JP2017101566A - 車両用冷却装置 - Google Patents
車両用冷却装置 Download PDFInfo
- Publication number
- JP2017101566A JP2017101566A JP2015233285A JP2015233285A JP2017101566A JP 2017101566 A JP2017101566 A JP 2017101566A JP 2015233285 A JP2015233285 A JP 2015233285A JP 2015233285 A JP2015233285 A JP 2015233285A JP 2017101566 A JP2017101566 A JP 2017101566A
- Authority
- JP
- Japan
- Prior art keywords
- intercooler
- working fluid
- vehicle
- branch
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
【課題】液冷式のインタークーラや凝縮器を備える車両において、簡易な構成で効率的なエネルギマネジメントが可能な車両用冷却装置を提供する。
【解決手段】車両用冷却装置は、過給機により過給される吸気がインタークーラにより冷却されるエンジンを有する車両に搭載され、ランキンサイクル回路と、該ランキンサイクル回路において作動流体が流れる主流路から前記インタークーラに分岐するように構成された分岐流路とを備える。インタークーラは、分岐流路を介して導入された作動流体と吸気とを熱交換することにより吸気を冷却するように構成されている。
【選択図】図1
【解決手段】車両用冷却装置は、過給機により過給される吸気がインタークーラにより冷却されるエンジンを有する車両に搭載され、ランキンサイクル回路と、該ランキンサイクル回路において作動流体が流れる主流路から前記インタークーラに分岐するように構成された分岐流路とを備える。インタークーラは、分岐流路を介して導入された作動流体と吸気とを熱交換することにより吸気を冷却するように構成されている。
【選択図】図1
Description
本開示は、過給機により過給される吸気をインタークーラで冷却するエンジンを有する車両に搭載される車両用冷却装置に関する。
車両に搭載されるエンジンの排熱回収装置として、ランキンサイクルを利用したものが知られている。ランキンサイクルでは、循環する作動流体を廃熱で加熱し、該加熱された作動流体により膨張機(タービン)を駆動することで、廃熱エネルギを回収することができる。膨張機で仕事を終えた作動流体は凝縮器によって凝縮された後、繰り返し使用される。
また走行用動力源としてエンジンを搭載する車両には、しばしば出力や燃費性能の向上を目的として過給器を備えるものが知られている。過給器は吸気を圧縮することによりエンジンへの空気供給密度を高めることでこれらの目的を達成できるが、過給器によって圧縮加熱された吸気を冷却するインタークーラを備えることにより、エンジンの燃焼効率を向上することができる。インタークーラは外気との熱交換によって吸気を冷却する空冷式が最も普及しているが、近年、液冷媒との熱交換によって吸気を冷却する液冷式の普及も進んでいる。液冷式のインタークーラでは、空冷式に比べて良好な冷却性能が得られるとともに、エンジンへの空気供給密度のエネルギ損失を抑えられる点で優れているが、液冷媒を循環させるための冷媒回路を導入する必要があるため、構造が複雑になり、コストが増加しやすい傾向がある。
近年、車両の燃費性能は重要なスペックの一つとなっており、このようなランキンサイクルやインタークーラを搭載した車両においても更なる性能向上が望まれている。例えば特許文献1には、このような液冷式凝縮器を有するランキンサイクル回路と液冷式インタークーラとを備える車両における効率化に関する技術が開示されている。
上記特許文献1のように、液冷式の凝縮器やインタークーラを備える車両では、それぞれの液冷媒が循環する冷却回路を独立的に設けられることが一般的である。しかしながら、このような冷却回路は、循環する液冷媒を冷却するためのラジエータやクーリングファンが必要であるため、全体の装置構成が複雑になってしまう。これによって装置サイズや製造コストが増大するとともに、車内における配置レイアウトの自由度が低くなり、車内の限られたスペースに効率的に配置することが困難になってしまう。
本発明の少なくとも1の実施形態は上述の問題点に鑑みなされたものであり、液冷式のインタークーラや凝縮器を備える車両において、簡易な構成で効率的なエネルギマネジメントが可能な車両用冷却装置を提供することを目的とする。
