration chamber 12D is provided, and a part of the desalted water W8 from the desalting chamber 11D is supplied to the desalting chamber 11D. It can be introduced into the concentrating chamber 12D from the outlet side toward the inlet side. When a part of the desalted water W8 is introduced into the concentration chamber 12D, it is preferable to introduce a part of the desalted water W8 in a transient manner. In this way, by introducing a part of the desalted water W8 into the concentrating chamber 12D in a countercurrent and transient manner, the concentration of the concentrated water on the outlet side of the desalting chamber 11D in the concentrating chamber 12D is reduced, and desalting due to concentration diffusion Since the influence on the chamber 11D side (diffusion of boron from the concentration chamber 12D side to the desalting chamber 11D side) can be suppressed, the boron removal rate can be greatly improved.

濃縮室12Dの出口側には、濃縮水の流路R44を介して貯水タンクT1が接続されており、濃縮室12Dから吐出された濃縮水W3が流路R44を通じて貯水タンクT1に貯留されるように構成されている。   A water storage tank T1 is connected to the outlet side of the concentrating chamber 12D via a concentrated water channel R44 so that the concentrated water W3 discharged from the concentrating chamber 12D is stored in the water tank T1 through the channel R44. It is configured.

第1〜第4の電気脱イオン装置6A〜6Dの脱塩室11A〜11D内には、図3(A)に示すような複数の小室9に区画されてなるハニカム構造体からなる区画部材8が設けられており、かかる複数の小室9にはそれぞれイオン交換体(図示せず)が充填されている。小室9は、上下左右に多数配置されており、各小室9の1対の側辺が脱塩室11A〜11Dにおける通水方向、すなわち図2における上下方向となるように配置されている。   In the demineralization chambers 11A to 11D of the first to fourth electrodeionization devices 6A to 6D, partition members 8 made of a honeycomb structure partitioned into a plurality of small chambers 9 as shown in FIG. Each of the plurality of small chambers 9 is filled with an ion exchanger (not shown). A large number of the small chambers 9 are arranged vertically and horizontally, and a pair of side sides of each small chamber 9 is disposed so as to be in the water passing direction in the desalting chambers 11A to 11D, that is, the vertical direction in FIG.

区画部材8は、予め一体成形されたものであってもよいし、複数の部材を組み合わせて形成されるものであってもよい。区画部材8は、図3(B)に示すように、例えば、長手方向面81と、長手方向面81に対して120°の角度に屈曲し、長手方向面81に連続する通水性を有する射向面82とを有する屈曲板83の長手方向面81,81同士を、接着剤等を用いて連結することにより構成される。屈曲板83は、通水性を有する材料、例えば織布、不織布、メッシュ、多孔質材料等により構成されているのが好ましい。   The partition member 8 may be integrally formed in advance, or may be formed by combining a plurality of members. As shown in FIG. 3B, the partition member 8 is bent at an angle of 120 ° with respect to the longitudinal surface 81 and the longitudinal surface 81 and has a water permeability that is continuous with the longitudinal surface 81. It is configured by connecting the longitudinal direction surfaces 81 and 81 of the bending plate 83 having the facing surface 82 with an adhesive or the like. The bent plate 83 is preferably made of a material having water permeability, for example, a woven fabric, a nonwoven fabric, a mesh, a porous material, or the like.

なお、屈曲板83の長手方向面81は、通水性を有していてもよいし、通水性を有していなくてもよい。長手方向面81が通水性を有していなければ、小室9内の被処理水が屈曲板83の射向面82を通じてのみ下方の小室9内に流れることになり、小室9内の全体に被処理水が略均一に流れることになるため、脱塩室11A〜11Dに充填されたイオン交換体と被処理水(処理水W1,脱塩水W2,濃縮水W4,W6)とを効果的に接触させることができる。   In addition, the longitudinal direction surface 81 of the bending plate 83 may have water permeability or may not have water permeability. If the longitudinal surface 81 does not have water permeability, the water to be treated in the small chamber 9 will flow into the lower small chamber 9 only through the directing surface 82 of the bent plate 83, and the entire small chamber 9 will be covered. Since the treated water flows substantially uniformly, the ion exchanger filled in the desalting chambers 11A to 11D and the treated water (treated water W1, desalted water W2, concentrated water W4, W6) are effectively brought into contact with each other. Can be made.

脱塩室11A〜11Dに充填されるイオン交換体としては、アニオン交換体、カチオン交換体、両性イオン交換体等が挙げられ、これらを単独で用いてもよいし、2種以上の混合物として用いてもよい。また、これらのイオン交換体のうちの2種以上が脱塩室11A〜11Dに複層状に充填されていてもよい。   Examples of the ion exchanger filled in the desalting chambers 11A to 11D include anion exchangers, cation exchangers, and amphoteric ion exchangers, and these may be used alone or as a mixture of two or more. May be. Also, two or more of these ion exchangers may be filled in the desalting chambers 11A to 11D in multiple layers.

なお、濃縮室12A〜12D内にもイオン交換体が充填されていてもよい。濃縮室12A〜12D内にもイオン交換体が充填されていることで、より電流が流れやすくなるため、脱塩室11A〜11Dから濃縮室12A〜12Dへのホウ素等の弱イオンの移動をより促進することができ、被処理水からのホウ素の除去率を向上させることができる。   The concentration chambers 12A to 12D may also be filled with an ion exchanger. Because the ion exchangers are also filled in the concentration chambers 12A to 12D, the current flows more easily, so that the movement of weak ions such as boron from the desalting chambers 11A to 11D to the concentration chambers 12A to 12D is further improved. This can promote the removal rate of boron from the water to be treated.

このような構成を有する純水製造装置10においては、まず、原水W0を活性炭装置1に導入して有機物を除去した後、ヒータ2にて所定の温度にまで加温し、その後、膜式濾過装置3に導入して固体微粒子を除去し、原水タンク4に一旦貯留する。続いて、この原水タンク4に貯留された原水W0を前処理装置5にて処理する。   In the pure water production apparatus 10 having such a configuration, first, the raw water W0 is introduced into the activated carbon apparatus 1 to remove organic substances, and then heated to a predetermined temperature with the heater 2, and then subjected to membrane filtration. It is introduced into the apparatus 3 to remove the solid fine particles and temporarily stored in the raw water tank 4. Subsequently, the raw water W 0 stored in the raw water tank 4 is processed by the pretreatment device 5.

