JPH0739729A - Process for recovering acid and/or alkali from neutral salt - Google Patents

Process for recovering acid and/or alkali from neutral salt

Info

Publication number
JPH0739729A
JPH0739729A JP5208397A JP20839793A JPH0739729A JP H0739729 A JPH0739729 A JP H0739729A JP 5208397 A JP5208397 A JP 5208397A JP 20839793 A JP20839793 A JP 20839793A JP H0739729 A JPH0739729 A JP H0739729A
Authority
JP
Japan
Prior art keywords
membrane
recovery process
ion exchanger
process according
bipolar membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5208397A
Other languages
Japanese (ja)
Inventor
Tsutomu Naganuma
力 長沼
Kazuo Umemura
和郎 梅村
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5208397A priority Critical patent/JPH0739729A/en
Publication of JPH0739729A publication Critical patent/JPH0739729A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Abstract

PURPOSE:To recover acid and/or alkali from neutral salt at a low energy cost in a long period by using an electrodialysis tank in which a bipolar membrane, an anion exchange membrane and/or a cation exchange membrane are arranged and recovering acid and/or alkali from neutral salt. CONSTITUTION:A bipolar membrane comprising an inorganic ion exchanger preferably comprising the inorganic ion exchanger and a matrix polymer, interposed in the interface between a cation exchange layer and an anion exchange layer. Waste liquid is sent from a spinning bath 1 to a neutralization tank 3 through a line 2. In order to remove heavy metallic ions herein, sodium hydroxide recovered from an electrodialyzer 13 provided with the bipolar membrane is added to settle and separate heavy metal. Then purified waste liquid is sent to a electrodialyzer 8 and an acid sodium sulfate aqueous solution is added from the electrodialyzer 13. Waste liquid is desalted in a desalting chamber 9 and concentrated in a concentration chamber 10 and thereafter supplied to the salt chamber 14 of the electrodialyzer 13. DC is impressed and electrodialysis attended with water splitting is performed. Sulfuric acid and sodium hydroxide are recovered from liquid containing sodium sulfate being neutral salt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気透析水スプリット法
によって、低エネルギーコストにて中性塩から酸及び/
又はアルカリを回収するプロセスに関する。
FIELD OF THE INVENTION The present invention uses an electrodialysis water splitting method to convert neutral salts to acids and / or acids at low energy costs.
Or, it relates to a process for recovering alkali.

【0002】[0002]

【従来の技術】陰イオン交換層と陽イオン交換層から成
るバイポーラ膜の陰イオン交換層側を陽極側、陽イオン
交換層側を陰極側にして電流を印加すると、水が分裂
(split)して水素イオンと水酸イオンに解離する
ことは、Friletteの1956年の報告以来、広
く知られている。
2. Description of the Related Art When a current is applied with the anion exchange layer side of a bipolar membrane composed of an anion exchange layer and a cation exchange layer as the anode side and the cation exchange layer side as the cathode side, water splits. The dissociation of hydrogen ions and hydroxide ions is widely known since Frilette's report in 1956.

【0003】バイポーラ膜膜はこの能力を有するために
有用であり、陰イオン交換膜及び/又は陽イオン交換膜
を適宜使用することによって、中性塩を酸とアルカリに
回収できることが知られている。酸やアルカリの製造コ
ストの面から考えると、バイポーラ膜による電圧降下が
小さく、また同時に水の解離効率が高いバイポーラ膜が
製造されなければならず、またこれらの性能が長期に亘
って発現されなければならない。
A bipolar membrane is useful because it has this ability, and it is known that a neutral salt can be recovered into an acid and an alkali by appropriately using an anion exchange membrane and / or a cation exchange membrane. . Considering the production costs of acids and alkalis, bipolar membranes must have a low voltage drop due to the bipolar membrane and at the same time have high water dissociation efficiency, and these performances must be exhibited for a long period of time. I have to.

【0004】バイポーラ膜を用いた電気透析法による中
性塩からの酸とアルカリの回収プロセスについては、既
にいくつかの報告がある。例えば、バイポーラ膜と陽イ
オン交換膜、更に必要に応じて陰イオン交換膜を用いる
電気透析水スプリット法による使用済みレーヨン紡糸浴
液からの酸とアルカリの回収法が、特公昭63−186
69号に、SO2 吸収液からの酸とアルカリの回収法
が、米国特許4552635に、フッ酸を含む混合酸か
らなる水溶液を中和してから成る水溶液からの酸とアル
カリを回収する方法が米国特許4999095に開示さ
れている。
Some reports have already been made on the recovery process of acids and alkalis from neutral salts by electrodialysis using a bipolar membrane. For example, a method for recovering an acid and an alkali from a used rayon spinning bath solution by an electrodialysis water split method using a bipolar membrane, a cation exchange membrane, and optionally an anion exchange membrane is disclosed in Japanese Examined Patent Publication No. 63-186.
No. 69 discloses a method for recovering an acid and an alkali from an SO 2 absorbent, and US Pat. No. 4,552,635 discloses a method for recovering an acid and an alkali from an aqueous solution comprising a mixed acid containing hydrofluoric acid. It is disclosed in US Pat. No. 4,999,095.

【0005】しかしながら、従来の典型的なバイポーラ
膜は、例えば、スチレン−ジビニルベンゼン共重合体を
ベースとするフィルムの片面にスルホン化等の処理によ
り陽イオン交換基を導入し、もう一方の片面に4級アン
モニウム基の陰イオン交換基を導入して製造されるバイ
ポーラ膜であり(特公昭60−31860号及び特開昭
63−95235号)、また、予め製造された陰イオン
交換膜と陽イオン交換膜とを熱と圧力で融着して製造さ
れるバイポーラ膜であり(米国特許第337210
1)、更にはポリビニルアミンを接着材として用いて接
合するバイポーラ膜(特開昭61−207444号)で
あった。
However, in the conventional typical bipolar membrane, for example, a cation-exchange group is introduced into one side of a film based on a styrene-divinylbenzene copolymer by a treatment such as sulfonation, and the other side is introduced. It is a bipolar membrane produced by introducing an anion exchange group of a quaternary ammonium group (Japanese Patent Publication No. Sho 61-31860 and Japanese Patent Publication No. 63-95235), and also an anion exchange membrane and a cation produced in advance. It is a bipolar membrane manufactured by fusing an exchange membrane with heat and pressure (US Pat. No. 3,372,210).
1), and a bipolar film (JP-A-61-207444) joined by using polyvinylamine as an adhesive.

【0006】しかしながら、これらのバイポーラ膜は同
一膜中に陽イオン交換基と陰イオン交換基を有するた
め、通電後経時的にこれらの反対の電荷を持つ基が相互
に侵入してイオン的結合をし、電気的中性層を形成し、
大きな電圧降下を生じエネルギーコストが経時的に上昇
する欠点があった。
However, since these bipolar membranes have a cation exchange group and an anion exchange group in the same membrane, these groups having opposite charges intrude into each other with passage of time to pass an ionic bond. Form an electrically neutral layer,
There is a drawback that a large voltage drop occurs and the energy cost increases with time.

