JP2017114203A - 車両の電動制動装置 - Google Patents

車両の電動制動装置 Download PDF

Info

Publication number
JP2017114203A
JP2017114203A JP2015249632A JP2015249632A JP2017114203A JP 2017114203 A JP2017114203 A JP 2017114203A JP 2015249632 A JP2015249632 A JP 2015249632A JP 2015249632 A JP2015249632 A JP 2015249632A JP 2017114203 A JP2017114203 A JP 2017114203A
Authority
JP
Japan
Prior art keywords
electric motor
energization amount
state
value
parking brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015249632A
Other languages
English (en)
Other versions
JP6724359B2 (ja
Inventor
安井 由行
Yoshiyuki Yasui
由行 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2015249632A priority Critical patent/JP6724359B2/ja
Publication of JP2017114203A publication Critical patent/JP2017114203A/ja
Application granted granted Critical
Publication of JP6724359B2 publication Critical patent/JP6724359B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

【課題】 車輪において、1つの電気モータとロック機構で構成される電動制動装置において、通常ブレーキと駐車ブレーキとの制御干渉が防止されるとともに、省電力であるものを提供する。【解決手段】 制御手段(CTL)は、回転部材(KTB)に摩擦部材(MSB)を押圧する力を発生する電気モータ(MTR)と、駐車ブレーキを効かせるロック機構(LOK)とを駆動する。制御手段(CTL)は、制動操作部材(BP)の操作量(Bpa)が増加したときに、ロック機構(LOK)が係合状態を維持する係合維持状態であるか、否かを判定し、係合維持状態ではないことを判定する場合には、操作量(Bpa)の増加にしたがって電気モータ(MTR)への通電量(Imt、Ima)を単調増加し、係合維持状態であることを判定する場合には、電気モータ(MTR)への通電量(Imt、Ima)を予め設定された制限値(imj、ゼロ)に制限する。【選択図】 図9

Description

本発明は、車両の電動制動装置に関する。
特許文献1には、「ブレーキドラムにブレーキディスクロータを一体に形成し、走行時は、ディスクブレーキ装置で制動作用を行い、駐車時は、ドラムブレーキ装置で制動作用をするドラムインディスクブレーキ装置」について記載されている。このような制動装置においては、通常ブレーキと駐車ブレーキとが別個に動作されるため、通常ブレーキと駐車ブレーキとは干渉することがない。
本出願人は、例えば、特許文献2に記載されるような、1つの電気モータによって、通常ブレーキ(運転者のブレーキペダルの踏み込み操作によって行われる制動)と駐車ブレーキ(車両の停止状態を維持する制動)とが行われる電動制動装置について開発を行っている。ここで、駐車ブレーキは、ラチェット歯車RCHとつめ部材TSUとから構成されるロック機構LOKによって電気モータMTRの動きを拘束することで、その機能が発揮される。さらに、電気モータMTRの制御において、通常ブレーキと駐車ブレーキとの干渉を抑制するために、電気モータMTRの目標通電量を決定する際に、選択手段SNTによって、通常ブレーキ用目標値Imsと駐車ブレーキ用目標値Ipkとのうちで、大きい方の値が、最終目標値Imtとして選択される。
特許文献2の電動制動装置において、駐車ブレーキが効いている状態(駐車ブレーキ制御の係合維持状態)で運転者が制動操作部材(ブレーキペダル)BPを操作した場合を想定する。この場合、最終目標値(目標通電量)Imtとして、通常ブレーキ用目標値(指示通電量)Imsが選択されるため、電気モータMTRへの通電が行われた状態になり、電力消費の観点から好ましくない。
特開平10−267053号公報 特開2015−107746号公報
本発明の目的は、車輪において、1つの電気モータとロック機構で構成される電動制動装置において、通常ブレーキと駐車ブレーキとの制御干渉が防止されるとともに、省電力であるものを提供することである。
本発明に係る車両の電動制動装置は、車両の運転者による制動操作部材(BP)の操作量(Bpa)に応じて、前記車両の車輪(WHL)と一体となって回転する回転部材(KTB)に摩擦部材(MSB)を押圧する力である押圧力(Fba)を発生する電気モータ(MTR)と、前記電気モータ(MTR)の回転をロックして前記車両に駐車ブレーキを効かせるロック機構(LOK)と、前記操作量(Bpa)に基づいて前記電気モータ(MTR)への通電量(Imt、Ima)を制御するとともに、前記車両の運転者によって操作される駐車スイッチ(PSW)からの信号(Psw)に基づいて前記電気モータ(MTR)、及び、前記ロック機構(LOK)を駆動する制御手段(CTL)と、を備える。
本発明に係る車両の電動制動装置では、前記制御手段(CTL)は、前記制動操作部材(BP)の操作量(Bpa)が増加したときに、前記ロック機構(LOK)が係合状態を維持する係合維持状態であるか、否かを判定し、前記係合維持状態ではないことを判定する場合には、前記操作量(Bpa)の増加にしたがって前記電気モータ(MTR)への通電量(Imt、Ima)を単調増加し、前記係合維持状態であることを判定する場合には、前記電気モータ(MTR)への通電量(Imt、Ima)を予め設定された制限値(imj、ゼロ)に制限するよう構成される。
上記の構成によれば、駐車ブレーキ制御の係合維持状態(即ち、駐車ブレーキが効いている場合)において、電気モータMTRへの通電量が制限される。このため、電気モータMTRへの不必要な電力供給が行われず、1つの電気モータとロック機構で構成される電動制動装置DSSの無駄な電力消費が抑制される。さらに、駐車ブレーキ制御の係合維持状態以外の場合には、電気モータMTRへの通電量が制限が行われず、制動操作量Bpaの増加にしたがって電気モータMTRへの通電量Imt、Imaが単調増加されるため、通常ブレーキ制御と駐車ブレーキ制御との干渉が抑制され得る。
さらに、本発明に係る車両の電動制動装置では、前記制御手段(CTL)は、前記制動操作部材(BP)の操作量(Bpa)がゼロより大きいときに、前記ロック機構(LOK)が係合状態を維持する係合維持状態であるか、否かを判定し、前記係合維持状態ではないことを判定する場合には、前記操作量(Bpa)に基づいて前記電気モータ(MTR)への通電量(Imt、Ima)を決定し、前記係合維持状態であることを判定する場合には、前記電気モータ(MTR)への通電量(Imt、Ima)をゼロにするよう構成される。
上記の構成によれば、駐車ブレーキが効いている場合には、電気モータMTRへ通電が行われない。結果、1つの電気モータとロック機構で構成される電動制動装置DSSにおいて、上記同様の効果を奏する。
本発明の実施形態に係る車両の電動制動装置の全体構成図である。 駆動手段を説明するための概要図である。 駐車ブレーキ用のロック機構の実施形態を説明するための概要図である。 駐車ブレーキの制御状態について説明するための状態遷移図である。 駐車ブレーキ制御の全体を説明するためのフロー図である。 駐車ブレーキ制御の係合作動における押圧力調整処理を説明するためのフロー図である。 駐車ブレーキ制御の係合作動における咬合処理を説明するためのフロー図である。 駐車ブレーキ制御の解除作動の処理を説明するためのフロー図である。 駐車ブレーキ制御の通電量制限処理を説明するためのフロー図である。 駐車ブレーキ制御の通電量制限処理を説明するための時系列線図である。
以下、本発明の実施形態に係る車両の電動制動装置について図面を参照しつつ説明する。
<本発明の実施形態に係る車両の電動制動装置の全体構成>
図1は、本発明の実施形態に係る電動制動装置DSSの全体構成図である。車両には、電動制動装置DSS、制動操作部材BP、操作量取得手段BPA、駐車ブレーキ用スイッチPSW、回転部材(例えば、ブレーキディスク、ブレーキドラム)KTB、及び、摩擦部材(例えば、ブレーキパッド、ブレーキシュー)MSBが備えられる。電動制動装置DSSは、電子制御ユニットECU、通信線SGL、及び、制動手段BRKにて構成される。
制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両を減速するために操作する部材である。制動操作部材BPの操作に応じて、制動手段BRKによって、車輪WHLの制動トルクが調整される。その結果として、車輪WHLに制動力が発生され、走行中の車両が減速される。
制動操作部材BPには、操作量取得手段BPAが設けられる。操作量取得手段BPAによって、制動操作部材BPの操作量(制動操作量)Bpaが取得(検出)される。操作量取得手段BPAとして、マスタシリンダの圧力を検出するセンサ(圧力センサ)、制動操作部材BPの操作力を検出するセンサ(踏力センサ)、及び、制動操作部材BPの操作変位を検出するセンサ(ストロークセンサ)のうちの、少なくとも1つが採用される。従って、制動操作量Bpaは、マスタシリンダ圧力、ブレーキペダル踏力、及び、ブレーキペダルストロークのうちの少なくとも何れか1つに基づいて演算される。検出された制動操作量Bpaは、電子制御ユニットECUに入力される。
駐車ブレーキ用スイッチ(単に、駐車スイッチともいう)PSWは、運転者によって操作されるスイッチであり、オン又はオフの信号Psw(駐車信号という)を、電子制御ユニットECUに対して出力する。即ち、運転者は、車両の停止状態を維持する駐車ブレーキの作動又は解除を、駐車スイッチPSWの操作によって指示する。具体的には、駐車信号Pswのオン(ON)状態で駐車ブレーキの作動が指示され、駐車信号Pswのオフ(OFF)状態で駐車ブレーキの解除が指示される。
≪電子制御ユニットECU≫
電子制御ユニットECUは、指示押圧力演算ブロックFBS、指示通電量演算ブロックIMS、駐車ブレーキ演算ブロックIPS、目標通電量演算ブロックIMT、及び、車体側通信部CMBにて構成される。ここで、車両を減速し、停止させる通常ブレーキに係るもの(指示押圧力演算ブロックFBS、指示通電量演算ブロックIMS、及び、目標通電量演算ブロックIMT)が「通常ブレーキ制御手段SBC」と称呼され、車両の停止状態を維持する駐車ブレーキに係るもの(駐車ブレーキ演算ブロックIPSと目標通電量演算ブロックIMT)が「駐車ブレーキ制御手段PKC」と称呼される。なお、電子制御ユニットECUは、制御手段(コントローラ)CTLの一部に相当する。
指示押圧力演算ブロックFBS(通常ブレーキ制御手段SBCに相当)では、摩擦部材MSBが回転部材KTBを押す力(押圧力)に関する目標値(指示押圧力)Fbsが演算される。具体的には、指示押圧力Fbsは、制動操作量Bpa、及び、予め設定された演算マップCHfsに基づいて、制動操作量Bpaが増加するにしたがって指示押圧力Fbsがゼロから単調増加するように演算される。ここで、指示押圧力Fbsは通常ブレーキ機能における目標値であり、指示押圧力演算ブロックFBSから指示通電量演算ブロックIMSに入力される。
指示通電量演算ブロックIMSにて、目標押圧力Fbsに基づいて、指示通電量Imsが演算される。指示通電量Imsは、通常ブレーキにおける(即ち、運転者の制動操作部材BPの操作による)電気モータMTRへの通電量の目標値である。具体的には、指示通電量Imsは、指示押圧力Fbs、及び、予め設定された演算マップCHsに基づいて、指示押圧力Fbsが増加するにしたがって指示通電量Imsがゼロから単調増加するように演算される。指示通電量Imsは、目標通電量演算ブロックIMTに入力される。
駐車ブレーキ演算ブロックIPS(駐車ブレーキ制御手段PKCに相当)では、駐車信号Psw、実押圧力Fba、及び、ラチェット歯車回転角Rka(又は、モータ回転角Mka)に基づいて、駐車ブレーキ制御用の信号Ipt(駐車通電量)、Sgj(制御状態)、Scd(ソレノイド指令信号)が演算される。駐車通電量Iptは、駐車ブレーキ制御を実行するための電気モータMTRへの通電量の目標値である。駐車ブレーキ制御の制御状態Sgjは、現在の駐車ブレーキの作動状況を示すものである。指令信号Scdは、ソレノイドSOLへの通電/非通電を指令するためのものである。駐車通電量Ipt、及び、制御状態Sgjは、目標通電量演算ブロックIMTに入力される。また、指令信号Scdは車体側通信部CMBに入力される。
目標通電量演算ブロックIMT(通常ブレーキ制御手段SBC、及び、駐車ブレーキ制御手段PKCに相当)では、指示通電量Ims(通常ブレーキの通電目標値)Fbs、及び、駐車通電量(駐車ブレーキの通電目標値)Iptに基づいて、電気モータMTRへの通電状態(最終的には電流の大きさと方向)の目標値である目標通電量Imtが演算される。具体的には、指示通電量Imsと駐車通電量Iptとが比較され、それらのうちで、大きい方が目標通電量Imtとして、車体側通信部CMBに入力される。これにより、通常ブレーキと駐車ブレーキとの制御干渉が防止される。
目標通電量Imtの符号(値の正負)に基づいて電気モータMTRの回転方向が決定され、目標通電量Imtの大きさに基づいて電気モータMTRの出力(回転動力)が制御される。具体的には、目標通電量Imtの符号が正符号である場合(Imt>0)には、電気モータMTRが正転方向(押圧力の増加方向)に駆動され、目標通電量Imtの符号が負符号である場合(Imt<0)には、電気モータMTRが逆転方向(押圧力の減少方向)に駆動される。また、目標通電量Imtの絶対値が大きいほど電気モータMTRの出力トルクが大きくなるように制御され、目標通電量Imtの絶対値が小さいほど出力トルクが小さくなるように制御される。
ここで、「通電量」とは、電気モータMTRの出力トルクを制御するための状態量(変数)である。電気モータMTRは電流に概ね比例するトルクを出力するため、通電量の目標値として電気モータMTRの電流目標値が用いられ得る。また、電気モータMTRへの供給電圧を増加すれば、結果として電流が増加されるため、目標通電量として供給電圧値が用いられ得る。さらに、パルス幅変調におけるデューティ比によって供給電圧値が調整され得るため、このデューティ比が通電量として用いられ得る。なお、上記の駐車ブレーキ演算ブロックIPS、及び、目標通電量演算ブロックIMTの詳細については後述する。
車体側通信部CMBでは、通信線SGLを介して、制動手段BRK内の駆動手段DRV(特に、車輪側通信部CMW)との間で信号の送受信が行われる。車体側通信部CMBからは、目標通電量Imt、及び、駐車ブレーキのソレノイド指令信号Scdが、車輪側通信部CMWに送信される。車輪側通信部CMWからは、実際の押圧力Fba、ラチェット歯車の回転角Rka、及び、電気モータの回転角Mkaが、車体側通信部CMBに送信される。
通信線SGLは、車体に固定される電子制御ユニットECUと、車輪に固定される制動手段BRKとの間の通信手段である。信号線SGLとして、シリアル通信バス(例えば、CANバス)が採用され得る。
≪制動手段(ブレーキアクチュエータ)BRK≫
制動手段BRKは、車輪WHLの側に設けられ、車輪WHLに制動トルクを与え、制動力を発生させる。制動手段BRKによって、走行中の車両は減速される(即ち、通常ブレーキとして機能する)。また、制動手段BRKは、車両の停止中には、その停止状態を維持する駐車ブレーキとして機能する。
制動手段BRKとして、所謂、ディスク型制動装置(ディスクブレーキ)の構成が例示されている。この場合、摩擦部材MSBはブレーキパッドであり、回転部材KTBはブレーキディスクである。制動手段BRKは、ドラム型制動装置(ドラムブレーキ)であってもよい。ドラムブレーキの場合、摩擦部材MSBはブレーキシューであり、回転部材KTBはブレーキドラムである。
制動手段BRK(ブレーキアクチュエータ)は、ブレーキキャリパCRP、押圧部材PSN、電気モータMTR、位置取得手段MKA、減速機GSK、入力部材SFI、出力部材SFO、ねじ部材NJB、押圧力取得手段FBA、駆動手段DRV、及び、駐車ブレーキ用ロック機構LOKにて構成される。上記の各部材(PSN等)は、ブレーキキャリパCRPの内部に収納されている。
ブレーキキャリパCRP(単に、キャリパともいう)として、浮動型キャリパが採用され得る。キャリパCRPは、2つの摩擦部材(ブレーキパッド)MSBを介して、回転部材(ブレーキディスク)KTBを挟み込むように構成される。キャリパCRP内にて、押圧部材(ブレーキピストン)PSNが、回転部材KTBに対して移動(前進、又は、後退)される。押圧部材PSNの移動によって、摩擦部材MSBが回転部材KTBに押し付けられて摩擦力が発生する。
押圧部材PSNの移動は、電気モータMTRの動力によって行われる。具体的には、電気モータMTRの出力(モータ軸まわりの回転動力)が、減速機GSKを介して、出力部材SFOに伝達される。そして、出力部材SFOの回転動力(トルク)が、ねじ部材NJBによって、直線動力(押圧部材の軸方向の推力)に変換され、押圧部材PSNに伝達される。その結果、押圧部材PSNが、回転部材KTBに対して移動される。押圧部材PSNの移動によって、摩擦部材MSBが、回転部材KTBを押す力(押圧力)が調整される。回転部材KTBは車輪WHLに固定されているため、摩擦部材MSBと回転部材KTBとの間に摩擦力が発生し、車輪WHLの制動力が調整される。
電気モータMTRは、押圧部材PSNを駆動(移動)するための動力源である。例えば、電気モータMTRとして、ブラシ付モータ、又は、ブレシレスモータが採用され得る。電気モータMTRの回転方向において、正転方向が、摩擦部材MSBが回転部材KTBに近づいていく方向(押圧力が増加し、制動トルクが増加する方向)に相当し、逆転方向が、摩擦部材MSBが回転部材KTBから離れていく方向(押圧力が減少し、制動トルクが減少する方向)に相当する。
位置取得手段(例えば、回転角センサ)MKAは、電気モータMTRのロータ(回転子)の位置(回転角)Mkaを取得(検出)する。検出された回転角Mkaは、駆動手段DRV(具体的には、駆動手段DRV内のプロセッサ)に入力される。位置取得手段MKAは、後述する歯車回転角取得手段RKAを兼ね得る。即ち、歯車回転角Rkaとして、モータ回転角Mkaが採用され得る。
押圧力取得手段(例えば、押圧力センサ)FBAは、押圧部材PSNが摩擦部材MSBを押す力(押圧力)Fbaを取得(検出)する。検出された実際の押圧力Fbaは、駆動手段DRV(具体的には、DRV内のプロセッサ)に入力される。例えば、押圧力取得手段FBAは、出力部材SFOとキャリパCRPとの間に設けられる。
駆動手段(駆動回路)DRVは、電気モータMTR、及び、ソレノイドアクチュエータSOLを駆動する電気回路である。駆動手段DRVは、プロセッサ(演算処理装置)、ブリッジ回路BRG等にて構成される。駆動手段DRVによって、目標通電量Imtに基づいて電気モータMTRが制御され、指令信号Scdに基づいてソレノイドSOLが駆動される。
駐車ブレーキ用ロック機構(単に、ロック機構ともいう)LOKは、車両の停止状態を維持するブレーキ機能(所謂、駐車ブレーキ)のため、電気モータMTRが、逆転方向に回転しないようにロックする。ロック機構LOKによって、押圧部材PSNが回転部材KTBに対して離れる方向に移動することが拘束(制限)され、摩擦部材MSBによる回転部材KTBの押圧状態が維持される。ここで、ロック機構LOKは、電気モータMTRと減速機GSKとの間に設けられ得る。
<駆動手段DRV>
図2の概要図を参照して、駆動手段DRVについて説明する。これは、電気モータMTRとして、ブラシ付モータ(単に、ブラシモータともいう)が採用される場合の例である。駆動手段DRVによって、電気モータMTR、及び、ソレノイドSOLが駆動される。駆動手段DRVは、車輪側通信部CMW、モータ駆動部DRM、及び、ソレノイド駆動部DRSにて構成される。なお、駆動手段(駆動回路)DRVは、制御手段(コントローラ)CTLの一部に相当する。
駆動手段DRV(駆動回路)には、電力線PWLを介して、車体側に固定される蓄電池BAT、発電機ALTから電力が供給される。駆動手段DRVには、押圧力取得手段FBAの取得結果(実押圧力)Fba、位置取得手段MKAの取得結果(モータ回転角)Mka、及び、ラチェット歯車の回転角取得手段RKAの取得結果(歯車回転角)Rkaが入力される。さらに、駆動手段DRV(特に、車輪側通信部CMW)には、信号線SGLを介して、電気モータMTR、及び、ソレノイドSOLを制御するための信号Imt、Scdが、電子制御ユニットECU(特に、車体側通信部CMB)から入力される。逆に、駆動手段DRVから電子制御ユニットECUには、信号線SGLを介して、実押圧力Fba、歯車回転角Rka、及び、モータ回転角Mkaが出力される。
≪モータ駆動部DRM≫
モータ駆動部DRMは、ブリッジ回路BRG、パルス幅変調ブロックPWM、及び、スイッチング制御ブロックSWTにて構成される。
ブリッジ回路BRGは、双方向の電源を必要とすることなく、単一の電源で電気モータへの通電方向が変更され、電気モータの回転方向(正転方向、又は、逆転方向)が制御され得る回路である。ブリッジ回路BRGは、スイッチング素子SW1乃至SW4によって構成される。スイッチング素子SW1乃至SW4は、電気回路の一部をオン(通電)/オフ(非通電)できる素子である。スイッチング素子SW1〜SW4は、スイッチング制御ブロックSWTからの信号Sw1〜Sw4によって駆動される。夫々のスイッチング素子の通電/非通電の状態が切り替えられることによって、電気モータMTRの回転方向と出力トルクとが調整される。例えば、スイッチング素子として、MOS−FET、IGBTが用いられる。
電気モータMTRが正転方向に駆動される場合には、スイッチング素子SW1、SW4が通電状態(オン状態)にされ、スイッチング素子SW2、SW3が非通電状態(オフ状態)にされる。逆に、電気モータMTRが逆転方向に駆動される場合には、スイッチング素子SW1、SW4が非通電状態(オフ状態)にされ、スイッチング素子SW2、SW3が通電状態(オン状態)にされる。即ち、電気モータMTRの逆転駆動では、電流が正転駆動とは逆方向に流される。
ブラシ付モータに代えて、ブラシレスモータが採用される場合、ブリッジ回路BRGは、6つのスイッチング素子によって構成される。ブラシ付モータの場合と同様に、デューティ比Dutに基づいて、スイッチング素子の通電状態/非通電状態が制御される。ブラシレスモータでは、位置取得手段MKAによって、電気モータMTRのロータ位置(回転角)Mkaが取得される。そして、実際の位置Mkaに基づいて、3相ブリッジ回路を構成する6つのスイッチング素子が制御される。スイッチング素子によって、ブリッジ回路BRGのU相、V相、及び、W相のコイル通電量の方向(即ち、励磁方向)が順次切り替えられて、電気モータMTRが駆動される。ブラシレスモータの回転方向(正転、或いは、逆転方向)は、ロータと励磁する位置との関係によって決定される。
ブリッジ回路BRGには、電気モータ用の通電量取得手段(例えば、電流センサ)IMAが設けられる。通電量取得手段IMAは、電気モータMTRの通電量(実際値)Imaを取得する。例えば、モータ電流センサIMAによって、実通電量Imaとして、実際に電気モータMTRに流れる電流値が検出され得る。
パルス幅変調ブロックPWMでは、目標通電量Imtに基づいて、パルス幅変調を行うための指示値(目標値)Dutが演算される。具体的には、パルス幅変調ブロックPWMでは、目標通電量Imt、及び、予め設定される特性(演算マップ)に基づいて、パルス幅のデューティ比Dut(周期的なパルス波において、その周期に対するオン状態の割合)が決定される。併せて、パルス幅変調ブロックPWMでは、目標通電量Imtの符号(正符号、又は、負符号)に基づいて、電気モータMTRの回転方向が決定される。例えば、電気モータMTRの回転方向は、正転方向が正(プラス)の値、逆転方向が負(マイナス)の値として設定される。入力電圧(電源電圧)、及び、デューティ比Dutによって最終的な出力電圧が決まるため、パルス幅変調ブロックPWMでは、電気モータMTRの回転方向と、電気モータMTRへの通電量(即ち、電気モータMTRの出力)が決定される。
さらに、パルス幅変調ブロックPWMでは、所謂、電流フィードバック制御が実行される。通電量取得手段IMAの検出値(例えば、実際の電流値)Imaが、パルス幅変調ブロックPWMに入力され、目標通電量Imtと、実際の通電量Imaとの偏差(通電量偏差)eImに基づいて、デューティ比Dutが修正(微調整)される。この電流フィードバック制御によって、目標値Imtと実際値Imaとが一致するよう、高精度なモータ制御が達成され得る。
スイッチング制御ブロックSWTでは、デューティ比(目標値)Dutに基づいて、ブリッジ回路BRGを構成するスイッチング素子SW1〜SW4を駆動する信号(駆動信号)Sw1〜Sw4が決定される。これらの駆動信号Sw1〜Sw4によって、各スイッチング素子SW1〜SW4における通電/非通電、及び、単位時間当りの通電時間が制御される。即ち、駆動信号Sw1〜Sw4によって、電気モータMTRの回転方向と出力トルクが制御される。
≪ソレノイド駆動部DRS≫
ソレノイド駆動部DRSは、スイッチング素子SS、及び、ソレノイド制御ブロックCSLにて構成される。スイッチング素子SSは、ソレノイドSOLへの通電状態を制御する。具体的には、スイッチング素子SSは、電気回路の一部をオン(通電)/オフ(非通電)できる素子であり、駆動信号Ssに基づいて、スイッチング素子SSの通電/非通電の状態が切り替えられる。これによって、ソレノイドSOLの吸引力の発生/解除が切り替えられる(即ち、ソレノイドSOLが駆動される)。例えば、スイッチング素子SSとして、MOS−FET、IGBT、又は、リレーが用いられ得る。
ソレノイド制御ブロックCSLにて、指令信号Scdがソレノイドの駆動信号Ssに変換されてスイッチング素子SSに出力される。ソレノイド駆動部DRSには、ソレノイド用の通電量取得手段(例えば、電流センサ)ISAが設けられる。通電量取得手段ISAは、ソレノイドSOLの通電量(実際値)Isaを取得する。例えば、ソレノイド電流センサISAによって、実通電量Isaとして、実際にソレノイドSOLに流れる電流値が検出され得る。
<駐車ブレーキ用のロック機構の第1実施形態>
図3の概要図を参照して、駐車ブレーキ用ロック機構(単に、ロック機構という)LOKの第1実施形態について説明する。第1実施形態に係るロック機構LOKでは、つめ部材TSUとラチェット歯車RCHとの咬み合いによって、駐車ブレーキの機能を発揮する。ここで、つめ部材TSUとラチェット歯車RCHとが咬み合っている場合(ロック機構LOKが作動している場合)が、駐車ブレーキが効いている状態であり、咬み合っていない場合(ロック機構LOKが非作動の場合)が、駐車ブレーキが効いていない状態である。
先ず、ロック機構LOKの構造について説明する。ロック機構LOKは、ラチェット機構(つめブレーキ)として構成される。ラチェット機構は、回転動作を一方向に制限するものである。したがって、ロック機構LOKは、ラチェット機構が咬み合った状態で、一方向の回転(矢印Fwdで示す方向)を許容するが、他方向の回転(矢印Rvsで示す方向)を拘束する(動きを制限する)。図3(a)は、駐車ブレーキの解除維持状態(つめ部材TSUが解除位置にある状態)を示し、図3(b)は、駐車ブレーキの係合維持状態(つめ部材TSUが咬合位置にある状態)を示している。
ロック機構LOKは、ソレノイドアクチュエータSOL、つめ部材TSU、ガイド部材GID、ラチェット歯車RCH、及び、弾性部材SPRにて構成される。
ソレノイドアクチュエータ(単に、ソレノイドともいう)SOLは、キャリパCRPに固定される。ロック機構LOKが解除状態から咬合状態に遷移する場合、ソレノイドSOLへの通電によって、ソレノイドSOLの一部であるプッシュバーPSBによって、つめ部材TSUがラチェット歯車RCHに向けて押圧される。具体的には、つめ部材TSUが、ラチェット歯車RCHの回転軸に近づく方向(咬合方向)Ddwに、ソレノイドSOLから力を受ける。つめ部材TSUは、キャリパCRPに固定されるガイド部材GIDによって位置決めされ、咬合方向Ddw、及び、その反対方向(解除方向)Dupの動きに限って許容されている。つめ部材TSUが、ラチェット歯車RCHと咬み合うことによって、駐車ブレーキ機能が発揮される。
ソレノイドSOLは、コイルCOL、固定鉄芯(ベースともいう)BAS、可動鉄芯(プランジャともいう)PLN、プッシュバーPSB、及び、ハウジングHSGにて構成される。ハウジングHSGの内に、コイルCOL、及び、ベースBASは収められ、ハウジングHSGは、キャリパCRPに固定される。即ち、ソレノイドSOLは、キャリパCRPに固定される。
コイルCOLは、導線に電流が流されることによって磁界を発生する。通電によって、コイルCOLに磁界が発生されると、固定鉄芯(ベース)BASに磁束が通り、BASが可動鉄芯(プランジャ)PLNを吸引する。そして、通電している間は、プランジャPLNはベースBASに常に吸引されるが、通電が遮断されると、この吸引力は消滅される。プランジャPLNにプッシュバーPSBが固定され、プランジャPLNの吸引動作に応じて、プッシュバーPSBによって、つめ部材TSUが押される。
つめ部材TSUは、一方の端部に突起部(つめ)が設けられる。この突起部分が、ラチェット歯車RCHと咬み合わされる。つめ部材TSUの他方の端部は、プッシュバーPSBに当接されている。ソレノイドSOLへの通電が行われると、つめ部材TSUはプッシュバーPSBに押されて、ラチェット歯車RCHに向かう方向(咬合方向)Ddwに移動される。
つめ部材TSUの突起形状(つめ形状)において、すくい角αが設けられる。ここで、すくい角αは、つめ部材TSUのつめとラチェット歯車RCHとの接触部と、咬合方向Ddwとのなす角度である。つめ部材TSUとラチェット歯車RCHとが咬み合わされている状態で、つめ部材TSUは、ラチェット歯車RCHとの接触部において、ラチェット歯車RCHから力を受ける。すくい角αによって、この力の分力が咬合方向Ddwに作用するため、ソレノイドSOLへの通電が停止された後も、つめ部材TSUとラチェット歯車RCHとが咬み合った状態が維持される。
ラチェット歯車RCHは入力部材SFIに固定され、電気モータMTRと一体となって回転する。ラチェット歯車RCHには、一般的な歯車とは異なり、方向性をもつ歯(のこぎり状の歯)が形成される。この「のこぎり歯」形状によって、ラチェット歯車RCHの回転軸まわりの運動に対する方向性が生じる。具体的には、電気モータMTRの正転方向に対応する回転運動(PSNがKTBに近づき、Fbaが増加し、制動トルクが増加する方向の動き)Fwdは許容されるが、電気モータMTRの逆転方向に対応する動き(PSNがKTBから離れ、Fbaが減少し、制動トルクが減少する方向の動き)Rvsは拘束(ロック)される。ラチェット歯車RCHとつめ部材TSUとが咬み合わされると、押圧部材PSN(即ち、摩擦部材MSB)が回転部材KTBから離れる方向に相当する電気モータMTRの回転(逆転方向Rvs)が制限される。
弾性部材(例えば、復帰スプリング)SPRが、圧縮された状態で、ガイド部材GID(即ち、キャリパCRP)とつめ部材TSUとの間に設けられる。従って、弾性部材SPRは、ガイド部材GID(キャリパCRP)に対して、咬合方向Ddwとは反対方向(解除方向)Dupに、常時、つめ部材TSUを押し付けている。ソレノイドSOLに通電されることによってプランジャPLNがソレノイドSOL内に引き込まれ、プッシュバーPSBがつめ部材TSUを咬合方向Ddwに押圧する。即ち、ソレノイドSOLの可動部材PSBがつめ部材TSUに及ぼす咬合方向Ddwの力(咬合力)が発生される。弾性部材SPRによる押し付け力(ばね力であって、TSUを解除方向Dupに押す力である解除力)よりもソレノイドSOLの吸引力(咬合力)が大きくなると、つめ部材TSUが咬合位置に移動され、つめ部材TSUとラチェット歯車RCHとが咬み合わされる(図3(b)参照)。しかし、ソレノイドSOLへの通電が停止されると、ソレノイドSOLの吸引力が失われ、弾性部材SPRによって、つめ部材TSU及びプッシュバーPSB(プランジャPLN)が解除位置にまで戻される(図3(a)参照)。
ラチェット歯車RCHと同軸に、ラチェット歯車RCHの回転角(歯車回転角)Rkaを取得(検出)する歯車回転角取得手段RKAが設けられる。即ち、電気モータMTRから減速機GSKへの入力部材(入力シャフト)SFIに、歯車回転角取得手段RKAが固定される。歯車回転角Rkaとして、モータ回転角取得手段(位置取得手段)MKAの取得結果(モータ回転角)Mkaが採用され得る。また、減速機GSKのギア比は既知であるため、歯車回転角取得手段RKAは減速機GSKの出力部材(出力シャフト)SFOに設けられ得る。(以上、図1参照)
≪つめ部材TSUとラチェット歯車RCHとの咬み合いにおける状態遷移≫
つめ部材TSUとラチェット歯車RCHとが、咬み合っていない状態から咬み合う状態に遷移する場合について説明する。図3(a)は、ソレノイドSOLへの通電が行われておらず、つめ部材TSUとラチェット歯車RCHとが咬み合っていない場合(解除維持状態)を示す。ここで、つめ部材TSUは、弾性部材SPRの弾性力によってソレノイドSOL(又は、キャリパCRP)に押し付けられている。この状態における、つめ部材TSUの位置(TSUがRCHから最も離れた位置)が、「解除位置」と称呼される。
電気モータMTRに通電が行われて、電気モータMTRが正転方向Fwdに駆動され、これに伴い、押圧力Fbaが増加される。そして、押圧力Fbaが所定値に到達した後に、ソレノイドSOL(即ち、コイルCOL)への通電が開始される。この通電によって、プランジャPLNがベースBASに吸引され、咬合方向DdwにプランジャPLNが引き寄せられる。ソレノイドSOLの吸引力(即ち、PSBがTSUを押す力である咬合力)が弾性部材SPRの弾性力(即ち、TSUとRCHとの咬み合いを解除する力である解除力)よりも大きくなることによって、プランジャPLNに固定されているプッシュバーPSBが、つめ部材TSUを咬合方向Ddwに移動させる。このとき、つめ部材TSUの移動は、ガイド部材GIDによって案内される。
つめ部材TSUがラチェット歯車RCHに接触した状態で、電気モータMTRが逆転方向Rvsに駆動される。この結果、つめ部材TSUがラチェット歯車RCHに確実に咬み合わされる。この咬み合い状態が確認された後に、ソレノイドSOLへの通電が停止されるとともに、電気モータMTRへの通電も停止される(図3(b)の係合維持状態)。
つめ部材TSUにはすくい角α(TSUの中心軸Jtsと、TSUとRCHとの接触部とがなす角度)が設けられ、これに対応するようにラチェット歯車RCHには傾き角β(RCHの歯先とRCHとの回転軸を結んだ直線と、TSUとRCHとの接触部とがなす角度)が設けられる。つめ部材TSU(特に、ラチェット歯車RCHとの接触部)には、キャリパCRP、摩擦部材MSB等の剛性によってラチェット歯車RCHからの力(接線力)が作用する。すくい角αによる接線力の分力は、咬合方向Ddwに作用するため、通電停止後の咬み合い状態が、確実に維持され得る。
次に、つめ部材TSUとラチェット歯車RCHとが、咬み合う状態から咬み合っていない状態に遷移する場合について説明する。図3(b)に示すように、電気モータMTR、及び、ソレノイドSOLへの通電が行われていない状態でも、つめ部材TSUとラチェット歯車RCHとが咬み合わされる状態が維持される。電気モータMTRへの通電が行われることによって、この咬み合い状態が解除される。このとき、ソレノイドSOLへの通電は停止されたままである。
電気モータMTRが駆動されて、正転方向Fwdに回転されると、つめ部材TSUは、咬み合わされていたラチェット歯車RCHの歯を乗り越える。このとき、弾性部材(圧縮ばね)SPRの弾性力(ばね力)によって、つめ部材TSUは、ラチェット歯車RCHから離れる方向(解除方向)Dupに、解除位置まで移動される。具体的には、ラチェット歯車RCHとつめ部材TSUとが咬み合った状態において、ラチェット歯車RCHが、ラチェット歯車RCHの歯先とラチェット歯車RCHの回転中心を結ぶ直線と、つめ部材TSUのつめ先とラチェット歯車RCHの回転中心とを結ぶ直線とのなす角度γ(「咬合角」と称呼する)よりも大きく回転すると、ラチェット歯車RCHとつめ部材TSUとの咬み合い状態が解消される。この結果、つめ部材TSUは、弾性部材SPRに押されて、図3(a)に示す状態に戻る。なお、咬合角γは、角度α、β、及び、つめ部材TSUとラチェット歯車RCHとの幾何的関係(つめ部材TSUの中心軸Jtsと、ラチェット歯車RCHの回転軸Jrcとの距離)で、予め設定されている値である。
<駐車ブレーキの制御状態>
図4の状態遷移図を参照して、駐車ブレーキ制御における制御状態について説明する。駐車ブレーキの制御状態には、「係合作動」、「係合維持」、「解除作動」、及び、「解除維持」の4つの状態が存在する。
「係合維持」は、「つめ部材TSUとラチェット歯車RCHとが咬み合う状態」が維持されている場合である。即ち、係合維持状態では、駐車ブレーキ用ロック機構LOKが作動し、駐車ブレーキ機能が発揮されている。「解除維持」は、「つめ部材TSUとラチェット歯車RCHとが咬み合っていない状態」が維持されている場合である。即ち、解除維持状態では、駐車ブレーキ用ロック機構LOKが作動せず、駐車ブレーキ機能が発揮されていない。
「係合作動」は、「つめ部材TSUとラチェット歯車RCHとが咬み合っていない状態」から「つめ部材TSUとラチェット歯車RCHとが咬み合う状態」に遷移させる作動である。逆に、「解除作動」は、「つめ部材TSUとラチェット歯車RCHとが咬み合う状態」から「つめ部材TSUとラチェット歯車RCHとが咬み合っていない状態」に遷移させる作動である。
解除維持状態において、運転者が駐車スイッチPSWをオフ状態からオン状態に操作すると、駐車信号Pswもオフ状態からオン状態に変化する。この変化に基づいて、係合作動の実行が開始される。係合作動では、先ず、摩擦部材MSBの回転部材KTBに対する押圧力の調整処理(押圧力調整処理)が行われる。続けて、ラチェット歯車RCHの停止処理(歯車停止処理)、つめ部材TSUの押圧処理(つめ押圧処理)、及び、つめ部材TSUとラチェット歯車RCHとの咬合確保処理が実行される。歯車停止処理、つめ押圧処理、及び、咬合確保処理をまとめて、「咬合処理」と称呼され、「ロック機構の作動」に該当する。
咬合処理として、具体的には、駐車ブレーキ制御手段PKCは、電気モータMTRへの通電状態を一定にしてラチェット歯車RCHの回転運動を停止した上で、ソレノイドSOLに通電してつめ部材TSUをラチェット歯車RCHに押圧した後に、押圧力Fbaを減少する方向に電気モータMTRが回転するよう通電状態を調整する。
係合作動の実行(即ち、咬合処理)が終了されると、駐車ブレーキは係合維持状態となる。この状態では、電気モータMTR、及び、ソレノイドSOLへの通電は不必要である。
係合維持状態において、運転者が駐車スイッチPSWをオン状態からオフ状態に操作すると、駐車信号Pswもオン状態からオフ状態に変化する。この変化に基づいて、解除作動の実行が開始される。そして、解除作動が終了すると、駐車ブレーキの解除維持状態となる。
<駐車ブレーキ制御>
図5のフロー図を参照して、駐車ブレーキ制御の全体について説明する。駐車ブレーキ制御では、駐車信号Pswに基づいて、前述した4つの制御状態Sgj(係合作動状態、係合維持状態、解除作動状態、及び、解除維持状態)のうちの何れか1つが選択される。制御状態Sgjは、駐車ブレーキ演算ブロックIPSから、目標通電量演算ブロックIMTに出力される。
ステップS100にて、駐車信号Pswにおける、前回の演算サイクルにおける前回値Psw(n−1)、及び、今回の演算サイクルにおける今回値Psw(n)が読み込まれる。次に、ステップS110に進む。ステップS110にて、前回値Psw(n−1)と今回値Psw(n)とが対比される。前回値Psw(n−1)と今回値Psw(n)とが一致している場合(「YES」の場合)には、ステップS120に進む。一方、前回値Psw(n−1)と今回値Psw(n)とが不一致である場合(「NO」の場合)には、ステップS130に進む。
ステップS120にて、今回の演算サイクルにおいて駐車信号Psw(n)がオン状態であるか、否かが判定される。駐車信号Psw(n)がオン状態である場合(「YES」の場合)には、ステップS140に進む。一方、駐車信号Psw(n)がオフ状態である場合(「NO」の場合)には、ステップS150に進む。ステップS130にて、ステップS120と同様に、今回値Psw(n)がオン状態であるか、否かが判定される。駐車信号Psw(n)がオン状態である場合(「YES」の場合)には、ステップS160に進む。一方、駐車信号Psw(n)がオフ状態である場合(「NO」の場合)には、ステップS170に進む。
ステップS140では、係合状態の維持が行われ、駐車ブレーキの制御状態Sgjは係合維持状態に決定される。ステップS150では、解除状態の維持が行われ、制御状態Sgjは解除維持状態に決定される。ステップS160では、係合作動が実行され、制御状態Sgjは係合作動状態に決定される。ステップS170では、解除作動が実行され、制御状態Sgjは解除作動状態に決定される。ステップS140〜S170の処理後は、ステップS180に進み、今回値Psw(n)が前回値Psw(n−1)として記憶される。そして、処理は、ステップS100に戻される。
<係合作動の押圧力調整処理>
図6のフロー図を参照して、駐車ブレーキ制御の係合作動における押圧力調整処理について説明する。駐車信号において、前回値Psw(n−1)がオフ状態で、今回値Psw(n)がオン状態である時に、ステップS160に移行し、係合作動の処理が開始される(図5参照)。
先ず、ステップS200にて、時間カウンタ(タイマ)が開始される。次に、ステップS210に進み、実押圧力Fba、及び、指示通電量Imsが読み込まれる。そして、ステップS220に進み、駐車通電量Iptがパターン出力される。駐車通電量Iptは、駐車ブレーキ制御用の電気モータMTRの通電量の目標値である。具体的には、ブロックB220の時系列特性CHpで示すように、時間カウンタが開始された時点をゼロ(起点)として、時間勾配kz0で増加し、上限値ipmとなるよう、駐車通電量Iptが出力される。ここで、上限値ipmは、ブレーキアクチュエータBRKにおける動力伝達効率を考慮して、確実に実押圧力Fbaが、後述する値fbuよりも大きくなるように設定される。
ステップS230にて、実際の押圧力Fbaが下方値(所定しきい値)fbsよりも小さいか、否かが判定される。実押圧力Fbaが値fbsよりも小さい場合(「YES」の場合)には、ステップS240に進む。ここで、下方値fbsは、車両の停車状態を維持するのに必要な、予め設定された所定値である。一方、実押圧力Fbaが値fbs以上である場合(「NO」の場合)には、ステップS250に進む。ステップS240にて、駐車通電量Iptが指示通電量Imsよりも大きいか、否かが判定される。駐車通電量Iptが指示通電量Imsよりも大きい場合(「YES」の場合)には、ステップS260に進む。一方、駐車通電量Iptが指示通電量Ims以下である場合(「NO」の場合)には、ステップS270に進む。
ステップS250にて、実押圧力Fbaが上方値(所定しきい値)fbuよりも大きいか、否かが判定される。ここで、上方値fbuは、下方値fbs以上であり、車両の停車状態を維持するのに十分な、予め設定された所定値である。実押圧力Fbaが値fbuよりも大きい場合(「YES」の場合)には、ステップS270に進む。実押圧力Fbaが値fbu以下である場合(「NO」の場合)には、係合作動の押圧力調整処理が終了され、係合作動の咬合処理が開始される。
ステップS260では、目標通電量Imtとして駐車通電量Iptが出力される。即ち、ステップS260では、駐車ブレーキ制御手段PKCによって目標通電量Imtが決定される。その後、処理はステップS200に戻される。ステップS270では、目標通電量Imtとして指示通電量Imsが出力される。即ち、ステップS270では、通常ブレーキ制御手段SBCによって目標通電量Imtが決定される。その後、ステップS200に処理が戻される。
以上、フロー図を参照して説明したように、係合作動の押圧力調整処理では、実押圧力Fbaが下方値fbs(≦fbu)よりも小さい条件では、駐車通電量Ipt、及び、指示通電量Imsのうちの大きい方が、目標通電量Imtとして出力される。実押圧力Fbaが上方値fbu(≧fbs)よりも大きい条件では、指示通電量Imsが目標通電量Imtとして出力される。換言すれば、Fba>fbuの場合には、駐車ブレーキよりも、運転者による制動操作部材BPの操作(通常ブレーキ操作)が優先される。実押圧力Fbaが下方値fbs以上、且つ、上方値fbu以下の条件が成立した時点で、押圧力調整処理が完了され、咬合処理が開始される。即ち、実押圧力Fbaが値fbsから値fbuまでの範囲内に入った時(即ち、実押圧力Fbaが、車両の停車状態を維持するのに必要、且つ、十分な値になった時点)に、咬合処理が開始される。
<係合作動の咬合処理(ロック機構LOKの作動)>
図7のフロー図を参照して、駐車ブレーキ制御の係合作動における咬合処理について説明する。係合作動の押圧力調整処理が完了されると、次に、係合作動の咬合処理が開始される。係合作動の咬合処理は、駐車ブレーキ制御手段PKCによって実行される。ここで、係合作動の咬合処理が、「ロック機構の作動」に相当する。
先ず、ステップS300にて、目標通電量Imtが、その時点(押圧力調整処理が完了時)の値に保持される。そして、ステップS310にて、ラチェット歯車RCHの回転角(歯車回転角)Rkaが読み込まれる。次に、ステップS320にて、歯車回転角Rkaが一定か、否かが判定される。即ち、歯車回転角Rkaに基づいて、ラチェット歯車RCHが静止状態であるか、否かが判定される。ステップS320にて、歯車回転角Rkaが一定であると判定される場合(「YES」の場合)には、ステップS330に進む。ステップS320にて、歯車回転角Rkaが一定でない(ラチェット歯車RCHが未だ回転している)と判定される場合(「NO」の場合)には、処理は、ステップS300に戻される。
ステップS330にて、ステップS320の判定が肯定された時点の歯車回転角Rkaが値rk1として設定される。ここで、値rk1は、「保持値」と称呼される。次に、ステップS340にて、時間カウンタ(タイマ)が開始される。そして、ステップS350にて、時間カウンタが開始されてから所定時間tx1を経過したか、否かが判定される。歯車回転角Rkaの一定状態が時間tx1に亘って経過した場合(「YES」の場合)には、ステップS360に進む。一方、歯車回転角Rkaの一定状態が時間tx1を経過していない場合(「NO」の場合)には、ステップS300に戻される。ステップS300からステップS350までの処理は、ラチェット歯車RCHの回転運動を停止させ、その停止状態を確認するためのものであり、「歯車停止処理」と称呼される。
ステップS360にて、ソレノイドSOLへの通電が行われる。ステップS370にて、上記と同様に、時間カウンタが開始される。ステップS380にて、時間カウンタが開始されてから所定時間tx2を経過したか、否かが判定される。ソレノイドSOLへの通電時間が時間tx2となった場合(「YES」の場合)には、ステップS390に進む。一方、ソレノイドSOLへの通電時間が時間tx2未満の場合(「NO」の場合)には、ステップS360に戻る。ステップS360からステップS380までの処理は、つめ部材TSUをラチェット歯車RCHに、確実に押し付けるためのもので、「つめ押圧処理」と称呼される。
ステップS390にて、電気モータMTRが逆転方向に駆動される。即ち、電気モータMTRが逆転する方向に回転するよう、予め設定された通電(負符号の通電量)が行われる。ステップS400にて、時間カウンタが開始され、ステップS410にて歯車回転角Rkaが読み込まれる。
ステップS420にて、ステップS330にて設定された保持値rk1と、歯車回転角Rkaとの偏差が所定範囲内にあるか、否かが判定される。保持値rk1と歯車回転角Rkaとの差が値hr1以下であり、該所定範囲内にある場合(「YES」の場合)には、ステップS430に進む。一方、ステップS420にて、保持値rk1と歯車回転角Rkaとの差が所定範囲外である場合(「NO」の場合)には、ステップS480に進む。ステップS390からステップS430までの処理は、つめ部材TSUとラチェット歯車RCHとを確実に咬み合せ、その状態を確認するためのもので、「咬合確保処理」と称呼される。
ステップS430にて、時間カウンタが開始されてから所定時間tx3を経過したか、否かが判定される。保持値rk1と歯車回転角Rkaとの偏差が所定範囲内にある状態が時間tx3に亘って継続された場合(「YES」の場合)には、ステップS450に進む。一方、上記状態が時間tx3未満の場合(「NO」の場合)には、ステップS390に戻る。ステップS430の条件が満足されると、ステップS450にて駐車通電量Iptがゼロにされる。ステップS460にてソレノイドSOLへの通電が停止される。そして、ステップS470にて、その時点の歯車回転角Rkaが、値rk0として設定され、係合作動の咬合処理が終了される。ここで、値rk0は、「解除値」と称呼される。なお、解除値rk0は、ラチェット機構が咬み合っているか、否かの判定に採用させる。係合作動処理が終了されると、制御状態Sgjは、係合維持状態に変更される。
ステップS430の条件が否定される場合は、つめ部材TSUとラチェット歯車RCHとが咬み合わされなかった場合である。このため、ステップS480にて、実押圧力Fba、及び、目標通電量Imtが読み込まれ、ステップS490にて、目標通電量Imtが所定値imxだけ増加される。ステップS500にて、実押圧力Fbaが下方値fbsよりも大きいか、否かが判定される。実押圧力Fbaが値fbsよりも大きい場合(「YES」の場合)には、ステップS300に戻り、再度、咬合処理が開始される。一方、実押圧力Fbaが値fbs以下である場合(「NO」の場合)には、処理はステップS480に戻り、前回の目標通電量Imtに、さらに、所定値imxが加えられて、今回の目標通電量Imtが増加されて演算される。ステップS420、S480〜S500の処理によって、上記の所定範囲内の駐車ブレーキ時の押圧力が確保され得る。
<駐車ブレーキ制御の解除作動>
図8のフロー図を参照して、駐車ブレーキ制御の解除作動を説明する。駐車信号において、前回値Psw(n−1)がオン状態で、今回値Psw(n)がオフ状態である時(即ち、オンからオフに遷移した演算周期)に、ステップS170に移行し、解除作動が開始される(図5参照)。なお、解除作動の演算処理は、駐車ブレーキ演算ブロックIPS、及び、目標通電量演算ブロックIMTの一部に相当する(図1参照)。
ステップS800にて、解除値rk0が読み込まれる。ステップS810に進み、時間カウンタ(タイマ)が開始される。ステップS820にて、歯車回転角Rka、及び、指示通電量Imsが読み込まれる。そして、ステップS830に進み、駐車通電量Iptがパターン出力される。駐車通電量Iptは、駐車ブレーキ制御時(特に、解除作動時)の電気モータMTRへの通電量の目標値である。具体的には、ブロックCHQの時系列特性CHqで示すように、時間カウンタが開始された時点(ステップS810)をゼロ(起点)として、時間勾配kq0で、時間経過に伴い単調増加するよう、駐車通電量Iptが出力される。
ステップS840にて、駐車通電量Iptが指示通電量Imsよりも大きいか、否かが判定される。駐車通電量Iptが指示通電量Imsよりも大きい場合(「YES」の場合)には、ステップS850に進む。一方、駐車通電量Iptが指示通電量Ims以下である場合(「NO」の場合)には、ステップS860に進む。
ステップS850では、目標通電量Imtとして駐車通電量Iptが出力される。即ち、ステップS850では、駐車ブレーキ制御手段PKCによって目標通電量Imtが決定される。その後、処理はステップS870に進む。
ステップS860では、目標通電量Imtとして指示通電量Imsが出力される。即ち、ステップS860では、通常ブレーキ制御手段SBCによって目標通電量Imtが決定される。その後、ステップS870に処理は進む。
ステップS870にて、ステップS800にて読み込まれた解除値rk0と、歯車回転角Rkaとの偏差が所定範囲内にあるか、否かが判定される。解除値rk0と歯車回転角Rkaとの差が値hr0以下であり、該所定範囲内にある場合(「YES」の場合であり、「(Rka−rk0)≦hr0」の場合)には、処理は、ステップS810に戻される。一方、解除値rk0と歯車回転角Rkaとの差が所定範囲外である場合(「NO」の場合であり、「(Rka−rk0)>hr0」の場合)には、処理は、ステップS880に進む。ステップS880では、駐車通電量Iptがゼロにされる。その後、解除作動処理が終了され、解除維持状態が開始される。制御状態Sgjは、解除作動状態から解除維持状態に変更される。ここで、所定値hr0は、上記咬合角γに相当する値よりも大きい値として、予め設定されている。
以上、フロー図を参照して説明したように、駐車ブレーキ制御の解除作動では、駐車通電量Ipt、及び、指示通電量Imsのうちの大きい方が、目標通電量Imtとして出力される。換言すれば、駐車ブレーキよりも、運転者による制動操作部材BPの操作(通常ブレーキ操作)が優先され、制御干渉が防止される。そして、歯車回転角Rkaが解除値rk0よりも所定値hr0だけ大きくなった場合に、弾性部材SPRに押されて、つめ部材TSUは解除位置にいることが確実であるため、解除作動は終了され、制御状態Sgjは解除維持状態に変更される。
<駐車ブレーキ制御の通電量制限処理>
図9のフロー図を参照して、駐車ブレーキ制御の通電量制限処理を説明する。通電量制限処理では、制御状態Sgjに基づいて、制動手段BRKの消費電力が低減される。具体的には、駐車ブレーキ制御の制御状態Sgjが係合維持状態にある場合に、運転者による制動操作量Bpaに起因する電気モータMTRへの通電が制限される。なお、通電量制限処理は、目標通電量演算ブロックIMTの一部に相当する(図1参照)。
ステップS900にて、制御状態Sgj、及び、目標通電量Imtが読み込まれる。ステップS910にて、制御状態Sgjに基づいて、駐車ブレーキ制御の制御状態Sgjが係合維持状態であるか、否かが判定される。制御状態Sgjが係合維持状態を表示し、ステップS910の判定が肯定される場合(「YES」の場合)には、処理はステップS920に進む。一方、制御状態Sgjが係合維持状態以外を表示し、ステップS910の判定が否定される場合(係合維持状態ではなく、「NO」の場合)には、処理はステップS930に進む。
ステップS920にて、目標通電量Imtが所定値imkより小さいか、否かが判定される。目標通電量Imtが所定値imkよりも小さく、ステップS920の判定が肯定される場合(「YES」の場合)には、ステップS940に進む。一方、目標通電量Imtが所定値imk以上であり、ステップS920の判定が否定される場合(「NO」の場合)には、ステップS950に進む。ここで、所定値imkは、ラチェット歯車RCHとつめ部材TSUとの咬み合いが解除され得る押圧力に相当する、電気モータMTRへの通電量よりも僅かに小さい値として、予め設定される。
ステップS930にて、制御状態Sgjに基づいて、駐車ブレーキ制御の制御状態が解除維持状態であるか、否かが判定される。制御状態Sgjが解除維持状態を表示し、ステップS930の判定が肯定される場合(「YES」の場合)には、処理はステップS960に進む。一方、制御状態Sgjが解除維持状態以外を表示し、ステップS930の判定が否定される場合(解除維持状態ではなく、「NO」の場合)には、処理はステップS970に進む。
ステップS940では、目標通電量Imtが制限値(予め設定された所定値)imjに制限される。例えば、制限値imjはゼロに設定され得る。この場合、目標通電量Imtがゼロに決定され、制動操作量Bpaに基づく指示通電量Imsがゼロより大であっても、電気モータMTRへの通電量がゼロにされる(非通電にされる)。
ステップS950では、目標通電量Imtがそのまま出力される。目標通電量Imtが所定値imk以上の場合には、指示通電量Imsによって、ラチェット歯車RCHとつめ部材TSUとの咬み合いが解除される蓋然性が高い。上述したように、運転者の制動操作を優先するため、目標通電量Imtが所定値imk以上の場合には、目標通電量Imt(=Ims)がそのまま出力される。
ステップS960では、目標通電量Imtがそのまま出力される。このとき、駐車ブレーキ制御は非作動の状態であるため、通常ブレーキ制御手段SBCによる指示通電量Ims(=Imt)が出力される。ステップS970では、制御状態Sgjに基づき、係合作動の処理、又は、解除作動の処理が実行される。
<駐車ブレーキ制御の通電量制限処理>
図10の時系列線図(時間Tに対する遷移図)を参照して、駐車ブレーキ制御の通電量制限処理について説明する。図10(a)は、運転者が制動操作を行っている途中で、制御状態Sgjが、係合維持状態になった場合を示す。また、図10(b)は、駐車ブレーキ制御が係合維持状態である途中に、運転者が制動操作を行った場合を示す。
先ず、図10(a)を参照して、駐車ブレーキ制御が、係合作動状態を介して、解除維持状態から係合維持状態に遷移する場合について説明する。車両は走行しており、時点t0にて、運転者によって制動操作が開始される。時点t1にて、運転者の制動操作部材BPの操作量Bpaが値bpcであり、該操作量bpcに対応する実押圧力Fbaが、下方値fbsよりも小さい値fbcになっている。
車両が停止した後、時点t2にて、運転者が駐車スイッチPSWをオフからオンに切り替える。このスイッチ操作によって、駐車信号Pswがオフからオンに切り替えられる。駐車信号Pswの変化(遷移)にしたがって、駐車ブレーキの制御状態Sgjが、解除維持状態から係合作動状態へと切り替えられる。即ち、係合作動の押圧力調整処理が開始され、予め設定されたパターン(時間Tに対する増加勾配kp0)にて、駐車通電量Iptが出力され、駐車通電量Iptと指示通電量Imsとが比較され、それらのうちの大きい方が目標通電量Imtとして決定される。このため、通常ブレーキ制御と駐車ブレーキ制御との干渉が防止される。駐車通電量Iptは時間Tの経過にしたがって増加するため、目標通電量Imt(結果として、実際の通電量Ima)が順次増加される。ここで、通電量フィードバック制御によって、通電量の目標値Imtと実際値Imaとが一致するよう制御される。このため、実際の通電量Imaは、目標通電量Imtと重なっている。
時点t3にて、実押圧力Fbaが下方値fbs以上(Fba≧fbs)の条件が満足されると、ラチェット歯車RCH(即ち、電気モータMTR)の回転運動を停止するため、目標通電量Imtが一定値im1に維持される。ここで、時点t3が、「ロック機構LOKの作動の開始」に相当する。歯車回転角Rkaの停止状態が所定時間tx1に亘って確認された時点t4にて、つめ部材TSUをラチェット歯車RCHに咬み合せるために、ソレノイドSOLへの通電が開始される。ソレノイドSOLは、弾性部材(戻しばね)SPRの弾性力に対抗してつめ部材TSUを押圧しなければならない。このため、つめ部材TSUは瞬時にはラチェット歯車RCHまで移動されない。つめ部材TSUとラチェット歯車RCHとの接触を確実にするため、目標通電量Imtを一定に保持した状態でのソレノイドSOLへの通電が所定時間tx2に亘って継続される。なお、歯車回転角Rkaが一定状態を維持する場合の歯車回転角Rkaの値(ラチェット歯車RCHの回転停止が確認された時点の歯車回転角Rka)が、保持値rk1として記憶(設定)される。
所定時間tx2が経過した時点t5にて、つめ部材TSUとラチェット歯車RCHとの咬み合いを確実にするため、電気モータMTRが逆転駆動(Rvs方向へ回転)される。具体的には、時点t5にて、目標通電量Imtが値im1からゼロまで急減される。そして、時点t5以降、目標通電量Imtは、時間に対する減少勾配kg0で、負方向(電気モータMTRが逆転駆動される方向)へ徐々に減少され、電気モータMTRが逆転される。
時点t5から、歯車回転角Rkaの変化が所定範囲内であるか、否かが監視される。具体的には、歯車回転角Rkaと保持値rk1との偏差が演算され、該偏差が値(所定のしきい値)hr1以下であるか、否かが判定される。歯車回転角Rkaと保持値rk1との偏差が所定値hr1未満の状態(所定範囲内にある状態)が所定時間tx3に亘って継続されると、時点t6にて、ソレノイドSOLへの通電が停止されるとともに、駐車通電量Iptがゼロにされる。即ち、時点t6にて、係合作動状態(咬合処理)が終了されて、係合維持状態が開始される。なお、時点t6における歯車回転角Rkaが解除値rk0として記憶(設定)される。
時点t6からは、駐車ブレーキ制御が係合維持状態になるため、通電量制限処理が実行される(図9参照)。時点t6を経過すると、制動操作量Bpaは値bpcであるため、これに相当する指示通電量Ims(二点鎖線で示す)が演算される。しかし、通電量制限処理によって、目標通電量Imtは、制限値(予め設定された所定値)imjに制限される。さらに、時点t7から、運転者が制動操作部材BPの操作力を強め、制動操作量Bpaが増加される。その結果、指示通電量Imsも増加されて演算される。上記同様に、通電量制限処理が実行途中であるため、目標通電量Imtは制限値imjに制限されたままである。
例えば、電気モータMTRへの通電量の制限値imjは、ゼロに設定され得る。この場合、時点t6以降は、破線で示すように目標通電量Imtがゼロに決定され、電気モータMTRへの通電が停止される(非通電状態にされ得る)。係合維持状態の場合、上記の通電量制限処理によって、運転者が制動操作を行っても電気モータMTRへの通電が制限される(或いは、全く通電にされない)ため、不必要な通電が行われない。このため、制動手段BRKの消費電力が低減され得る。
次に、図10(b)を参照して、駐車スイッチPSWがオンされている状態(即ち、係合維持状態)において、運転者が制動操作部材BPを強く操作した後に、制動操作を終了した場合について説明する。なお、通電量フィードバック制御によって、通電量の目標値Imtと実際値Imaとが一致するよう制御されるため、実際の通電量Imaは、目標通電量Imtと重なっている。ここで、制限値imjは、ゼロに設定されている。
駐車スイッチPSWがオンされ、駐車信号Pswのオン状態が継続的に指示されている。時点v0にて、運転者が制動操作部材BPの操作を開始し、制動操作量Bpaが増加し始める。制動操作量Bpaの増加にしたがい指示通電量Imsが増加する。また、駐車ブレーキ制御は係合維持状態にあるため、駐車通電量Iptはゼロである。したがって、目標通電量Imtとして、指示通電量Imsが採用される。しかしながら、時点v1までは、目標通電量Imtは所定値imk未満であるため、目標通電量Imtは、通電量制限処理によって、制限値imj(=0)に制限されている。即ち、電気モータMTRへの通電は行われない。
時点v1にて、目標通電量Imtは所定値imk以上となる。このため、通電量の制限処理は終了される。したがって、指示通電量Imsが、制限されずに、目標通電量Imtとして演算される。ここで、所定値imkは、ラチェット歯車RCHとつめ部材TSUとの咬み合せが解除される通電量に対して、僅かに小さい値として、予め設定される。
時点v2にて、押圧力Fbaの増加が、値fb0(前回の咬合処理が終了した時の押圧力Fba)から始まり、ラチェット歯車RCHの回転運動も前回の解除値rk0(前回の咬合処理が終了した時点で記憶された歯車回転角Rka)から増加される。時点v3にて、歯車回転角Rkaと解除値rk0との偏差が所定範囲外となり(即ち、Rkaと解除値rk0との差が所定値(しきい値)hr0を超過した時点)、ラチェット歯車RCHとつめ部材TSUとの咬み合い状態が解除されたことが判定される(図8参照)。その後、時点v4にて、運転者によって制動操作部材BPの操作が保持され、制動操作量Bpaの一定値bpdに相当する押圧力Fbaは値fbdで維持される。
時点v5にて、制動操作部材BPの操作が減少され始め、それにしたがって、通電量Imt、Ima、及び、押圧力Fbaが減少する。併せて、歯車回転角Rkaも値rkdから減少する。時点v6にて、押圧力Fbaが上方値fbu以下になると、係合作動の咬合処理が開始される。具体的には、時点v6にて、目標通電量Imtが一定値に保持されることによって、ラチェット歯車RCHの回転が停止される。
歯車回転角Rkaに基づいて、ラチェット歯車RCHの停止が、所定時間tx1に亘って、確認されると、時点v7にて、ソレノイドSOLへの通電が開始される。この結果、つめ部材TSUがラチェット歯車RCHの方向に移動され、ラチェット歯車RCHに押し付けられる。つめ部材TSUがラチェット歯車RCHに完全に押し付けられた時点v8(時点v7から所定時間tx2の後)にて、目標通電量Imtが予め設定されたパターンで出力され、電気モータMTRが逆転方向に駆動される。保持値rk1(ラチェット歯車RCHの回転停止が確認された時点の歯車回転角Rka)と歯車回転角Rkaとの偏差が所定範囲内であること(歯車回転角Rkaと保持値rk1との差が所定値(しきい値)hr1未満であること)が、所定時間tx3に亘って確認されると、時点v9にて、ソレノイドSOLへの通電が停止され、駐車通電量Iptがゼロにされ、係合作動の咬合処理が終了される。なお、咬合処理の終了時(時点v9)には、該時点の歯車回転角Rkaが今回の解除値rk0として記憶(設定)される。
係合維持状態の途中で運転者が制動操作を行った場合でも、通電量制限処理によって、電気モータMTRへの通電が制限される(或いは、全く通電にされない)。このため、電気モータMTRへの不必要な通電が行われず、制動手段BRKの消費電力が低減され得る。
駐車ブレーキ用のロック機構LOKとして、つめ部材TSU、及び、ラチェット歯車RCHにて構成されるラチェット機構が採用される場合、摩擦部材MSBが回転部材KTBを押圧する力が増加する方向(MTRの正転方向)への、ラチェット歯車RCHを回転させる力が所定値以上になると、つめ部材TSUがラチェット歯車RCHの歯を乗り越える。ソレノイドSOLへの通電は停止されているため、つめ部材TSUは弾性部材SPRによってラチェット歯車から離れる方向に押され、つめ部材TSUとラチェット歯車RCHとの咬み合いが外れる。したがって、制動操作量Bpaが、ロック機構LOKの解除を指示する量に達する手前(Imt≧imkが満足される時点)で、通電量制限処理が終了される。このため、運転者の制動操作が、駐車ブレーキ制御に対して、適切に反映され得る。
ここで、通電量制限処理を実行するか、否かを判定するための所定値imkは、前回の駐車ブレーキ制御が実行された際の解除作動処理において、解除判定が行われた時点(演算周期)での通電量Imt、Imaに基づいて設定され得る。具体的には、前回処理でステップS870が否定された時点における通電量Imt、Imaから所定量が差し引かれて、上記所定値imkが決定される(図8参照)。これは、制動手段BRKの効率変動により、電気モータMTRへの通電量と実際に発生する押圧力との関係が変化することに因る。
以上の説明では、ラチェット歯車RCHに固定された歯車回転角取得手段RKAの出力(歯車回転角)Rkaに基づいて、係合作動の処理、及び、解除作動の処理が行われることとしている。ラチェット歯車RCHと電気モータMTRとは同軸、又は、減速機GSKを介して接続されるため、歯車回転角取得手段RKAとして、モータ回転角取得手段MKAが採用され、モータ回転角Mkaに基づいて、係合作動の処理、及び、解除作動の処理が実行され得る。
BP…制動操作部材、PSW…駐車スイッチ、MTR…電気モータ、FBA…押圧力取得手段、LOK…駐車ブレーキ用ロック機構、CTL…制御手段

Claims (2)

  1. 車両の運転者による制動操作部材の操作量に応じて、前記車両の車輪と一体となって回転する回転部材に摩擦部材を押圧する力である押圧力を発生する電気モータと、
    前記電気モータの回転をロックして前記車両に駐車ブレーキを効かせるロック機構と、
    前記操作量に基づいて前記電気モータへの通電量を制御するとともに、前記車両の運転者によって操作される駐車スイッチからの信号に基づいて前記電気モータ、及び、前記ロック機構を駆動する制御手段と、
    を備えた車両の電動制動装置において、
    前記制御手段は、
    前記制動操作部材の操作量が増加したときに、
    前記ロック機構が係合状態を維持する係合維持状態であるか、否かを判定し、
    前記係合維持状態ではないことを判定する場合には、前記操作量の増加にしたがって前記電気モータへの通電量を単調増加し、
    前記係合維持状態であることを判定する場合には、前記電気モータへの通電量を予め設定された制限値に制限するよう構成された、車両の電動制動装置。
  2. 車両の運転者による制動操作部材の操作量に応じて、前記車両の車輪と一体となって回転する回転部材に摩擦部材を押圧する力である押圧力を発生する電気モータと、
    前記電気モータの回転をロックして前記車両に駐車ブレーキを効かせるロック機構と、
    前記操作量に基づいて前記電気モータへの通電量を制御するとともに、前記車両の運転者によって操作される駐車スイッチからの信号に基づいて前記電気モータ、及び、前記ロック機構を駆動する制御手段と、
    を備えた車両の電動制動装置において、
    前記制御手段は、
    前記制動操作部材の操作量がゼロより大きいときに、
    前記ロック機構が係合状態を維持する係合維持状態であるか、否かを判定し、
    前記係合維持状態ではないことを判定する場合には、前記操作量に基づいて前記電気モータへの通電量を決定し、
    前記係合維持状態であることを判定する場合には、前記電気モータへの通電量をゼロにするよう構成された、車両の電動制動装置。
JP2015249632A 2015-12-22 2015-12-22 車両の電動制動装置 Active JP6724359B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015249632A JP6724359B2 (ja) 2015-12-22 2015-12-22 車両の電動制動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015249632A JP6724359B2 (ja) 2015-12-22 2015-12-22 車両の電動制動装置

Publications (2)

Publication Number Publication Date
JP2017114203A true JP2017114203A (ja) 2017-06-29
JP6724359B2 JP6724359B2 (ja) 2020-07-15

Family

ID=59233150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015249632A Active JP6724359B2 (ja) 2015-12-22 2015-12-22 車両の電動制動装置

Country Status (1)

Country Link
JP (1) JP6724359B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157903A (ja) * 2019-03-26 2020-10-01 日立オートモティブシステムズ株式会社 電動ブレーキ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032868A (ja) * 1999-07-21 2001-02-06 Nissan Motor Co Ltd 電動ブレーキ装置
JP2011122649A (ja) * 2009-12-10 2011-06-23 Akebono Brake Ind Co Ltd 電動式ブレーキ装置
JP2015074383A (ja) * 2013-10-10 2015-04-20 Ntn株式会社 パーキング機能付き電動ブレーキ装置
JP2015107746A (ja) * 2013-12-05 2015-06-11 株式会社アドヴィックス 車両の電動制動装置
JP2015120416A (ja) * 2013-12-24 2015-07-02 Ntn株式会社 車両用ブレーキ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032868A (ja) * 1999-07-21 2001-02-06 Nissan Motor Co Ltd 電動ブレーキ装置
JP2011122649A (ja) * 2009-12-10 2011-06-23 Akebono Brake Ind Co Ltd 電動式ブレーキ装置
JP2015074383A (ja) * 2013-10-10 2015-04-20 Ntn株式会社 パーキング機能付き電動ブレーキ装置
JP2015107746A (ja) * 2013-12-05 2015-06-11 株式会社アドヴィックス 車両の電動制動装置
JP2015120416A (ja) * 2013-12-24 2015-07-02 Ntn株式会社 車両用ブレーキ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157903A (ja) * 2019-03-26 2020-10-01 日立オートモティブシステムズ株式会社 電動ブレーキ装置
JP7240920B2 (ja) 2019-03-26 2023-03-16 日立Astemo株式会社 電動ブレーキ装置

Also Published As

Publication number Publication date
JP6724359B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6465007B2 (ja) 車両の電動制動装置
JP6248588B2 (ja) 車両の電動制動装置
JP6313152B2 (ja) 電動ブレーキ装置
WO2020158587A1 (ja) 電動ブレーキ装置
JP2008184023A (ja) 電動ブレーキ装置
US11518361B2 (en) Electric braking device for vehicle
JP2014129003A5 (ja)
EP3135548B1 (en) Brake device
JP6465016B2 (ja) 車両の電動制動装置
JP6724359B2 (ja) 車両の電動制動装置
JP6260238B2 (ja) 車両の電動制動装置
JP6164071B2 (ja) 車両の電動制動装置
JP2016155462A (ja) 車両の電動制動装置
JP6641945B2 (ja) 車両の電動制動装置
JP6572685B2 (ja) 車両の電動制動装置
JP6183192B2 (ja) 車両の電動制動装置
JP2012101749A (ja) 電動パーキングブレーキ装置
US20190389440A1 (en) Vehicle control device
JP7424265B2 (ja) 車両の電動駐車ブレーキ装置
JP6580960B2 (ja) 車両の電動制動装置
JP6160829B2 (ja) 車両の電動制動装置
JP6278179B2 (ja) 車両の電動制動装置
JP6987197B1 (ja) 電動ブレーキの制御装置
JP2019189014A (ja) 電動ブレーキ装置および電動ブレーキ制御装置
JP2021154875A (ja) 電動パーキングブレーキ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6724359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150