この前処理装置5では、第1の逆浸透膜(RO)装置51と、第2の逆浸透膜(RO)装置52とにより原水W0中の強イオン性の不純物が除去され、さらに、脱炭酸膜装置53により炭酸イオン(CO)が除去され、処理水W1を得ることができる。 In the pretreatment device 5, strong ionic impurities in the raw water W0 are removed by the first reverse osmosis membrane (RO) device 51 and the second reverse osmosis membrane (RO) device 52, and decarboxylation is further performed. Carbonate ions (CO 2 ) are removed by the membrane device 53, and the treated water W1 can be obtained.

この前処理装置5は、処理水W1中のシリカ濃度が30ppb(SiO換算)以下、好ましくは20ppb以下、特に好ましくは10ppb以下となるように設計する。電気脱イオン装置における被処理水のシリカ濃度が800ppbを超えると、シリカスケールが生じてしまうという問題がある一方、後述するように、各電気脱イオン装置6A〜6Dにおいて99%以上のホウ素除去率を達成するためには、各電気脱イオン装置6A〜6Dにおける水回収率を80%程度で運転する必要があり、そのような条件で電気脱イオン装置6A〜6Dを運転すると、シリカの濃縮率が5倍程度となる。そのため、処理水W1のシリカ濃度が30ppbを超えてしまうと(例えば、40ppb)、第1の電気脱イオン装置6Aからの濃縮水W4のシリカ濃度が200ppbとなり、第2の電気脱イオン装置6Bからの濃縮水W6のシリカ濃度が1000ppbとなってしまい、第3の電気脱イオン装置6Cにおいてシリカスケールが生じてしまうおそれがある。したがって、処理水W1中のシリカ濃度が30ppb以下とすることで、第3の電気脱イオン装置6Cに導入される濃縮水W6のシリカ濃度が、基準値である800ppb以下となり、シリカスケールが生じるのを防止することができる。 The pretreatment device 5 is designed so that the silica concentration in the treated water W1 is 30 ppb (SiO 2 equivalent) or less, preferably 20 ppb or less, particularly preferably 10 ppb or less. When the silica concentration of the water to be treated in the electrodeionization apparatus exceeds 800 ppb, there is a problem that silica scale is generated. On the other hand, as described later, the boron removal rate of 99% or more in each of the electrodeionization apparatuses 6A to 6D In order to achieve the above, it is necessary to operate the water recovery rate in each of the electrodeionization devices 6A to 6D at about 80%. When the electrodeionization devices 6A to 6D are operated under such conditions, the silica concentration rate Becomes about 5 times. Therefore, when the silica concentration of the treated water W1 exceeds 30 ppb (for example, 40 ppb), the silica concentration of the concentrated water W4 from the first electrodeionization device 6A becomes 200 ppb, and from the second electrodeionization device 6B. The concentrated water W6 has a silica concentration of 1000 ppb, which may cause silica scale in the third electrodeionization apparatus 6C. Therefore, when the silica concentration in the treated water W1 is 30 ppb or less, the silica concentration of the concentrated water W6 introduced into the third electrodeionization apparatus 6C is 800 ppb or less, which is a reference value, and a silica scale is generated. Can be prevented.

このようにして得られた処理水W1を第1の電気脱イオン装置6Aの脱塩室11Aに導入して処理する。この第1の電気脱イオン装置6Aにおいては、電流密度300mA/dm以上で運転するのが好ましい。このような電流密度で運転を行うことにより、電気脱イオン装置の性能にもよるが、従来の電気脱イオン装置では達成できなかった99%以上、特に99.5%以上のホウ素除去率とすることができる。 The treated water W1 thus obtained is introduced into the demineralization chamber 11A of the first electrodeionization apparatus 6A for treatment. The first electrodeionization apparatus 6A is preferably operated at a current density of 300 mA / dm 2 or more. By operating at such a current density, although depending on the performance of the electrodeionization apparatus, a boron removal rate of 99% or more, particularly 99.5% or more, which could not be achieved by the conventional electrodeionization apparatus. be able to.

このとき、第1の電気脱イオン装置6Aからの脱塩水W2の回収率(脱塩水量/処理水量)が80%程度となるように、第1の電気脱イオン装置6Aを運転するのが好ましい。脱塩水W2の回収率を上記範囲内とすることで、第1の電気脱イオン装置6Aでのホウ素除去率を99%以上とすることができる。   At this time, it is preferable to operate the first electrodeionization apparatus 6A so that the recovery rate (demineralized water amount / treated water amount) of the demineralized water W2 from the first electrodeionization apparatus 6A is about 80%. . By setting the recovery rate of the demineralized water W2 within the above range, the boron removal rate in the first electrodeionization device 6A can be 99% or more.

なお、第1の電気脱イオン装置6Aから得られた脱塩水W2の一部を、向流一過式に濃縮室12Aに導入する。これにより、濃縮室12A入口側での濃縮水のホウ素濃度を低くすることができ、濃度拡散による脱塩室11A側への影響を抑制することができるため、ホウ素除去効率を飛躍的に向上させることができる。   A part of the demineralized water W2 obtained from the first electrodeionization apparatus 6A is introduced into the concentrating chamber 12A in a countercurrent transient manner. Thereby, the boron concentration of the concentrated water on the inlet side of the concentrating chamber 12A can be lowered, and the influence on the desalting chamber 11A side due to the concentration diffusion can be suppressed, so that the boron removing efficiency is dramatically improved. be able to.

第1の電気脱イオン装置6Aの濃縮室12Aから排出され、貯水タンクT2に貯留された濃縮水W4を、第2の電気脱イオン装置6Bの脱塩室11Bに導入して処理する。第2の電気脱イオン装置6Bにおいても同様に、99%以上、特に99.5%以上のホウ素除去率を確保するために、電流密度300mA/dm以上で運転するのが好ましい。 The concentrated water W4 discharged from the concentration chamber 12A of the first electrodeionization device 6A and stored in the water storage tank T2 is introduced into the demineralization chamber 11B of the second electrodeionization device 6B and processed. Similarly, the second electrodeionization apparatus 6B is preferably operated at a current density of 300 mA / dm 2 or more in order to ensure a boron removal rate of 99% or more, particularly 99.5% or more.