【0007】これを回避するために、米国特許4253
900号、特公昭60−35936号に高架橋度を有す
るイオン交換樹脂を陽イオン交換層と陰イオン交換層の
間に導入し、反対電荷を有する基の相互侵入を防ぐバイ
ポーラ膜が開示されている。また、陽イオン交換膜又は
陰イオン交換膜の界面に水溶性無機化合物を含浸させる
か又は、含浸させた後にアルカリ処理し、その後プレス
してバイポーラ膜を製造する方法が特開昭59−472
35号及び特表平3−505894号に開示されてい
る。
To avoid this, US Pat. No. 4,253
No. 900 and Japanese Patent Publication No. 60-35936 disclose a bipolar membrane in which an ion exchange resin having a high degree of crosslinking is introduced between a cation exchange layer and an anion exchange layer to prevent mutual penetration of groups having opposite charges. . Further, there is a method for producing a bipolar membrane by impregnating a water-soluble inorganic compound at the interface of a cation exchange membrane or an anion exchange membrane, or by impregnating it with an alkali and then pressing.
No. 35 and Japanese Patent Publication No. 3-505894.

【0008】しかし、これらのバイポーラ膜も以下のよ
うな欠点がある。即ち、高架橋度イオン交換樹脂を陽イ
オン交換層と陰イオン交換層の間に介在させる場合で
も、高架橋度といえども有機化合物ではイオン交換基の
相互侵入は防ぎきれず、通電後の経時的電圧降下の増加
を生じる。その結果中性塩の回収を行う際のエネルギー
コストが経時的に増加していくことになる。
However, these bipolar films also have the following drawbacks. That is, even when a highly cross-linked ion exchange resin is interposed between the cation exchange layer and the anion exchange layer, even if the cross-linking degree is high, the organic compound cannot prevent the mutual invasion of ion exchange groups, and the voltage over time after energization is increased. Causes an increase in descent. As a result, the energy cost for recovering the neutral salt will increase over time.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記のような
経時的電圧の上昇を解決した新規なバイポーラ膜を用い
ることによって、長期に亘って低エネルギーコストによ
って、中性塩の回収を行わしむるプロセスを提供するも
のである。
DISCLOSURE OF THE INVENTION The present invention uses a novel bipolar film which has solved the above-mentioned increase in voltage over time, and thereby recovers neutral salts at a low energy cost for a long period of time. It is intended to provide a pulling process.

【0010】[0010]

【課題を解決するための手段】上記目的は陽イオン交換
層と陰イオン交換層の界面に無機イオン交換体、好まし
くは無機イオン交換体とマトリックスポリマーとからな
る層を存在させたことを特徴とするバイポーラ膜を用い
て電気透析を行うことによって達成される。
The above object is characterized in that an inorganic ion exchanger, preferably a layer comprising an inorganic ion exchanger and a matrix polymer, is present at the interface between the cation exchange layer and the anion exchange layer. This is achieved by performing electrodialysis using a bipolar membrane that

【0011】先ず本発明で使用するバイポーラ膜につい
て説明する。無機イオン交換体としては例えば、アルミ
ノケイ酸塩型無機イオン交換体、含水酸化物型無機イオ
ン交換体、酸性塩型無機イオン交換体、塩基性塩型無機
イオン交換体、ヘテロポリ酸型無機イオン交換体などが
使用され、陽イオン交換体、陰イオン交換体又は両性イ
オン交換体の何れも使用できる。しかし、酸性塩型無機
イオン交換体は他の無機イオン交換体と比べて、耐酸
性、耐アルカリ性に優れているため、長期に亘って安定
した性能を発現でき、好ましく用いられる。
First, the bipolar film used in the present invention will be described. As the inorganic ion exchanger, for example, aluminosilicate type inorganic ion exchanger, hydrous oxide type inorganic ion exchanger, acidic salt type inorganic ion exchanger, basic salt type inorganic ion exchanger, heteropolyacid type inorganic ion exchanger Etc. are used, and any of a cation exchanger, an anion exchanger or an amphoteric ion exchanger can be used. However, since the acid salt type inorganic ion exchanger has excellent acid resistance and alkali resistance as compared with other inorganic ion exchangers, it can exhibit stable performance over a long period of time and is preferably used.

【0012】酸性塩型無機イオン交換体としては、例え
ば、リン酸ジルコニウム、リン酸チタン、ヒドロキシア
パタイトなどがある。酸性塩型無機イオン交換体の金属
イオンとしてはZr,Ti,Sn,Ge,Hf,Ta,
Nb,Fe,Al,Ga,In,Thなどが知られてい
る。また、酸としてはリン酸の他に、V,As,Nb,
Sb,Ta,Mo,Te,W,Se,Si,Crなどの
酸素酸からなるものが知られいずれも使用される。
Examples of the acidic salt type inorganic ion exchanger include zirconium phosphate, titanium phosphate, hydroxyapatite and the like. The metal ions of the acidic salt type inorganic ion exchanger include Zr, Ti, Sn, Ge, Hf, Ta,
Nb, Fe, Al, Ga, In, Th and the like are known. In addition to phosphoric acid, V, As, Nb,
Sb, Ta, Mo, Te, W, Se, Si, Cr and other oxygen acids are known and used.

【0013】更に結晶性の酸性型無機イオン交換体は、
結晶構造を有するために、耐酸性、耐アルカリ性に優
れ、本発明プロセスに用いられる、バイポーラ膜に好ま
しく用いられる。
Further, a crystalline acidic type inorganic ion exchanger is
Since it has a crystal structure, it has excellent acid resistance and alkali resistance, and is preferably used for the bipolar film used in the process of the present invention.

【0014】マトリックスポリマーとしては、親水性で
かつ不溶性のものが好ましく、またバイポーラ膜使用温
度の水中において含水率:[{(湿潤重量−乾燥重量)
/乾燥重量})×100]が5重量%以上であることが
好ましい。含水率がこれより小さい場合はバイポーラ膜
の電圧降下が大きくなり好ましくない。好ましくは40
0重量%以下、更に好ましくは300重量%以下が好ま
しい。含水率が過度に高いと接着強度が小さくなり層間
剥離を生じ易くなり好ましくない。また、マトリックス
ポリマーはイオン交換性の官能基を有さないものが好ま
しい。例えばポリ酢酸ビニル、ポリビニルアルコール、
ポリビニルピロリドン、ポリアクリルアミド、ポリビニ
ルメチルエーテル、ポリエチレンオキシド、デンプン、
セルロース又はこれらを熱処理、架橋などの手法により
不溶化したもの、又は他のモノマーとの共重合体や、他
のポリマーとのブレンドポリマーなどを用いることがで
きる。
As the matrix polymer, hydrophilic and insoluble ones are preferable, and the water content in water at the bipolar membrane operating temperature: [{(wet weight-dry weight)
/ Dry weight}) × 100] is preferably 5% by weight or more. If the water content is smaller than this, the voltage drop of the bipolar membrane becomes large, which is not preferable. Preferably 40
It is preferably 0% by weight or less, more preferably 300% by weight or less. If the water content is excessively high, the adhesive strength is reduced and delamination is likely to occur, which is not preferable. Further, the matrix polymer preferably has no ion-exchangeable functional group. For example, polyvinyl acetate, polyvinyl alcohol,
Polyvinylpyrrolidone, polyacrylamide, polyvinyl methyl ether, polyethylene oxide, starch,
Cellulose or those obtained by insolubilizing them by a method such as heat treatment or crosslinking, a copolymer with another monomer, a blended polymer with another polymer, or the like can be used.

