JP2017106367A - 車両用冷却システム - Google Patents

車両用冷却システム Download PDF

Info

Publication number
JP2017106367A
JP2017106367A JP2015240024A JP2015240024A JP2017106367A JP 2017106367 A JP2017106367 A JP 2017106367A JP 2015240024 A JP2015240024 A JP 2015240024A JP 2015240024 A JP2015240024 A JP 2015240024A JP 2017106367 A JP2017106367 A JP 2017106367A
Authority
JP
Japan
Prior art keywords
heat medium
cooling water
air
chiller
intercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015240024A
Other languages
English (en)
Other versions
JP2017106367A5 (ja
JP6390601B2 (ja
Inventor
則義 宮嶋
Noriyoshi Miyajima
則義 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015240024A priority Critical patent/JP6390601B2/ja
Priority to PCT/JP2016/084432 priority patent/WO2017098901A1/ja
Priority to CN201680068250.6A priority patent/CN108291473B/zh
Publication of JP2017106367A publication Critical patent/JP2017106367A/ja
Publication of JP2017106367A5 publication Critical patent/JP2017106367A5/ja
Application granted granted Critical
Publication of JP6390601B2 publication Critical patent/JP6390601B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/02Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】エンジンの吸気を冷却するとともに車室内へ送風される空気を冷却除湿する車両用冷却システムの消費動力を低減する。
【解決手段】第1循環流路21のうちクーラコア16の熱媒体出口側かつチラー14の熱媒体入口側の部位と第2循環流路22のうちインタークーラ15の熱媒体出口側かつラジエータ13の熱媒体入口側の部位とに接続された第1連通流路23と、第1循環流路21のうちチラー14の熱媒体出口側かつクーラコア16の熱媒体入口側の部位と、第2循環流路22のうちラジエータ13の熱媒体出口側かつインタークーラ15の熱媒体入口側の部位とに接続された第2連通流路24と、第1循環流路21と第2循環流路22とが第1連通流路23および第2連通流路24によって連通する状態と連通しない状態とを切り替える切替部25とを備える。
【選択図】図4