このとき、第2の電気脱イオン装置6Bからの脱塩水W5の回収率(脱塩水量/処理水量)が80%程度となるように、第2の電気脱イオン装置6Bを運転するのが好ましい。脱塩水W5の回収率を上記範囲内とすることで、第2の電気脱イオン装置6Bでのホウ素除去率を99%程度とすることができる。   At this time, it is preferable to operate the second electrodeionization apparatus 6B so that the recovery rate of the demineralized water W5 from the second electrodeionization apparatus 6B (amount of demineralized water / amount of treated water) is about 80%. . By setting the recovery rate of the demineralized water W5 within the above range, the boron removal rate in the second electrodeionization apparatus 6B can be about 99%.

このようにして処理された第2の電気脱イオン装置6Bからの脱塩水W5は、そのホウ素濃度が前処理装置5からの処理水W1のホウ素濃度よりも低いものとなるため、当該脱塩水W5を第1の電気脱イオン装置6Aの前段の貯水タンクT1に導入する。これにより、純水製造装置10の系内のホウ素濃度を上昇させることなく、水回収率を向上させることができる。   Since the demineralized water W5 from the second electrodeionization apparatus 6B thus treated has a boron concentration lower than the boron concentration of the treated water W1 from the pretreatment apparatus 5, the demineralized water W5. Is introduced into the water storage tank T1 at the front stage of the first electrodeionization apparatus 6A. As a result, the water recovery rate can be improved without increasing the boron concentration in the system of the pure water production apparatus 10.

なお、第2の電気脱イオン装置6Bから得られた脱塩水W5の一部を、向流一過式に濃縮室12Bに導入する。これにより、濃縮室12B入口側での濃縮水のホウ素濃度を低くすることができ、濃度拡散による脱塩室11B側への影響を抑制することができるため、ホウ素除去効率を飛躍的に向上させることができる。   A part of the demineralized water W5 obtained from the second electrodeionization apparatus 6B is introduced into the concentrating chamber 12B in a countercurrent transient manner. Thereby, the boron concentration of the concentrated water on the inlet side of the concentrating chamber 12B can be lowered, and the influence on the desalting chamber 11B side due to the concentration diffusion can be suppressed, so that the boron removing efficiency is dramatically improved. be able to.

第2の電気脱イオン装置6Bの濃縮室12Bから排出され、貯水タンクT3に貯留された濃縮水W6を、第3の電気脱イオン装置6Cの脱塩室11Cに導入して処理する。第3の電気脱イオン装置6Cにおいても同様に、99%以上、特に99.5%以上のホウ素除去率を確保するために、電流密度300mA/dm以上で運転するのが好ましい。 The concentrated water W6 discharged from the concentration chamber 12B of the second electrodeionization device 6B and stored in the water storage tank T3 is introduced into the demineralization chamber 11C of the third electrodeionization device 6C and processed. Similarly, the third electrodeionization apparatus 6C is preferably operated at a current density of 300 mA / dm 2 or more in order to ensure a boron removal rate of 99% or more, particularly 99.5% or more.

このとき、第3の電気脱イオン装置6Cからの脱塩水W7の回収率(脱塩水量/処理水量)が80%程度となるように、第3の電気脱イオン装置6Cを運転するのが好ましい。脱塩水W7の回収率を上記範囲内とすることで、第3の電気脱イオン装置6Cでのホウ素除去率を99%程度とすることができる。   At this time, it is preferable to operate the third electrodeionization apparatus 6C so that the recovery rate (demineralized water amount / treated water amount) of the demineralized water W7 from the third electrodeionization apparatus 6C is about 80%. . By setting the recovery rate of the demineralized water W7 within the above range, the boron removal rate in the third electrodeionization device 6C can be about 99%.

このようにして処理された第3の電気脱イオン装置6Cからの脱塩水W7もまた、そのホウ素濃度が前処理装置5からの処理水W1のホウ素濃度よりも低いものとなるため、当該脱塩水W7を第1の電気脱イオン装置6Aの前段の貯水タンクT1に導入する。これにより、純水製造装置10の系内のホウ素濃度を上昇させることなく、水回収率をさらに向上させることができる。   Since the boron concentration of the demineralized water W7 from the third electrodeionization apparatus 6C thus treated is also lower than the boron concentration of the treated water W1 from the pretreatment apparatus 5, the demineralized water W7 is introduced into the water storage tank T1 at the front stage of the first electrodeionization apparatus 6A. Thereby, the water recovery rate can be further improved without increasing the boron concentration in the system of the pure water production apparatus 10.

なお、第3の電気脱イオン装置6Cから得られた脱塩水W7の一部を、向流一過式に濃縮室12Cに導入する。これにより、濃縮室12C入口側での濃縮水のホウ素濃度を低くすることができ、濃度拡散による脱塩室11C側への影響を抑制することができるため、ホウ素除去効率を飛躍的に向上させることができる。   A part of the demineralized water W7 obtained from the third electrodeionization apparatus 6C is introduced into the concentrating chamber 12C in a countercurrent transient manner. Thereby, the boron concentration of the concentrated water on the inlet side of the concentration chamber 12C can be lowered, and the influence on the desalting chamber 11C side due to the concentration diffusion can be suppressed, so that the boron removal efficiency is dramatically improved. be able to.

第1の電気脱イオン装置6Aからの脱塩水W2を、第4の電気脱イオン装置6Dの脱塩室11Dに導入して処理する。これにより、ホウ素濃度が極めて低い最終生産水(脱塩水)W8を製造することができる。第4の電気脱イオン装置6Dにおいても同様に、99%以上、特に99.5%以上のホウ素除去率を確保するために、電流密度300mA/dm以上で運転するのが好ましい。 The demineralized water W2 from the first electrodeionization apparatus 6A is introduced into the demineralization chamber 11D of the fourth electrodeionization apparatus 6D for treatment. Thereby, the final production water (desalted water) W8 having a very low boron concentration can be produced. Similarly, the fourth electrodeionization apparatus 6D is preferably operated at a current density of 300 mA / dm 2 or more in order to ensure a boron removal rate of 99% or more, particularly 99.5% or more.

このとき、第4の電気脱イオン装置6Dからの脱塩水W8の回収率(脱塩水量/処理水量)が80%程度となるように、第4の電気脱イオン装置6Dを運転するのが好ましい。脱塩水W8の回収率を上記範囲内とすることで、第4の電気脱イオン装置6Dでのホウ素除去率を99%程度とすることができる。   At this time, it is preferable to operate the fourth electrodeionization apparatus 6D so that the recovery rate (demineralized water amount / treated water amount) of the demineralized water W8 from the fourth electrodeionization apparatus 6D is about 80%. . By setting the recovery rate of the demineralized water W8 within the above range, the boron removal rate in the fourth electrodeionization apparatus 6D can be about 99%.

このようにして処理された後の第4の電気脱イオン装置6Dからの濃縮水W3は、そのホウ素濃度が前処理装置5からの処理水W1のホウ素濃度よりも低いものとなるため、当該濃縮水W3を第1の電気脱イオン装置6Aの前段の貯水タンクT1に導入する。これにより、純水製造装置10の系内のホウ素濃度を上昇させることなく、水回収率をさらにまた向上させることができる。   The concentrated water W3 from the fourth electrodeionization device 6D after being treated in this way has a boron concentration lower than the boron concentration of the treated water W1 from the pretreatment device 5, so that the concentration Water W3 is introduced into a water storage tank T1 at the front stage of the first electrodeionization apparatus 6A. Thereby, the water recovery rate can be further improved without increasing the boron concentration in the system of the pure water production apparatus 10.

なお、第4の電気脱イオン装置6Dから得られた脱塩水W8の一部を、向流一過式に濃縮室12Dに導入する。これにより、濃縮室12D入口側での濃縮水のホウ素濃度を低くすることができ、濃度拡散による脱塩室11D側への影響を抑制することができるため、ホウ素除去効率を飛躍的に向上させることができる。   A part of the demineralized water W8 obtained from the fourth electrodeionization apparatus 6D is introduced into the concentrating chamber 12D in a countercurrent transient manner. Thereby, the boron concentration of the concentrated water on the inlet side of the concentrating chamber 12D can be lowered, and the influence on the desalting chamber 11D side due to the concentration diffusion can be suppressed, so that the boron removing efficiency is dramatically improved. be able to.

このように、本実施形態に係る純水製造装置10においては、第2の電気脱イオン装置6Bからの脱塩水W5、第3の電気脱イオン装置6Cからの脱塩水W7及び第4の電気脱イオン装置6Dからの濃縮水W3を第1の電気脱イオン装置6Aの前段の貯水タンクT1に返送することにより、各電気脱イオン装置6A〜6Dにおける水回収率を80%程度として99%以上のホウ素除去率を確保するとともに、最終生産水(脱塩水)W8の回収率を98%以上という高い水準に維持することができる。したがって、本実施形態に係る純水製造装置10は、ホウ素を効果的に除去した脱塩水を、高い水回収率で効率的に生産することができるという効果を奏することができる。   As described above, in the pure water production apparatus 10 according to the present embodiment, the demineralized water W5 from the second electrodeionization device 6B, the desalted water W7 from the third electrodeionization device 6C, and the fourth electrodeionization device. By returning the concentrated water W3 from the ion device 6D to the water storage tank T1 in the first stage of the first electrodeionization device 6A, the water recovery rate in each of the electrodeionization devices 6A to 6D is about 80% and is 99% or more. While ensuring a boron removal rate, the recovery rate of final product water (demineralized water) W8 can be maintained at a high level of 98% or more. Therefore, the pure water producing apparatus 10 according to the present embodiment can produce an effect that the desalted water from which boron is effectively removed can be efficiently produced at a high water recovery rate.

また、本実施形態に係る純水製造装置10によれば、2段直列的に接続された第1及び第4の電気脱イオン装置6A,6Dを備えることにより、処理水W1からのホウ素の十分な除去が可能となるとともに、連続運転が可能となるばかりか、アルカリ等の薬品を使用しないので環境負荷が少ない。さらに、給水(原水)のホウ素濃度の広い領域に対応することができ、また、ホウ素吸着樹脂等に比べて破過が生じないので、数年間に渡り安定的にホウ素濃度を低減させた純水を製造することができる。   Moreover, according to the pure water manufacturing apparatus 10 which concerns on this embodiment, sufficient boron from the treated water W1 is provided by providing the 1st and 4th electrodeionization apparatus 6A, 6D connected in two steps in series. Removal is possible, continuous operation is possible, and the use of chemicals such as alkalis reduces the environmental load. Furthermore, it can handle a wide range of boron concentration in feed water (raw water), and does not cause breakthrough compared to boron adsorbent resin, etc., so pure water that has been stably reduced in boron concentration for several years Can be manufactured.

さらに、本実施形態に係る純水製造装置10によれば、処理水W1よりもホウ素濃度の低い脱塩水W5,W7及び濃縮水W3が貯水タンクT1に返送されることで、経時的には処理水W1のホウ素濃度が低下するため、ホウ素濃度1ppt以下の純水を製造することも可能となる。   Furthermore, according to the pure water producing apparatus 10 according to the present embodiment, the desalted waters W5 and W7 and the concentrated water W3 having a lower boron concentration than the treated water W1 are returned to the water storage tank T1, so that the treatment is performed over time. Since the boron concentration of the water W1 is lowered, it is possible to produce pure water having a boron concentration of 1 ppt or less.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

例えば、上記実施形態において、第3の電気脱イオン装置6C及び第4の電気脱イオン装置6Dは、いずれか一方を備えていなくてもよいし、両方とも備えていなくてもよい。本実施形態に係る純水製造装置10にて所望される最終生産水のホウ素濃度に応じて、第3の電気脱イオン装置6C及び第4の電気脱イオン装置6Dを設けるか否かにつき適宜決定すればよい。また、さらにホウ素濃度の低い超純水が要求される場合には、第4の電気脱イオン装置6Dの後段に、直列的に電気脱イオン装置を備えるようにしてもよい。   For example, in the above-described embodiment, the third electrodeionization device 6C and the fourth electrodeionization device 6D do not have to include either one or both. Whether to provide the third electrodeionization device 6C and the fourth electrodeionization device 6D according to the boron concentration of the final product water desired in the pure water production apparatus 10 according to the present embodiment is appropriately determined. do it. Further, when ultrapure water having a lower boron concentration is required, an electrodeionization device may be provided in series after the fourth electrodeionization device 6D.