【0015】無機イオン交換体とマトリックスポリマー
とは、重量比で10/90〜90/10、好ましくは3
0/70〜70/30で使用され、またこれから成る界
面層の厚みは、0.01〜100μm、特に好ましくは
0.1〜10μmが好んで用いられる。これよりも薄い
と無機イオン交換体が経時的に膜外に溶出するために、
バイポーラ膜の電位降下が次第に増加して、結果的にエ
ネルギーコストが上昇する。一方これよりも薄いと陰イ
オン交換層と陽イオン交換層との接着強度が低下するの
で好ましくない。
The weight ratio of the inorganic ion exchanger to the matrix polymer is from 10/90 to 90/10, preferably 3
It is used at 0/70 to 70/30, and the thickness of the interface layer composed of this is preferably 0.01 to 100 μm, particularly preferably 0.1 to 10 μm. If it is thinner than this, the inorganic ion exchanger will be eluted out of the membrane over time,
The potential drop of the bipolar film gradually increases, resulting in an increase in energy cost. On the other hand, if it is thinner than this, the adhesive strength between the anion exchange layer and the cation exchange layer is lowered, which is not preferable.

【0016】無機イオン交換体の粒径は1μm以下であ
ることが好ましく、これより大きいと、陰イオン交換層
と陽イオン交換層の接着強度が低下したり、接合時に接
合界面に気泡が入りやすくなり好ましくない。粒径は
0.01〜0.5μmが特に好ましい。
The particle size of the inorganic ion exchanger is preferably 1 μm or less, and if it is larger than this, the adhesive strength between the anion exchange layer and the cation exchange layer is lowered, and bubbles are apt to enter the bonding interface during bonding. It is not preferable. The particle size is particularly preferably 0.01 to 0.5 μm.

【0017】本発明のプロセスに用いられるバイポーラ
膜を構成する陽イオン交換層としては、バイポーラ膜内
で発生する水素イオン透過性が大きく、陰イオンを透過
させ難い陽イオン交換膜が使用でき、好ましくはスルホ
ン酸基をイオン交換基として有する陽イオン交換膜が使
用される。このような陽イオン交換膜としては、スチレ
ン/ジビニルベンゼン系共重合体、スチレン/ブタジエ
ン系共重合体にスルホン酸基を導入したイオン交換膜、
又はスチレン等のモノマーを、ポリオレフィンや含フッ
素系ポリマーの織布あるいは不織布にグラフト重合した
ものにスルホン酸基を導入した陽イオン交換膜が使用さ
れる。
As the cation exchange layer constituting the bipolar membrane used in the process of the present invention, a cation exchange membrane which has a large hydrogen ion permeability generated in the bipolar membrane and is difficult to permeate anions can be used. Is a cation exchange membrane having a sulfonic acid group as an ion exchange group. As such a cation exchange membrane, an ion exchange membrane obtained by introducing a sulfonic acid group into a styrene / divinylbenzene copolymer, a styrene / butadiene copolymer,
Alternatively, a cation exchange membrane in which a sulfonic acid group is introduced into a material obtained by graft-polymerizing a monomer such as styrene onto a woven or non-woven fabric of polyolefin or a fluorine-containing polymer is used.

【0018】更に、化2で表される繰り返し単位からな
るパーフルオロ陽イオン交換性ポリマーによって形成さ
れる陽イオン交換膜が、優れた選択透過性に加えて、硫
酸、硝酸、フッ酸などに対する耐酸性に優れていること
から、本発明のプロセスに使用されるバイポーラ膜の陽
イオン交換層には適していることがわかった。
Further, the cation-exchange membrane formed of the perfluoro cation-exchangeable polymer composed of the repeating unit represented by the chemical formula 2 has an excellent selective permeation and is resistant to acid such as sulfuric acid, nitric acid and hydrofluoric acid. It was found that it is suitable for the cation exchange layer of the bipolar membrane used in the process of the present invention because of its excellent properties.

【0019】[0019]

【化2】 [Chemical 2]

【0020】なお、化2においてmは0又は1、nは1
〜5、x/yは2〜16、XはSO3 M又はCOOM、
Mは水素、アルカリ金属、アルカリ土類金属又はアンモ
ニウム基を表す。
In Chemical formula 2, m is 0 or 1, and n is 1.
-5, x / y is 2-16, X is SO 3 M or COOM,
M represents hydrogen, an alkali metal, an alkaline earth metal or an ammonium group.

【0021】かかるパーフルオロ系陽イオン交換膜は高
い陰イオン排除性を有しており、バイポーラ膜として高
い水解離効率を有するものである。陽イオン交換膜の厚
さは5〜300μmの範囲で通常使用されるが、膜抵抗
及び強度の点から好ましくは20〜150μmの範囲の
ものが使用される。イオン交換容量は、膜抵抗と輸率の
面から0.5〜2.0meq/g乾燥樹脂、特には0.
8〜1.5meq/g乾燥樹脂であることが望ましい。
Such a perfluoro cation exchange membrane has a high anion-excluding property and has a high water dissociation efficiency as a bipolar membrane. The thickness of the cation exchange membrane is usually in the range of 5 to 300 μm, but from the viewpoint of membrane resistance and strength, it is preferably in the range of 20 to 150 μm. The ion exchange capacity is 0.5 to 2.0 meq / g dry resin, particularly, 0.
Desirably, it is 8-1.5 meq / g dry resin.

【0022】本発明のプロセスに使用されるバイポーラ
膜を構成する陰イオン交換膜としては、バイポーラ膜内
で生成される水酸イオンの透過性が大きく、陽イオンの
透過性が可及的に小さい陰イオン交換膜が使用される。
例えば、スチレンとジビニルベンゼンの共重合体に陰イ
オン交換基として4級アンモニウム基を導入した膜、陰
イオン交換基又は該基に転換できる官能基を有するモノ
マーをオレフィン系や含フッ素系の重合体の多孔体、織
布、不織布、フィルムなどにグラフト重合した陰イオン
交換膜などが使用できる。
The anion-exchange membrane constituting the bipolar membrane used in the process of the present invention has a high permeability of hydroxide ions generated in the bipolar membrane and a low permeability of cations. An anion exchange membrane is used.
For example, a film obtained by introducing a quaternary ammonium group as an anion exchange group into a copolymer of styrene and divinylbenzene, an anion exchange group or a monomer having a functional group capable of being converted into the group is an olefin-based or fluorine-containing polymer. The porous material, woven fabric, non-woven fabric, anion-exchange membrane obtained by graft polymerization of a film and the like can be used.

【0023】なかでも、耐アルカリ性及び耐薬品性に優
れていることから、好ましくはポリプロピレンあるいは
ポリエチレンなどのポリオレフィンの織布を使用し、そ
の織布にスチレンとジビニルベンゼンとの共重合体、又
は、更にこれにビニルベンジルクロライドを加えた共重
合体の一部が放射線などの高エネルギーによって上記ポ
リオレフィンにグラフト重合した4級アンモニウム基を
有する陰イオン交換膜を使うことが望ましい。
Of these, a woven fabric of polyolefin such as polypropylene or polyethylene is preferably used because of its excellent alkali resistance and chemical resistance, and the woven fabric is a copolymer of styrene and divinylbenzene, or Further, it is desirable to use an anion exchange membrane having a quaternary ammonium group in which a part of the copolymer obtained by adding vinylbenzyl chloride thereto is graft-polymerized with the above-mentioned polyolefin by high energy such as radiation.

【0024】陰イオン交換膜の厚さは、5〜300μm
の範囲で通常使用されるが、膜抵抗及び膜強度の観点か
ら、好ましくは20〜150μmの範囲のものが好まし
く使用される。イオン交換容量は0.5〜4.0meq
/g乾燥樹脂、特には0.8〜3.0meq/g乾燥樹
脂であることが望ましい。
The thickness of the anion exchange membrane is 5 to 300 μm.
In general, the range of 20 to 150 μm is preferably used from the viewpoint of film resistance and film strength. Ion exchange capacity is 0.5-4.0 meq
/ G dry resin, especially 0.8 to 3.0 meq / g dry resin is desirable.

【0025】次に本発明における好ましい対象の中性塩
であるレーヨン紡糸浴排液を例に取り、本発明の回収プ
ロセスを図1を用いて説明する。レーヨン紡糸浴排液の
組成は、一般的に下記の組成を有している。 硫 酸: 8〜12重量% 硫酸ナトリウム:13〜28重量% 硫酸亜鉛: 0〜 2重量% 添加剤:界面活性剤
The recovery process of the present invention will be described below with reference to the rayon spinning bath effluent, which is the preferred neutral salt of the present invention, as an example. The composition of the rayon spinning bath effluent generally has the following composition. Sulfuric acid: 8 to 12% by weight Sodium sulfate: 13 to 28% by weight Zinc sulfate: 0 to 2% by weight Additive: Surfactant

【0026】レーヨン紡糸浴排液は紡糸浴1からライン
2を経て中和槽3へ送られる。中和槽3では使用済みレ
ーヨン紡糸浴排液中に含まれる重金属イオン(主に亜
鉛)を除去するために、バイポーラ膜電気透析槽13で
回収された水酸化ナトリウムがライン18より供給され
る。中和槽3で重金属は金属水酸化物として沈降分離さ
れる。スラッジはライン29から系外に取り出され、上
澄み液はライン4を経てフィルター5にて濾過され更に
精製される。精製された使用済み紡糸浴排液はライン7
を経て濃縮のため、電気透析槽8に供給されるが途中ラ
イン23にてバイポーラ膜電気透析槽13から排液され
た酸性硫酸ナトリウム水溶液を加えられ、液性を酸性側
に調整される。
The rayon spinning bath effluent is sent from the spinning bath 1 through line 2 to the neutralization tank 3. In the neutralization tank 3, sodium hydroxide recovered in the bipolar membrane electrodialysis tank 13 is supplied from a line 18 in order to remove heavy metal ions (mainly zinc) contained in the waste liquid of the used rayon spinning bath. Heavy metals are precipitated and separated as metal hydroxides in the neutralization tank 3. The sludge is taken out of the system through the line 29, and the supernatant liquid is filtered by the filter 5 through the line 4 for further purification. Purified used spinning bath effluent is line 7
Then, for concentration, the solution is supplied to the electrodialysis tank 8, but the aqueous sodium acid sulfate solution drained from the bipolar membrane electrodialysis tank 13 is added in the midway line 23 to adjust the liquidity to the acidic side.

【0027】電気透析槽8は陽イオン交換膜と陰イオン
交換膜を交互に組み合わせて、脱塩室9と濃縮室10か
ら成る構造をしており、その両端に陽極及び陰極を配置
し、直流電流を印加され、透析操作を行う。使用される
陽イオン交換膜は、特に限定されないが、スチレンとジ
ビニルベンゼンの共重合体をスルホン化した汎用の陽イ
オン交換膜で充分であるが、架橋構造を持たないペルフ
ルオロ系陽イオン交換膜でも構わない。
The electrodialysis tank 8 has a structure consisting of a desalting chamber 9 and a concentrating chamber 10 in which cation exchange membranes and anion exchange membranes are alternately combined. An electric current is applied and a dialysis operation is performed. The cation exchange membrane used is not particularly limited, but a general-purpose cation exchange membrane obtained by sulfonation of a copolymer of styrene and divinylbenzene is sufficient, but a perfluoro cation exchange membrane having no cross-linking structure is also usable. I do not care.

【0028】一方陰イオン交換膜も特に限定されない
が、スチレンとビニルベンジルハライドの共重合体を4
級アンモニウム化した陰イオン交換膜を使用することが
できるが、更に好ましくはビニルベンジルハライドの代
わりに例えば4−ビニルピリジンを用いたピリジニウム
塩のような弱塩基性の非4級アンモニウム塩を陰イオン
交換基として用いた陰イオン交換膜の方が、高い電流効
率を得ることができる。ライン7を経て電気透析槽8の
脱塩室9に供給された精製レーヨン紡糸溶液は20重量
%〜飽和溶解度付近まで濃縮室10にて濃縮されライン
11を経てバイポーラ膜電気透析槽13の塩室14に供
給される。濃縮された硫酸ナトリウム水溶液の一部はラ
イン12を経て、再び紡糸浴に戻される。
On the other hand, the anion exchange membrane is also not particularly limited, but a copolymer of styrene and vinylbenzyl halide may be used.
Although a quaternary ammonium-ized anion exchange membrane can be used, it is more preferable to use a weakly basic non-quaternary ammonium salt such as a pyridinium salt in which 4-vinylpyridine is used instead of vinylbenzyl halide as an anion. The anion exchange membrane used as the exchange group can obtain higher current efficiency. The purified rayon spinning solution supplied to the desalting chamber 9 of the electrodialysis tank 8 via the line 7 is concentrated in the concentrating chamber 10 up to 20% by weight to a saturated solubility, and then the salt chamber of the bipolar membrane electrodialysis tank 13 via the line 11. 14 are supplied. Part of the concentrated aqueous sodium sulfate solution is returned to the spinning bath via line 12.

【0029】バイポーラ膜電気透析槽13はバイポーラ
膜と、陰イオン交換膜、及び、陽イオン交換膜を交互に
組み合わせることによって、塩室14、塩基室15及び
酸室16から構成され、端部に陽極及び陰極を配置する
ことによって直流を印加し、水分裂を伴う電気透析を行
い、中性塩である硫酸ナトリウムを含むレーヨン紡糸溶
液から硫酸と水酸化ナトリウムを回収するものである。
The bipolar membrane electrodialysis tank 13 is composed of a salt chamber 14, a base chamber 15 and an acid chamber 16 by alternately combining a bipolar membrane, an anion exchange membrane and a cation exchange membrane, and at the end thereof. A direct current is applied by disposing an anode and a cathode, electrodialysis involving water splitting is performed, and sulfuric acid and sodium hydroxide are recovered from a rayon spinning solution containing sodium sulfate as a neutral salt.

【0030】バイポーラ膜電気透析槽13を構成する陰
イオン交換膜及び陽イオン交換膜には、電気透析槽8と
同様のものが用いられる。塩室14に供給されたレーヨ
ン紡糸浴排液は脱塩され、淡塩水化され、濃縮のためラ
イン23を経て電気透析槽8の脱塩室9にリサイクルさ
れ、濃縮される。塩基室15には水が供給され、バイポ
ーラ膜を構成する陰イオン交換層と陽イオン交換層の界
面での水分裂現象にて生成された水酸陰イオンと塩室か
ら透過してきたナトリウムイオンとが結合して水酸化ナ
トリウム水溶液が生成されライン17に排液される。生
成される水酸化ナトリウム水溶液の濃度はおよそ5重量
%〜25重量%である。
As the anion exchange membrane and the cation exchange membrane constituting the bipolar membrane electrodialysis tank 13, those similar to the electrodialysis tank 8 are used. The rayon spinning bath effluent supplied to the salt chamber 14 is desalted, desalinated, recycled for concentration to the desalting chamber 9 of the electrodialysis tank 8 and concentrated. Water is supplied to the base chamber 15, and the hydroxide anion generated by the water splitting phenomenon at the interface between the anion exchange layer and the cation exchange layer forming the bipolar membrane and the sodium ion that has permeated from the salt chamber Are combined with each other to generate an aqueous solution of sodium hydroxide, which is discharged to the line 17. The concentration of the produced aqueous sodium hydroxide solution is approximately 5% by weight to 25% by weight.

【0031】排液された一部の水酸化ナトリウム水溶液
はライン18を経て中和層の中和用アルカリとして使用
され、他は濃縮器19に供給され濃縮され、35重量%
〜48重量%迄濃縮され、製品となる。酸室16には塩
基室同様に水が供給されるが、バイポーラ膜を構成する
陰イオン交換層と陽イオン交換層の界面での水分裂現象
にて生成された水素イオンと塩室から透過してきた硫酸
イオンとが結合して硫酸水溶液が生成される。生成され
た硫酸はライン25を経て濃縮器26に供給される。必
要濃度まで濃縮された硫酸は、ライン28を経て途中ラ
イン12からの精製濃縮硫酸ナトリウムと合流し、紡糸
浴1に送られる。
A part of the drained sodium hydroxide aqueous solution is used as an alkali for neutralizing the neutralization layer through the line 18, and the other is supplied to the concentrator 19 and concentrated to 35% by weight.
Concentrated to ~ 48% by weight to become a product. Water is supplied to the acid chamber 16 as in the base chamber, but hydrogen ions generated by the water splitting phenomenon at the interface between the anion exchange layer and the cation exchange layer forming the bipolar membrane and permeate from the salt chamber. Sulfate ions are combined to form a sulfuric acid aqueous solution. The produced sulfuric acid is supplied to the concentrator 26 via the line 25. The sulfuric acid concentrated to the required concentration joins the purified concentrated sodium sulfate from the line 12 via the line 28 and is sent to the spinning bath 1.

【0032】[0032]

【作用】本発明のバイポーラ膜が、長期に亘って低い電
圧降下を維持するメカニズムは下記のように推定してい
る。
The mechanism by which the bipolar film of the present invention maintains a low voltage drop for a long period of time is presumed as follows.

【0033】本発明のバイポーラ膜界面に存在する無機
イオン交換体は堅固な構造、場合によっては結晶構造を
持つため、無機イオン交換体層と接合されたイオン交換
膜のイオン交換基が侵入できず、イオン的な強い結合を
作り、中性層を形成することが困難である。また、イオ
ン交換樹脂に比べ単位体積当たりのイオン交換容量が大
きいため、界面の無機イオン交換体の電気抵抗が小さ
く、バイポーラ膜の電圧降下を長期に亘って低く保つこ
とができると、推定される。更に、無機イオン交換体を
マトリックスポリマー中に分散させることによって、無
機イオン交換体を十分量界面領域に保持でき、また積層
強度を損なうことなく、無機イオン交換体を界面層に導
入することができるわけである。
Since the inorganic ion exchanger existing at the interface of the bipolar membrane of the present invention has a solid structure and, in some cases, a crystal structure, the ion exchange groups of the ion exchange membrane bonded to the inorganic ion exchanger layer cannot penetrate. , It is difficult to form a strong ionic bond and form a neutral layer. Further, since the ion exchange capacity per unit volume is larger than that of the ion exchange resin, it is presumed that the electrical resistance of the inorganic ion exchanger at the interface is small and the voltage drop of the bipolar membrane can be kept low for a long period of time. . Furthermore, by dispersing the inorganic ion exchanger in the matrix polymer, a sufficient amount of the inorganic ion exchanger can be retained in the interface region, and the inorganic ion exchanger can be introduced into the interface layer without impairing the lamination strength. That is why.

【0034】[0034]

【実施例】以下実施例により本発明を説明するが、かか
る実施例によって本発明が制限されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples.

【0035】[実施例1]下記組成のビスコースレーヨ
ン紡糸排液を、10重量%の水酸化ナトリウム水溶液で
中和処理し、含有する金属を金属水酸化物として、沈降
分離した。その後、上澄み液を濾過し、20重量%の硫
酸ナトリウム水溶液を得た。
[Example 1] A viscose rayon spinning effluent having the following composition was neutralized with a 10% by weight aqueous sodium hydroxide solution, and the metal contained was made into a metal hydroxide for sedimentation separation. Then, the supernatant was filtered to obtain a 20 wt% sodium sulfate aqueous solution.

【0036】ビスコースレーヨン紡糸排液組成 硫 酸:10重量% 硫酸ナトリウム:20重量% 硫 酸 亜 鉛: 1重量%Viscose rayon spinning effluent composition Sulfuric acid: 10% by weight Sodium sulphate: 20% by weight Sulfuric acid sulphite: 1% by weight

【0037】次に、濾過精製された硫酸ナトリウム水溶
液を、下記仕様の電気透析槽を用いて、25重量%まで
濃縮した。 膜有効通電面積:1.2dm2 ユニット数 :5 液 温 度 :40℃ 電流密度 :4A/dm2
Next, the filtered and purified aqueous sodium sulfate solution was concentrated to 25% by weight using an electrodialysis tank having the following specifications. Membrane effective energization area: 1.2 dm 2 Number of units: 5 Liquid temperature: 40 ° C Current density: 4 A / dm 2

【0038】陽イオン交換膜に、スチレンとジビニルベ
ンゼン共重合体系スルホン酸膜(イオン交換容量3.3
meq/g乾燥樹脂、膜厚140μm)を用い、一方陰
イオン交換膜にはスチレンとジビニルベンゼン共重合体
系陰イオン交換膜(イオン交換容量2.0meq/g乾
燥樹脂、膜厚120μm)を用いた。25重量%に濃縮
された精製硫酸ナトリウム水溶液を次ぎに3室型バイポ
ーラ膜電気透析槽によって、硫酸と水酸化ナトリウムを
回収した。
As the cation exchange membrane, styrene and divinylbenzene copolymer type sulfonic acid membrane (ion exchange capacity 3.3
meq / g dry resin, film thickness 140 μm), while styrene and divinylbenzene copolymer-based anion exchange membrane (ion exchange capacity 2.0 meq / g dry resin, film thickness 120 μm) were used as the anion exchange membrane. . The purified sodium sulfate aqueous solution concentrated to 25% by weight was then collected in a three-chamber bipolar membrane electrodialysis tank to collect sulfuric acid and sodium hydroxide.

【0039】使用したバイポーラ膜は次のようにして製
膜したものを用いた。スチレン/ジビニルベンゼン共重
合体より成り、ポリプロピレン織布にて補強した4級ア
ンモニウム基を有する陰イオン交換膜(イオン交換容量
3.0meq/g乾燥樹脂、膜厚120μm)上に、結
晶性リン酸ジルコニウムのポリビニルアルコール10重
量%水溶液への分散液を塗布して乾燥し、厚さ5μmの
リン酸ジルコニウム/ポリビニルアルコール層(重量比
60/ 40)を形成させた。しかる後、CF2 =CF2
/CF2 =CFOCF2 CF(CF3 )OCF2 CF2
3 Hの共重合体から成るペルフルオロ陽イオン交換体
(イオン交換容量1.1meq/g乾燥樹脂)のエタノ
ール溶液を流延し、150℃で15分乾燥し、厚さ30
μmの陽イオン交換層を形成し、バイポーラ膜を得た。
本実施例には、このようにして製膜したバイポーラ膜を
使用した。
The bipolar film used was one formed as follows. Crystalline phosphoric acid was formed on an anion exchange membrane (ion exchange capacity 3.0 meq / g dry resin, film thickness 120 μm) made of styrene / divinylbenzene copolymer and reinforced with polypropylene woven fabric and having quaternary ammonium groups. A dispersion of zirconium in a 10% by weight aqueous solution of polyvinyl alcohol was applied and dried to form a zirconium phosphate / polyvinyl alcohol layer (weight ratio 60/40) having a thickness of 5 μm. After that, CF 2 = CF 2
/ CF 2 = CFOCF 2 CF ( CF 3) OCF 2 CF 2
An ethanol solution of a perfluoro cation exchanger (ion exchange capacity: 1.1 meq / g dry resin) consisting of an O 3 H copolymer was cast, dried at 150 ° C. for 15 minutes, and then a thickness of 30.
A cation exchange layer having a thickness of μm was formed to obtain a bipolar membrane.
In this example, the bipolar film thus formed was used.

【0040】一方、バイポーラ膜電気透析槽で使用する
陰イオン交換膜にはスチレンとジビニルベンゼン共重合
体系弱塩基性陰イオン交換膜(イオン交換容量2.0m
eq/g乾燥樹脂、膜厚120μm)を用いた。陽イオ
ン交換膜には、CF2 =CF2 /CF2 CFOCF2
F(CF3 )OCF2 CF2 SO3 Hの共重合体から成
るペルフルオロ陽イオン交換膜(イオン交換容量0.9
1meq/g乾燥樹脂、PTFE織布で補強され、厚さ
140μm)を用いた。
On the other hand, as the anion exchange membrane used in the bipolar membrane electrodialysis tank, styrene and divinylbenzene copolymer system weak basic anion exchange membrane (ion exchange capacity 2.0 m
eq / g dry resin, film thickness 120 μm) was used. For the cation exchange membrane, CF 2 = CF 2 / CF 2 CFOCF 2 C
Perfluoro cation exchange membrane (ion exchange capacity of 0.9) composed of a copolymer of F (CF 3 ) OCF 2 CF 2 SO 3 H
1 meq / g dry resin, reinforced with PTFE woven cloth, thickness 140 μm) was used.

【0041】バイポーラ膜電気透析槽は、バイポーラ
膜、陰イオン交換膜、陽イオン交換膜を交互に配置した
構造から成り、酸室、塩基室、塩室の3室型電気透析槽
を構成した。この電気透析槽の仕様は下記の如くであ
る。 膜有効通電面積:1.2dm2 ユニット数 :5 液 温 度 :55℃ 電流密度 :10A/dm2
The bipolar membrane electrodialysis tank has a structure in which bipolar membranes, anion exchange membranes and cation exchange membranes are alternately arranged, and constitutes a three-chamber type electrodialysis tank having an acid chamber, a base chamber and a salt chamber. The specifications of this electrodialysis tank are as follows. Membrane effective energization area: 1.2 dm 2 Number of units: 5 Liquid temperature: 55 ° C Current density: 10 A / dm 2

【0042】上記のバイポーラ膜電気透析槽の塩室に濃
縮された25重量%硫酸ナトリウム水溶液を供給し、酸
室には生成される硫酸濃度を必要な濃度に保つために必
要量の純水を供給し、塩基室には生成される水酸化ナト
リウムを必要濃度に保つために必要量の純水を供給し、
10重量%の硫酸と20重量%の水酸化ナトリウムを得
た。バイポーラ膜電気透析槽は3ヶ月間連続的に運転さ
れた。この間、バイポーラ膜の電圧降下は1.1Vと安
定した値を示し、水解離効率も93%と安定した値を示
した。ここでいう水解離効率とは、バイポーラ膜界面で
水が解離することによって生成された水素イオンと水酸
基イオンの輸率を意味する。また、水酸化ナトリウムを
1t生成するのに1900Kwt/t−NaOHと極め
て低い値を安定的に示した。
A concentrated 25 wt% sodium sulfate aqueous solution was supplied to the salt chamber of the bipolar membrane electrodialysis tank, and the acid chamber was supplied with pure water in an amount necessary to keep the generated sulfuric acid concentration at a required concentration. The base chamber is supplied with the necessary amount of pure water to keep the generated sodium hydroxide at the required concentration.
10% by weight of sulfuric acid and 20% by weight of sodium hydroxide were obtained. The bipolar membrane electrodialysis cell was operated continuously for 3 months. During this period, the voltage drop of the bipolar membrane was stable at 1.1 V, and the water dissociation efficiency was stable at 93%. The water dissociation efficiency here means the transport number of hydrogen ions and hydroxyl ions generated by water dissociation at the interface of the bipolar membrane. In addition, it showed a very low value of 1900 Kwt / t-NaOH for producing 1t of sodium hydroxide.

【0043】[比較例1]以下のように製造されたバイ
ポーラ膜を用いる以外は実施例1と同様な条件のもとで
操作を行った。スチレン/ジビニルベンゼン共重合体よ
り成り、ポリプロピレン織布にて補強した4級アンモニ
ウム基を有する陰イオン交換膜(イオン交換容量3.0
meq/g乾燥樹脂、膜厚120μm)上に、CF2
CF2 /CF2 =CFOCF2F(CF3 )OCF2
2 SO3 Hの共重合体から成るペルフルオロ陽イオン
交換膜(イオン交換容量1.1meq/g乾燥樹脂、厚
さ80μm)を重ねて、加熱ロールを備えたロールプレ
ス装置にて、190℃、接触線圧70kg/cmにてロ
ールプレスし加熱溶着することによってバイポーラ膜を
得た。
[Comparative Example 1] An operation was performed under the same conditions as in Example 1 except that the bipolar film produced as described below was used. Anion exchange membrane (ion exchange capacity 3.0, made of styrene / divinylbenzene copolymer, reinforced with polypropylene woven fabric and having quaternary ammonium groups)
meq / g dry resin, film thickness 120 μm), CF 2 =
CF 2 / CF 2 = CFOCF 2 F (CF 3) OCF 2 C
A perfluoro cation exchange membrane (ion exchange capacity 1.1 meq / g dry resin, thickness 80 μm) composed of a F 2 SO 3 H copolymer was overlaid, and the temperature was set to 190 ° C. by a roll press machine equipped with a heating roll. A bipolar film was obtained by roll-pressing at a contact linear pressure of 70 kg / cm and heating and welding.

【0044】上記のバイポーラ膜を用いて、実施例1と
同様にしてバイポーラ膜電気透析槽にて、電気透析操作
を行ったところ、バイポーラ膜の電位降下は経時的に上
昇し、1週間で2.0Vまで上昇し、更に上昇傾向を示
した。水解離効率は93%を示した。また、水酸化ナト
リウムを1t生成するのに2700Kwt/t−NaO
Hと極めて高い値を示した。この値は1週間以降、更に
上昇する傾向を示した。
An electrodialysis operation was carried out in the same manner as in Example 1 using the above bipolar membrane in a bipolar membrane electrodialysis tank. As a result, the potential drop of the bipolar membrane increased with time, and the electric potential was reduced to 2 in a week. The voltage increased to 0.0 V and showed a further increasing tendency. The water dissociation efficiency was 93%. In addition, 2700 Kwt / t-NaO is required to generate 1t of sodium hydroxide.
The value was extremely high as H. This value tended to further increase after 1 week.

【0045】[0045]

【発明の効果】長期間に亘り、低いエネルギーコストに
て、中性塩、特に、ビスコースレーヨン使用済み紡糸液
から、酸(硫酸)及び/又はアルカリ(水酸化ナトリウ
ム)を回収することができる。
Industrial Applicability The acid (sulfuric acid) and / or alkali (sodium hydroxide) can be recovered from a neutral salt, especially from a used spinning solution of viscose rayon at a low energy cost for a long period of time. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の代表例であるビスコースレーヨン紡糸
排液からの酸及びアルカリの回収プロセス
FIG. 1 is a representative example of the present invention, a process for recovering acids and alkalis from viscose rayon spinning effluent.

【符号の説明】[Explanation of symbols]

1:紡糸浴 3:中和槽 5:濾過装置 8:電気透析槽 9:脱塩室 10:濃縮室 14:塩室 15:塩基室 16:酸室 17:バイポーラ膜電気透析槽 19:アルカリ濃縮器 26:酸濃縮器 1: Spinning bath 3: Neutralization tank 5: Filtration device 8: Electrodialysis tank 9: Desalination room 10: Concentration room 14: Salt room 15: Basic room 16: Acid room 17: Bipolar membrane electrodialysis tank 19: Alkali concentration Vessel 26: Acid concentrator

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】陰イオン交換層と陽イオン交換層との界面
に無機イオン交換体を存在させたバイポーラ膜、陰イオ
ン交換膜、及び/又は陽イオン交換膜を配列してなる電
気透析槽にて中性塩から酸及び/又はアルカリを回収す
ることを特徴とする回収プロセス。
1. An electrodialysis tank comprising a bipolar membrane having an inorganic ion exchanger present at the interface between an anion exchange layer and a cation exchange layer, an anion exchange membrane, and / or a cation exchange membrane. Recovery process, which comprises recovering an acid and / or an alkali from a neutral salt.
【請求項2】無機イオン交換体が、結晶性無機イオン交
換体である請求項1の回収プロセス。
2. The recovery process according to claim 1, wherein the inorganic ion exchanger is a crystalline inorganic ion exchanger.
【請求項3】無機イオン交換体が、酸性塩型無機イオン
交換体である請求項1又は2の回収プロセス。
3. The recovery process according to claim 1, wherein the inorganic ion exchanger is an acid salt type inorganic ion exchanger.
【請求項4】陰イオン交換層と陽イオン交換層の界面
に、無機イオン交換体とマトリックスポリマーとからな
る層を存在させたバイポーラ膜が使用される請求項1、
2又は3の回収プロセス。
4. A bipolar membrane in which a layer composed of an inorganic ion exchanger and a matrix polymer is present at the interface between the anion exchange layer and the cation exchange layer is used.
2 or 3 recovery processes.
【請求項5】マトリックスポリマーが、バイポーラ膜の
使用温度の水中で含水率が5%以上である請求項4の回
収プロセス。
5. The recovery process according to claim 4, wherein the matrix polymer has a water content of 5% or more in water at the operating temperature of the bipolar membrane.
【請求項6】マトリックスポリマーが、イオン交換性の
官能基を有しない請求項4又は5の回収プロセス。
6. The recovery process according to claim 4, wherein the matrix polymer has no ion-exchangeable functional group.
【請求項7】陽イオン交換層が、化1で表される繰り返
し単位を有する重合体より成る請求項1〜6のいずれか
1の回収プロセス。 【化1】 なお、化1においてmは0又は1、nは1〜5、x/y
は2〜16、XはSO3 M又はCOOM、Mは水素、ア
ルカリ金属、アルカリ土類金属又はアンモニウム基を表
す。
7. The recovery process according to claim 1, wherein the cation exchange layer is composed of a polymer having a repeating unit represented by Chemical formula 1. [Chemical 1] In Chemical formula 1, m is 0 or 1, n is 1 to 5, x / y
Is 2 to 16, X is SO 3 M or COOM, and M is hydrogen, an alkali metal, an alkaline earth metal or an ammonium group.
【請求項8】バイポーラ膜の陰イオン交換層が、ポリオ
レフィンフィルム或いは布に坦持されたスチレンあるい
はスチレンとジビニルベンゼンとの共重合体から成り、
陰イオン交換基として4級アンモニウム基を有する請求
項1〜7のいずれか1の回収プロセス。
8. The anion-exchange layer of the bipolar membrane comprises styrene or a copolymer of styrene and divinylbenzene carried on a polyolefin film or cloth,
The recovery process according to any one of claims 1 to 7, which has a quaternary ammonium group as an anion exchange group.
【請求項9】電気透析槽内の液温が50℃以上である請
求項1〜7のいずれか1の回収プロセス。
9. The recovery process according to claim 1, wherein the liquid temperature in the electrodialysis tank is 50 ° C. or higher.
【請求項10】中性塩がアルカリ金属硫酸塩である請求
項1〜9のいずれか1の回収プロセス。
10. The recovery process according to claim 1, wherein the neutral salt is an alkali metal sulfate.
【請求項11】アルカリ金属硫酸塩がレーヨン紡糸浴排
液に含まれる請求項10の回収プロセス。
11. The recovery process of claim 10 wherein the alkali metal sulfate is included in the rayon spinning bath effluent.
【請求項12】レーヨン紡糸排液が中和処理、濾過処理
又はイオン交換樹脂にて前処理される請求項11の回収
プロセス。
12. The recovery process according to claim 11, wherein the rayon spinning effluent is neutralized, filtered, or pretreated with an ion exchange resin.
JP5208397A 1993-07-30 1993-07-30 Process for recovering acid and/or alkali from neutral salt Pending JPH0739729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208397A JPH0739729A (en) 1993-07-30 1993-07-30 Process for recovering acid and/or alkali from neutral salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208397A JPH0739729A (en) 1993-07-30 1993-07-30 Process for recovering acid and/or alkali from neutral salt

Publications (1)

Publication Number Publication Date
JPH0739729A true JPH0739729A (en) 1995-02-10

Family

ID=16555582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208397A Pending JPH0739729A (en) 1993-07-30 1993-07-30 Process for recovering acid and/or alkali from neutral salt

Country Status (1)

Country Link
JP (1) JPH0739729A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020064A (en) * 2009-07-16 2011-02-03 Astom:Kk Method and apparatus for treating waste liquid containing inorganic salt
CN102409434A (en) * 2011-09-26 2012-04-11 宜宾海丝特纤维有限责任公司 Method for treating secondary waste viscose
JP2012139687A (en) * 2012-03-23 2012-07-26 Kurita Water Ind Ltd Pure water manufacturing apparatus and pure water manufacturing method
KR101237829B1 (en) * 2009-06-16 2013-02-27 가부시키가이샤 사사꾸라 Method and apparatus for treating an inorganic salt-containing waste liquid
CN103341322A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Pretreatment method for preparing acid/base from viscose fiber sodium sulfate waste liquid by using bipolar membrane electrodialysis method
CN103341321A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Viscose sodium sulfate waste liquor acid and alkali recycling technology by virtue of bipolar membrane electrodialysis method
CN103342433A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Method for recovering acid and alkali from viscose sodium sulfate waste liquor through bipolar membrane electrodialysis way
CN103341320A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Novel process for recycling acid and base from viscose sodium sulfate waste liquid by using a bipolar membrane electrodialysis method
CN103343402A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Novel viscose sodium sulfate waste liquor acid and alkali recycling technology through utilizing bipolar membrane electrodialysis method
CN103361769A (en) * 2013-07-24 2013-10-23 宜宾海翔化工有限责任公司 Method for recovering acid and base from viscose fiber sodium sulfate waste liquid by use of bipolar membrane electrodialysis method
CN103361770A (en) * 2013-07-24 2013-10-23 宜宾海翔化工有限责任公司 Novel method for recovering acid and base from viscose fiber sodium sulfate waste liquid by use of bipolar membrane electrodialysis method
CN103388198A (en) * 2013-07-24 2013-11-13 宜宾海翔化工有限责任公司 Method for preparing acid base from waste liquid of viscose sodium sulphate by bipolar membrane electrodialysis method
CN105174390A (en) * 2015-07-15 2015-12-23 浙江蓝极膜技术有限公司 Technology for recovering sulfuric acid in wastewater of medium nitrogen coupling mother liquor by bipolar membrane electrodialysis method
CN105417762A (en) * 2015-12-31 2016-03-23 上海清如环保科技有限公司 Novel process for recycling alkali through ceramic membrane and electrodialysis coupling
CN108927003A (en) * 2018-06-19 2018-12-04 宁波和源环境治理有限责任公司 A kind of pretreating process for making saltcake be converted into bronsted lowry acids and bases bronsted lowry with bipolar membrane electrodialysis method
CN108927004A (en) * 2018-07-28 2018-12-04 宁波和源环境治理有限责任公司 A kind of new process for making saltcake be converted into bronsted lowry acids and bases bronsted lowry with bipolar membrane electrodialysis method
CN109437213A (en) * 2018-12-10 2019-03-08 四川绿沃创新环保工程有限公司 A kind of process for reclaiming producing white carbon black using rice hull ash as raw material
CN109970274A (en) * 2019-03-29 2019-07-05 杭州蓝然环境技术股份有限公司 A method of processing viscose rayon industry acid waste water and alkaline waste water
CN110921718A (en) * 2018-09-18 2020-03-27 旭化成株式会社 Method for producing hydroxide and method for producing positive electrode active material
CN113620458A (en) * 2021-07-12 2021-11-09 北京汉昌绿源环保工程有限公司 Process and equipment for recovering aluminum-containing and heavy metal-containing waste alkali liquor
CN115259484A (en) * 2022-03-25 2022-11-01 中国科学院城市环境研究所 Landfill leachate membrane concentrate inorganic salt recovery and synchronous resource system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237829B1 (en) * 2009-06-16 2013-02-27 가부시키가이샤 사사꾸라 Method and apparatus for treating an inorganic salt-containing waste liquid
JP2011020064A (en) * 2009-07-16 2011-02-03 Astom:Kk Method and apparatus for treating waste liquid containing inorganic salt
CN102409434A (en) * 2011-09-26 2012-04-11 宜宾海丝特纤维有限责任公司 Method for treating secondary waste viscose
JP2012139687A (en) * 2012-03-23 2012-07-26 Kurita Water Ind Ltd Pure water manufacturing apparatus and pure water manufacturing method
CN103361770A (en) * 2013-07-24 2013-10-23 宜宾海翔化工有限责任公司 Novel method for recovering acid and base from viscose fiber sodium sulfate waste liquid by use of bipolar membrane electrodialysis method
CN103341321A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Viscose sodium sulfate waste liquor acid and alkali recycling technology by virtue of bipolar membrane electrodialysis method
CN103342433A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Method for recovering acid and alkali from viscose sodium sulfate waste liquor through bipolar membrane electrodialysis way
CN103341320A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Novel process for recycling acid and base from viscose sodium sulfate waste liquid by using a bipolar membrane electrodialysis method
CN103343402A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Novel viscose sodium sulfate waste liquor acid and alkali recycling technology through utilizing bipolar membrane electrodialysis method
CN103361769A (en) * 2013-07-24 2013-10-23 宜宾海翔化工有限责任公司 Method for recovering acid and base from viscose fiber sodium sulfate waste liquid by use of bipolar membrane electrodialysis method
CN103341322A (en) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 Pretreatment method for preparing acid/base from viscose fiber sodium sulfate waste liquid by using bipolar membrane electrodialysis method
CN103388198A (en) * 2013-07-24 2013-11-13 宜宾海翔化工有限责任公司 Method for preparing acid base from waste liquid of viscose sodium sulphate by bipolar membrane electrodialysis method
CN105174390A (en) * 2015-07-15 2015-12-23 浙江蓝极膜技术有限公司 Technology for recovering sulfuric acid in wastewater of medium nitrogen coupling mother liquor by bipolar membrane electrodialysis method
CN105417762A (en) * 2015-12-31 2016-03-23 上海清如环保科技有限公司 Novel process for recycling alkali through ceramic membrane and electrodialysis coupling
CN108927003A (en) * 2018-06-19 2018-12-04 宁波和源环境治理有限责任公司 A kind of pretreating process for making saltcake be converted into bronsted lowry acids and bases bronsted lowry with bipolar membrane electrodialysis method
CN108927004A (en) * 2018-07-28 2018-12-04 宁波和源环境治理有限责任公司 A kind of new process for making saltcake be converted into bronsted lowry acids and bases bronsted lowry with bipolar membrane electrodialysis method
CN110921718A (en) * 2018-09-18 2020-03-27 旭化成株式会社 Method for producing hydroxide and method for producing positive electrode active material
CN110921718B (en) * 2018-09-18 2024-01-09 旭化成株式会社 Method for producing hydroxide and method for producing positive electrode active material
CN109437213A (en) * 2018-12-10 2019-03-08 四川绿沃创新环保工程有限公司 A kind of process for reclaiming producing white carbon black using rice hull ash as raw material
CN109970274A (en) * 2019-03-29 2019-07-05 杭州蓝然环境技术股份有限公司 A method of processing viscose rayon industry acid waste water and alkaline waste water
CN113620458A (en) * 2021-07-12 2021-11-09 北京汉昌绿源环保工程有限公司 Process and equipment for recovering aluminum-containing and heavy metal-containing waste alkali liquor
CN115259484A (en) * 2022-03-25 2022-11-01 中国科学院城市环境研究所 Landfill leachate membrane concentrate inorganic salt recovery and synchronous resource system

Similar Documents

Publication Publication Date Title
JPH0739729A (en) Process for recovering acid and/or alkali from neutral salt
US5401408A (en) Bipolar membrane
US5397445A (en) Method for producing an acid and/or alkali metal hydroxide
US20010003329A1 (en) Electro-regenerating type apparatus for producing deionized water
JP2000235849A (en) Battery diaphragm
KR20180134869A (en) Bipolar membrane
JPS5911674B2 (en) Electrolysis method and electrolyzer
JP2005066599A (en) Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas
JP4925687B2 (en) Recovery method of high purity inorganic acid
JPS6264834A (en) Ion-exchange membrane
JP3396104B2 (en) Modified bipolar membrane
JPH0731842A (en) Waste gas desulfurization
JPH06145379A (en) Bipolar membrane
JPH07148420A (en) Method for recovering acid and alkali
JPH06263896A (en) Bipolar membrane
JP3387517B2 (en) Method for producing acid
JP7361174B1 (en) Efficient method for producing iodine component-containing aqueous solution using anion exchange membrane
JPH09151260A (en) Hydrogen ion permselective membrane and electrodialysis method
JPH0711022A (en) Bipolar membrane
JPH06172557A (en) New bipolar film
JPH07222915A (en) Electrodialysis using bipolar membrane
JPH10156148A (en) Recovering method of trifluoromethane sulfonic acid
JPH0711021A (en) Bipolar membrane
JPH07258878A (en) Electrodialysis using bipolar membrane
JPH06298964A (en) Production of bipolar membrane