Description

本発明は、エンジンの吸気を冷却するとともに車室内へ送風される空気を冷却除湿する車両用冷却システムに関する。
従来、特許文献1には、クーラコア、インタークーラ、チラーおよびラジエータに冷却水を循環させる車両用熱管理システムが記載されている。
クーラコアは、車室内へ送風される空気と冷却水とを熱交換させる熱交換器である。インタークーラは、エンジンの過給吸気と冷却水とを熱交換させる熱交換器である。チラーは、冷凍サイクルの低圧側冷媒と冷却水とを熱交換させて冷却水を冷却する熱交換器である。ラジエータは、外気と冷却水とを熱交換させる熱交換器である。
この従来技術によると、クーラコアおよびインタークーラに冷却水を循環させることによって、車室内へ送風される空気を冷却除湿できるとともにエンジンの過給吸気を冷却できる。
この従来技術では、チラーで冷却水を冷却する際、冷凍サイクルの圧縮機を駆動するための動力が消費される。
特開2015−123829号公報
上記従来技術において、クーラコアに流入する冷却水の温度が0℃程度であれば、25℃程度の空気を冷却除湿できる。
冬期や寒冷地走行時のように外気の温度が零下である場合、ラジエータで冷却水を0℃程度に冷却できる。ラジエータで0℃程度に冷却された冷却水をクーラコアに循環させれば、冷凍サイクルの圧縮機を駆動することなく、車室内へ送風される空気を冷却除湿できるので、消費動力を低減することが可能になる。
しかしながら、上記従来技術では、ラジエータで冷却された冷却水のみならずインタークーラで熱交換された冷却水もクーラコアに流入する。そのため、冷凍サイクルの圧縮機を駆動しない場合、外気の温度が零下であっても、クーラコアに流入する冷却水の温度を0℃程度にするのが困難であり、クーラコアで空気を冷却除湿するのが困難であるという問題がある。
本発明は上記点に鑑みて、エンジンの吸気を冷却するとともに車室内へ送風される空気を冷却除湿する車両用冷却システムの消費動力を低減することを目的とする。
上記目的を達成するため、請求項1に記載の発明に係る車両用冷却システムは、
冷凍サイクル(31)の低圧側冷媒と熱媒体とを熱交換させて熱媒体を冷却するチラー(14)と、
チラー(14)で冷却された熱媒体と車室内へ送風される空気とを熱交換させて空気を冷却するクーラコア(16)と、
チラー(14)とクーラコア(16)との間で熱媒体を循環させる第1循環流路を形成する第1循環流路形成部(21)と、
エンジンの吸気と熱媒体とを熱交換させて吸気を冷却するインタークーラ(15)と、
インタークーラ(15)で熱交換された熱媒体と外気とを熱交換させるラジエータ(13)と、
インタークーラ(15)とラジエータ(13)との間で熱媒体を循環させる第2循環流路を形成する第2循環流路形成部(22)と、
第1循環流路(21)のうちクーラコア(16)の熱媒体出口側かつチラー(14)の熱媒体入口側の部位と、第2循環流路(22)のうちインタークーラ(15)の熱媒体出口側かつラジエータ(13)の熱媒体入口側の部位とに接続され、第1循環流路(21)と第2循環流路(22)とを連通する第1連通流路を形成する第1連通流路形成部(23)と、
第1循環流路(21)のうちチラー(14)の熱媒体出口側かつクーラコア(16)の熱媒体入口側の部位と、第2循環流路(22)のうちラジエータ(13)の熱媒体出口側かつインタークーラ(15)の熱媒体入口側の部位とに接続され、第1循環流路(21)と第2循環流路(22)とを連通する第2連通流路を形成する第2連通流路形成部(24)と、
第1循環流路(21)と第2循環流路(22)とが第1連通流路(23)および第2連通流路(24)によって連通する状態と連通しない状態とを切り替える切替部(25)とを備える。
これによると、切替部(25)が第1循環流路(21)と第2循環流路(22)とを連通させることによって、ラジエータ(13)で冷却された熱媒体を、インタークーラ(15)を介することなくクーラコア(16)に流すことができる(後述する図4を参照)。
そのため、外気の温度が零下である場合、冷凍サイクル(31)の圧縮機(32)を駆動させることなくクーラコア(16)で空気を冷却除湿できるので、消費動力を低減できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態における車両用冷却システムを示す全体構成図である。 第1実施形態の車両用冷却システムにおける電気制御部を示すブロック図である。 第1実施形態における車両用冷却システムの独立作動モードを示す説明図である。 第1実施形態における車両用冷却システムの圧縮機停止除湿モードを示す説明図である。 第1実施形態における車両用冷却システムの吸気冷却優先モードを示す説明図である。 第1実施形態における車両用冷却システムの吸気冷却補助モードを示す説明図である。 第2実施形態における車両用冷却システムを示す全体構成図である。 第2実施形態における車両用冷却システムの独立作動モードを示す説明図である。 第2実施形態における車両用冷却システムの圧縮機停止除湿モードを示す説明図である。 第2実施形態における車両用冷却システムの吸気冷却優先モードを示す説明図である。 第2実施形態における車両用冷却システムの吸気冷却補助モードを示す説明図である。
以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
図1に示す車両用冷却システム10は、エンジンの吸気を冷却するとともに、車室内へ送風される空気を冷却除湿するために用いられる。
図1に示すように、車両用冷却システム10は、第1ポンプ11、第2ポンプ12、ラジエータ13、チラー14、インタークーラ15およびクーラコア16を備えている。
第1ポンプ11および第2ポンプ12は、冷却水を吸入して吐出する電動ポンプである。冷却水は、熱媒体としての流体である。本実施形態では、冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。
第1ポンプ11および第2ポンプ12は、各冷却水流通機器を流れる冷却水の流量を調節する流量調節手段である。ラジエータ13、チラー14、インタークーラ15、クーラコア16は、冷却水が流通する冷却水流通機器である。
ラジエータ13は、冷却水と車室外空気(以下、外気と言う。)とを熱交換させる冷却水外気熱交換器である。ラジエータ13では、冷却水と車室外空気とが顕熱交換する。ラジエータ13に外気温以上の温度の冷却水を流すことにより、冷却水から外気に放熱させることが可能である。
室外送風機20は、ラジエータ13へ外気を送風する外気送風機である。室外送風機20は電動送風機である。ラジエータ13および室外送風機20は車両の最前部に配置されている。このため、車両の走行時にはラジエータ13に走行風を当てることができる。室外送風機20は、ラジエータ13を流れる外気の流量を調節する流量調節手段である。
チラー14は、冷却水を冷却する冷却水冷却用熱交換器である。チラー14は、冷凍サイクル31の低圧側冷媒と冷却水とを熱交換させることによって冷却水から低圧側冷媒に吸熱させる低圧側熱交換器である。チラー14は、冷凍サイクル31の低圧側冷媒を蒸発させる蒸発器である。
冷凍サイクル31は、圧縮機32、コンデンサ33、膨張弁34およびチラー14を備える蒸気圧縮式冷凍機である。本実施形態では、冷凍サイクル31の冷媒としてフロン系冷媒を用いており、冷凍サイクル31は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルである。
圧縮機32は、ベルト駆動式圧縮機であり、冷凍サイクル31の冷媒を吸入して圧縮して吐出する。ベルト駆動式圧縮機は、エンジンの駆動力によってエンジンベルトで駆動される圧縮機である。