また、上記実施形態において、前処理装置5は、第1の電気脱イオン装置6Aに30ppb以下のシリカ濃度の処理水W1を供給でき、かつ所望とするホウ素濃度の超純水が得られるように、原水W0の水質に応じて種々設定することができる。   In the above embodiment, the pretreatment device 5 can supply treated water W1 having a silica concentration of 30 ppb or less to the first electrodeionization device 6A and obtain ultrapure water having a desired boron concentration. Various settings can be made according to the quality of the raw water W0.

具体的には、前処理装置5を以下のような構成のものにすることができる。
(1)RO装置+脱炭酸膜装置
(2)第1のRO装置+第2のRO装置+脱炭酸膜装置
(3)イオン交換樹脂装置(2B3T)+RO装置+脱炭酸膜装置
(4)イオン交換樹脂装置(4B5T)+RO装置+脱炭酸膜装置
Specifically, the pre-processing device 5 can be configured as follows.
(1) RO device + decarbonation membrane device (2) first RO device + second RO device + decarbonation membrane device (3) ion exchange resin device (2B3T) + RO device + decarbonation membrane device (4) ion Exchange resin device (4B5T) + RO device + decarbonation membrane device

さらに、上記実施形態において、第1〜第4の電気脱イオン装置6A〜6Dの脱塩室11A〜11D内に配設される区画部材8が、六角形状の小室9を有するハニカム構造体からなるものとして構成されているが、これに限定されるものではなく、例えば、方形状や三角形状の小室を有するものであってもよいし、方形状又は三角形状の小室と六角形状の小室とを有するものであってもよい。   Furthermore, in the said embodiment, the partition member 8 arrange | positioned in the demineralization chambers 11A-11D of the 1st-4th electrodeionization apparatus 6A-6D consists of a honeycomb structure which has the hexagonal small chamber 9. FIG. However, the present invention is not limited to this. For example, it may have a rectangular or triangular chamber, or a rectangular or triangular chamber and a hexagonal chamber. You may have.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
なお、本実施例においては、下記の電気脱イオン装置を用いた。
・第1の電気脱イオン装置6A(栗田工業社製,製品名:KCDI−UPz−250H,処理水量:25m/hr)
・第2の電気脱イオン装置6B(栗田工業社製,製品名:KCDI−UPz−150H,処理水量:15m/hr)
・第3の電気脱イオン装置6C(栗田工業社製,製品名:KCDI−UPz−020H,処理水量:2m/hr)
・第4の電気脱イオン装置6D(栗田工業社製,製品名:KCDI−UPz−200H,処理水量:20m/hr)
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In the present example, the following electrodeionization apparatus was used.
First electrodeionization apparatus 6A (manufactured by Kurita Kogyo Co., Ltd., product name: KCDI-UPz-250H, amount of treated water: 25 m 3 / hr)
Second electrodeionization apparatus 6B (manufactured by Kurita Kogyo Co., Ltd., product name: KCDI-UPz-150H, amount of treated water: 15 m 3 / hr)
Third electrodeionization device 6C (manufactured by Kurita Kogyo Co., Ltd., product name: KDDI-UPz-020H, amount of treated water: 2 m 3 / hr)
Fourth electrodeionization apparatus 6D (manufactured by Kurita Kogyo Co., Ltd., product name: KDDI-UPz-200H, amount of treated water: 20 m 3 / hr)

〔実施例1〕
図4に示すように、第1〜第4の電気脱イオン装置6A〜6Dを備える純水製造装置を製造した。そして、ホウ素濃度が31ppbの被処理水W0(2段逆浸透膜装置により処理した処理水に相当する被処理水)を貯水タンクT1に61.9m/hrで供給し、この純水製造装置を用いて処理した。
[Example 1]
As shown in FIG. 4, the pure water manufacturing apparatus provided with the 1st-4th electrodeionization apparatus 6A-6D was manufactured. And the to-be-processed water W0 (the to-be-processed water corresponded to the treated water processed with the 2 step | paragraph reverse osmosis membrane apparatus) whose boron concentration is 31 ppb is supplied to the water storage tank T1 at 61.9 m < 3 > / hr, This pure water manufacturing apparatus Was processed using.

処理開始から所定時間経過後における第1の電気脱イオン装置6Aの脱塩室11Aに導入される被処理水W1、各電気脱イオン装置6A〜6Dからの脱塩水W2,W5,W7,W8及び濃縮水W3,W4,W6,W9のホウ素イオン濃度とそれらの水量(m/hr)とを測定し、水回収率(%)を算出した。なお、第1〜第4の電気脱イオン装置6A〜6Dにおける水回収率を、それぞれ82%、83%、85%及び83%と設定した。
結果を表1に示す。
Water to be treated W1 introduced into the demineralization chamber 11A of the first electrodeionization device 6A after the elapse of a predetermined time from the start of treatment, demineralized water W2, W5, W7, W8 from the electrodeionization devices 6A to 6D, and The boron ion concentrations of concentrated water W3, W4, W6, and W9 and their water amounts (m 3 / hr) were measured, and the water recovery rate (%) was calculated. In addition, the water recovery rates in the first to fourth electrodeionization apparatuses 6A to 6D were set to 82%, 83%, 85%, and 83%, respectively.
The results are shown in Table 1.

〔比較例1〕
第2の電気脱イオン装置6B及び第3の電気脱イオン装置6Cを備えずに、第1の電気脱イオン装置6Aからの濃縮水W4を廃棄する以外は実施例1と同様の構成を有する純水製造装置にて被処理水W0を処理し、処理開始から所定時間経過後における第1の電気脱イオン装置6Aの脱塩室11Aに導入される被処理水W1、第1及び第4の電気脱イオン装置6A,6Dからの脱塩水W2,W8及び濃縮水W3,W4のホウ素イオン濃度と水量(m/hr)とを測定し、水回収率(%)を算出した。なお、第1及び第4の電気脱イオン装置6A,6Dにおける水回収率を、それぞれ82%及び83%と設定した。
結果を表1にあわせて示す。
[Comparative Example 1]
A pure unit having the same configuration as that of Example 1 except that the second electrodeionization device 6B and the third electrodeionization device 6C are not provided, and the concentrated water W4 from the first electrodeionization device 6A is discarded. The water to be treated W0 is treated in the water production apparatus, and the treated water W1, the first and fourth electric waters introduced into the demineralization chamber 11A of the first electrodeionization apparatus 6A after a predetermined time has elapsed from the start of the treatment. The boron ion concentration and the amount of water (m 3 / hr) of the demineralized water W2 and W8 and the concentrated water W3 and W4 from the deionizers 6A and 6D were measured, and the water recovery rate (%) was calculated. In addition, the water recovery rates in the first and fourth electrodeionization apparatuses 6A and 6D were set to 82% and 83%, respectively.
The results are shown in Table 1.

Figure 2012139687
Figure 2012139687

表1から明らかなように、実施例1の純水製造装置においては、第4の電気脱イオン装置6Dからの最終生産水(脱塩水)W8のホウ素濃度が0.4pptであり、最先端の電子産業分野における要求水質(ホウ素濃度:1ppt以下)を充足する超純水を製造可能であることが確認された。   As is clear from Table 1, in the pure water production apparatus of Example 1, the boron concentration of final product water (demineralized water) W8 from the fourth electrodeionization apparatus 6D is 0.4 ppt, which is the most advanced It was confirmed that ultrapure water satisfying the required water quality in the electronic industry field (boron concentration: 1 ppt or less) can be produced.

一方、比較例1の純水製造装置においても、第4の電気脱イオン装置6Dからの生産水(脱塩水)のホウ素濃度が0.5pptであり、実施例1と同様に最先端の電子産業分野における要求水質(ホウ素濃度:1ppt以下)を充足する超純水を製造可能であることが確認された。   On the other hand, also in the pure water production apparatus of Comparative Example 1, the boron concentration of the production water (demineralized water) from the fourth electrodeionization apparatus 6D is 0.5 ppt, and the state-of-the-art electronic industry is the same as in Example 1. It was confirmed that ultrapure water that satisfies the required water quality in the field (boron concentration: 1 ppt or less) can be produced.

このように、前処理装置からの処理水W1を2段直列的に接続した電気脱イオン装置にて処理することで、ホウ素濃度に関する要求水質を十分に満足し得る純水を製造することができる。   Thus, the pure water which can fully satisfy | fill the required water quality regarding a boron density | concentration can be manufactured by processing with the electrodeionization apparatus which connected the treated water W1 from a pretreatment apparatus in two steps in series. .

しかしながら、実施例1の純水製造装置においては、98%という極めて高い水回収率であったのに対し、比較例1の純水製造装置においては、78%という低い水回収率であった。実施例1の純水製造装置においては、第2の電気脱イオン装置6B及び第3の電気脱イオン装置6Cからの脱塩水のホウ素濃度がそれぞれ2ppb、16ppbであり、前処理装置5からの処理水のホウ素濃度(31ppb)よりも低濃度であることから、かかる脱塩水を貯水タンクT1に返送しても系内のホウ素濃度が上昇することがないのに対し、比較例1の純水製造装置においては、第1の電気脱イオン装置6Aからの濃縮水W4のホウ素濃度が151ppbであり、被処理水W0のホウ素濃度よりも高いため、当該濃縮水W4を貯水タンクT1に返送することができないことに起因するものである。   However, the pure water production apparatus of Example 1 had an extremely high water recovery rate of 98%, whereas the pure water production apparatus of Comparative Example 1 had a low water recovery rate of 78%. In the pure water production apparatus of Example 1, the boron concentrations of the demineralized water from the second electrodeionization device 6B and the third electrodeionization device 6C are 2 ppb and 16 ppb, respectively, and the treatment from the pretreatment device 5 is performed. Since the concentration of boron in water is lower than the concentration of boron (31 ppb), the concentration of boron in the system does not increase even if such desalted water is returned to the water storage tank T1, whereas the production of pure water in Comparative Example 1 In the apparatus, since the boron concentration of the concentrated water W4 from the first electrodeionization apparatus 6A is 151 ppb and higher than the boron concentration of the water to be treated W0, the concentrated water W4 can be returned to the storage tank T1. This is due to the inability to do so.

このように、実施例1の純水製造装置によれば、極めて高い水回収率を確保しつつ、ホウ素濃度の低い超純水を製造することができることが確認された。   Thus, according to the pure water manufacturing apparatus of Example 1, it was confirmed that ultrapure water having a low boron concentration can be manufactured while ensuring a very high water recovery rate.

本発明の純水製造装置及び純水製造方法は、極めて高い水回収率にて、極めてホウ素濃度を低減させた純水の製造に有用である。   INDUSTRIAL APPLICABILITY The pure water production apparatus and the pure water production method of the present invention are useful for producing pure water with an extremely high water recovery rate and a very low boron concentration.

5…前処理装置
51…第1の逆浸透膜(RO)装置(前処理装置)
52…第2の逆浸透膜(RO)装置(前処理装置)
53…脱炭酸膜装置(前処理装置)
6A…第1の電気脱イオン装置
6B…第2の電気脱イオン装置
6C…第3の電気脱イオン装置
6D…第4の電気脱イオン装置
8…区画部材
11A〜D…脱塩室
12A〜D…濃縮室
5 ... Pretreatment device 51 ... First reverse osmosis membrane (RO) device (pretreatment device)
52 ... Second reverse osmosis membrane (RO) device (pretreatment device)
53 ... Decarbonation membrane device (pretreatment device)
6A ... 1st electrodeionization device 6B ... 2nd electrodeionization device 6C ... 3rd electrodeionization device 6D ... 4th electrodeionization device 8 ... Partition member 11A-D ... Desalination chamber 12A-D ... concentration chamber

Claims (9)

原水を処理する前処理装置と、
前記前処理装置からの処理水を脱塩室に受け入れて脱イオン処理を行ってホウ素を除去する第1の電気脱イオン装置と、
前記第1の電気脱イオン装置からの脱塩水の一部を前記第1の電気脱イオン装置の濃縮室に導入して得られた濃縮水を脱塩室に受け入れて脱イオン処理を行ってホウ素を除去する第2の電気脱イオン装置と
を備え、
前記第2の電気脱イオン装置からの脱塩水を前記第1の電気脱イオン装置の前段に供給することを特徴とする純水製造装置。
A pretreatment device for treating raw water;
A first electrodeionization apparatus that receives treated water from the pretreatment apparatus in a demineralization chamber and performs deionization to remove boron;
Concentrated water obtained by introducing a portion of demineralized water from the first electrodeionization device into the concentration chamber of the first electrodeionization device is received in the demineralization chamber and subjected to deionization treatment, and then boron. A second electrodeionization device for removing
An apparatus for producing pure water, characterized in that demineralized water from the second electrodeionization device is supplied to the front stage of the first electrodeionization device.
前記第1の電気脱イオン装置の脱塩室に受け入れられる前記前処理装置からの処理水のシリカ濃度が、30ppb(SiO換算)以下であることを特徴とする請求項1に記載の純水製造装置。 2. The pure water according to claim 1, wherein the silica concentration of the treated water from the pretreatment device received in the demineralization chamber of the first electrodeionization device is 30 ppb (in terms of SiO 2 ) or less. manufacturing device. 前記第1の電気脱イオン装置の後段に設けられ、前記第1の電気脱イオン装置からの脱塩水を脱塩室に受け入れて脱イオン処理を行ってホウ素を除去する第3の電気脱イオン装置をさらに備え、
前記第3の電気脱イオン装置からの脱塩水の一部を前記第3の電気脱イオン装置の濃縮室に導入して得られた濃縮水を前記第1の電気脱イオン装置の前段に供給することを特徴とする請求項1または2のいずれかに記載の純水製造装置。
A third electrodeionization apparatus provided at a subsequent stage of the first electrodeionization apparatus, wherein demineralized water from the first electrodeionization apparatus is received in a demineralization chamber and deionized to remove boron. Further comprising
Concentrated water obtained by introducing a part of demineralized water from the third electrodeionization device into the concentration chamber of the third electrodeionization device is supplied to the front stage of the first electrodeionization device. The pure water manufacturing apparatus according to claim 1, wherein the apparatus is a pure water manufacturing apparatus.
前記電気脱イオン装置の脱塩室内には、前記脱塩室内を複数の小室に区画する区画部材が設けられていることを特徴とする請求項1〜3のいずれかに記載の純水製造装置。   The deionized chamber of the said electrodeionization apparatus is provided with the division member which divides the said demineralization chamber into several small chambers, The pure water manufacturing apparatus in any one of Claims 1-3 characterized by the above-mentioned. . 前記電気脱イオン装置からの脱塩水の一部を、当該電気脱イオン装置の濃縮室に前記脱塩室への処理水の導入方向と反対方向から一過式に導入することを特徴とする請求項1〜4のいずれかに記載の純水製造装置。   A part of the demineralized water from the electrodeionization device is introduced into the concentration chamber of the electrodeionization device in a transient manner from the direction opposite to the direction in which the treated water is introduced into the demineralization chamber. Item 5. The pure water production apparatus according to any one of Items 1 to 4. 原水を前処理装置で処理した処理水を第1の電気脱イオン装置の脱塩室に導入して脱イオン処理を行ってホウ素を除去する純水製造方法であって、
前記第1の電気脱イオン装置からの脱塩水の一部を前記第1の電気脱イオン装置の濃縮室に導入して得られた濃縮水を、第2の電気脱イオン装置の脱塩室に導入して脱イオン処理を行ってホウ素を除去し、
前記第2の電気脱イオン装置からの脱塩水を、前記第1の電気脱イオン装置の前段に導入することを特徴とする純水製造方法。
A pure water production method in which treated water obtained by treating raw water with a pretreatment apparatus is introduced into a demineralization chamber of a first electrodeionization apparatus and deionized to remove boron.
Concentrated water obtained by introducing a part of demineralized water from the first electrodeionization device into the concentration chamber of the first electrodeionization device is supplied to the demineralization chamber of the second electrodeionization device. Introduce and deionize to remove boron,
A method for producing pure water, characterized in that demineralized water from the second electrodeionization apparatus is introduced into a front stage of the first electrodeionization apparatus.
前記第1の電気脱イオン装置の脱塩室に導入される処理水のシリカ濃度が30ppb(SiO換算)以下となるように、前記前処理装置にて原水を処理することを特徴とする請求項6に記載の純水製造方法。 The raw water is treated in the pretreatment device so that the silica concentration of the treatment water introduced into the demineralization chamber of the first electrodeionization device is 30 ppb (SiO 2 equivalent) or less. Item 7. A method for producing pure water according to Item 6. 前記第1の電気脱イオン装置からの脱塩水を、第3の電気脱イオン装置の脱塩室に導入して脱イオン処理を行ってホウ素を除去し、
前記第3の電気脱イオン装置からの脱塩水の一部を前記第3の電気脱イオン装置の濃縮室に導入して得られた濃縮水を、前記第1の電気脱イオン装置の前段に導入することを特徴とする請求項6または7に記載の純水製造方法。
Deionized water from the first electrodeionization device is introduced into a demineralization chamber of the third electrodeionization device to perform deionization treatment to remove boron,
Concentrated water obtained by introducing a part of demineralized water from the third electrodeionization device into the concentration chamber of the third electrodeionization device is introduced to the front stage of the first electrodeionization device. The method for producing pure water according to claim 6 or 7, wherein:
前記電気脱イオン装置からの脱塩水の一部を、当該電気脱イオン装置の濃縮室に前記脱塩室への処理水の導入方向と反対方向から一過式に導入することを特徴とする請求項6〜8のいずれかに記載の純水製造方法。   A part of the demineralized water from the electrodeionization device is introduced into the concentration chamber of the electrodeionization device in a transient manner from the direction opposite to the direction in which the treated water is introduced into the demineralization chamber. The pure water manufacturing method in any one of claim | item 6 -8.
JP2012067327A 2012-03-23 2012-03-23 Pure water production apparatus and pure water production method Expired - Fee Related JP5158393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067327A JP5158393B2 (en) 2012-03-23 2012-03-23 Pure water production apparatus and pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067327A JP5158393B2 (en) 2012-03-23 2012-03-23 Pure water production apparatus and pure water production method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008206185A Division JP4993136B2 (en) 2008-08-08 2008-08-08 Pure water production apparatus and pure water production method

Publications (2)

Publication Number Publication Date
JP2012139687A true JP2012139687A (en) 2012-07-26
JP5158393B2 JP5158393B2 (en) 2013-03-06

Family

ID=46676526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067327A Expired - Fee Related JP5158393B2 (en) 2012-03-23 2012-03-23 Pure water production apparatus and pure water production method

Country Status (1)

Country Link
JP (1) JP5158393B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166069A (en) * 2014-03-04 2015-09-24 三浦工業株式会社 Water treatment apparatus
JP2016150304A (en) * 2015-02-17 2016-08-22 栗田工業株式会社 Electric deionizer and pure water producing apparatus
WO2017056792A1 (en) * 2015-09-30 2017-04-06 オルガノ株式会社 Water treatment device and water treatment method
JP2021102200A (en) * 2019-12-25 2021-07-15 野村マイクロ・サイエンス株式会社 Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739729A (en) * 1993-07-30 1995-02-10 Asahi Glass Co Ltd Process for recovering acid and/or alkali from neutral salt
JP2001113281A (en) * 1999-08-11 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus and pure water making apparatus
JP2001191080A (en) * 1999-11-02 2001-07-17 Kurita Water Ind Ltd Electric deionizing device and electric deionizing treatment method using the same
JP2004000919A (en) * 2002-04-05 2004-01-08 Kurita Water Ind Ltd Apparatus for producing desalted water
JP2004261643A (en) * 2003-02-14 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method therefor
JP2006051423A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Electric deionization system, electric deionization method, and pure water production device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739729A (en) * 1993-07-30 1995-02-10 Asahi Glass Co Ltd Process for recovering acid and/or alkali from neutral salt
JP2001113281A (en) * 1999-08-11 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus and pure water making apparatus
JP2001191080A (en) * 1999-11-02 2001-07-17 Kurita Water Ind Ltd Electric deionizing device and electric deionizing treatment method using the same
JP2004000919A (en) * 2002-04-05 2004-01-08 Kurita Water Ind Ltd Apparatus for producing desalted water
JP2004261643A (en) * 2003-02-14 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method therefor
JP2006051423A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Electric deionization system, electric deionization method, and pure water production device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166069A (en) * 2014-03-04 2015-09-24 三浦工業株式会社 Water treatment apparatus
US10252218B2 (en) 2015-02-17 2019-04-09 Kurita Water Industries Ltd. Electrodeionization device and pure-water production system
WO2016133041A1 (en) * 2015-02-17 2016-08-25 栗田工業株式会社 Electrodeionization device and pure water production device
KR102259712B1 (en) 2015-02-17 2021-06-01 쿠리타 고교 가부시키가이샤 Electrodeionization device and pure water production device
KR20170117365A (en) * 2015-02-17 2017-10-23 쿠리타 고교 가부시키가이샤 Electrodeionization device and pure water production device
JP2016150304A (en) * 2015-02-17 2016-08-22 栗田工業株式会社 Electric deionizer and pure water producing apparatus
KR102075598B1 (en) * 2015-09-30 2020-03-02 오르가노 코포레이션 Water treatment device and water treatment method
KR20180052765A (en) * 2015-09-30 2018-05-18 오르가노 코포레이션 Water treatment device and water treatment method
JPWO2017056792A1 (en) * 2015-09-30 2018-04-12 オルガノ株式会社 Water treatment apparatus and water treatment method
CN108137354A (en) * 2015-09-30 2018-06-08 奥加诺株式会社 Water treatment facilities and method for treating water
TWI701218B (en) * 2015-09-30 2020-08-11 日商奧璐佳瑙股份有限公司 Water treatment device and water treatment method
CN108137354B (en) * 2015-09-30 2021-05-14 奥加诺株式会社 Water treatment apparatus and water treatment method
WO2017056792A1 (en) * 2015-09-30 2017-04-06 オルガノ株式会社 Water treatment device and water treatment method
JP2021102200A (en) * 2019-12-25 2021-07-15 野村マイクロ・サイエンス株式会社 Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
CN114616212A (en) * 2019-12-25 2022-06-10 野村微科学股份有限公司 Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system
JP7129965B2 (en) 2019-12-25 2022-09-02 野村マイクロ・サイエンス株式会社 Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system

Also Published As

Publication number Publication date
JP5158393B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP5733351B2 (en) Method and apparatus for treating boron-containing water
EP1070020A1 (en) Water treatment system and process comprising ph-adjustment
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
JP4993136B2 (en) Pure water production apparatus and pure water production method
JP4599803B2 (en) Demineralized water production equipment
JP2014000575A (en) Apparatus and method for producing purified water
JP5158393B2 (en) Pure water production apparatus and pure water production method
JP2004283710A (en) Pure water producer
JP3864934B2 (en) Pure water production equipment
JP4250922B2 (en) Ultrapure water production system
JP7275536B2 (en) Electrodeionization apparatus and method for producing deionized water using the same
JP2007307561A (en) High-purity water producing apparatus and method
JP2008068198A (en) Electrodeionization apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP6807250B2 (en) Water treatment equipment
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
CN112424128B (en) Pure water production system and pure water production method
JP4599668B2 (en) Operation method of electrodeionization equipment
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP4660890B2 (en) Operation method of electrodeionization equipment
KR20230107642A (en) Electrodeionization configuration for enhanced removal of weakly ionized species
JP2022114794A (en) Electrodeionization apparatus and method for producing deionized water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees