JP2017106109A - Converter refining method of stainless steel with reduced refractory corrosion of converter - Google Patents

Converter refining method of stainless steel with reduced refractory corrosion of converter Download PDF

Info

Publication number
JP2017106109A
JP2017106109A JP2016231097A JP2016231097A JP2017106109A JP 2017106109 A JP2017106109 A JP 2017106109A JP 2016231097 A JP2016231097 A JP 2016231097A JP 2016231097 A JP2016231097 A JP 2016231097A JP 2017106109 A JP2017106109 A JP 2017106109A
Authority
JP
Japan
Prior art keywords
mgo
converter
refractory
slag
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016231097A
Other languages
Japanese (ja)
Inventor
ミン オゥ 石
Min Oh Seok
ミン オゥ 石
仁 成 車
In-Sung Cha
仁 成 車
河 チョル 成
Ha-Chul Sung
河 チョル 成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2017106109A publication Critical patent/JP2017106109A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a converter refining method of a stainless steel with reduced refractory corrosion of a converter capable of reducing refractory corrosion and enhancing life of a refractory by reducing amount of slag and largely reducing elution amount of the refractory and capable of largely reducing used amount of auxiliary material during decarbonization and used amount of a reductant.SOLUTION: A converter refining method includes a molten pig iron insertion process for inserting the molten pig iron into a converter, a decarbonization process and a reduction process and slag formed in the decarbonization process is MgO-SiO-based slag. The converter contains a refractory containing one or more selected from a group consisting of MgO-based and MgO-C-based inside and preferably includes a process for inputting an auxiliary material containing one or more selected from a group consisting of MgO-based and MgO-C-based for forming the MgO-SiO-based slag.SELECTED DRAWING: Figure 3

Description

本発明は転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法に係り、より詳しくは、ステンレス鋼製鋼精錬の副原料としてMgOまたはMgO−C系副原料を使用することによりスラグの発生量を低減させ、耐火物の溶出を抑制することによって、耐火物の寿命を向上させることのできる転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法に関する。   The present invention relates to a converter refining method for stainless steel with reduced refractory erosion of the converter, and more specifically, by using MgO or MgO-C-based auxiliary material as an auxiliary material for stainless steel refining. The present invention relates to a converter for refining a stainless steel with reduced refractory erosion of a converter capable of improving the life of the refractory by reducing the generation amount and suppressing elution of the refractory.

ステンレス鋼の製造方法は、使う原料によってスクラップを使う製造方法と溶銑を使う製造方法とに大別することができる。スクラップ原料を使用する製造方法に比べて溶銑を使う製造方法は原料の価格の側面で非常に有利であるため、最近は世界の主要ステンレスメーカーも溶銑を使う製造方法を採用する傾向にある。
スクラップを使うステンレス製造方法は、一般的にクロムなど、ステンレス鋼の必須元素をほとんど全て含有した状態のスクラップを電気炉で溶解させた後、精錬炉で脱炭工程を行う。
一方、溶銑を使う製造方法は、高炉から取り出した溶銑からケイ素、リンなどの不純物を除去するための予備処理を実施した後、脱炭工程を行うが、炭素鋼用高炉を利用して溶銑を製造する製鉄所の多くは、脱炭用の転炉も保有しているため、ステンレス鋼の脱炭も転炉を利用して行う事例が多い。
Stainless steel manufacturing methods can be broadly classified into a manufacturing method using scrap and a manufacturing method using hot metal, depending on the raw materials used. Since the manufacturing method using hot metal is very advantageous in terms of the raw material price as compared with the manufacturing method using scrap raw materials, recently, the world's major stainless steel manufacturers tend to adopt the manufacturing method using hot metal.
In a stainless steel manufacturing method using scraps, scraps containing almost all the essential elements of stainless steel such as chromium are generally melted in an electric furnace and then decarburized in a refining furnace.
On the other hand, the manufacturing method using hot metal performs a decarburization process after carrying out a preliminary treatment for removing impurities such as silicon and phosphorus from the hot metal taken out of the blast furnace. Many of the steelworks that it manufactures also have converters for decarburization, so there are many cases where decarburization of stainless steel is also performed using converters.

図1はステンレス鋼の製鋼精錬操業時に発生するスラグの組成を説明するための三角図である。
図2は従来のステンレス鋼製鋼精錬操業フローチャートである。
従来のステンレス鋼製鋼精錬操業では、図2に示すとおり、転炉に溶銑装入段階10、副原料および昇温材を投入して酸素吹き込みによる精錬を遂行する脱炭段階20、還元剤を投入する還元段階30および溶鋼を取鍋に出鋼する段階40を経る。この時、従来には脱炭段階20で副原料に生石灰(CaO)および軽焼ドロマイト(CaO・MgO)を使用していた。
図1に示したとおり、脱炭段階で生成されたスラッグがCaO−SiO系スラグの場合、1,700℃でのMgO系耐火物の溶出を防止するためには理論的にCaO/SiO比が1.5以上とならなければならない。この時、蛍石(CaF)を使用するか、もっと温度が高い場合にはその比がさらに大きくしなければならない。実際、実機ではCaO/SiO比が略2に近い比率で使用されており、したがって、スラグ量が増加し、これに伴い、耐火物の溶出量が増加する問題点があった。
FIG. 1 is a triangular diagram for explaining the composition of slag generated during the steel refining operation of stainless steel.
FIG. 2 is a flowchart of a conventional stainless steel refining operation.
In conventional stainless steel refining operations, as shown in FIG. 2, a molten metal charging stage 10, a decarburization stage 20 for performing refining by oxygen blowing by introducing auxiliary materials and a heating material, and a reducing agent are introduced to the converter. The reduction stage 30 to be performed and the stage 40 to take out the molten steel into a ladle. At this time, conventionally, quick lime (CaO) and light calcined dolomite (CaO · MgO) were used as auxiliary materials in the decarburization stage 20.
As shown in FIG. 1, when the slug generated in the decarburization stage is CaO—SiO 2 slag, theoretically, in order to prevent elution of MgO refractory at 1,700 ° C., CaO / SiO 2 The ratio must be greater than 1.5. At this time, fluorite (CaF 2 ) is used, or if the temperature is higher, the ratio must be further increased. Actually, in the actual machine, the CaO / SiO 2 ratio is used at a ratio close to about 2. Therefore, the amount of slag is increased, and accordingly, there is a problem that the amount of refractory is increased.

韓国公開特許文献第10−1997−0027321号Korean Patent Publication No. 10-1997-0027321

本発明は、上記問題点を解決するためになされたものであってその目的とするところは、スラグの量を低減させて耐火物の溶出量を大幅に減少させることによって耐火物侵食を低減し、耐火物の寿命を向上させることができ、さらに脱炭時の副原料の使用量および還元剤の使用量を大幅に減少させることができる転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法を提供することにある。   The present invention has been made to solve the above-described problems, and the object of the present invention is to reduce refractory erosion by reducing the amount of slag and greatly reducing the amount of refractory dissolved out. It is possible to improve the life of refractories, and further reduce the amount of secondary raw materials and reducing agent used during decarburization. It is to provide a furnace refining method.

上記課題を解決するためになされた本発明の転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法は、転炉に溶銑を装入する段階、脱炭段階および還元段階を含み、脱炭段階中に形成されるスラグはMgO−SiO系スラグであることを特徴とする。 A converter for refining stainless steel with reduced refractory erosion of the converter of the present invention, which has been made to solve the above problems, includes a step of introducing hot metal into the converter, a decarburization step, and a reduction step. The slag formed during the decarburization step is characterized by being a MgO—SiO 2 slag.

本発明の転炉は、内部にMgO系およびMgO−C系からなるグループから選択されるいずれか一つ以上を含む耐火物を含むことが好ましい。
本発明のスラグのMgO/SiO比率は、1.2〜1.9であることがよい。
本発明は、MgO−SiO系スラグを形成するためにMgO系およびMgO−C系からなるグループから選択されるいずれか一つ以上を含む副原料を投入する段階を含むことが好ましい。
The converter of the present invention preferably contains a refractory containing one or more selected from the group consisting of MgO-based and MgO-C-based.
The MgO / SiO 2 ratio of the slag of the present invention is preferably 1.2 to 1.9.
The present invention preferably includes a step of introducing auxiliary material containing any one or more selected from the group consisting of MgO-based and MgO-C system to form a MgO-SiO 2 slag.

本発明のMgO系副原料は、水滑石(brucite:Mg(OH))および廃レンガ(spent brick:MgO)からなるグループから選択されるいずれか一つ以上を含むことができる。
本発明のMgO−C系副原料は、廃耐火物(spent refractory)であることがよい。
The MgO-based auxiliary material of the present invention can include any one or more selected from the group consisting of brucite (Mg (OH) 2 ) and waste brick (MgO).
The MgO—C-based auxiliary material of the present invention is preferably a waste refractory.

本発明は、溶銑の昇温のためにコークスおよび加炭材からなるグループから選択されたいずれか一つ以上を含む昇温材を投入する段階をさらに含むことが好ましい。
本発明は、MgO−C系副原料が投入された場合、昇温材の投入時、MgO−C系副原料内に含まれたC含量に基づいて昇温材の投入量を決定することができる。
It is preferable that the present invention further includes a step of charging a temperature rising material containing any one or more selected from the group consisting of coke and a carburized material for temperature rising of the hot metal.
In the present invention, when the MgO—C-based auxiliary material is charged, the charging amount of the heating material can be determined based on the C content contained in the MgO—C-based auxiliary material when the heating material is charged. it can.

本発明によれば、ステンレス鋼製鋼精錬操業時に副原料として生石灰(CaO)および軽焼ドロマイト(CaO・MgO)を使用していたのを全量MgOまたはMgO−C系副原料を使用することによりスラグもCaO−SiO系スラグから、MgO−SiO系スラグに変更され、スラグ量を低減させることができ、スラグによる耐火物の溶出量を減少させることができる。
また、スラグ形成のための副原料の投入量が減少するためコスト節減ができるだけでなく、熱損失が少ないため溶鋼温度確保の側面で有利であり、昇温材として加炭材の追加投入量を減少させることができるためコスト節減の効果がある。
According to the present invention, the use of quick lime (CaO) and light calcined dolomite (CaO.MgO) as auxiliary materials during the refining operation of stainless steel makes it possible to use slag by using the total amount of MgO or MgO-C-based auxiliary materials. Is also changed from CaO—SiO 2 -based slag to MgO—SiO 2 -based slag, so that the amount of slag can be reduced and the amount of refractory eluted by slag can be reduced.
In addition, the amount of auxiliary materials used to form slag is reduced, which not only saves costs, but also reduces heat loss, which is advantageous in terms of securing molten steel temperature. Since it can be reduced, there is an effect of cost saving.

ステンレス鋼の製鋼精錬操業時に発生するスラグの組成を説明するための三角図である。It is a triangle figure for demonstrating the composition of the slag generate | occur | produced at the time of the steelmaking refining operation of stainless steel. 従来のステンレス鋼製鋼精錬操業フローチャートである。It is a conventional stainless steel steel refining operation flowchart. 本発明のステンレス鋼製鋼精錬操業フローチャートである。It is a stainless steel steel refining operation flowchart of the present invention.

以下に本発明の実施例について図面に基づいて詳細に説明する。
図3は本発明のステンレス鋼製鋼精錬操業フローチャートである。
図3に示したとおり、本発明の一実施例に係る転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法は、転炉に溶銑を装入する溶銑装入段階10、脱炭段階25、還元段階30および溶鋼を取鍋に出鋼する溶鋼出鋼段階40を含む。このうち、脱炭段階25中に形成されるスラグはMgO−SiO系スラグである。
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 3 is a flowchart of the stainless steel refining operation of the present invention.
As shown in FIG. 3, a method for refining a stainless steel with reduced refractory erosion of a converter according to an embodiment of the present invention includes a hot metal charging stage 10 in which hot metal is charged into the converter, and decarburization. A stage 25, a reduction stage 30 and a molten steel output stage 40 for discharging the molten steel into a ladle are included. Of these, the slag formed during the decarburization stage 25 is MgO—SiO 2 slag.

本発明ではスラグの改善のために、従来の脱炭段階25で副原料として使用していた生石灰(CaO)および軽焼ドロマイト(CaO・MgO)を、全量MgOあるいはMgO−C系副原料に変更した。これにより、従来はCaO−SiO系スラグが発生していたが、本発明ではMgO−SiO系スラグが発生するようになった。
図1によると、CaO−SiO系スラグの場合、1,700℃でのMgO系耐火物の溶出を防ぐためには理論的にCaO/SiO比率は1.5以上にならなければならない。この時、蛍石(CaF)を使用するか、もっと温度が高い場合にはその比をさらに大きくしなければならない。実際、実機ではCaO/SiO比率が略2に近い比率で使用されている。
In the present invention, in order to improve slag, quick lime (CaO) and light calcined dolomite (CaO · MgO) used as auxiliary materials in the conventional decarburization stage 25 are changed to the total amount of MgO or MgO-C-based auxiliary materials. did. As a result, CaO—SiO 2 slag has conventionally been generated, but MgO—SiO 2 slag has been generated in the present invention.
According to FIG. 1, in the case of CaO—SiO 2 slag, in order to prevent elution of MgO refractory at 1,700 ° C., the CaO / SiO 2 ratio should theoretically be 1.5 or more. At this time, fluorite (CaF 2 ) is used, or when the temperature is higher, the ratio must be further increased. Actually, in the actual machine, the CaO / SiO 2 ratio is used at a ratio close to about 2.

一方、MgO−SiO系副原料の場合、理論上MgO/SiO比率は0.8となり、MgO耐火物の溶出を抑制することができる。しかし実機上では、MgO/SiO比率はもう少し高い比率が必要であるが、依然として少ない量のMgOが要求されることがわかる。すなわち、同じSi投入量に対してCaOの場合には理論的に1.5倍を投入しなければならないところ、MgOの場合には0.8倍だけを投入すればよいので、実投入量を大幅に減少させることができる。
すなわち、スラグ量の減少でスラグ形成のための副原料の投入量が大幅に減少するため、コスト節減が可能となる。それだけでなく、副原料の投入量が少ないため熱的な側面でも熱損失が減少して溶鋼温度確保の側面ではるかに有利であり、したがって、後で昇温のための加炭材の投入量も低減させることができる。
例えば、転炉は内部にMgO系およびMgO−C系からなるグループから選択されるいずれか一つ以上を含む耐火物を含むことができる。
On the other hand, in the case of the MgO—SiO 2 -based auxiliary material, the MgO / SiO 2 ratio is theoretically 0.8, and elution of the MgO refractory can be suppressed. However, on the actual machine, the MgO / SiO 2 ratio needs a slightly higher ratio, but it can be seen that a small amount of MgO is still required. That is, in the case of CaO with respect to the same Si input amount, 1.5 times should be theoretically input, but in the case of MgO, only 0.8 times should be input. Can be greatly reduced.
That is, since the input amount of the auxiliary raw material for slag formation is greatly reduced by the reduction of the slag amount, the cost can be saved. Not only that, the amount of secondary raw material input is small, so heat loss is reduced even on the thermal side, which is far more advantageous in terms of ensuring the temperature of the molten steel. Can also be reduced.
For example, the converter may include a refractory containing at least one selected from the group consisting of MgO-based and MgO-C-based.

図2に示したとおり、従来の脱炭段階20では副原料として生石灰(CaO)および軽焼ドロマイト(CaO・MgO)を使用してCaO−SiO系スラグを形成している。転炉の内部にはMgO系またはMgO−C系耐火物を含むがCaO−SiO系スラグにより、約10%程度のMgOが溶解し、耐火物のMg0のスラグへの溶出が起こり、これによって、耐火物の侵食が発生する。
MgO−SiO系スラグの場合、スラグ内にすでにMgOが飽和状態であるため、耐火物の侵食を防止することができる。例えば、MgOを含むドロマイト(MgO−CaO系)耐火物の場合にはCaOが溶出されてCaO−SiO系スラグの場合と同様の状態になって耐火物侵食などの問題点が発生するが、転炉の耐火物がMgO系またはMgO−C系耐火物であると耐火物の浸食を防止することができる。
したがって、転炉精錬工程の中に発生するスラグがMgO−SiO系スラグであれば、スラグ量を大幅に減少させることができる。
As shown in FIG. 2, in the conventional decarburization stage 20, CaO—SiO 2 slag is formed using quick lime (CaO) and light calcined dolomite (CaO · MgO) as auxiliary materials. The converter contains MgO-based or MgO-C-based refractories, but CaO-SiO 2 slag dissolves about 10% of MgO, and elution of the refractories into Mg0 slag occurs. Refractory erosion occurs.
In the case of MgO—SiO 2 slag, erosion of the refractory can be prevented because MgO is already saturated in the slag. For example, in the case of a dolomite (MgO—CaO-based) refractory containing MgO, CaO is eluted to be in the same state as in the case of CaO—SiO 2 -based slag, and problems such as refractory erosion occur. When the refractory of the converter is an MgO-based or MgO-C-based refractory, erosion of the refractory can be prevented.
Therefore, if the slag generated during the converter refining process is MgO—SiO 2 slag, the amount of slag can be greatly reduced.

スラグのMgO/SiO比率は1.2〜1.9であることが好ましい。
スラグのMgO/SiO比率が1.2未満であると、MgO/SiO比率が相対的に低すぎるため、耐火物中のMgOがスラグ内に溶出されて、耐火物の溶損量が増加する問題点がある。スラグのMgO/SiO比率が1.9を超過する場合、スラグの流動性が落ちてCrの還元力が相対的に低下し、Crの実歩留まりが悪くなる問題点がある。
脱炭段階で、溶銑にMgO−SiO系スラグを形成するためにMgO系およびMgO−C系からなるグループから選択されるいずれか一つ以上の副原料を投入する段階を含む。以後、副原料の投入後または、副原料の投入と同時に、溶銑の昇温のためにコークスおよび加炭材からなるグループから選択されたいずれか一つ以上を含む昇温材を投入する段階を含む。
MgO / SiO 2 ratio of the slag is preferably 1.2 to 1.9.
When the MgO / SiO 2 ratio of the slag is less than 1.2, the MgO / SiO 2 ratio is relatively low, so that MgO in the refractory is eluted in the slag, and the amount of refractory melt increases. There is a problem to do. When the MgO / SiO 2 ratio of the slag exceeds 1.9, there is a problem that the fluidity of the slag is lowered, the reducing power of Cr 2 O 3 is relatively lowered, and the actual yield of Cr is deteriorated.
In decarburization step includes the step of introducing any one or more auxiliary materials selected from the group consisting of MgO-based and MgO-C system to form a MgO-SiO 2 slag into pig iron. Thereafter, after the addition of the auxiliary raw material or at the same time as the addition of the auxiliary raw material, a step of introducing a heating material containing one or more selected from the group consisting of coke and carburized material for raising the temperature of the hot metal. Including.

例えば、MgO系副原料はこれに限定されず、MgOを提供できるものであれば多様に適用することができる。例えば、水滑石(brucite:Mg(OH))および廃レンガ(spent brick:MgO)からなるグループから選択されるいずれか一つ以上を含むことができる。
例えば、MgO−C系副原料はこれに限定されず、MgO−Cを提供できるものであれば多様に適用することができ、例えば、廃耐火物(spent refractory)であってもよい。廃耐火物は耐火物で使用されて寿命が終わると捨てられるもので、その組成は75%程度のMgOと15%程度のCでなり、安価であり、またCも含んでいるため、経済的な側面で非常に有利である。廃耐火物のC含量に制限はなく、これは後で昇温材の投入量を調節することにより対応が可能である。
For example, the MgO-based auxiliary material is not limited to this, and can be variously applied as long as it can provide MgO. For example, it may include any one or more selected from the group consisting of brucite (Mg (OH) 2 ) and waste brick (MgO).
For example, the MgO—C-based auxiliary material is not limited to this, and can be variously applied as long as it can provide MgO—C. For example, it may be a waste refractory. Waste refractory is used as a refractory and is discarded when it reaches the end of its life. Its composition consists of about 75% MgO and about 15% C. It is inexpensive and contains C, so it is economical. This is very advantageous. There is no limitation on the C content of the waste refractory, and this can be dealt with later by adjusting the input amount of the heating material.

副原料を投入する段階でMgO−C系副原料を投入する場合、昇温材の投入時、MgO−C系副原料内に含まれるC含量に基づいて昇温材の投入量を調節することができる。
すなわち、MgO−C系副原料を投入する場合、昇温材としての量、例えば、加炭材を投入する場合の投入量は、副原料内に含まれるCの含量を測定して、副原料内のCの投入量を減じて昇温剤を投入することができる。したがって、本発明で副原料としてMgO系にCを追加する場合、追加加炭材の投入を減らすことができる。
When the MgO-C-based auxiliary material is added at the stage of adding the auxiliary material, the temperature-raising material input amount is adjusted based on the C content contained in the MgO-C-based auxiliary material when the temperature-raising material is charged. Can do.
That is, when the MgO—C-based auxiliary material is added, the amount as the temperature raising material, for example, the input amount when the carburized material is input is measured by measuring the content of C contained in the auxiliary material. The temperature raising agent can be charged by reducing the amount of C added. Therefore, when adding C to the MgO system as an auxiliary material in the present invention, it is possible to reduce the input of additional carburized material.

以下、実施例を通じて本発明をより詳細に説明する。
〔実施例および比較例〕
実験は模写転炉(300kg Pilot脱炭炉)を使用し、初期誘導溶解炉で溶解した溶銑を脱炭炉に装入した後、下記の表1の実施例1〜3と比較例1〜5の条件により副原料を投入して、CaO/SiO、MgO/SiOを制御して脱炭を遂行してステンレス鋼を製造した。

Figure 2017106109
Hereinafter, the present invention will be described in more detail through examples.
[Examples and Comparative Examples]
In the experiment, a copying converter (300 kg Pilot decarburization furnace) was used. After the molten iron melted in the initial induction melting furnace was charged into the decarburization furnace, Examples 1 to 3 and Comparative Examples 1 to 5 in Table 1 below were used. By adding the auxiliary material under the conditions, CaO / SiO 2 and MgO / SiO 2 were controlled to perform decarburization to produce stainless steel.
Figure 2017106109

表1において、耐火物溶損量は1回(ch.)精錬操業をした時、耐火物から溶出したMgOの溶出量を意味し、Crの実歩留まりは投入したCr量に対するスラグに取り込まれて消失したCr量を除いた、実際に溶鋼内に入るCr量の比率を意味する。耐火物の溶損量は溶銑を装入して出鋼するまでを一度のチャージ(charge、ch)として測定した。
すなわち、溶損量が高いということは、耐火物の溶損速度が速いため耐火物の寿命が短くなるという意味であり、Crの実歩留まりが低いとはスラグでCr酸化物が消失する量が多いため製造コストが上昇するという意味である。
In Table 1, the refractory erosion amount means the amount of MgO eluted from the refractory during one refining operation (ch.), And the actual yield of Cr is taken into the slag with respect to the amount of Cr input. It means the ratio of the amount of Cr that actually enters the molten steel, excluding the lost amount of Cr. The amount of refractory erosion was measured as a single charge (charge, ch) from when the hot metal was charged until steel was removed.
In other words, a high amount of erosion means that the refractory has a high erosion rate and therefore the life of the refractory is shortened. If the actual yield of Cr is low, the amount of Cr oxide disappeared by slag. This means that the manufacturing cost increases because of the large amount.

表1に示したとおり、比較例のように既存の生石灰(CaO)および軽焼ドロマイト(CaO・MgO)を使用してCaO−SiO系スラグで形成させた場合、耐火物溶損量が260〜290kg/ch.と非常に高い。反面、実施例のように廃レンガを使用してMgO−SiO2系スラグで形成させた場合、耐火物溶損量が160〜185kgと顕著に減少することがわかる。
しかし、同じMgO−SiO系スラグであるとしても、MgO/SiO比率が1.2未満の場合、溶損量が200kg/ch.を超過し高いことが分かる。これはMgO/SiO比率が低いため相対的に耐火物中のMgOがスラグ内に溶出したためである。
As shown in Table 1, when the existing quicklime (CaO) and light calcined dolomite (CaO · MgO) are used and formed with CaO-SiO 2 slag as in the comparative example, the refractory erosion amount is 260. ~ 290 kg / ch. And very high. On the other hand, when waste bricks are used and formed with MgO-SiO2 slag as in the examples, it can be seen that the amount of refractory erosion is significantly reduced to 160 to 185 kg.
However, even with the same MgO—SiO 2 -based slag, when the MgO / SiO 2 ratio is less than 1.2, the amount of melting loss is 200 kg / ch. It turns out that it is over and high. This is because MgO in the refractory is relatively eluted in the slag because the MgO / SiO 2 ratio is low.

MgO/SiO比率が1.9を超過した場合、溶損量は小さくなるが、Crの実歩留まりが低くなり、例えば、MgO/SiO比率が2.0の比較例4の場合、Crの実歩留まりが92.3%と低値になる。これはスラグ流動性が落ちてCrの還元性が相対的に低くなるためである。
したがって、結果を纏めると、既存のCaO−SiO系スラグに比べMgO−SiO系スラグは耐火物溶損量が小さいため、耐火物の寿命は向上される。MgO/SiO比率を1.2〜1.9水準に制御することが耐火物の寿命だけでなくCrの実歩留まり確保のレベルでも重要である。
なお、本実施例・比較例の結果は製鋼温度1,600〜1,800℃範囲で導き出したものである。
When the MgO / SiO 2 ratio exceeds 1.9, the amount of erosion loss decreases, but the actual yield of Cr decreases. For example, in the case of Comparative Example 4 where the MgO / SiO 2 ratio is 2.0, The actual yield is as low as 92.3%. This is because the slag fluidity falls and the reducibility of Cr 2 O 3 becomes relatively low.
Therefore, when the results are summarized, the lifetime of the refractory is improved because MgO—SiO 2 slag has a smaller amount of refractory erosion than the existing CaO—SiO 2 slag. Controlling the MgO / SiO 2 ratio to the 1.2 to 1.9 level is important not only for the life of the refractory but also for ensuring the actual yield of Cr.
In addition, the result of a present Example and a comparative example is derived in steelmaking temperature 1,600-1800 degreeC range.

前述において、本発明の例示的な実施例を説明したが、本発明はこれに限定されず、該当技術分野で通常の知識を有した者であれば次に記載する特許請求の範囲の概念と範囲を逸脱しない範囲内で多様な変更および変形が可能であることが理解できるであろう。   In the foregoing, exemplary embodiments of the present invention have been described. It will be understood that various changes and modifications can be made without departing from the scope.

10:溶銑装入段階
20、25:脱炭段階
30:還元段階
40:溶鋼出鋼段階
10: Hot metal charging stage 20, 25: Decarburization stage 30: Reduction stage 40: Molten steel stage

Claims (8)

転炉に溶銑を装入する溶銑装入段階、脱炭段階および還元段階を含むステンレス鋼の転炉精錬方法において、
前記脱炭段階中に形成されるスラグはMgO−SiO系スラグであることを特徴とする転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法。
In a method for refining stainless steel including a hot metal charging stage, a decarburizing stage and a reducing stage, in which hot metal is charged into a converter,
The slag formed during the decarburization step is MgO-SiO 2 slag, and the converter smelting method of stainless steel with reduced refractory erosion of the converter.
前記転炉は内部にMgO系およびMgO−C系からなるグループから選択されるいずれか一つ以上を含む耐火物を含むことを特徴とする請求項1に記載の転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法。   The refractory erosion of the converter according to claim 1, wherein the converter includes a refractory containing at least one selected from the group consisting of MgO-based and MgO-C-based. Of a refined stainless steel converter. 前記スラグのMgO/SiO比率は1.2〜1.9であることを特徴とする請求項1に記載の転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法。 2. The method of refining a stainless steel with reduced refractory erosion of the converter according to claim 1, wherein the slag has a MgO / SiO 2 ratio of 1.2 to 1.9. 前記MgO−SiO系スラグを形成するためにMgO系およびMgO−C系からなるグループから選択されるいずれか一つ以上を含む副原料を投入する段階を含むことを特徴とする請求項1乃至請求項3のいずれか一項に記載の転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法。 2. The method according to claim 1, further comprising the step of adding an auxiliary material containing at least one selected from the group consisting of MgO-based and MgO-C-based to form the MgO—SiO 2 -based slag. The converter refining method of stainless steel with reduced refractory erosion of the converter according to any one of claims 3 to 4. 前記MgO系副原料は水滑石(brucite)および廃レンガ(spent brick)からなるグループから選択されるいずれか一つ以上を含むことを特徴とする請求項4に記載の転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法。   5. The refractory erosion of a converter according to claim 4, wherein the MgO-based auxiliary material includes at least one selected from the group consisting of brucite and spent brick. 6. Reduced stainless steel converter refining method. 前記MgO−C系副原料は廃耐火物(spent refractory)であることを特徴とする請求項4に記載の転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法。   The method of claim 4, wherein the MgO-C-based auxiliary material is a waste refractory, wherein the refractory erosion of the converter is reduced. 溶銑の昇温のためにコークスおよび加炭材からなるグループから選択されたいずれか一つ以上を含む昇温材を投入する段階をさらに含むことを特徴とする請求項4に記載の転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法。   5. The converter according to claim 4, further comprising a step of charging a heating material containing at least one selected from the group consisting of coke and carburizing material for heating the hot metal. Stainless steel converter refining method with reduced refractory erosion. 前記MgO−C系副原料が投入された場合、
前記昇温材の投入時、前記MgO−C系副原料内に含まれたC含量に基づいて昇温材の投入量を決定することを特徴とする請求項7に記載の転炉の耐火物侵食が低減されたステンレス鋼の転炉精錬方法。
When the MgO-C based auxiliary material is charged,
The refractory for a converter according to claim 7, wherein when the heating material is charged, a charging amount of the heating material is determined based on a C content contained in the MgO—C-based auxiliary material. A converter refining method for stainless steel with reduced erosion.
JP2016231097A 2015-12-11 2016-11-29 Converter refining method of stainless steel with reduced refractory corrosion of converter Pending JP2017106109A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150176984A KR101739277B1 (en) 2015-12-11 2015-12-11 Method for refining stainless steel in converter with decreasing corrosion of refractory in converter
KR10-2015-0176984 2015-12-11

Publications (1)

Publication Number Publication Date
JP2017106109A true JP2017106109A (en) 2017-06-15

Family

ID=59050959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231097A Pending JP2017106109A (en) 2015-12-11 2016-11-29 Converter refining method of stainless steel with reduced refractory corrosion of converter

Country Status (3)

Country Link
JP (1) JP2017106109A (en)
KR (1) KR101739277B1 (en)
CN (1) CN106868248A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594428A (en) * 1979-01-13 1980-07-17 Nippon Steel Corp Preventing method for burnout of lining in furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3106870B2 (en) * 1994-07-27 2000-11-06 日本鋼管株式会社 A smelting method that suppresses erosion of refractories
JP3771635B2 (en) * 1996-07-02 2006-04-26 新日本製鐵株式会社 Converter refining method
JP2006241478A (en) * 2005-02-28 2006-09-14 Jfe Steel Kk Method for operating converter
CN101545024B (en) * 2009-04-30 2011-01-19 北京北科中钢工程技术有限公司 Method for blowing desulphurized molten iron in converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594428A (en) * 1979-01-13 1980-07-17 Nippon Steel Corp Preventing method for burnout of lining in furnace

Also Published As

Publication number Publication date
KR101739277B1 (en) 2017-05-25
CN106868248A (en) 2017-06-20

Similar Documents

Publication Publication Date Title
CN105132611B (en) Method for producing ultra-low phosphorous steel through single slag of converter
JP4499969B2 (en) Desulfurization method by ladle refining of molten steel
CN109182642B (en) Process method for smelting low-phosphorus steel by adopting single slag method
CN108754063B (en) Dephosphorization production process for H08A series steel
CN100475979C (en) Method for smelting suprelow carbon steel using ordinary arc furnace
JP3915341B2 (en) Hot phosphorus dephosphorization method
JP2017106109A (en) Converter refining method of stainless steel with reduced refractory corrosion of converter
JP6269974B2 (en) Steel melting method
JP6213174B2 (en) Converter operation method using dephosphorized pretreatment hot metal.
JP6167802B2 (en) Hot metal refining method
JP3704267B2 (en) Method for refining molten steel
KR101257266B1 (en) Dephosphorizing agent for molten metal in electric furnace and dephosphorizing method using the same
US20220396844A1 (en) Molten steel production method
KR101675261B1 (en) Method for smelting dephosphorization
JPH06108137A (en) Method for melting low sulfur steel
KR101584096B1 (en) put into the proper amount of light burned dolomite refining converter method
JP2022027515A (en) Method for desulfurizing molten steel and desulfurization flux
JP3603969B2 (en) Method for producing hot metal containing chromium and / or nickel
JPH11343514A (en) Method for melting high carbon steel using bottom-blown converter
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal
JP6295692B2 (en) Steelmaking slag treatment method
KR101301439B1 (en) Method for decarburizing stainless steel in AOD
JPH0762413A (en) Production of stainless steel
CN102382928A (en) Method for improving fluidity of molten slag at primary stage of converter smelting
JP4923662B2 (en) Method for adjusting fluidity of slag in storage furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313