(1)本発明の少なくとも1実施形態に係る車両用冷却装置は上記課題を解決するために、過給機により過給される吸気をインタークーラで冷却するエンジンを有する車両に搭載される車両用冷却装置であって、前記エンジンの廃熱を熱交換により作動流体に回収する熱交換器、前記熱交換器からの前記作動流体を用いて動力を発生させる膨張機、前記膨張機からの前記作動流体を凝縮させる凝縮器、及び、前記凝縮器からの前記作動流体を前記熱交換器に供給する第1のポンプを含むランキンサイクル回路と、前記ランキンサイクル回路において前記作動流体が流れる主流路から前記インタークーラに分岐するように構成された分岐流路と、を備え、前記インタークーラは、前記分岐流路を介して導入された前記作動流体と前記吸気とを熱交換することにより、前記吸気を冷却する。
上記(1)の構成によれば、ランキンサイクル回路の作動流体を、分岐流路を介してインタークーラに導入することで、インタークーラの液冷媒として利用する。これにより、ランキンサイクル回路とは独立にインタークーラ用の冷却回路を設ける場合に比べて、簡潔な構成で液冷式インタークーラを構成することができる。その結果、冷却装置がコンパクト化することにより、車両に搭載する際のレイアウト自由度を向上できるとともに、冷却装置の導入コストを抑制できる。
(2)幾つかの実施形態では、上記(1)の構成において、前記分岐流路は、前記主流路のうち前記凝縮器の下流側から分岐し、前記インタークーラを介して前記凝縮器の上流側に戻されるように構成されている。
上記(2)の構成によれば、凝縮器の下流側に分岐流路を設けることにより、主流路を流れる作動流体のうち比較的低温な作動流体を、分岐流路を介してインタークーラに導入できる。これにより、インタークーラで良好な冷却性能が得られる。またインタークーラで吸気と熱交換後の作動流体は凝縮器の上流側に戻されることにより、再度凝縮器にて凝縮されることで、良好な熱効率が得られる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記エンジンを冷却する冷却水がラジエータを介して循環する冷却水回路を更に備え、前記凝縮器は、前記ラジエータに対して車両進行方向前方に配置されている。
上記(3)の構成によれば、ランキンサイクル回路を構成する凝縮器が、ラジエータに対して車両進行方向前方に配置される。上述したように、本実施形態に係る冷却装置はコンパクトな構成で実現可能であるため、車内スペースが限られている場合であっても比較的高いレイアウト自由度が得られる。そのため、このような凝縮器の配置が可能となる。これにより、凝縮器の外気(例えば車両走行時に受ける走行風)との熱交換を促進することができ、凝縮器にて良好な冷却性能が得られる。その結果、ランキンサイクル回路の排熱回収効率やインタークーラの冷却性能を向上できる。
(4)幾つかの実施形態では、上記(1)から(3)のいずれか1構成において、前記過給機は、前記エンジンの排気通路に設けられたタービンと、前記エンジンの吸気通路に設けられ、前記タービンに連動可能に構成されたコンプレッサとを含み、前記インタークーラは、前記コンプレッサとエンジンとの間に配置されている。
上記(4)の構成によれば、インタークーラをコンプレッサ及びエンジン間に配置することにより、コンプレッサ及びインタークーラ間の距離、並びに、インタークーラ及びエンジン間の距離を短くすることができるので、エンジンの吸気系における熱効率を効果的に向上できる。
(5)幾つかの実施形態では、上記(1)から(4)のいずれか1構成において、前記分岐流路は、前記主流路上に設けられたバルブを介して前記主流路に接続されている。
上記(5)の構成によれば、ランキンサイクル回路を流れる作動流体は、主流路上に設けられたバルブ(例えば三方弁のような多方弁)によって分岐流路に分岐可能に構成される。このようなバルブの開閉状態(或いは開度)によって、主流路及び分岐流路における作動流体の流量を調整することにより、ランキンサイクル回路における排熱回収効率やインタークーラの冷却性能を考慮したエネルギマネジメントが可能となる。
(6)幾つかの実施形態では、上記(5)の構成において、前記主流路のうち前記分岐流路が分岐する分岐点と前記インタークーラとの間に設けられた第2のポンプを備え、前記バルブは、前記主流路のうち前記第1のポンプより上流側に設けられている。
上記(6)の構成によれば、バルブが第1のポンプの上流側に設けられることにより、第1のポンプの通過前の作動流体(すなわち、第1のポンプにおける圧損の影響を受けていない作動流体)が分岐流路に導入でき、より良好なエネルギ効率を達成できる。
また、上記(6)の構成によれば、分岐点とインタークーラとの間に第2のポンプを備えることにより、主流路における作動流体の流量を第1のポンプで制御するとともに、分岐流路における作動流体の流量を第2のポンプで制御することが可能となる。すなわち、第1のポンプ及び第2のポンプによって、主流路及び分岐流路における作動流体の流量を独立的に精度よく調整することができる。これにより、例えば、車両が低速走行時や停車時等において十分な廃熱の回収が見込めない場合、第1のポンプを停止し、第2のポンプによりインタークーラのみを駆動させる等、ランキンサイクル回路の廃熱回収効率やインタークーラの冷却性能を考慮したエネルギマネジメントをより柔軟に実施することができる。
また、上記(6)の構成によれば、分岐点とインタークーラとの間に第2のポンプを備えることにより、主流路における作動流体の流量を第1のポンプで制御するとともに、分岐流路における作動流体の流量を第2のポンプで制御することが可能となる。すなわち、第1のポンプ及び第2のポンプによって、主流路及び分岐流路における作動流体の流量を独立的に精度よく調整することができる。これにより、例えば、車両が低速走行時や停車時等において十分な廃熱の回収が見込めない場合、第1のポンプを停止し、第2のポンプによりインタークーラのみを駆動させる等、ランキンサイクル回路の廃熱回収効率やインタークーラの冷却性能を考慮したエネルギマネジメントをより柔軟に実施することができる。
本発明の少なくとも1実施形態によれば、液冷式のインタークーラや凝縮器を備える車両において、簡易な構成で効率的なエネルギマネジメントが可能な車両用冷却装置を提供できる。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は本発明の一実施形態に係る車両用冷却装置の全体構成を示す模式図であり、図2は参考例に係る車両用冷却装置の全体構成を示す模式図であり、図3は図1の分岐流路近傍における変形例を示す模式図であり、図4は図1の分岐流路近傍における他の変形例を示す模式図である。
車両1は走行用動力源としてエンジン2を備える。エンジン2は化石燃料の燃焼によって動力を出力可能な内燃機関であり、図1では、エンジン2として4シリンダディーゼルエンジンが例示されている。エンジン2は、外気を吸気通路4から取り込んで不図示の燃料噴射装置から供給される燃料と混合して燃焼を行った後、排気通路6から排ガスを外部に排出する。
本実施形態では、エンジン2には、出力向上を目的として過給器8が搭載されている。過給器8は、吸気通路4に設けられたコンプレッサ10と、排気通路6に設けられたタービン12とを備える。コンプレッサ10及びタービン12は互いに連動して駆動するように構成されており、エンジン2の排ガスによってタービン12が駆動されると、コンプレッサ10がタービン12と連動して駆動することにより、吸気通路4にて過給が行われる。
また吸気通路4のうちコンプレッサ10の下流側には、該コンプレッサ10によって過給された高温の吸気を冷却するためのインタークーラ14が設けられている。インタークーラ14は、冷却用冷媒として後述するランキンサイクル回路の作動流体を利用する液冷式インタークーラであり、高温の吸気を冷却する。このような液冷式インタークーラは、外気との熱交換によって吸気を冷却する空冷式インタークーラに比べて、良好な冷却性能が得られるとともに、エンジンへの空気供給密度のエネルギ損失を抑えられる点で優れている。
またエンジン2は冷却用の冷媒(冷却水)を循環供給するための冷却水回路16を備える。冷却水回路16には、冷却水を圧送するための冷却水ポンプ18と、エンジン2から廃熱エネルギを受け取ることによって高温となった冷却水を外気と熱交換するためのラジエータ20とが設けられている。ラジエータ20は車両1の進行方向前方側に設けられており、車両1の走行時に前方から走行風を受けることによって熱交換が促進されるように構成されている。
またラジエータ20に導入される外気量は、上述した走行風の他に、エンジン2の動力の一部を利用して作動可能なラジエータファン22によって可変に構成されている。ラジエータファン22の作動状態はアクティブ制御されており、例えば冷却水回路16を流れる冷却水温度が予め設定された適切な温度範囲になるように制御される。
冷却水回路16のうち冷却水ポンプ18の入口近傍とラジエータ20の出口近傍との間には、冷却水回路16に並行するように分岐されたバイパス回路24が設けられている。バイパス回路24にはラジエータ20で冷却される前の高温の冷却水が冷却水回路16から分岐して流れ込み、ランキンサイクル回路26を構成する蒸発器28に導かれる。
蒸発器28は、バイパス回路24を流れる冷却水とランキンサイクル回路26を流れる作動流体との間で熱交換可能に構成された熱交換器であり、高温の冷却水によってランキンサイクル回路26を流れる作動流体が加熱される(言い換えると、冷却水に含まれるエンジン2の廃熱エネルギがランキンサイクル回路26に回収される)。
ランキンサイクル回路26は、作動流体が流れる主流路27上に蒸発器28、膨張機30、凝縮器32及び第1のポンプ34を備える構成を有している。ランキンサイクル回路26を流れる作動流体は、上述したように蒸発器28で加熱されることにより蒸発(気化)させられる。その後、作動流体は膨張機30によって膨張される。このとき膨張機30では、作動流体の膨張による仕事によってタービン(不図示)が駆動される。これにより、冷却水から作動流体が受け取った廃熱エネルギが機械的エネルギに変換されることとなる。
膨張機30から出力される機械的エネルギは、タービンの回転軸36に連結された発電機38に伝達される。発電機38では、受け取った機械的エネルギによって発電が行われ、発生した電力は車内の電力需要に応じて、各種電気負荷或いは蓄電用のバッテリに供給される。
膨張機30で仕事を終えた作動流体は、凝縮器32によって凝縮(液化)された後、第1のポンプ34によって圧送されることにより再び蒸発器28に戻される。
ここでランキンサイクル回路26には、作動流体が流れる主流路27からインタークーラ14に分岐するように構成された分岐流路40が備えられている。インタークーラ14は、分岐流路40を介して導入された作動流体と吸気とを熱交換することにより、吸気を冷却する液冷式インタークーラとして構成されている。このような構成は、インタークーラ14で冷却対象たる吸気と熱交換させられる液冷媒として、ランキンサイクル回路26を流れる作動流体を利用するため、例えばランキンサイクル回路26や冷却水回路16とは独立した新たな冷媒回路を構築する場合に比べて、簡易な構成で良好な冷却性能が得られる。
また、このような構成は分岐流路40の設置という簡易な工夫によって実現可能であるため、既存のランキンサイクル回路を搭載した車両に対する設計変更が少なく済み、装置サイズのコンパクト化も図ることができる。それに伴い、冷却装置を車両に搭載する際のレイアウト自由度もまた向上し、より安価なコストで導入が可能となる。
ここで車両1における冷却装置のレイアウトに関して、図2に示される参考例と比較して説明する。図2に示される参考例では、上述の本実施形態に係る冷却装置と同様の構成要素について共通の符号を付すこととし、重複する説明は適宜省略する。
参考例では、図1の本実施形態で用いられている液冷式のインタークーラ14に代えて、空冷式のインタークーラ14’が用いられている。インタークーラ14’は空冷によって冷却性能を発揮するために車両進行方向前方側に配置されることにより、車両1の走行時に走行風が受けられるように構成されている。空冷式のインタークーラ14’は、一般的に同等規模の液冷式に比べて冷却性能が劣る傾向にある。そこで、参考例においてインタークーラ14’を液冷化しようとすると、インタークーラ14’の冷却用に用いる液冷媒が循環する冷媒回路(配管やポンプなど)を追加的に設ける必要があるが、一般的に、車両1の進行方向前方側は配置スペースが十分に余っておらず、レイアウト上の困難が伴う。それに対し、本実施形態に係る冷却装置は上記構成によってコンパクト化を図ることができるため、このような限られたスペースに対してもレイアウト自由度が高く、効率的に配置することができる。
また本実施形態ではインタークーラ14が液冷式であるため、図2の空冷式のインタークーラ14’のように車両1の進行方向前方側に配置する必要がなくなる。そのため、図1に示されるようにインタークーラ14をエンジン2とコンプレッサとの間に配置することも可能となる。このような構成は、参考例に比べてインタークーラ14周辺の吸気通路4を短くすることができ(すなわち、コンプレッサ10及びインタークーラ14間の距離、並びに、インタークーラ14及びエンジン2間の距離を短くすることができ)、エンジン2の吸気系における熱効率を効果的に向上できる。
また分岐流路40は、主流路27のうち凝縮器32の下流側から分岐し、インタークーラ14を介して凝縮器32の上流側に戻されるように構成されている。このように凝縮器32の下流側に分岐流路40を設けることにより、主流路27を流れる作動流体のうち比較的低温な作動流体を、分岐流路40を介してインタークーラ14に導入できる。これにより、インタークーラ14で良好な冷却性能が得られる。またインタークーラ14で吸気と熱交換後の作動流体は凝縮器32の上流側に戻されることにより、再度凝縮器32にて凝縮されることで、良好な熱効率が得られる。
分岐流路40は、主流路27上に設けられた第1のバルブ42及び第2のバルブ44を介して主流路27に接続されている。第1のバルブ42及び第2のバルブ44は三方弁であり、それぞれ凝縮器32の下流側及び上流側に配置されている。主流路27から分岐流路40に導入される作動流体の流量は、第1のバルブ42及び第2のバルブ44の開閉状態(或いは開度)によって調整されるように構成されている。このように分岐流路における作動流体の流量を可変とすることで、ランキンサイクル回路26で利用される作動流体とインタークーラ14で利用される作動流体との比率を調整することが可能となり、ランキンサイクル回路における排熱回収効率やインタークーラの冷却性能を考慮したエネルギマネジメントが可能となる。
尚、本実施形態では凝縮器32の下流側及び蒸留側にそれぞれ第1のバルブ42及び第2のバルブ44を設けた場合を例示しているが、第2のバルブ44は任意であってもよい。この場合、図1の例では第1のバルブ42の開度を調整することによって、主流路27から分岐流路40に導入される作動流体の流量を制御するとよい。
ここで第1のバルブ42は、主流路27のうち第1のポンプ34より上流側に設けられている。これにより、第1のポンプ34の通過前の作動流体(すなわち、第1のポンプ34における圧損の影響を受けていない作動流体)を分岐流路40に導入することができ、より良好なエネルギ効率を達成できる。
また図3に示されるように、主流路27のうち分岐流路40が分岐する分岐点48とインタークーラ14との間に第2のポンプ46が設けられていてもよい。このように、分岐点48とインタークーラ14との間に第2のポンプ46を備えることにより、主流路27における作動流体の流量を第1のポンプ34で制御するとともに、分岐流路40における作動流体の流量を第2のポンプ46で制御することが可能となる。すなわち、第1のポンプ34及び第2のポンプ46によって、主流路27及び分岐流路40における作動流体の流量を独立的に精度よく調整することができる。これにより、ランキンサイクル回路26の廃熱回収効率やインタークーラ14の冷却性能を考慮したエネルギマネジメントをより柔軟に実施することができる。
上述構成を有する冷却装置は、例えば車両1のコントロールユニットであるECU(Electric Control Unit)によって適宜制御される。例えば、主流路や分岐流路に設けられたバルブやポンプの動作を制御することにより、ランキンサイクル回路26及びインタークーラに供給される作動流体の割合を調整することにより、ランキンサイクル回路26における排熱回収効率とインタークーラの冷却性能とのバランスを考慮したエネルギマネジメントが可能となる。
以上説明したように本実施形態によれば、液冷式のインタークーラや凝縮器を備える車両において、簡易な構成で効率的なエネルギマネジメントが可能な車両用冷却装置を提供できる。
本開示は、過給機により過給される吸気をインタークーラで冷却するエンジンを有する車両に搭載される車両用冷却装置に利用可能である。
1 車両
2 エンジン
4 吸気通路
6 排気通路
8 過給器
10 コンプレッサ
12 タービン
14 インタークーラ
16 冷却水回路
18 冷却水ポンプ
20 ラジエータ
22 ラジエータファン
24 バイパス回路
26 ランキンサイクル回路
28 蒸発器
30 膨張機
32 凝縮器
34 第1のポンプ
36 回転軸
38 発電機
40 分岐流路
42 第1のバルブ
44 第2のバルブ
46 第2のポンプ
2 エンジン
4 吸気通路
6 排気通路
8 過給器
10 コンプレッサ
12 タービン
14 インタークーラ
16 冷却水回路
18 冷却水ポンプ
20 ラジエータ
22 ラジエータファン
24 バイパス回路
26 ランキンサイクル回路
28 蒸発器
30 膨張機
32 凝縮器
34 第1のポンプ
36 回転軸
38 発電機
40 分岐流路
42 第1のバルブ
44 第2のバルブ
46 第2のポンプ
Claims (6)
- 過給機により過給される吸気をインタークーラで冷却するエンジンを有する車両に搭載される車両用冷却装置であって、
前記エンジンの廃熱を熱交換により作動流体に回収する熱交換器、前記熱交換器からの前記作動流体を用いて動力を発生させる膨張機、前記膨張機からの前記作動流体を凝縮させる凝縮器、及び、前記凝縮器からの前記作動流体を前記熱交換器に供給する第1のポンプを含むランキンサイクル回路と、
前記ランキンサイクル回路において前記作動流体が流れる主流路から前記インタークーラに分岐するように構成された分岐流路と、
を備え、
前記インタークーラは、前記分岐流路を介して導入された前記作動流体と前記吸気とを熱交換することにより、前記吸気を冷却することを特徴とする車両用冷却装置。 - 前記分岐流路は、前記主流路のうち前記凝縮器の下流側から分岐し、前記インタークーラを介して前記凝縮器の上流側に戻されるように構成されていることを特徴とする請求項1に記載の車両用冷却装置。
- 前記エンジンを冷却する冷却水がラジエータを介して循環する冷却水回路を更に備え、
前記凝縮器は、前記ラジエータに対して車両進行方向前方に配置されていることを特徴とする請求項1又は2に記載の車両用冷却装置。 - 前記過給機は、前記エンジンの排気通路に設けられたタービンと、前記エンジンの吸気通路に設けられ、前記タービンに連動可能に構成されたコンプレッサとを含み、
前記インタークーラは、前記コンプレッサとエンジンとの間に配置されていることを特徴とする請求項1から3のいずれか1項に記載の車両用冷却装置。 - 前記分岐流路は、前記主流路上に設けられたバルブを介して前記主流路に接続されていることを特徴とする請求項1から4のいずれか1項に記載の車両用冷却装置。
- 前記主流路のうち前記分岐流路が分岐する分岐点と前記インタークーラとの間に設けられた第2のポンプを備え、
前記バルブは、前記主流路のうち前記第1のポンプより上流側に設けられていることを特徴とする請求項5に記載の車両用冷却装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015233285A JP2017101566A (ja) | 2015-11-30 | 2015-11-30 | 車両用冷却装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015233285A JP2017101566A (ja) | 2015-11-30 | 2015-11-30 | 車両用冷却装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017101566A true JP2017101566A (ja) | 2017-06-08 |
Family
ID=59015163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015233285A Pending JP2017101566A (ja) | 2015-11-30 | 2015-11-30 | 車両用冷却装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017101566A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114729593A (zh) * | 2019-10-14 | 2022-07-08 | 萨乐锐伊塔洛工业有限公司 | 车辆的热管理组件 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013172293A1 (ja) * | 2012-05-14 | 2013-11-21 | 株式会社 豊田自動織機 | 廃熱利用装置 |
JP2013234629A (ja) * | 2012-05-10 | 2013-11-21 | Denso Corp | 内燃機関のegr装置 |
JP2014126031A (ja) * | 2012-12-27 | 2014-07-07 | Hino Motors Ltd | ランキンサイクルシステム |
JP2014190170A (ja) * | 2013-03-26 | 2014-10-06 | Toyota Industries Corp | 廃熱回生システム |
JP2014234801A (ja) * | 2013-06-05 | 2014-12-15 | 日産自動車株式会社 | エンジンの廃熱利用装置 |
JP2015140669A (ja) * | 2014-01-27 | 2015-08-03 | 株式会社豊田自動織機 | 廃熱回生システム |
-
2015
- 2015-11-30 JP JP2015233285A patent/JP2017101566A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013234629A (ja) * | 2012-05-10 | 2013-11-21 | Denso Corp | 内燃機関のegr装置 |
WO2013172293A1 (ja) * | 2012-05-14 | 2013-11-21 | 株式会社 豊田自動織機 | 廃熱利用装置 |
JP2013238131A (ja) * | 2012-05-14 | 2013-11-28 | Toyota Industries Corp | 廃熱利用装置 |
JP2014126031A (ja) * | 2012-12-27 | 2014-07-07 | Hino Motors Ltd | ランキンサイクルシステム |
JP2014190170A (ja) * | 2013-03-26 | 2014-10-06 | Toyota Industries Corp | 廃熱回生システム |
JP2014234801A (ja) * | 2013-06-05 | 2014-12-15 | 日産自動車株式会社 | エンジンの廃熱利用装置 |
JP2015140669A (ja) * | 2014-01-27 | 2015-08-03 | 株式会社豊田自動織機 | 廃熱回生システム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114729593A (zh) * | 2019-10-14 | 2022-07-08 | 萨乐锐伊塔洛工业有限公司 | 车辆的热管理组件 |
CN114729593B (zh) * | 2019-10-14 | 2024-06-07 | 萨乐锐伊塔洛工业有限公司 | 车辆的热管理组件 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109844424B (zh) | 车辆废热回收冷却优化 | |
CN103237967B (zh) | 用于由增压式内燃机驱动的机动车的冷却器装置 | |
EP3064733B1 (en) | Engine cooling system | |
CN105626222B (zh) | 用于车辆特别是用于商用车辆的冷却系统 | |
US9074492B2 (en) | Energy recovery arrangement having multiple heat sources | |
WO2015064302A1 (ja) | エンジン冷却システム | |
US20150377180A1 (en) | System for recuperating heat from the exhaust gases in an internal combustion engine, with two heat exchangers on a gas recirculation circuit | |
JP2012007500A (ja) | 内燃機関の排気熱回収装置 | |
JP2013238131A (ja) | 廃熱利用装置 | |
JP2014190170A (ja) | 廃熱回生システム | |
WO2013151079A1 (ja) | ランキンサイクル装置 | |
WO2014103977A1 (ja) | 内燃機関の廃熱利用装置 | |
JP6186866B2 (ja) | エンジンの冷却システム | |
JP6197459B2 (ja) | エンジン冷却システム | |
JP2017120067A (ja) | 車両用冷却システムの制御装置 | |
US11371393B2 (en) | Arrangement for converting thermal energy from lost heat of an internal combustion engine | |
JP2017101566A (ja) | 車両用冷却装置 | |
JP2013160076A (ja) | ランキンサイクル装置 | |
JP2013068137A (ja) | 廃熱利用装置 | |
JP2017101567A (ja) | 車両用冷却装置 | |
KR20190037919A (ko) | 발전 및 히트펌프의 연계 시스템 | |
CN108026791B (zh) | 热能回收系统 | |
JP2017120068A (ja) | 廃熱回収装置 | |
JP2013217222A (ja) | ランキンサイクル装置 | |
JP6186867B2 (ja) | エンジンの冷却システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170929 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20171204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180427 |