コンデンサ33は、圧縮機32から吐出された高圧側冷媒と外気とを熱交換させることによって高圧側冷媒を凝縮させる凝縮器である。コンデンサ33では、圧縮機32から吐出された高圧側冷媒が潜熱変化する。
膨張弁34は、コンデンサ33から流出した液相冷媒を減圧膨張させる減圧部である。膨張弁34は、感温部を有する温度式膨張弁である。感温部は、チラー14出口側冷媒の温度および圧力に基づいてチラー14出口側冷媒の過熱度を検出する。温度式膨張弁は、チラー14出口側冷媒の過熱度が予め定めた所定範囲となるように絞り通路面積を調節する機械的機構を有している。
チラー14は、膨張弁34で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発させる蒸発器である。チラー14では、膨張弁34で減圧膨張された低圧冷媒が潜熱変化する。チラー14で蒸発した気相冷媒は圧縮機32に吸入されて圧縮される。
ラジエータ13では外気によって冷却水を冷却するのに対し、チラー14では冷凍サイクル31の低圧冷媒によって冷却水を冷却する。このため、チラー14で冷却された冷却水の温度を、ラジエータ13で冷却された冷却水の温度に比べて低くできる。具体的には、ラジエータ13では冷却水を外気の温度よりも低い温度まで冷却できないのに対し、チラー14では冷却水を外気の温度よりも低い温度まで冷却できる。
インタークーラ15は、ターボチャージャで圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器である。ターボチャージャは、エンジンの吸気を過給する過給機である。
クーラコア16は、チラー14で冷却された冷却水と車室内への送風空気とを熱交換させて送風空気の温度を調節する空気冷却用熱交換器である。
クーラコア16は、冷却水と車室内への送風空気とを熱交換させて車室内への送風空気を冷却除湿する空気冷却用熱交換器である。
第1ポンプ11、チラー14およびクーラコア16は、第1循環流路21に配置されている。第1循環流路21は、冷却水が循環する環状の流路である。第1循環流路21は、第1循環流路形成部によって形成されている。
第1ポンプ11、チラー14およびクーラコア16は、第1循環流路21において、第1ポンプ11、クーラコア16、チラー14の順番に冷却水が流れるように互いに直列に配置されている。
第2ポンプ12、ラジエータ13およびインタークーラ15は、第2循環流路22に配置されている。第2循環流路22は、冷却水が循環する環状の流路である。第2循環流路22は、第2循環流路形成部によって形成されている。
第2ポンプ12、ラジエータ13およびインタークーラ15は、第2循環流路22において、第2ポンプ12、インタークーラ15、ラジエータ13の順番に冷却水が流れるように互いに直列に配置されている。
第1循環流路21および第2循環流路22は、第1連通流路23および第2連通流路24を介して、互いに連通している。
第1連通流路23は、第1循環流路21のうちクーラコア16の冷却水出口側かつチラー14の冷却水入口側の部位と、第2循環流路22のうちインタークーラ15の冷却水出口側かつラジエータ13の冷却水入口側の部位とに接続されている。第1連通流路23は、第1連通流路形成部によって形成されている。
第2連通流路24は、第1循環流路21のうちチラー14の冷却水出口側かつ第1ポンプ11の冷却水吸入側の部位と、第2循環流路22のうちラジエータ13の冷却水出口側かつ第2ポンプ12の冷却水吸入側の部位とに接続されている。換言すれば、第2連通流路24は、第1循環流路21のうちチラー14の冷却水出口側かつクーラコア16の冷却水入口側の部位と、第2循環流路22のうちラジエータ13の冷却水出口側かつインタークーラ15の冷却水入口側の部位とに接続されている。第2連通流路24は、第2連通流路形成部によって形成されている。
第1連通流路23と第1循環流路21との接続部には第1三方弁25が配置されている。第1三方弁25は、クーラコア16の冷却水出口側、チラー14の冷却水入口側、および第1連通流路23側の3つのポートを有している。
第1三方弁25は、クーラコア16の冷却水出口側、チラー14の冷却水入口側、および第1連通流路23側の3つのポート間の連通状態を切り替える電磁弁である。第1三方弁25の作動は、制御装置40によって制御される。
第1三方弁25は、クーラコア16の冷却水出口側、チラー14の冷却水入口側および第1連通流路23側の3つのポートを全て互いに連通させることができる。
第1三方弁25は、クーラコア16の冷却水出口側およびチラー14の冷却水入口側の2つのポートのみを互いに連通させることができる。第1三方弁25は、クーラコア16の冷却水出口側および第1連通流路23側の2つのポートのみを互いに連通させることができる。第1三方弁25は、チラー14の冷却水入口側および第1連通流路23側の2つのポートのみを互いに連通させることができる。
第1三方弁25は、第1循環流路21と第2循環流路22とが第1連通流路23および第2連通流路24によって連通する状態と連通しない状態とを切り替える切替部である。
第2循環流路22にはバイパス流路26が接続されている。バイパス流路26は、第2循環流路22のうち第1連通流路23との接続部よりもインタークーラ15の冷却水出口側の部位と、第2循環流路22のうち第2連通流路24との接続部よりも第2ポンプ12の冷却水吸入側の部位とを接続している。バイパス流路26は、バイパス流路形成部によって形成されている。
第2三方弁27は、第2循環流路22とバイパス流路26とが合流する合流部に配置されている。具体的には、第2三方弁27は、第2循環流路22のうちラジエータ13の冷却水出口側かつ第2ポンプ12の冷却水吸入側の部位とバイパス流路26との接続部に配置されている。
第2三方弁27は、ラジエータ13の冷却水出口側、第2ポンプ12の冷却水吸入側、およびバイパス流路26側の3つのポートを有している。第2三方弁27は、3つのポート間の連通状態を切り替えるサーモスタットである。
サーモスタットは冷却水温度応動弁である。冷却水温度応動弁は、サーモワックスと機械的機構とを有している。サーモワックスは、温度によって体積変化する。機械的機構は、サーモワックスの体積変化によって弁体を変位させて冷却水流路を開閉する。第2三方弁27は、制御装置40によってその作動が制御される電磁弁であってもよい。
第2三方弁27は、ラジエータ13の冷却水出口側、第2ポンプ12の冷却水吸入側、およびバイパス流路26側の3つのポートを全て互いに連通させることができる。
第2三方弁27は、ラジエータ13の冷却水出口側、および第2ポンプ12の冷却水吸入側の2つのポートのみを互いに連通させることができる。第2三方弁27は、第2ポンプ12の冷却水吸入側、およびバイパス流路26側の2つのポートのみを互いに連通させることができる。
第2三方弁27は、バイパス流路26を流れる冷却水とラジエータ13を流れる冷却水との流量比を調整する流量比調整部である。
クーラコア16は、図示しない車両用空調装置の室内空調ユニットのケースに収容されている。室内空調ユニットのケースは、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。室内空調ユニットのケース内の空気流れ最上流側には、図示しない内外気切替箱が配置されている。内外気切替箱は、車室内空気(以下、内気と言う。)と車室外空気(以下、外気と言う。)とを切替導入する内外気導入部である。
内外気切替ドアは、室内空調ユニットの吸込口モードを内気導入モードまたは外気導入モードに切り替える吸込口モード切替部である。内気導入モードでは、室内空調ユニットのケース内に内気が導入される。外気導入モードでは、室内空調ユニットのケース内に外気が導入される。
