JP2017117794A - Anisotropic conductive film, connection method, and assembly - Google Patents

Anisotropic conductive film, connection method, and assembly Download PDF

Info

Publication number
JP2017117794A
JP2017117794A JP2017002837A JP2017002837A JP2017117794A JP 2017117794 A JP2017117794 A JP 2017117794A JP 2017002837 A JP2017002837 A JP 2017002837A JP 2017002837 A JP2017002837 A JP 2017002837A JP 2017117794 A JP2017117794 A JP 2017117794A
Authority
JP
Japan
Prior art keywords
resin
anisotropic conductive
conductive film
electronic component
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017002837A
Other languages
Japanese (ja)
Other versions
JP6271048B2 (en
Inventor
敦史 國吉
Atsushi Kuniyoshi
敦史 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2017002837A priority Critical patent/JP6271048B2/en
Publication of JP2017117794A publication Critical patent/JP2017117794A/en
Application granted granted Critical
Publication of JP6271048B2 publication Critical patent/JP6271048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive film and the like, the anisotropic conductive film being capable of obtaining sufficient conduction resistance and collapse of conductive particles in connections at low temperatures, and capable of preventing the anisotropic conductive film from protruding from an end portion when the anisotropic conductive film is wound around a reel.SOLUTION: An anisotropic conductive film for anisotropically conductively connecting a terminal of a first electronic component to a terminal of a second electronic component contains a film forming resin, a hardening resin, a hardener, and conductive particles. The film forming resin contains a crystalline resin and an amorphous resin.SELECTED DRAWING: None

Description

本発明は、異方性導電フィルム、接続方法、及び接合体に関する。   The present invention relates to an anisotropic conductive film, a connection method, and a joined body.

従来より、電子部品を基板と接続する手段として、導電性粒子が分散された熱硬化性樹脂を剥離フィルムに塗布したテープ状の接続材料(例えば、異方性導電フィルム(ACF;Anisotropic Conductive Film))が用いられている。   Conventionally, as a means for connecting an electronic component to a substrate, a tape-like connection material in which a thermosetting resin in which conductive particles are dispersed is applied to a release film (for example, anisotropic conductive film (ACF)) ) Is used.

この異方性導電フィルムは、例えば、フレキシブルプリント基板(FPC)やICチップの端子と、LCDパネルのガラス基板上に形成された電極とを接続する場合を始めとして、種々の端子同士を接着すると共に電気的に接続する場合に用いられている。   This anisotropic conductive film bonds various terminals to each other, for example, when connecting a terminal of a flexible printed circuit (FPC) or an IC chip and an electrode formed on a glass substrate of an LCD panel. In addition, it is used for electrical connection.

ところで、近年、電子部品同士の接続には、低温での接続が要求されている。低温での接続は、電子部品の熱的ダメージを低減する点、接続の際の加熱温度のバラツキ(電極部に接続した配線の先に部品が繋がっているかどうかによって、電極部における加熱温度が変わり、バラツキになる。実装密度が高密度になるとバラツキは特に顕著になる。)を防ぐ点、及び実装設備への負荷の低減の点で要求されている。   By the way, in recent years, connection at low temperature is required for connection between electronic components. Connection at low temperature reduces thermal damage to electronic components, and variation in heating temperature during connection (the heating temperature at the electrode varies depending on whether the component is connected to the tip of the wiring connected to the electrode. The variation is particularly noticeable when the mounting density is high, and is required in terms of reducing the load on the mounting equipment.

しかし、低温での接続において、従来の異方性導電フィルムは、十分に溶融せずに流動性が低い。そのため、十分な接続ができず、導通抵抗及び導電性粒子の潰れが不十分になるという問題がある。   However, in the connection at a low temperature, the conventional anisotropic conductive film does not melt sufficiently and has low fluidity. Therefore, there is a problem that sufficient connection cannot be made, and conduction resistance and crushing of conductive particles become insufficient.

一方、低温での接続における流動性を良くしようとして、異方性導電フィルムにおいて低温で溶融する低分子材料などを増加させると、前記異方性導電フィルムをリールに巻き取った際に、端部から前記異方性導電フィルムがはみ出すという問題がある。   On the other hand, when increasing the low molecular weight material that melts at a low temperature in the anisotropic conductive film in order to improve the fluidity in the connection at low temperature, when the anisotropic conductive film is wound on a reel, an end portion Therefore, there is a problem that the anisotropic conductive film protrudes.

ところで、異方性導電接続に用いる液状の異方性導電接着剤として、使用前及び接続時の流動性を制御するために、結晶性ポリエステル樹脂を用いる異方性導電接着剤が提案されている(例えば、特許文献1参照)。
しかし、この提案の技術を異方性導電フィルムに適用しても、低温での接続において導通抵抗及び導電性粒子の潰れが不十分になるという問題、及び異方性導電フィルムをリールに巻き取った際に、端部から前記異方性導電フィルムがはみ出すという問題の全てを解決することはできない。
By the way, as a liquid anisotropic conductive adhesive used for anisotropic conductive connection, an anisotropic conductive adhesive using a crystalline polyester resin has been proposed in order to control fluidity before use and during connection. (For example, refer to Patent Document 1).
However, even when this proposed technique is applied to an anisotropic conductive film, the conductive resistance and crushing of the conductive particles are insufficient when connected at a low temperature, and the anisotropic conductive film is wound on a reel. In this case, it is impossible to solve all of the problems that the anisotropic conductive film protrudes from the end portion.

したがって、低温での接続において十分な導通抵抗及び導電性粒子の潰れが得られ、かつ異方性導電フィルムをリールに巻き取った際に、端部から前記異方性導電フィルムがはみ出すことを防ぐことができる異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体の提供が求められているのが現状である。   Therefore, sufficient conduction resistance and crushing of conductive particles are obtained in connection at low temperature, and the anisotropic conductive film is prevented from protruding from the end when the anisotropic conductive film is wound on a reel. The present condition is that there is a demand for an anisotropic conductive film that can be used, a connection method using the anisotropic conductive film, and a bonded body using the anisotropic conductive film.

特開2006−152233号公報JP 2006-152233 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、低温での接続において十分な導通抵抗及び導電性粒子の潰れが得られ、かつ異方性導電フィルムをリールに巻き取った際に、端部から前記異方性導電フィルムがはみ出すことを防ぐことができる異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, in the present invention, sufficient conduction resistance and crushing of conductive particles are obtained in connection at low temperature, and when the anisotropic conductive film is wound on a reel, the anisotropic conductive film is An object of the present invention is to provide an anisotropic conductive film capable of preventing protrusion, a connection method using the anisotropic conductive film, and a joined body using the anisotropic conductive film.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
膜形成樹脂と、硬化性樹脂と、硬化剤と、導電性粒子とを含有し、
前記膜形成樹脂が、結晶性樹脂と、非晶性樹脂とを含有することを特徴とする異方性導電フィルムである。
<2> 結晶性樹脂と非晶性樹脂との質量比率(結晶性樹脂:非晶性樹脂)が、90:10〜10:90である前記<1>に記載の異方性導電フィルムである。
<3> 結晶性樹脂が、結晶性ポリエステル樹脂であり、
非晶性樹脂が、非晶性ポリエステルウレタン樹脂、非晶性フェノキシ樹脂、及び非晶性ポリウレタン樹脂の少なくともいずれかである前記<1>から<2>のいずれかに記載の異方性導電フィルムである。
<4> 非晶性樹脂が、非晶性ポリエステルウレタン樹脂である前記<1>から<3>のいずれかに記載の異方性導電フィルムである。
<5> 第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる接続方法であって、
前記第2の電子部品の端子上に前記<1>から<4>のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
前記第1の電子部品を加熱押圧部材により加熱及び押圧する加熱押圧工程とを含むことを特徴とする接続方法である。
<6> 端子を有する第1の電子部品と、端子を有する第2の電子部品と、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続する異方性導電フィルムの硬化物とを有し、
前記異方性導電フィルムが、前記<1>から<4>のいずれかに記載の異方性導電フィルムであることを特徴とする接合体である。
Means for solving the problems are as follows. That is,
<1> An anisotropic conductive film for anisotropically conductively connecting a terminal of a first electronic component and a terminal of a second electronic component,
Contains a film-forming resin, a curable resin, a curing agent, and conductive particles,
The film-forming resin contains a crystalline resin and an amorphous resin.
<2> The anisotropic conductive film according to <1>, wherein a mass ratio of the crystalline resin to the amorphous resin (crystalline resin: amorphous resin) is 90:10 to 10:90. .
<3> The crystalline resin is a crystalline polyester resin,
The anisotropic conductive film according to any one of <1> to <2>, wherein the amorphous resin is at least one of an amorphous polyester urethane resin, an amorphous phenoxy resin, and an amorphous polyurethane resin. It is.
<4> The anisotropic conductive film according to any one of <1> to <3>, wherein the amorphous resin is an amorphous polyester urethane resin.
<5> A connection method for anisotropically connecting the terminal of the first electronic component and the terminal of the second electronic component,
A first disposing step of disposing the anisotropic conductive film according to any one of <1> to <4> on a terminal of the second electronic component;
A second disposing step of disposing the first electronic component on the anisotropic conductive film such that a terminal of the first electronic component is in contact with the anisotropic conductive film;
And a heating and pressing step of heating and pressing the first electronic component with a heating and pressing member.
<6> A first electronic component having a terminal, a second electronic component having a terminal, and the first electronic component interposed between the first electronic component and the second electronic component. A cured product of an anisotropic conductive film that electrically connects the terminal and the terminal of the second electronic component;
The anisotropic conductive film is the anisotropic conductive film according to any one of <1> to <4>.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、低温での接続において十分な導通抵抗及び導電性粒子の潰れが得られ、かつ異方性導電フィルムをリールに巻き取った際に、端部から前記異方性導電フィルムがはみ出すことを防ぐことができる異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体を提供することができる。   According to the present invention, the conventional problems can be solved, the object can be achieved, sufficient conduction resistance and collapse of conductive particles can be obtained at low temperature connection, and an anisotropic conductive film can be obtained. An anisotropic conductive film capable of preventing the anisotropic conductive film from protruding from an end when wound on a reel, a connection method using the anisotropic conductive film, and the anisotropic conductive film A joined body using a film can be provided.

(異方性導電フィルム)
本発明の異方性導電フィルムは、膜形成樹脂と、硬化性樹脂と、硬化剤と、導電性粒子とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
前記異方性導電フィルムは、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムである。
(Anisotropic conductive film)
The anisotropic conductive film of the present invention contains at least a film-forming resin, a curable resin, a curing agent, and conductive particles, and further contains other components as necessary.
The anisotropic conductive film is an anisotropic conductive film that anisotropically connects the terminals of the first electronic component and the terminals of the second electronic component.

<膜形成樹脂>
前記膜形成樹脂は、結晶性樹脂と、非晶性樹脂とを含有する。
<Film forming resin>
The film-forming resin contains a crystalline resin and an amorphous resin.

−結晶性樹脂−
前記結晶性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、結晶性ポリエステル樹脂、結晶性ポリウレタン樹脂、結晶性ポリオレフィン樹脂、結晶性ポリアミド樹脂、結晶性ポリスチレン樹脂などが挙げられる。これらの中でも、接着性、及び電気絶縁性の点から、結晶性ポリエステル樹脂が好ましい。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Crystalline resin-
There is no restriction | limiting in particular as said crystalline resin, According to the objective, it can select suitably, For example, crystalline polyester resin, crystalline polyurethane resin, crystalline polyolefin resin, crystalline polyamide resin, crystalline polystyrene resin, etc. Is mentioned. Among these, a crystalline polyester resin is preferable from the viewpoints of adhesiveness and electrical insulation.
These may be used individually by 1 type and may use 2 or more types together.

ここで、前記結晶性樹脂とは、結晶領域を有する樹脂をいい、前記結晶性樹脂かどうかは、例えば、示差走査熱量分析において、昇温過程で吸熱ピークが観察されることにより確認できる。   Here, the crystalline resin refers to a resin having a crystalline region, and whether or not the crystalline resin is the crystalline resin can be confirmed, for example, by observing an endothermic peak in a temperature rising process in differential scanning calorimetry.

前記結晶性樹脂の数平均分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、8,000〜50,000が好ましく、10,000〜40,000がより好ましく、15,000〜30,000が特に好ましい。
前記数平均分子量は、例えば、ゲル浸透クロマトグラフィー測定(GPC、ポリスチレン換算)により求めることができる。
The number average molecular weight of the crystalline resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 8,000 to 50,000, more preferably 10,000 to 40,000, 30,000 to 30,000 is particularly preferred.
The number average molecular weight can be determined, for example, by gel permeation chromatography measurement (GPC, polystyrene conversion).

前記結晶性樹脂の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、80℃〜110℃が好ましく、90℃〜105℃がより好ましい。
前記融点は、例えば、示差走査熱量分析(DSC)により測定できる。
There is no restriction | limiting in particular as melting | fusing point of the said crystalline resin, Although it can select suitably according to the objective, 80 to 110 degreeC is preferable and 90 to 105 degreeC is more preferable.
The melting point can be measured, for example, by differential scanning calorimetry (DSC).

前記異方性導電フィルムにおける前記結晶性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、3質量%〜50質量%が好ましく、7質量%〜50質量%がより好ましく、15質量%〜35質量%が特に好ましい。   There is no restriction | limiting in particular as content of the said crystalline resin in the said anisotropic conductive film, Although it can select suitably according to the objective, 3 mass%-50 mass% are preferable, 7 mass%-50 mass% % Is more preferable, and 15% by mass to 35% by mass is particularly preferable.

−非晶性樹脂−
前記非晶性樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、導電性粒子の潰れの点、及び前記異方性導電フィルムをリールに巻き取った際に、端部から前記異方性導電フィルムがはみ出すことを防ぐ点で、非晶性ポリエステルウレタン樹脂、非晶性フェノキシ樹脂、及び非晶性ポリウレタン樹脂の少なくともいずれかが好ましく、非晶性ポリエステルウレタン樹脂がより好ましい。
前記非晶性ポリエステルウレタン樹脂としては、例えば、ウレタン変性された非晶性ポリエステル樹脂などが挙げられる。
-Amorphous resin-
The amorphous resin is not particularly limited and may be appropriately selected depending on the purpose. However, when the anisotropic conductive film is wound around a reel, the end of the conductive particles may be crushed. At least one of an amorphous polyester urethane resin, an amorphous phenoxy resin, and an amorphous polyurethane resin is preferable in terms of preventing the anisotropic conductive film from protruding from the portion, and the amorphous polyester urethane resin is more preferable. preferable.
Examples of the amorphous polyester urethane resin include urethane-modified amorphous polyester resin.

前記非晶性樹脂の数平均分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、1,000〜70,000が好ましく、20,000〜60,000がより好ましく、30,000〜50,000が特に好ましい。
前記数平均分子量は、例えば、ゲル浸透クロマトグラフィー測定(GPC、ポリスチレン換算)により求めることができる。
The number average molecular weight of the amorphous resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1,000 to 70,000, more preferably 20,000 to 60,000, 30,000 to 50,000 are particularly preferred.
The number average molecular weight can be determined, for example, by gel permeation chromatography measurement (GPC, polystyrene conversion).

前記非晶性樹脂のガラス転移温度としては、特に制限はなく、目的に応じて適宜選択することができるが、60℃〜110℃が好ましく、70℃〜100℃がより好ましい。
前記ガラス転移温度は、例えば、示差走査熱量分析(DSC)により測定できる。
There is no restriction | limiting in particular as a glass transition temperature of the said amorphous resin, Although it can select suitably according to the objective, 60 to 110 degreeC is preferable and 70 to 100 degreeC is more preferable.
The glass transition temperature can be measured by, for example, differential scanning calorimetry (DSC).

前記異方性導電フィルムにおける前記非晶性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、3質量%〜50質量%が好ましく、7質量%〜50質量%がより好ましく、15質量%〜35質量%が特に好ましい。   There is no restriction | limiting in particular as content of the said amorphous resin in the said anisotropic conductive film, Although it can select suitably according to the objective, 3 mass%-50 mass% are preferable, 7 mass%-50 % By mass is more preferable, and 15% by mass to 35% by mass is particularly preferable.

前記結晶性樹脂と前記非晶性樹脂との質量比率(結晶性樹脂:非晶性樹脂)としては、特に制限はなく、目的に応じて適宜選択することができるが、90:10〜10:90が好ましく、90:10〜20:80がより好ましく、60:40〜40:60が特に好ましい。   The mass ratio of the crystalline resin to the amorphous resin (crystalline resin: amorphous resin) is not particularly limited and may be appropriately selected depending on the intended purpose. 90 is preferable, 90:10 to 20:80 is more preferable, and 60:40 to 40:60 is particularly preferable.

前記膜形成樹脂は、熱可塑性樹脂であって、前記硬化性樹脂とは異なるものである。   The film-forming resin is a thermoplastic resin and is different from the curable resin.

<硬化性樹脂>
前記硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、アクリレートなどが挙げられる。
<Curable resin>
There is no restriction | limiting in particular as said curable resin, According to the objective, it can select suitably, For example, an epoxy resin, an acrylate, etc. are mentioned.

−エポキシ樹脂−
前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Epoxy resin-
There is no restriction | limiting in particular as said epoxy resin, According to the objective, it can select suitably, For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, those modified epoxy resins, alicyclic type An epoxy resin etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.

−アクリレート−
前記アクリレートには、メタクリレートも含まれる。
前記アクリレートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、リン酸アクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレートなどが挙げられる。また、これらのアクリレートをメタクリレートにしたものも挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Acrylate-
The acrylate includes methacrylate.
The acrylate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, phosphoric acid acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate , Trimethylolpropane triacrylate, dimethyloltricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryl Kishiechiru) isocyanurate, and urethane acrylate. Moreover, what made these acrylates into methacrylate is also mentioned. These may be used individually by 1 type and may use 2 or more types together.

前記異方性導電フィルムにおける前記硬化性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%〜80質量%が好ましく、40質量%〜55質量%がより好ましい。   There is no restriction | limiting in particular as content of the said curable resin in the said anisotropic conductive film, Although it can select suitably according to the objective, 30 mass%-80 mass% are preferable, 40 mass%-55 mass% % Is more preferable.

<硬化剤>
前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イミダゾール類、有機過酸化物、アニオン系硬化剤、カチオン系硬化剤などが挙げられる。
前記イミダゾール類としては、例えば、2−エチル4−メチルイミダゾールなどが挙げられる。
前記有機過酸化物としては、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイドなどが挙げられる。
前記アニオン系硬化剤としては、例えば、有機アミン類などが挙げられる。
前記カチオン系硬化剤としては、例えば、スルホニウム塩、オニウム塩、アルミニウムキレート剤などが挙げられる。
<Curing agent>
There is no restriction | limiting in particular as said hardening | curing agent, According to the objective, it can select suitably, For example, imidazoles, an organic peroxide, an anionic hardening | curing agent, a cationic hardening | curing agent etc. are mentioned.
Examples of the imidazoles include 2-ethyl 4-methylimidazole.
Examples of the organic peroxide include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, peroxydicarbonate, and benzoyl peroxide.
Examples of the anionic curing agent include organic amines.
Examples of the cationic curing agent include a sulfonium salt, an onium salt, and an aluminum chelating agent.

前記硬化性樹脂と前記硬化剤との組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記エポキシ樹脂と前記イミダゾール類との組合せ、前記アクリレートと前記有機過酸化物との組合せが好ましい。   The combination of the curable resin and the curing agent is not particularly limited and may be appropriately selected according to the purpose. The combination of the epoxy resin and the imidazoles, the acrylate and the organic peroxide. The combination with is preferred.

前記異方性導電フィルムにおける前記硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%〜10質量%が好ましく、3質量%〜7質量%がより好ましい。   There is no restriction | limiting in particular as content of the said hardening | curing agent in the said anisotropic conductive film, Although it can select suitably according to the objective, 1 mass%-10 mass% are preferable, and 3 mass%-7 mass% are preferable. Is more preferable.

<導電性粒子>
前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。
<Conductive particles>
There is no restriction | limiting in particular as said electroconductive particle, According to the objective, it can select suitably, For example, a metal particle, a metal covering resin particle, etc. are mentioned.

前記金属粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニッケル、コバルト、銀、銅、金、パラジウム、半田などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ニッケル、銀、銅が好ましい。これらの金属粒子は、表面酸化を防ぐ目的で、その表面に金、パラジウムを施していてもよい。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
There is no restriction | limiting in particular as said metal particle, According to the objective, it can select suitably, For example, nickel, cobalt, silver, copper, gold | metal | money, palladium, solder etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
Among these, nickel, silver, and copper are preferable. These metal particles may be provided with gold or palladium on the surface for the purpose of preventing surface oxidation. Furthermore, you may use what gave the insulating film with the metal protrusion and organic substance on the surface.

前記金属被覆樹脂粒子としては、樹脂粒子の表面を金属で被覆した粒子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂粒子の表面をニッケル、銀、半田、銅、金、及びパラジウムの少なくともいずれかの金属で被覆した粒子などが挙げられる。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。低抵抗を考慮した接続の場合、樹脂粒子の表面を銀で被覆した粒子が好ましい。
前記樹脂粒子への金属の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無電解めっき法、スパッタリング法などが挙げられる。
前記樹脂粒子の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン−ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン−シリカ複合樹脂などが挙げられる。
The metal-coated resin particles are not particularly limited as long as the surfaces of the resin particles are coated with metal, and can be appropriately selected according to the purpose. For example, the surface of the resin particles is nickel, silver, solder , Particles coated with at least one of copper, gold, and palladium. Furthermore, you may use what gave the insulating film with the metal protrusion and organic substance on the surface. In the case of connection considering low resistance, particles in which the surface of resin particles is coated with silver are preferable.
There is no restriction | limiting in particular as the coating method of the metal to the said resin particle, According to the objective, it can select suitably, For example, an electroless-plating method, sputtering method, etc. are mentioned.
There is no restriction | limiting in particular as a material of the said resin particle, According to the objective, it can select suitably, For example, a styrene- divinylbenzene copolymer, a benzoguanamine resin, a crosslinked polystyrene resin, an acrylic resin, a styrene-silica composite resin etc. Is mentioned.

前記導電性粒子は、異方性導電接続の際に、導電性を有していればよい。例えば、金属粒子の表面に絶縁皮膜を施した粒子であっても、異方性導電接続の際に前記粒子が変形し、前記金属粒子が露出するものであれば、前記導電性粒子である。   The conductive particles only need to have conductivity during anisotropic conductive connection. For example, even if the surface of the metal particle is an insulating film, the conductive particle may be used as long as the particle is deformed during the anisotropic conductive connection and the metal particle is exposed.

前記導電性粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm〜50μmが好ましく、2μm〜25μmがより好ましく、2μm〜10μmが特に好ましい。
前記平均粒子径は、任意に10個の導電性粒子について測定した粒子径の平均値である。
前記粒子径は、例えば、走査型電子顕微鏡観察により測定できる。
There is no restriction | limiting in particular as an average particle diameter of the said electroconductive particle, Although it can select suitably according to the objective, 1 micrometer-50 micrometers are preferable, 2 micrometers-25 micrometers are more preferable, and 2 micrometers-10 micrometers are especially preferable.
The average particle diameter is an average value of particle diameters measured for 10 conductive particles arbitrarily.
The particle diameter can be measured, for example, by observation with a scanning electron microscope.

<その他の成分>
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シランカップリング剤、充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などが挙げられる。前記その他の成分の添加量は、特に制限はなく、目的に応じて適宜選択することができる。
<Other ingredients>
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a silane coupling agent, a filler, a softener, an accelerator, anti-aging agent, a coloring agent (pigment, dye) , Organic solvents, ion catcher agents and the like. The addition amount of the other components is not particularly limited and can be appropriately selected depending on the purpose.

<第1の電子部品及び第2の電子部品>
前記第1の電子部品及び前記第2の電子部品としては、前記異方性導電フィルムを用いた異方性導電接続の対象となる、端子を有する電子部品であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板、フレキシブル基板、リジッド基板、IC(Integrated Circuit)チップ、TAB(Tape Automated Bonding)、液晶パネルなどが挙げられる。前記ガラス基板としては、例えば、Al配線形成ガラス基板、ITO(酸化インジウムスズ)配線形成ガラス基板などが挙げられる。前記ICチップとしては、例えば、フラットパネルディスプレイ(FPD)における液晶画面制御用ICチップなどが挙げられる。
<First electronic component and second electronic component>
The first electronic component and the second electronic component are not particularly limited as long as they are electronic components having terminals, which are targets for anisotropic conductive connection using the anisotropic conductive film. For example, a glass substrate, a flexible substrate, a rigid substrate, an IC (Integrated Circuit) chip, a TAB (Tape Automated Bonding), a liquid crystal panel, and the like can be given. As said glass substrate, Al wiring formation glass substrate, ITO (indium tin oxide) wiring formation glass substrate, etc. are mentioned, for example. Examples of the IC chip include a liquid crystal screen control IC chip in a flat panel display (FPD).

前記異方性導電フィルムの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5μm〜100μmが好ましく、10μm〜60μmがより好ましく、20μm〜50μmが特に好ましい。   There is no restriction | limiting in particular as average thickness of the said anisotropic conductive film, Although it can select suitably according to the objective, 5 micrometers-100 micrometers are preferable, 10 micrometers-60 micrometers are more preferable, and 20 micrometers-50 micrometers are especially preferable.

前記異方性導電フィルムの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記結晶性樹脂と前記非晶性樹脂と前記硬化性樹脂と前記硬化剤と前記導電性粒子とを混合して得た異方性導電組成物を、剥離処理したポリエチレンテレフタレート(PET)フィルム上に塗布する方法などが挙げられる。   There is no restriction | limiting in particular as a manufacturing method of the said anisotropic conductive film, According to the objective, it can select suitably, For example, the said crystalline resin, the said amorphous resin, the said curable resin, and the said hardening | curing agent Examples thereof include a method of applying an anisotropic conductive composition obtained by mixing the conductive particles onto a peeled polyethylene terephthalate (PET) film.

(接続方法)
本発明の接続方法は、第1の配置工程と、第2の配置工程と、加熱押圧工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
前記接続方法は、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる方法である。
(Connection method)
The connection method of the present invention includes at least a first arrangement step, a second arrangement step, and a heating and pressing step, and further includes other steps as necessary.
The connection method is a method in which the terminal of the first electronic component and the terminal of the second electronic component are anisotropically conductively connected.

前記第1の電子部品、及び前記第2の電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記第1の電子部品、及び前記第2の電子部品がそれぞれ挙げられる。   There is no restriction | limiting in particular as said 1st electronic component and said 2nd electronic component, According to the objective, it can select suitably, For example, the said illustrated by description of the said anisotropic conductive film of this invention The first electronic component and the second electronic component can be cited respectively.

<第1の配置工程>
前記第1の配置工程としては、前記第2の電子部品の端子上に本発明の前記異方性導電フィルムを配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<First arrangement step>
The first arrangement step is not particularly limited as long as it is a step of arranging the anisotropic conductive film of the present invention on the terminal of the second electronic component, and can be appropriately selected according to the purpose. it can.

<第2の配置工程>
前記第2の配置工程としては、前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Second arrangement step>
The second placement step is a step of placing the first electronic component on the anisotropic conductive film so that a terminal of the first electronic component is in contact with the anisotropic conductive film. There is no particular limitation, and it can be appropriately selected according to the purpose.

<加熱押圧工程>
前記加熱押圧工程としては、前記第1の電子部品を加熱押圧部材により加熱及び押圧する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記加熱押圧部材としては、例えば、加熱機構を有する押圧部材などが挙げられる。前記加熱機構を有する押圧部材としては、例えば、ヒートツールなどが挙げられる。
前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、100℃〜140℃が好ましい。
前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5MPa〜10MPaが好ましい。
前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5秒間〜10秒間が好ましい。
<Heat pressing process>
The heating and pressing step is not particularly limited as long as it is a step of heating and pressing the first electronic component with a heating and pressing member, and can be appropriately selected according to the purpose.
Examples of the heating and pressing member include a pressing member having a heating mechanism. Examples of the pressing member having the heating mechanism include a heat tool.
There is no restriction | limiting in particular as temperature of the said heating, Although it can select suitably according to the objective, 100 to 140 degreeC is preferable.
There is no restriction | limiting in particular as the pressure of the said press, Although it can select suitably according to the objective, 0.5 Mpa-10 Mpa are preferable.
There is no restriction | limiting in particular as time of the said heating and a press, Although it can select suitably according to the objective, 0.5 second-10 second are preferable.

(接合体)
本発明の接合体は、第1の電子部品と、第2の電子部品と、異方性導電フィルムの硬化物とを少なくとも有し、更に必要に応じて、その他の部材を有する。
(Joint)
The joined body of the present invention includes at least a first electronic component, a second electronic component, and a cured product of an anisotropic conductive film, and further includes other members as necessary.

前記第1の電子部品、及び前記第2の電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記第1の電子部品、及び前記第2の電子部品がそれぞれ挙げられる。   There is no restriction | limiting in particular as said 1st electronic component and said 2nd electronic component, According to the objective, it can select suitably, For example, the said illustrated by description of the said anisotropic conductive film of this invention The first electronic component and the second electronic component can be cited respectively.

前記異方性導電フィルムは、本発明の前記異方性導電フィルムである。
前記異方性導電フィルムの硬化物は、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続している。
The anisotropic conductive film is the anisotropic conductive film of the present invention.
The cured product of the anisotropic conductive film is interposed between the first electronic component and the second electronic component, and includes a terminal of the first electronic component and a terminal of the second electronic component. Electrically connected.

前記接合体は、例えば、本発明の前記接続方法により製造できる。   The joined body can be manufactured, for example, by the connection method of the present invention.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。但し、実施例6、7は、参考例と読み替える。   Examples of the present invention will be described below, but the present invention is not limited to these examples. However, Examples 6 and 7 are read as reference examples.

(実施例1)
<異方性導電フィルムの作製>
結晶性ポリエステル樹脂(商品名:SP−185、日本合成化学工業株式会社製、膜形成樹脂)45質量部、非晶性ポリエステルウレタン樹脂(商品名:UR−1400、東洋紡株式会社、膜形成樹脂)5質量部、ウレタンアクリレート(商品名:M−1600、東亞合成株式会社製、硬化性樹脂)28質量部、多官能アクリレート(商品名:M−315、東亞合成株式会社製、硬化性樹脂)20質量部、リン酸アクリレート(商品名:PM−2、日本化薬株式会社製、硬化性樹脂)2質量部、ジラウロイルパーオキサイド(商品名:パーロイルL、日油株式会社製、硬化剤)5質量部、Ni金属粒子(パーレインコ社製、平均粒子径:4μm、導電性粒子)2質量部、及びトルエンを混合し、固形分50質量%の異方性導電組成物を得た。
得られた異方性導電組成物を、50μm厚みのPET(ポリエチレンテレフタレート)フィルム上に乾燥後の平均厚みが20μmとなるように塗布し、80℃で10分間乾燥させ、異方性導電フィルムを作製した。
Example 1
<Preparation of anisotropic conductive film>
45 parts by mass of crystalline polyester resin (trade name: SP-185, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., film-forming resin), amorphous polyester urethane resin (trade name: UR-1400, Toyobo Co., Ltd., film-forming resin) 5 parts by mass, urethane acrylate (trade name: M-1600, manufactured by Toagosei Co., Ltd., curable resin), 20 parts by mass, polyfunctional acrylate (trade name: M-315, manufactured by Toagosei Co., Ltd., curable resin) 20 Part by mass, 2 parts by mass of phosphoric acid acrylate (trade name: PM-2, Nippon Kayaku Co., Ltd., curable resin), dilauroyl peroxide (trade name: Parroyl L, NOF Corp., curing agent) 5 Part by mass, 2 parts by mass of Ni metal particles (Perleinco, average particle size: 4 μm, conductive particles) and toluene were mixed to obtain an anisotropic conductive composition having a solid content of 50% by mass.
The obtained anisotropic conductive composition was applied onto a 50 μm-thick PET (polyethylene terephthalate) film so that the average thickness after drying was 20 μm, and dried at 80 ° C. for 10 minutes. Produced.

<はみ出しの有無>
異方性導電フィルムが形成されたPETフィルムを幅2.0mm×長さ100mにスリットし、コアの直径が2.54mmのリールに0.2N/mmのテンションで巻き取り、室温で1日放置した。外観観察により、以下の評価基準で評価した。結果を表1に示す。
〔評価基準〕
◎:異方性導電フィルムのはみ出しが確認されない。
○:異方性導電フィルムのはみ出しがあるが、平均0.5層未満
△:異方性導電フィルムのはみ出しが平均0.5層以上平均1.0層未満
×:異方性導電フィルムのはみ出しが平均1.0層以上
なお、はみ出しの平均層数とは、はみ出しが見られる平均の層数を示し、リールにおけるはみ出しの数を、巻き取った際の層数で割って算出した。はみ出しの平均層数が少ないほど、はみ出しが少なく優れていることを示す。例えば、層数が10層で、はみ出しが10箇所の場合、はみ出しの平均層数は、1.0層であり、層数が10層で、はみ出しが5箇所の場合、はみ出しの平均層数は、0.5層である。
<Existence of protrusion>
A PET film on which an anisotropic conductive film has been formed is slit into a width of 2.0 mm and a length of 100 m, wound around a reel with a core diameter of 2.54 mm with a tension of 0.2 N / mm 2 , and at room temperature for one day. I left it alone. The appearance was evaluated according to the following evaluation criteria. The results are shown in Table 1.
〔Evaluation criteria〕
(Double-circle): The protrusion of an anisotropic conductive film is not confirmed.
○: Although there is protrusion of the anisotropic conductive film, the average is less than 0.5 layer. Δ: The protrusion of the anisotropic conductive film is an average of 0.5 layer or more and less than 1.0 layer. ×: The protrusion of the anisotropic conductive film. The average number of overhangs means the average number of layers in which overhang is seen, and was calculated by dividing the number of overhangs on the reel by the number of layers when wound. It shows that the smaller the average number of overhang layers, the less overhang and the better. For example, when the number of layers is 10 and the number of protrusions is 10, the average number of protrusions is 1.0 layer. When the number of layers is 10 and the number of protrusions is 5, the average number of protrusions is 0.5 layer.

<接合体の製造、及び接合体の評価>
以下の方法により接合体を製造し、以下に示す評価を行った。結果を表1に示す。
第2の電子部品として、プリント配線板〔0.4mmピッチ(ライン/スペース=0.2/0.2)、銅パターン厚み35μm、ニッケル/金めっき処理、基材厚み1.0mm〕を用いた。
第1の電子部品として、フレキシブルプリント基板〔0.4mmピッチ(ライン/スペース=0.2/0.2)、ポリイミド厚み25μm、銅パターン厚み12μm、ニッケル/金めっき処理〕を用いた。
前記第2の電子部品の端子上に、上記で得られた異方性導電フィルム(フィルム幅2.0mm)を配置した。続いて、前記異方性導電フィルム上に、前記第1の電子部品を配置した。続いて、緩衝材(シリコーンラバー、厚み0.2mm)を介して、加熱ツール(幅2.0mm)により130℃、4MPa、5秒間の条件で、前記第1の電子部品を加熱及び押圧し、接合体を得た。
<Manufacture of joined body and evaluation of joined body>
The joined body was manufactured by the following method and evaluated as follows. The results are shown in Table 1.
A printed wiring board [0.4 mm pitch (line / space = 0.2 / 0.2), copper pattern thickness 35 μm, nickel / gold plating treatment, substrate thickness 1.0 mm] was used as the second electronic component. .
A flexible printed circuit board (0.4 mm pitch (line / space = 0.2 / 0.2), polyimide thickness 25 μm, copper pattern thickness 12 μm, nickel / gold plating treatment) was used as the first electronic component.
The anisotropic conductive film (film width 2.0 mm) obtained above was disposed on the terminal of the second electronic component. Subsequently, the first electronic component was disposed on the anisotropic conductive film. Subsequently, the first electronic component is heated and pressed through a buffer material (silicone rubber, thickness 0.2 mm) with a heating tool (width 2.0 mm) at 130 ° C., 4 MPa, 5 seconds, A joined body was obtained.

<<導通抵抗>>
得られた接合体の初期抵抗値を以下の方法で測定し、評価を行った。
デジタルマルチメーター(品番:デジタルマルチメーター34401A、アジレント社製)を用いて4端子法にて電流1mAを流したときの抵抗値を測定した。30チャンネルについて抵抗値を測定し、最大の抵抗値を以下の評価基準で評価した。結果を表1に示す。
〔評価基準〕
○:抵抗値が2Ω未満
△:抵抗値が2Ω以上10未満
×:抵抗値が10Ω以上
<< Conduction resistance >>
The initial resistance value of the obtained joined body was measured by the following method and evaluated.
Using a digital multimeter (product number: digital multimeter 34401A, manufactured by Agilent), the resistance value was measured when a current of 1 mA was passed by the four-terminal method. The resistance value was measured for 30 channels, and the maximum resistance value was evaluated according to the following evaluation criteria. The results are shown in Table 1.
〔Evaluation criteria〕
○: Resistance value is less than 2Ω △: Resistance value is 2Ω or more and less than 10 ×: Resistance value is 10Ω or more

<<外観(導電性粒子の潰れ具合)>>
異方性導電フィルムに含まれる導電性粒子について、金属顕微鏡(オリンパス株式会社製、商品名:MX51)を用いて、異方性導電接続前の前記導電性粒子の直径を測定し、次に異方性導電接続後の前記導電性粒子の短手方向の長さを測定し、下記式(1)から導電性粒子の潰れ具合を求めた。
導電性粒子の潰れ具合(%)=(異方性導電接続後の導電性粒子の短手方向の長さ/異方性導電接続前の導電性粒子の直径)×100・・・・・・・・・・・・・・式(1)
なお、異方性導電接続後の導電性粒子の短手方向の長さは、異方性導電接続時における第1の電子部品と第2の電子部品とに直交する方向(接続方向)の前記導電性粒子の長さとした。
そして、第1の電子部品の端子及び第2の電子部品の端子が接続された接続箇所100ヶ所について、全ての導電性粒子の潰れ具合を測定し、潰れ具合が50%を超える(前記式(1)で得られる「導電性粒子の潰れ具合(%)」が50%未満になる)導電性粒子を潰れた導電性粒子として、その割合を求め、以下の評価基準で評価した。
〔評価基準〕
◎:潰れた導電性粒子の数が90%以上
○:潰れた導電性粒子の数が80%以上90%未満
△:潰れた導電性粒子の数が50%以上80%未満
×:潰れた導電性粒子の数が50%未満
<< Appearance (Condition of conductive particles) >>
About the electroconductive particle contained in an anisotropic conductive film, the diameter of the said electroconductive particle before anisotropic conductive connection is measured using a metal microscope (Olympus Co., Ltd. make, brand name: MX51). The length in the short direction of the conductive particles after the anisotropic conductive connection was measured, and the degree of collapse of the conductive particles was determined from the following formula (1).
Crushing state of conductive particles (%) = (length of conductive particles after anisotropic conductive connection in the short direction / diameter of conductive particles before anisotropic conductive connection) × 100・ ・ ・ ・ ・ ・ ・ ・ Formula (1)
Note that the length in the short direction of the conductive particles after the anisotropic conductive connection is the direction perpendicular to the first electronic component and the second electronic component (connection direction) during the anisotropic conductive connection. The length of the conductive particles was used.
And about 100 connection locations where the terminal of the 1st electronic component and the terminal of the 2nd electronic component were connected, the degree of crushing of all conductive particles was measured, and the degree of crushing exceeded 50% (the above-mentioned formula ( (The degree of crushing of conductive particles (%) obtained in 1) is less than 50%.) The conductive particles were crushed conductive particles, the ratio was determined, and evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
◎: The number of crushed conductive particles is 90% or more. ○: The number of crushed conductive particles is 80% or more and less than 90%. △: The number of crushed conductive particles is 50% or more and less than 80%. Less than 50%

(実施例2〜12、比較例1〜3)
実施例1において、膜形成樹脂、硬化性樹脂、及び硬化剤の組成、及び配合量(含有量と同じ)を、表1〜表3に記載の組成、及び配合量に変更した以外は、実施例1と同様にして、異方性導電フィルムを作製し、評価に供した。結果を、表1〜表3に示す。
(Examples 2 to 12, Comparative Examples 1 to 3)
In Example 1, except that the composition of the film-forming resin, the curable resin, and the curing agent, and the blending amount (the same as the content) were changed to the compositions and blending amounts shown in Tables 1 to 3. In the same manner as in Example 1, an anisotropic conductive film was produced and used for evaluation. The results are shown in Tables 1 to 3.

Figure 2017117794
Figure 2017117794

Figure 2017117794
Figure 2017117794

Figure 2017117794
Figure 2017117794

表1〜表3中の配合量(含有量)の単位は、質量部である。
上記配合量(含有量)は、商品に溶剤が含まれている場合は、溶剤分を除いた配合量(含有量)である。
表1〜表3に記載の各種品名の詳細は以下のとおりである。
SP−185:結晶性ポリエステル樹脂、日本合成化学工業株式会社製、数平均分子量20,000、融点95℃
アロンメルトPES−111:結晶性ポリエステル樹脂、東亞合成株式会社製、融点110℃、ガラス転移温度0℃
UR−1400:非晶性ポリエステルウレタン樹脂、東洋紡株式会社製、数平均分子量40,000、ガラス転移温度83℃
YP−50:非晶性フェノキシ樹脂、新日鐵化学株式会社製、数平均分子量10,000、ガラス転移温度100℃
ニッポラン5196:非晶性ポリウレタン樹脂、日本ポリウレタン工業株式会社製、数平均分子量20,000、ガラス転移温度−27℃
M−1600:ウレタンアクリレート、東亞合成株式会社製
M−315:多官能アクリレート、東亞合成株式会社製
PM−2:リン酸アクリレート、日本化薬株式会社製
脂環式エポキシ樹脂:CEL2021P、株式会社ダイセル製
パーロイルL:ジラウロイルパーオキサイド、日油株式会社製
カチオン系硬化剤:SI−60L、三新化学工業株式会社製
Ni金属粒子:導電性粒子、バーレインコ社製、平均粒子径4μm
The unit of the blending amount (content) in Tables 1 to 3 is parts by mass.
The said compounding quantity (content) is a compounding quantity (content) except the solvent content, when the solvent is contained in goods.
Details of various product names described in Tables 1 to 3 are as follows.
SP-185: Crystalline polyester resin, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., number average molecular weight 20,000, melting point 95 ° C.
Aronmelt PES-111: crystalline polyester resin, manufactured by Toagosei Co., Ltd., melting point 110 ° C., glass transition temperature 0 ° C.
UR-1400: Amorphous polyester urethane resin, manufactured by Toyobo Co., Ltd., number average molecular weight 40,000, glass transition temperature 83 ° C.
YP-50: amorphous phenoxy resin, manufactured by Nippon Steel Chemical Co., Ltd., number average molecular weight 10,000, glass transition temperature 100 ° C.
NIPPOLAN 5196: Amorphous polyurethane resin, manufactured by Nippon Polyurethane Industry Co., Ltd., number average molecular weight 20,000, glass transition temperature -27 ° C
M-1600: Urethane acrylate, Toagosei Co., Ltd. M-315: Multifunctional acrylate, Toagosei Co., Ltd. PM-2: Phosphate acrylate, Nippon Kayaku Co., Ltd. Alicyclic epoxy resin: CEL2021P, Daicel Corporation Manufactured perloyl L: dilauroyl peroxide, manufactured by NOF Corporation Cationic curing agent: SI-60L, manufactured by Sanshin Chemical Industry Co., Ltd. Ni metal particles: conductive particles, manufactured by Bahrainco, average particle size 4 μm

実施例1〜12では、130℃という低温で圧着した場合でも、導通抵抗、及び外観(粒子潰れ)が良好であった。また、リール巻取りにおいても、はみ出しが少なく良好であった。
結晶性樹脂と非晶性樹脂との質量比(結晶性樹脂:非晶性樹脂)が、90:10〜20:80では、導通抵抗及び外観(粒子潰れ)がより良好になり、60:40〜40:60では、更にはみ出しがより少なくなった(例えば、実施例1〜7参照)。
非晶性樹脂としては、非晶性ポリエステルウレタン樹脂が、非晶性フェノキシ樹脂、及び非晶性ポリウレタン樹脂よりも、外観(粒子潰れ)及びはみ出しの点でより優れていた(例えば、実施例3、8、及び9参照)。
結晶性樹脂の融点は、90℃〜105℃の範囲内の方が、105℃を超える場合よりも、外観(粒子潰れ)の点で優れていた(例えば、実施例3、及び10参照)。
硬化性樹脂としては、エポキシ樹脂よりもアクリレートの方が、外観(粒子潰れ)及びはみ出しの点で優れていた(例えば、実施例3、及び11参照)。
硬化性樹脂の含有量は、異方性導電フィルム100質量部に対して、40質量部〜55質量部の範囲内の方が、55質量部を超える場合よりも、外観(粒子潰れ)及びはみ出しの点で優れていた(例えば、実施例3、及び12参照)。
結晶性樹脂を含有しない比較例1では、圧着時の溶融粘度の低下が遅く、導通抵抗、及び外観(粒子潰れ)が不十分であった。
非晶性樹脂を含有しない場合には、はみ出し試験が悪い結果となった(比較例3参照)。
In Examples 1 to 12, even when pressure bonding was performed at a low temperature of 130 ° C., the conduction resistance and the appearance (particle collapse) were good. Also, reel winding was good with little protrusion.
When the mass ratio of the crystalline resin to the amorphous resin (crystalline resin: amorphous resin) is 90:10 to 20:80, the conduction resistance and appearance (particle crushing) become better, and 60:40 At -40: 60, the amount of protrusion further decreased (for example, see Examples 1 to 7).
As an amorphous resin, the amorphous polyester urethane resin was more excellent in terms of appearance (particle collapse) and protrusion than the amorphous phenoxy resin and the amorphous polyurethane resin (for example, Example 3). , 8, and 9).
The melting point of the crystalline resin was superior in the range of 90 ° C. to 105 ° C. in terms of appearance (particle collapse), compared to the case where it exceeded 105 ° C. (see, for example, Examples 3 and 10).
As a curable resin, an acrylate was superior to an epoxy resin in terms of appearance (particle collapse) and protrusion (see, for example, Examples 3 and 11).
The content of the curable resin is 100 mass parts of the anisotropic conductive film, and the appearance (particle crushing) and the protrusion are more in the range of 40 mass parts to 55 mass parts than when 55 mass parts are exceeded. (See, for example, Examples 3 and 12).
In Comparative Example 1 containing no crystalline resin, the decrease in melt viscosity at the time of pressure bonding was slow, and the conduction resistance and appearance (particle collapse) were insufficient.
When the amorphous resin was not contained, the protrusion test was a bad result (see Comparative Example 3).

本発明の異方性導電フィルムは、低温での接続において十分な導通抵抗及び導電性粒子の潰れが得られ、かつ異方性導電フィルムをリールに巻き取った際に、端部から前記異方性導電フィルムがはみ出すことを防ぐことができるため、低温での接続に好適に用いることができる。   The anisotropic conductive film of the present invention has sufficient conduction resistance and crushing of conductive particles in connection at a low temperature, and when the anisotropic conductive film is wound on a reel, Since it can prevent that a conductive conductive film protrudes, it can be used suitably for the connection at low temperature.

Claims (5)

第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
膜形成樹脂と、硬化性樹脂と、硬化剤と、導電性粒子とを含有し、
前記膜形成樹脂が、結晶性樹脂と、非晶性樹脂とを含有し、
前記結晶性樹脂と前記非晶性樹脂との質量比率(結晶性樹脂:非晶性樹脂)が、40:60〜90:10であり、
前記結晶性樹脂の融点が、90℃〜110℃であることを特徴とする異方性導電フィルム。
An anisotropic conductive film for anisotropic conductive connection between a terminal of a first electronic component and a terminal of a second electronic component,
Contains a film-forming resin, a curable resin, a curing agent, and conductive particles,
The film-forming resin contains a crystalline resin and an amorphous resin,
The mass ratio of the crystalline resin to the amorphous resin (crystalline resin: amorphous resin) is 40:60 to 90:10,
An anisotropic conductive film, wherein the crystalline resin has a melting point of 90 ° C to 110 ° C.
結晶性樹脂が、結晶性ポリエステル樹脂であり、
非晶性樹脂が、非晶性ポリエステルウレタン樹脂、非晶性フェノキシ樹脂、及び非晶性ポリウレタン樹脂の少なくともいずれかである請求項1に記載の異方性導電フィルム。
The crystalline resin is a crystalline polyester resin;
The anisotropic conductive film according to claim 1, wherein the amorphous resin is at least one of an amorphous polyester urethane resin, an amorphous phenoxy resin, and an amorphous polyurethane resin.
非晶性樹脂が、非晶性ポリエステルウレタン樹脂である請求項1から2のいずれかに記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein the amorphous resin is an amorphous polyester urethane resin. 第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる接続方法であって、
前記第2の電子部品の端子上に請求項1から3のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
前記第1の電子部品を加熱押圧部材により加熱及び押圧する加熱押圧工程とを含むことを特徴とする接続方法。
A method of connecting anisotropically conductively connecting a terminal of a first electronic component and a terminal of a second electronic component,
A first disposing step of disposing the anisotropic conductive film according to any one of claims 1 to 3 on a terminal of the second electronic component;
A second disposing step of disposing the first electronic component on the anisotropic conductive film such that a terminal of the first electronic component is in contact with the anisotropic conductive film;
And a heating and pressing step of heating and pressing the first electronic component with a heating and pressing member.
端子を有する第1の電子部品と、端子を有する第2の電子部品と、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続する異方性導電フィルムの硬化物とを有し、
前記異方性導電フィルムが、請求項1から3のいずれかに記載の異方性導電フィルムであることを特徴とする接合体。
A first electronic component having a terminal; a second electronic component having a terminal; the terminal of the first electronic component interposed between the first electronic component and the second electronic component; A cured product of an anisotropic conductive film that electrically connects the terminals of the second electronic component;
The joined body, wherein the anisotropic conductive film is the anisotropic conductive film according to claim 1.
JP2017002837A 2017-01-11 2017-01-11 Anisotropic conductive film, connection method, and joined body Active JP6271048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017002837A JP6271048B2 (en) 2017-01-11 2017-01-11 Anisotropic conductive film, connection method, and joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017002837A JP6271048B2 (en) 2017-01-11 2017-01-11 Anisotropic conductive film, connection method, and joined body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012253350A Division JP2014102943A (en) 2012-11-19 2012-11-19 Anisotropic conductive film, connection method and joined body

Publications (2)

Publication Number Publication Date
JP2017117794A true JP2017117794A (en) 2017-06-29
JP6271048B2 JP6271048B2 (en) 2018-01-31

Family

ID=59231976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002837A Active JP6271048B2 (en) 2017-01-11 2017-01-11 Anisotropic conductive film, connection method, and joined body

Country Status (1)

Country Link
JP (1) JP6271048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448279A (en) * 2018-01-30 2020-07-24 拓自达电线株式会社 Conductive adhesive composition
WO2021112023A1 (en) * 2019-12-03 2021-06-10 デクセリアルズ株式会社 Film wound body and method for manufacturing connecting body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152233A (en) * 2004-11-01 2006-06-15 Tatsuta System Electronics Kk Anisotropic electroconductive adhesive and electronic equipment formed by using the same
JP2006161016A (en) * 2004-12-08 2006-06-22 Lg Cable Ltd Anisotropically conductive adhesive having ptc characteristics
WO2009038190A1 (en) * 2007-09-19 2009-03-26 Hitachi Chemical Company, Ltd. Adhesive composition and bonded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152233A (en) * 2004-11-01 2006-06-15 Tatsuta System Electronics Kk Anisotropic electroconductive adhesive and electronic equipment formed by using the same
JP2006161016A (en) * 2004-12-08 2006-06-22 Lg Cable Ltd Anisotropically conductive adhesive having ptc characteristics
WO2009038190A1 (en) * 2007-09-19 2009-03-26 Hitachi Chemical Company, Ltd. Adhesive composition and bonded body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448279A (en) * 2018-01-30 2020-07-24 拓自达电线株式会社 Conductive adhesive composition
CN111448279B (en) * 2018-01-30 2021-08-10 拓自达电线株式会社 Conductive adhesive composition
TWI784126B (en) * 2018-01-30 2022-11-21 日商拓自達電線股份有限公司 Conductive Adhesive Composition
WO2021112023A1 (en) * 2019-12-03 2021-06-10 デクセリアルズ株式会社 Film wound body and method for manufacturing connecting body
JP7446095B2 (en) 2019-12-03 2024-03-08 デクセリアルズ株式会社 Manufacturing method of film wrapping body and connection body

Also Published As

Publication number Publication date
JP6271048B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP2014102943A (en) Anisotropic conductive film, connection method and joined body
US20150237725A1 (en) Anisotropic conductive film, connection method, and assembly
JP5192194B2 (en) Adhesive film
JP5685473B2 (en) Anisotropic conductive film, method for manufacturing bonded body, and bonded body
JP2005200521A (en) Adhesive film and method of manufacturing adhesive film
JP5608426B2 (en) Method for manufacturing anisotropic conductive film
JP6496431B2 (en) Conductive material and connection structure
JP6271048B2 (en) Anisotropic conductive film, connection method, and joined body
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
EP1657725B1 (en) Insulation-coated electroconductive particles
JP6408759B2 (en) Adhesive composition and film winding body
WO2021112023A1 (en) Film wound body and method for manufacturing connecting body
WO2016052130A1 (en) Anisotropic conductive film and bonding method
JP6493968B2 (en) Connection method, bonded body, anisotropic conductive film, and bonded body precursor
JP6370562B2 (en) CONNECTION MANUFACTURING METHOD, FLEXIBLE BOARD CONNECTION METHOD, CONNECTION BODY AND FLEXIBLE SUBSTRATE
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method
JP2017098077A (en) Anisotropic conductive film and connection method
JP6265620B2 (en) Anisotropic conductive film, connection method, and joined body
JP6366975B2 (en) Adhesive film winding body, connection body manufacturing method, and electronic component connection method
JP2010135576A (en) Printed wiring board, and method of manufacturing printed wiring board
JP2016177917A (en) Circuit connection material and connection method
WO2017104434A1 (en) Anisotropic conductive film, connection method, and bonded body
JP2017098413A (en) Repair method and connection method
JP2005026234A (en) Connection method using anisotropic conductive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6271048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250