内外気切替箱の空気流れ下流側には、図示しない室内送風機が配置されている。室内送風機は、内外気切替箱を介して吸入した空気(すなわち内気および外気)を車室内へ向けて送風する送風手段である。室内送風機は、遠心多翼ファン(換言すればシロッコファン)を電動モータにて駆動する電動送風機である。
室内空調ユニットのケース内において室内送風機の空気流れ下流側には、クーラコア16が配置されている。室内空調ユニットのケース内においてクーラコア16の空気流れ下流側には、図示しないヒータコアが配置されている。ヒータコアは、エンジン冷却水と室内空調ユニットのケース内を流れる空気とを熱交換させて、室内空調ユニットのケース内を流れる空気を加熱する空気加熱用熱交換器である。
エンジン冷却水は、エンジンを冷却するためのエンジン冷却用熱媒体である。エンジン冷却水は、図示しないエンジン冷却回路を循環する。エンジン冷却回路には、エンジンおよびヒータコア等が配置されている。
室内空調ユニットのケース内においてクーラコア16の空気流れ下流側部位には、図示しないヒータコアバイパス通路が形成されている。ヒータコアバイパス通路は、クーラコア16を通過した空気を、ヒータコアを通過させずに流す空気通路である。
室内空調ユニットのケース内においてクーラコア16とヒータコアとの間には、図示しないエアミックスドアが配置されている。
エアミックスドアは、ヒータコアへ流入させる空気と、ヒータコアバイパス通路へ流入させる空気との風量割合を連続的に変化させる風量割合調節部である。エアミックスドアは、回動可能な板状ドアや、スライド可能なドア等であり、図示しない電動アクチュエータによって駆動される。
室内空調ユニットのケースの空気流れ最下流部には、図示しない吹出口が配置されている。室内空調ユニットのケース内を流れる空気は、吹出口から、空調対象空間である車室内へ吹き出される。この吹出口としては、具体的には、デフロスタ吹出口、フェイス吹出口およびフット吹出口が設けられている。
デフロスタ吹出口は、車両前面窓ガラスの内側の面に向けて空調風を吹き出す。フェイス吹出口は、乗員の上半身に向けて空調風を吹き出す。フット吹出口は、乗員の足元に向けて空調風を吹き出す。
室内空調ユニットのケース内において吹出口の空気流れ上流側には、図示しない吹出口モードドアが配置されている。吹出口モードドアは、吹出口モードを切り替える吹出口モード切替部である。吹出口モードドアは、図示しない電動アクチュエータによって駆動される。
吹出口モードドアによって切り替えられる吹出口モードとしては、例えば、フェイスモード、バイレベルモード、フットモードおよびフットデフロスタモードがある。
フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。
フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。フットデフロスタモードは、フット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出す吹出口モードである。
EGRクーラは、エンジンの排気ガスの一部を吸気側に還流させてスロットルバルブで発生するポンピングロスを低減させるEGR(排気ガス再循環)装置を構成する熱交換器であって、還流ガスと冷却水とを熱交換させて還流ガスの温度を調節する熱交換器である。
次に、車両用冷却システム10の電気制御部を図2に基づいて説明する。制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する制御手段である。
制御装置40によって制御される制御対象機器は、第1ポンプ11、第2ポンプ12、第1三方弁25、室外送風機20および圧縮機32等である。
制御装置40のうち、その出力側に接続された各種制御対象機器の作動を制御するハードウェアおよびソフトウェアは、それぞれの制御対象機器の作動を制御する制御部である。
制御装置40のうち第1ポンプ11および第2ポンプ12の作動を制御するハードウェアおよびソフトウェアは、ポンプ制御部40aである。
制御装置40のうち第1三方弁25の作動を制御するハードウェアおよびソフトウェアは、弁制御部40bである。弁制御部40bは、冷却水の循環状態を切り替える切替制御部である。
制御装置40のうち室外送風機20の作動を制御するハードウェアおよびソフトウェアは、室外送風機制御部40cである。制御装置40のうち圧縮機32の作動を制御するハードウェアおよびソフトウェアは、圧縮機制御部40dである。
各制御部40a、40b、40c、40dは、制御装置40に対して別体で構成されていてもよい。
制御装置40の入力側には、内気温度センサ41、外気温度センサ42、日射センサ43、チラー温度センサ44、クーラコア温度センサ45、ラジエータ温度センサ46、インタークーラ温度センサ47等のセンサ群の検出信号が入力される。
内気温度センサ41は、内気の温度(換言すれば車室内温度)を検出する検出部である。外気温度センサ42は、外気の温度(換言すれば車室外温度)を検出する検出部である。日射センサ43は、車室内の日射量を検出する検出部である。
チラー温度センサ44は、チラー14の温度を検出する検出部である。例えば、チラー温度センサ44は、チラー14から流出した冷却水の温度を検出する。
クーラコア温度センサ45は、クーラコア16の温度を検出する検出部である。クーラコア温度センサ45は、例えば、クーラコア16の熱交換フィンの温度を検出するフィンサーミスタや、クーラコア16を流れる冷却水の温度を検出する水温センサ等である。
ラジエータ温度センサ46は、ラジエータ13の温度を検出する検出部である。例えば、ラジエータ温度センサ46は、ラジエータ13から流出した冷却水の温度を検出する検出部である。
インタークーラ温度センサ47は、インタークーラ15の温度を検出する検出部である。例えば、インタークーラ温度センサ47は、インタークーラ15の出口吸気の温度を検出するフィンサーミスタや、インタークーラ15を流れる冷却水の温度を検出する水温センサ等である。
制御装置40の入力側には、操作パネル48に設けられた各種空調操作スイッチからの操作信号が入力される。例えば、操作パネル48は、車室内前部の計器盤付近に配置されている。
操作パネル48に設けられた各種空調操作スイッチは、デフロスタスイッチ、エアコンスイッチ、オートスイッチ、車室内温度設定スイッチ、風量設定スイッチおよび空調停止スイッチ等である。
デフロスタスイッチは、デフロスタモードを設定または解除するスイッチである。デフロスタモードは、室内空調ユニットのデフロスタ吹出口からフロント窓ガラスの内面に向けて空調風を吹き出してフロント窓ガラスの曇りを防止したり、窓曇りした場合に窓曇りを除去したりする吹出口モードである。
エアコンスイッチは、冷房または除湿の作動・停止(換言すればオン・オフ)を切り替えるスイッチである。風量設定スイッチは、室内送風機から送風される風量を設定するスイッチである。オートスイッチは、空調の自動制御を設定または解除するスイッチである。
車室内温度設定スイッチは、乗員の操作によって車室内目標温度を設定する目標温度設定手段である。空調停止スイッチは、空調を停止させるスイッチである。
制御装置40は、外気温度と車室内吹出空気の目標吹出温度TAOとに基づいて空調モードを決定する。目標吹出温度TAOは、内気温Trを速やかに乗員の所望の目標温度Tsetに近づけるために決定される値であって、下記数式F1により算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C …F1
この数式において、Tsetは車室内温度設定スイッチによって設定された車室内の目標温度であり、Trは内気温度センサ41によって検出された内気温度であり、Tamは外気温度センサ42によって検出された外気温度であり、Tsは日射センサ43によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
例えば、制御装置40は、外気温度よりも目標吹出温度TAOが低い場合、空調モードを冷房モードに決定し、外気温度よりも目標吹出温度TAOが高い場合、空調モードを暖房モードに決定する。
制御装置40のうち空調モードを決定するハードウェアおよびソフトウェアは、空調モード決定部である。空調モード決定部は、制御装置40に対して別体で構成されていてもよい。
次に、上記構成における作動を説明する。制御装置40が第1ポンプ11、第2ポンプ12、圧縮機32および第1三方弁25等の作動を制御することによって、種々の作動モードに切り替えられる。
例えば、独立作動モード、圧縮機停止除湿モード、吸気冷却優先モード、吸気冷却補助モードに切り替えられる。以下、独立作動モード、圧縮機停止除湿モード、吸気冷却優先モードおよび吸気冷却補助モードを説明する。
(1)独立作動モード
図3に示す独立作動モードは、インタークーラ15による吸気冷却と、クーラコア16による冷却除湿とを互いに独立して行う作動モードである。独立作動モードは、最も使用頻度の高い基本の作動モードである。
独立作動モードでは、第1三方弁25は、クーラコア16の冷却水出口側およびチラー14の冷却水入口側の2つのポートのみを互いに連通させる。
これにより、図3の太実線に示すように第1循環流路21および第2循環流路22に互いに独立して冷却水が循環するので、第1循環流路21および第2循環流路22のうち一方の流路で冷却水温度が変化しても他方の流路に影響を与えない。
独立作動モードでは、圧縮機32のオン・オフや容量制御を行うことによって、チラー14での熱交換量を変化させてクーラコア16に流入する冷却水の温度を変化させることができるので、クーラコア16の熱交換能力を制御できる。
独立作動モードでは、第1ポンプ11が吐出する冷却水の流量を変化させることによっても、クーラコア16の熱交換能力を制御できる。
独立作動モードでは、第2三方弁27の弁開度によってラジエータ13への冷却水流量が変化して外気への放熱量が変化するので、インタークーラ15に流入する冷却水の温度が変化する。例えば、インタークーラ15で熱交換された吸気の温度が所定温度(例えば30〜40℃)以下にならないように第2三方弁27の弁開度が変化する。さらに、第2ポンプ12が吐出する冷却水の流量を変化させることによって、インタークーラ15で熱交換された吸気の温度をより細やかに制御できる。
(2)圧縮機停止除湿モード
図4に示す圧縮機停止除湿モードは、室内空調ユニットの吸込口モードが内気導入モードであり、かつ外気温が車室内温度よりも低い場合に実行される。圧縮機停止除湿モードは、ラジエータ13で外気によって冷却された冷却水をクーラコア16に送って内気を除湿する作動モードである。圧縮機停止除湿モードは、圧縮機32を停止させて消費動力を低減するために実行される。
圧縮機停止除湿モードでは、第1三方弁25は、クーラコア16の冷却水出口側および第1連通流路23側の2つのポートのみを互いに連通させる。
これにより、図4の太実線に示すように冷却水が循環する。第1ポンプ11から吐出された冷却水は、クーラコア16、第1三方弁25、ラジエータ13、第1ポンプ11の順に循環する。第2ポンプ12から吐出された冷却水は、インタークーラ15、ラジエータ13、第2ポンプ12の順に循環する。
ラジエータ13では、第1循環流路21の冷却水と第2循環流路22の冷却水とが混合されるので、第1循環流路21と第2循環流路22とが互いに冷却水の温度に影響を与える。
圧縮機停止除湿モードでは、第2三方弁27は、冷却水のほとんどがバイパス流路26を流れ、ラジエータ13へ向かう冷却水の流量が微量になるように弁開度を調整すればよい。その理由は以下のとおりである。
圧縮機停止除湿モードは、外気温が車室内温度よりも低い場合に実施されるので、圧縮機停止除湿モードでは、インタークーラ15に流入する吸気の温度も低めである。本実施形態では、吸気から凝縮水が発生しないように、インタークーラ15で冷却された吸気の温度を下げ過ぎないようにする必要があるからである。また、例えば、市街地走行や平坦路の100km/h程度の走行である場合、走行負荷が高くなって吸気が過給されるのは発進や加速時等のわずかな機会のみであるので、インタークーラ15の時間平均の熱交換量はほんのわずか(例えば、0.2kW程度以下)であるからである。
一方、例えば、温度が25℃、湿度が50%、流量が200m3/hの内気をクーラコア16で1℃まで冷却する場合、クーラコア16における冷却水の流量を10L/minとすると、クーラコア16に流入する冷却水を−5℃程度にする必要があり、必要な冷却量は2.8kW程度であり、クーラコア16から流出する冷却水の温度は0℃程度になる。
そのため、ラジエータ13は、吸気冷却分と合わせ、3kW程度放熱できればよいことになるため、一般的なラジエータで十分放熱可能である。
すなわち、本実施形態によれば、ラジエータ13では、外気の温度よりも5℃程度高い温度の冷却水を作り出すことができるので、外気温が5℃程度以下であれば、25℃の内気を冷却除湿できる。
(3)吸気冷却優先モード
図5に示す吸気冷却優先モードは、クーラコア16による冷房を停止して、ラジエータ13の冷却水冷却能力に加えてチラー14の冷却水冷却能力も利用して吸気温度を下げてエンジン出力を増大可能にする作動モードである。
吸気冷却優先モードでは、第1三方弁25は、チラー14の冷却水入口側および第1連通流路23側の2つのポートのみを互いに連通させる。また、吸気冷却優先モードでは、第1ポンプ11は停止される。
これにより、図5の太実線に示すように、第2ポンプ12から吐出された冷却水は、インタークーラ15を流れた後にラジエータ13側とチラー14側とに分岐してラジエータ13とチラー14とを並列に流れた後、合流して第2ポンプ12に吸入される。
例えば、エンジンの排気量が1500cc程度であり、エンジンの出力が最大であるときのラジエータ13の放熱量が15kW程度である場合において、チラー14の冷却水冷却能力を利用しない場合、インタークーラ15に流入する冷却水の温度が44℃になり、インタークーラ15から流出する吸気の温度が50℃になるのに対し、チラー14の冷却水冷却能力を3kW利用すると、インタークーラ15に流入する冷却水の温度をおおよそ37℃、インタークーラ15から流出する吸気の温度をおおよそ43℃に低下させることができ、ひいてはエンジン出力を7kW程度増加させることができる。
なお、チラー14で冷却水を冷却することによってラジエータ13に流入する冷却水の温度も低下するので、ラジエータ13でも放熱量が2kW減少し、全体での冷却量の増加は1kWとなる。
また、チラー14で冷却水を冷却するために圧縮機32が駆動されるので、圧縮機32で1.5kW程度の動力が消費される。圧縮機32はエンジンの駆動力によって駆動されるため、その分、エンジン出力向上効果が減少するが、差し引きで5.5kWのエンジン出力向上効果を得ることができる。
(4)吸気冷却補助モード
図6に示す吸気冷却補助モードは、チラー14の冷却水冷却能力を利用してクーラコア16による冷房を行いつつ、チラー14の冷却水冷却能力の一部を吸気冷却の補助として利用する作動モードである。
吸気冷却補助モードでは、第1三方弁25は、クーラコア16の冷却水出口側、チラー14の冷却水入口側、および第1連通流路23側の3つのポートを全て互いに連通させる。また、第1三方弁25は、クーラコア16側からの冷却水とインタークーラ15側からの冷却水とが所定の流量割合でチラー14側に流れるように弁開度が調整される。
これにより、図6の太実線に示すように、第1ポンプ11から吐出された冷却水と第2ポンプ12から吐出された冷却水とがチラー14に流入し、チラー14で冷却された冷却水の一部がインタークーラ15を流れて吸気を冷却し、チラー14で冷却された冷却水の残りがクーラコア16を流れて冷房を行う。
また、第2ポンプ12の出力を高め、第1ポンプ11の出力を下げるようにポンプ出力を制御することによって、インタークーラ15から流出した冷却水がチラー14側に引き込まれやすくする。
上記各作動モードでは、ラジエータ13への冷却水流量を変化させて外気への放熱量を調整し、ラジエータ13をバイパスしてきた水と混合させることによって、インタークーラ15に流入する冷却水の温度を変化させてインタークーラ15の出口吸気温度を制御できる。
本実施形態では、第1連通流路23は、第1循環流路21のうちクーラコア16の冷却水出口側かつチラー14の冷却水入口側の部位と、第2循環流路22のうちインタークーラ15の冷却水出口側かつラジエータ13の冷却水入口側の部位とに接続されている。第2連通流路24は、第1循環流路21のうちチラー14の冷却水出口側かつクーラコア16の冷却水入口側の部位と、第2循環流路22のうちラジエータ13の冷却水出口側かつインタークーラ15の冷却水入口側の部位とに接続されている。第1三方弁25は、第1循環流路21と第2循環流路22とが第1連通流路23および第2連通流路24によって連通する状態と連通しない状態とを切り替える。
これによると、第1三方弁25が第1循環流路21と第2循環流路22とを連通させることによって、ラジエータ13で冷却された冷却水をクーラコア16に流すことができる。そのため、低外気温時、冷凍サイクル31の圧縮機32を停止させてもクーラコア16で空気を冷却除湿できる。
本実施形態では、第1三方弁25は、第1循環流路21と第1連通流路23との接続部に配置されている。第1三方弁25は、クーラコア16の冷却水出口側とチラー14の冷却水入口側とを連通させる状態と、クーラコア16の冷却水出口側と第1連通流路23とを連通させる状態と、チラー14の冷却水入口側と第1連通流路23側とを連通させる状態とを切り替え可能になっている。
これにより、図3〜6に示す独立作動モード、圧縮機停止除湿モード、吸気冷却優先モード、吸気冷却補助モードに切り替えることができる。
本実施形態では、第1三方弁25は、クーラコア16の冷却水出口側からチラー14の冷却水入口側へ向かって流れる冷却水と、第1連通流路23側からチラー14の冷却水入口側へ向かって流れる冷却水との流量比を調整可能になっている。これにより、クーラコア16およびインタークーラ15の両方を適切な温度に調整できる。
本実施形態では、第2三方弁27は、バイパス流路26を流れる冷却水と、ラジエータ13を流れる冷却水との流量比を調整する。これにより、ラジエータ13への冷却水の流量を変化させて外気への放熱量を調整できるので、インタークーラ15の吸気冷却温度を制御できる。
本実施形態では、第2三方弁27は、第2循環流路22のうちラジエータ13の冷却水出口側かつインタークーラ15の冷却水入口側の部位とバイパス流路26との接続部に配置されている。第2三方弁27は、ラジエータ13の冷却水出口側からインタークーラ15の冷却水入口側へ向かって流れる冷却水と、バイパス流路26側からインタークーラ15の冷却水入口側へ向かって流れる冷却水との流量比を調整する。これにより、インタークーラ15を適切な温度に調整できる。
(第2実施形態)
本実施形態における車両用冷却システム10の全体構成を図7に示す。本実施形態では、上記第1実施形態に対して、第1ポンプ11、チラー14およびクーラコア16の配置が変更されている。
本実施形態においても、上記第1実施形態と同様に、図8に示す独立作動モード、図9に示す圧縮機停止除湿モード、図10に示す吸気冷却優先モード、図11に示す吸気冷却補助モードに切り替えることができる。
本実施形態の上記各モードでは、第1循環流路21における冷却水の循環方向が上記第1実施形態に対して反対になっているが、上記第1実施形態と同様の作用効果を奏することができる。
(他の実施形態)
上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
(1)上記実施形態では、インタークーラ15は、第2ポンプ12とラジエータ13との間に配置されているが、インタークーラ15は、第2三方弁27と第2ポンプ12との間に配置されていてもよい。
(2)上記実施形態では、第2三方弁27は、第2循環流路22とバイパス流路26とが合流する合流部に配置されているが、第2三方弁27は、第2循環流路22からバイパス流路26が分岐する分岐部に配置されていてもよい。
(3)上記実施形態では、第1ポンプ11は、チラー14とクーラコア16との間に配置されているが、第1ポンプ11は、クーラコア16と第1三方弁25との間に配置されていてもよい。
(4)上記実施形態では、車両用冷却システム10の熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。
熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。
すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。
このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。
これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。
また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量を増加させることができる。熱媒体自体の蓄冷熱量とは、顕熱による蓄冷熱の量のことである。
蓄冷熱量を増加させることにより、圧縮機32を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用冷却システム10の省動力化が可能になる。
ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。
ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT、グラフェン、グラファイトコアシェル型ナノ粒子、およびAuナノ粒子含有CNTなどを用いることができる。CNTとは、カーボンナノチューブのことである。グラファイトコアシェル型ナノ粒子とは、上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体のことである。
(5)上記実施形態の冷凍サイクル31では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
(6)上記実施形態の冷凍サイクル31は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
13 ラジエータ
14 チラー
15 インタークーラ
16 クーラコア
21 第1循環流路(第1循環流路形成部)
22 第2循環流路(第2循環流路形成部)
23 第1連通流路(第1連通流路形成部)
24 第2連通流路(第2連通流路形成部)
25 第1三方弁(切替部)
26 バイパス流路(バイパス流路形成部)
27 第2三方弁(流量比調整部)
31 冷凍サイクル

Claims (5)

  1. 冷凍サイクル(31)の低圧側冷媒と熱媒体とを熱交換させて前記熱媒体を冷却するチラー(14)と、
    前記チラー(14)で冷却された前記熱媒体と車室内へ送風される空気とを熱交換させて前記空気を冷却するクーラコア(16)と、
    前記チラー(14)と前記クーラコア(16)との間で前記熱媒体を循環させる第1循環流路を形成する第1循環流路形成部(21)と、
    エンジンの吸気と前記熱媒体とを熱交換させて前記吸気を冷却するインタークーラ(15)と、
    前記インタークーラ(15)で熱交換された前記熱媒体と外気とを熱交換させるラジエータ(13)と、
    前記インタークーラ(15)と前記ラジエータ(13)との間で前記熱媒体を循環させる第2循環流路を形成する第2循環流路形成部(22)と、
    前記第1循環流路(21)のうち前記クーラコア(16)の熱媒体出口側かつ前記チラー(14)の熱媒体入口側の部位と、前記第2循環流路(22)のうち前記インタークーラ(15)の熱媒体出口側かつ前記ラジエータ(13)の熱媒体入口側の部位とに接続され、前記第1循環流路(21)と前記第2循環流路(22)とを連通する第1連通流路を形成する第1連通流路形成部(23)と、
    前記第1循環流路(21)のうち前記チラー(14)の熱媒体出口側かつ前記クーラコア(16)の熱媒体入口側の部位と、前記第2循環流路(22)のうち前記ラジエータ(13)の熱媒体出口側かつ前記インタークーラ(15)の熱媒体入口側の部位とに接続され、前記第1循環流路(21)と前記第2循環流路(22)とを連通する第2連通流路を形成する第2連通流路形成部(24)と、
    前記第1循環流路(21)と前記第2循環流路(22)とが前記第1連通流路(23)および前記第2連通流路(24)によって連通する状態と連通しない状態とを切り替える切替部(25)とを備える車両用冷却システム。
  2. 前記切替部(25)は、
    前記第1循環流路(21)と前記第1連通流路(23)との接続部に配置された三方弁であり、
    前記クーラコア(16)の熱媒体出口側と前記チラー(14)の熱媒体入口側とを連通させる状態と、前記クーラコア(16)の熱媒体出口側と前記第1連通流路(23)とを連通させる状態と、前記チラー(14)の熱媒体入口側と前記第1連通流路(23)側とを連通させる状態とを切り替え可能になっている請求項1に記載の車両用冷却システム。
  3. 前記切替部(25)は、
    前記クーラコア(16)の熱媒体出口側から前記チラー(14)の熱媒体入口側へ向かって流れる前記熱媒体と、前記第1連通流路(23)側から前記チラー(14)の熱媒体入口側へ向かって流れる前記熱媒体との流量比を調整可能になっている請求項2に記載の車両用冷却システム。
  4. 前記インタークーラ(15)で熱交換された前記熱媒体が前記ラジエータ(13)をバイパスして流れるバイパス流路を形成するバイパス流路形成部(26)と、
    前記バイパス流路(26)を流れる前記熱媒体と、前記ラジエータ(13)を流れる前記熱媒体との流量比を調整する流量比調整部(27)とを備える請求項1ないし3のいずれか1つに記載の車両用冷却システム。
  5. 前記流量比調整部(27)は、
    前記第2循環流路(22)のうち前記ラジエータ(13)の熱媒体出口側かつ前記インタークーラ(15)の熱媒体入口側の部位と前記バイパス流路(26)との接続部に配置された三方弁であり、
    前記ラジエータ(13)の熱媒体出口側から前記インタークーラ(15)の熱媒体入口側へ向かって流れる前記熱媒体と、前記バイパス流路(26)側から前記インタークーラ(15)の熱媒体入口側へ向かって流れる前記熱媒体との流量比を調整する請求項4に記載の車両用冷却システム。
JP2015240024A 2015-12-09 2015-12-09 車両用冷却システム Expired - Fee Related JP6390601B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015240024A JP6390601B2 (ja) 2015-12-09 2015-12-09 車両用冷却システム
PCT/JP2016/084432 WO2017098901A1 (ja) 2015-12-09 2016-11-21 車両用冷却システム
CN201680068250.6A CN108291473B (zh) 2015-12-09 2016-11-21 车辆用冷却系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240024A JP6390601B2 (ja) 2015-12-09 2015-12-09 車両用冷却システム

Publications (3)

Publication Number Publication Date
JP2017106367A true JP2017106367A (ja) 2017-06-15
JP2017106367A5 JP2017106367A5 (ja) 2018-02-08
JP6390601B2 JP6390601B2 (ja) 2018-09-19

Family

ID=59014097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240024A Expired - Fee Related JP6390601B2 (ja) 2015-12-09 2015-12-09 車両用冷却システム

Country Status (3)

Country Link
JP (1) JP6390601B2 (ja)
CN (1) CN108291473B (ja)
WO (1) WO2017098901A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193487A1 (ja) * 2020-03-26 2021-09-30 いすゞ自動車株式会社 車両用冷却装置
WO2021193485A1 (ja) * 2020-03-26 2021-09-30 いすゞ自動車株式会社 車両用冷却装置
US11260719B2 (en) 2019-01-08 2022-03-01 Toyota Jidosha Kabushiki Kaisha Battery cooling system including a cooling water circulation circuit
JP7288127B1 (ja) 2022-09-16 2023-06-06 三菱重工サーマルシステムズ株式会社 車両用の温調システムおよび温調方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE542979C2 (en) * 2018-10-09 2020-09-22 Scania Cv Ab A temperature control system, a vehicle provided therewith and a method for controlling the operation thereof
CN109367351B (zh) * 2018-10-13 2021-10-08 朱森林 一种电动汽车用多功能系统
JP7251229B2 (ja) * 2019-03-13 2023-04-04 トヨタ自動車株式会社 車載温調装置
JP2020164153A (ja) * 2019-03-29 2020-10-08 株式会社デンソー 空調装置
JP7392296B2 (ja) * 2019-06-10 2023-12-06 株式会社デンソー 冷凍サイクル装置
SE543426C2 (en) * 2019-06-13 2021-02-16 Scania Cv Ab Method of Controlling Flow of Coolant, Vehicle Cooling System, and Related Devices
JP7294186B2 (ja) * 2020-03-02 2023-06-20 トヨタ自動車株式会社 熱交換システム、方法、プログラム、及び車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315513A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 燃料電池自動車用ラジエータシステム
JP2013231574A (ja) * 2012-02-02 2013-11-14 Denso Corp 熱交換器
JP2015163503A (ja) * 2014-01-29 2015-09-10 株式会社デンソー 車両用空調装置
WO2015133083A1 (ja) * 2014-03-05 2015-09-11 株式会社デンソー 車両用熱管理システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135256B2 (ja) * 2012-05-23 2017-05-31 株式会社デンソー 車両用熱管理システム
JP5983187B2 (ja) * 2012-08-28 2016-08-31 株式会社デンソー 車両用熱管理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315513A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 燃料電池自動車用ラジエータシステム
JP2013231574A (ja) * 2012-02-02 2013-11-14 Denso Corp 熱交換器
JP2015163503A (ja) * 2014-01-29 2015-09-10 株式会社デンソー 車両用空調装置
WO2015133083A1 (ja) * 2014-03-05 2015-09-11 株式会社デンソー 車両用熱管理システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260719B2 (en) 2019-01-08 2022-03-01 Toyota Jidosha Kabushiki Kaisha Battery cooling system including a cooling water circulation circuit
WO2021193487A1 (ja) * 2020-03-26 2021-09-30 いすゞ自動車株式会社 車両用冷却装置
WO2021193485A1 (ja) * 2020-03-26 2021-09-30 いすゞ自動車株式会社 車両用冷却装置
JP7288127B1 (ja) 2022-09-16 2023-06-06 三菱重工サーマルシステムズ株式会社 車両用の温調システムおよび温調方法
WO2024058116A1 (ja) * 2022-09-16 2024-03-21 三菱重工サーマルシステムズ株式会社 車両用の温調システムおよび温調方法
JP2024043213A (ja) * 2022-09-16 2024-03-29 三菱重工サーマルシステムズ株式会社 車両用の温調システムおよび温調方法

Also Published As

Publication number Publication date
WO2017098901A1 (ja) 2017-06-15
JP6390601B2 (ja) 2018-09-19
CN108291473A (zh) 2018-07-17
CN108291473B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
JP6390601B2 (ja) 車両用冷却システム
US11498391B2 (en) Air conditioner
US10562376B2 (en) Refrigeration cycle device
JP6398764B2 (ja) 車両用熱管理システム
JP6485390B2 (ja) 冷凍サイクル装置
JP6551374B2 (ja) 車両用熱管理装置
JP6197745B2 (ja) 車両用冷凍サイクル装置
WO2019058838A1 (ja) 冷凍サイクル装置
WO2014196138A1 (ja) 車両用熱管理システム
WO2018042859A1 (ja) 冷凍サイクル装置
WO2015015726A1 (ja) 車両用空調装置
JP2015140115A (ja) 空調装置
WO2015115050A1 (ja) 車両用熱管理システム
JP6673294B2 (ja) 冷凍サイクル装置
WO2014174786A1 (ja) 車両用熱管理装置
JP2019034587A (ja) 空調装置
JP5971202B2 (ja) 冷凍サイクル装置
WO2017130846A1 (ja) 車両用熱管理装置
WO2016006174A1 (ja) 車両用温度調整装置
JP6060799B2 (ja) 車両用空調装置
JP2015163499A (ja) 車両用空調装置
WO2020145019A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R151 Written notification of patent or utility model registration

Ref document number: 6390601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees