JP2017100130A - Anaerobic digestion treatment method and anaerobic digestion treatment device - Google Patents

Anaerobic digestion treatment method and anaerobic digestion treatment device Download PDF

Info

Publication number
JP2017100130A
JP2017100130A JP2017012056A JP2017012056A JP2017100130A JP 2017100130 A JP2017100130 A JP 2017100130A JP 2017012056 A JP2017012056 A JP 2017012056A JP 2017012056 A JP2017012056 A JP 2017012056A JP 2017100130 A JP2017100130 A JP 2017100130A
Authority
JP
Japan
Prior art keywords
sludge
anaerobic digestion
residue
mixing
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017012056A
Other languages
Japanese (ja)
Other versions
JP6395877B2 (en
Inventor
啓典 西井
Takanori Nishii
啓典 西井
建樹 黒澤
Kenju Kurosawa
建樹 黒澤
直明 片岡
Naoaki Kataoka
直明 片岡
西本 将明
Masaaki Nishimoto
将明 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Publication of JP2017100130A publication Critical patent/JP2017100130A/en
Application granted granted Critical
Publication of JP6395877B2 publication Critical patent/JP6395877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic digestion treatment method and a device therefor easily concentrating sludge to a high concentration.SOLUTION: Provided is an anaerobic digestion treatment method comprising: a sediment separation step of separating sludge into sediment and sediment-removed sludge; a chemical mixing-condensation step of mixing a chemical to the sediment-removed sludge; a concentration separation step of subjecting the condensed sludge produced by the chemical mixing-condensation step to solid-liquid separation into concentrated sludge concentrated to 4 to 12 mass% and a separate liquid; a concentrated sludge feed step of recovering the concentrated sludge and constantly feeding the same to an anaerobic digestion step; an anaerobic digestion treatment step of subjecting the concentrated sludge to anaerobic digestion treatment; and a mixing step of mixing the whole amount or a part of the separated sediment and separate liquid and mixing the same into the anaerobic digestion sludge obtained by subjecting the concentrated sludge to anaerobic digestion.SELECTED DRAWING: Figure 1

Description

本発明は、嫌気性消化処理方法及び装置に関し、特に、嫌気性消化処理の前処理として好適な汚泥濃縮方法及び装置を用いる嫌気性消化処理方法及び装置に関する。   The present invention relates to an anaerobic digestion treatment method and apparatus, and more particularly to an anaerobic digestion treatment method and apparatus using a sludge concentration method and apparatus suitable as a pretreatment for anaerobic digestion treatment.

汚泥の嫌気性消化処理は、好気性処理に比べて汚泥発生量が少なく、病原微生物や寄生虫卵も速やかに死滅して安定化し、酸素の供給が不要なので動力消費量も少なく、メタンガスを主成分とするバイオガスも得られることから、省エネルギー的処理方法として古くから適用されている技術である。一方、嫌気性消化槽設備は大容量を必要とし、消化汚泥の処理では薬品費用の負担の大きい技術でもある。   The anaerobic digestion treatment of sludge produces less sludge than aerobic treatment, promptly kills and stabilizes pathogenic microorganisms and parasite eggs, reduces oxygen consumption, and consumes less power. Since biogas as a component can also be obtained, this technology has been applied for a long time as an energy-saving treatment method. On the other hand, anaerobic digester equipment requires a large capacity, and is a technology with a large chemical cost burden in digested sludge treatment.

したがって、現状の汚泥処分方法としては、汚泥を嫌気性消化することなく、脱水して埋め立てる事例や、脱水して焼却処分する事例がまだまだ多い。例えば、従来の汚泥の嫌気性処理として、図2に示すブロックフロー図で示されるものが挙げられる。このフローについて説明する。   Therefore, as the current sludge disposal methods, there are still many cases in which sludge is dehydrated and landfilled without anaerobic digestion, and dewatered and incinerated. For example, the conventional sludge anaerobic treatment includes the one shown in the block flow diagram of FIG. This flow will be described.

汚泥11は、貯留装置12に送られ、次いで汚泥11は、固液分離装置13に送られ、濃縮汚泥14と分離液15とに固液分離され、濃縮汚泥14は、嫌気性消化装置16に送られ、嫌気性消化された汚泥は、消化汚泥凝集物調製装置17に送られ、分離液18を分離するとともに消化汚泥凝集物19が調製され、消化汚泥凝集物19は、脱水装置20に送られ、分離液21を分離するとともに脱水ケーキ22が調製される。分離液15、分離液18、及び分離液21は、廃水処理設備23等に送られる。消化汚泥凝集物調製装置17では、凝集剤が添加されることが多い。   The sludge 11 is sent to the storage device 12, then the sludge 11 is sent to the solid-liquid separation device 13, and is separated into solid-liquid separation into the concentrated sludge 14 and the separation liquid 15, and the concentrated sludge 14 is sent to the anaerobic digester 16. The sludge that has been sent and anaerobically digested is sent to the digested sludge aggregate preparation device 17 to separate the separation liquid 18 and the digested sludge aggregate 19 is prepared. The digested sludge aggregate 19 is sent to the dehydrator 20. Then, the separation liquid 21 is separated and a dehydrated cake 22 is prepared. The separation liquid 15, the separation liquid 18, and the separation liquid 21 are sent to the wastewater treatment facility 23 and the like. In the digested sludge aggregate preparation apparatus 17, a flocculant is often added.

一方、特許文献1には、(a)汚泥の混在するし尿を固液分離する前処理工程と、(b)処理工程で分離した固形物を脱水せずに直接嫌気性消化する嫌気性消化工程と、(c)動植物残さ及び固形物を含有する厨芥を嫌気性消化する嫌気性消化工程と、(d)嫌気性消化工程流出液を固形物と分離水に脱水分離する脱水工程、(e)前処理工程の分離水、脱水工程からの分離水を生物学的に酸化、脱窒素する生物処理工程とからなる処理方法により、有機性廃水処理施設の汚泥、浄化槽汚泥等の汚泥、し尿、動植物残さを含有する厨芥を省エネルギー的に処理するとともに、し尿、浄化槽汚泥中の非衛生な篩渣を衛生的にコンポスト、固形燃料化するし尿、厨芥、汚泥の処理方法を提案している。   On the other hand, Patent Document 1 includes (a) a pretreatment process for solid-liquid separation of sludge mixed with human waste, and (b) an anaerobic digestion process for directly anaerobically digesting the solid matter separated in the treatment process without dehydration. And (c) an anaerobic digestion step for anaerobically digesting the plant and animal residue and the solids containing solid matter, (d) a dehydration step for dehydrating and separating the anaerobic digestion step effluent into solids and separated water, (e) Sludge from organic wastewater treatment facilities, sludge such as septic tank sludge, human waste, animals and plants by a treatment method consisting of biological treatment process that biologically oxidizes and denitrifies the separated water from the pretreatment process and the dewatering process It proposes a treatment method for human waste, waste, and sludge that treats waste containing residue in an energy-saving manner, and sanitizes compost and solid fuel into unsanitary sieve residue in human waste and septic tank sludge.

特許文献2には、廃水処理設備における最初沈殿池から発生する初沈汚泥と最終沈殿池から発生する余剰汚泥とを混合して貯留し、この混合汚泥に凝集剤を添加して1次凝集処理を行い、次に1次凝集処理を終えた混合汚泥をその汚泥濃度が6〜8%となるように濃縮処理し、次いで濃縮処理後の混合汚泥に凝集剤を添加して2次凝集処理を行い、さらに2次凝集処理を行った混合汚泥に脱水処理を施す処理方法により、廃水処理により発生する初沈汚泥と余剰汚泥の2種の汚泥を、1系統で濃縮処理するとともに、後続の脱水工程にとって最適な汚泥濃度まで濃縮して維持することにより、これら廃水汚泥の濃縮及び脱水プロセスにおけるトータルの効率を最大限に発揮させる汚泥処理方法及びそのシステムを提案している。   In Patent Document 2, primary sludge generated from the first sedimentation basin and waste sludge generated from the final sedimentation basin in the wastewater treatment facility are mixed and stored, and a flocculant is added to the mixed sludge to perform primary flocculation treatment. Then, the mixed sludge that has been subjected to the primary flocculation treatment is concentrated so that the sludge concentration is 6 to 8%, and then the flocculant is added to the mixed sludge after the concentration treatment to perform the secondary flocculation treatment. In addition, the mixed sludge subjected to the secondary agglomeration treatment is subjected to a dehydration treatment method to concentrate the two types of sludge, the primary sludge generated by the wastewater treatment and the excess sludge, in one system and the subsequent dehydration. We propose a sludge treatment method and system that maximizes the total efficiency of the wastewater sludge concentration and dewatering process by concentrating and maintaining the optimum sludge concentration for the process.

また、特許文献3には、固液分離装置の搬送能力を上げるとともに、押圧圧搾効果を増大させるスリット型濃縮機が提案されている。   Further, Patent Document 3 proposes a slit type concentrator that increases the conveying ability of the solid-liquid separator and increases the pressing and pressing effect.

特開平10−216785号公報JP-A-10-216785 特開2009−90240号公報JP 2009-90240 A 特開2003−211293号公報JP 2003-2111293 A

従来の汚泥濃縮工程では、前段で粒径3〜4mm以上のし渣を濃縮前に別途除去するが、それ以下の粒径のし渣はそのまま濃縮工程に供給され、汚泥とともに濃縮される。   In the conventional sludge concentration step, a residue having a particle size of 3 to 4 mm or more is separately removed before concentration in the previous stage, but the residue having a particle size smaller than that is supplied to the concentration step as it is and concentrated together with the sludge.

濃縮方法としては、重力により汚泥を沈降させることによる重力濃縮法、汚泥中の固形物を通さず、水分を通過させるベルト状スクリーンを利用したベルト濃縮法、遠心力による固液分離を利用した遠心濃縮法などの機械濃縮法が挙げられる。重力濃縮法は、通常、薬注なしで汚泥を濃縮する。しかし、濃縮率は2〜3倍程度で、濃縮倍率を高めるためには滞留時間を十分に確保することが必要となるために極端に大容量の濃縮槽を設けている。あるいは、薬液を添加する必要があり、高濃度汚泥を得る方法としては現実的でない。また、従来の機械濃縮法では、固形物回収率を上げるために多量の薬液を必要とし、ベルト濃縮法ではベルトの洗浄のための多量の高圧洗浄用水を要する。また遠心濃縮法では汚泥を入れた容器を高速回転させるため、多大な動力が必要となるといった問題があった。   Concentration methods include gravity concentration by settling sludge by gravity, belt concentration using a belt-like screen that allows moisture to pass through solids in sludge, and centrifugation using solid-liquid separation by centrifugal force. Examples include a mechanical concentration method such as a concentration method. Gravity concentration usually concentrates sludge without chemical injection. However, the concentration rate is about 2 to 3 times, and in order to increase the concentration rate, it is necessary to ensure a sufficient residence time, so an extremely large-capacity concentration tank is provided. Or it is necessary to add a chemical | medical solution, and it is not realistic as a method of obtaining high concentration sludge. In addition, the conventional mechanical concentration method requires a large amount of chemical solution in order to increase the solids recovery rate, and the belt concentration method requires a large amount of high-pressure cleaning water for cleaning the belt. Further, the centrifugal concentration method has a problem that a large amount of power is required because the container containing sludge is rotated at a high speed.

また、上述のような従来の嫌気性消化処理のHRTを更に短縮し、かつ消化槽を小型化することに寄与する、嫌気性消化される汚泥の濃縮技術の改善が望まれている。   In addition, there is a demand for an improved anaerobic digested sludge concentration technique that contributes to further shortening the HRT of the conventional anaerobic digestion treatment as described above and reducing the size of the digestion tank.

更に、従来の技術では、嫌気性消化処理後の汚泥の脱水性が悪化するなどの問題があり、この問題に対処するための有効な手段が望まれていた。   Furthermore, in the prior art, there is a problem that the dewaterability of sludge after the anaerobic digestion treatment is deteriorated, and an effective means for coping with this problem has been desired.

本発明の課題は、汚泥を簡易に高濃度に濃縮することができる方法及び装置を提供することにある。   The subject of this invention is providing the method and apparatus which can concentrate a sludge easily to high concentration.

本発明の嫌気性消化処理方法及び装置は、以下の汚泥濃縮方法及び装置を含む。
1)汚泥をし渣と除渣汚泥に分離するし渣分離工程、除渣汚泥に薬液を混合する薬液混合・凝集工程、及び薬液混合・凝集工程で生成した凝集汚泥を濃縮汚泥と分離液に固液分離する濃縮分離工程を含む、汚泥濃縮方法。
2)汚泥をし渣と除渣汚泥に分離するし渣分離部、除渣汚泥に薬液を混合する薬液混合・凝集部、及び薬液混合・凝集部で生成した凝集汚泥を濃縮汚泥と分離液に固液分離する濃縮分離部を含む、汚泥濃縮装置。
The anaerobic digestion method and apparatus of the present invention include the following sludge concentration method and apparatus.
1) Sludge is separated into residue and residue sludge, residue separation step, chemical solution mixing / aggregation step of mixing chemical solution with residue sludge, and agglomerated sludge generated in the chemical solution mixing / aggregation step into concentrated sludge and separation liquid A sludge concentration method including a concentration and separation step for solid-liquid separation.
2) Sludge is separated into residue and residue sludge, residue separation part, chemical liquid mixing / aggregation part that mixes chemicals into the residue sludge, and agglomerated sludge generated in the chemical liquid mixing / aggregation part into concentrated sludge and separation liquid A sludge concentrator including a concentration / separation unit for solid-liquid separation.

本発明は、し渣分離工程で、し渣と除渣汚泥に分離する際、従来では除かれなかった粒径の小さいし渣及び毛髪等の径が小さく長い繊維状の夾雑物を含めて除くことを最大の特徴としている。し渣とともに得られる除渣汚泥はこれらが従来に比べて十分に除かれているため、濃縮工程での回転部分への絡み付きなどの機械的トラブルを生じることなく低動力で高濃度の濃縮汚泥を得ることが可能となり、分離したし渣を後段の嫌気性消化汚泥と混合することで脱水性を改善することが可能となる。
本発明の具体的態様は以下のとおりである。
[1] 汚泥をし渣と除渣汚泥とに分離するし渣分離工程、
前記除渣汚泥に薬液を混合する薬液混合・凝集工程、
前記薬液混合・凝集工程で生成した凝集汚泥を、4〜12質量%に濃縮された濃縮汚泥と、分離液とに固液分離する濃縮分離工程、
前記濃縮汚泥を回収し、嫌気性消化工程へ定量供給する濃縮汚泥供給工程、
前記濃縮汚泥を嫌気性消化処理する嫌気性消化処理工程、及び
前記分離したし渣及び分離液の全量又は一部を混合して、前記濃縮汚泥を嫌気性消化して得られる嫌気性消化汚泥に混合する混合工程
を含む、嫌気性消化処理方法。
[2]前記し渣及び分離液と前記嫌気性消化汚泥との混合物を脱水する脱水工程をさらに含む、[1]記載の嫌気性消化処理方法。
[3]前記し渣分離工程は、粒径0.5mm以上又は粒径2.0mm以上のし渣を分離する、[1]又は[2]に記載の嫌気性消化処理方法。
[4]前記混合・凝集工程において、凝集剤の添加量は除渣汚泥中のSS質量に対して0.2〜1.0%である、[1]〜[3]に記載の嫌気性消化処理方法。
[5]汚泥をし渣と除渣汚泥に分離するし渣分離部と、
前記除渣汚泥に薬液を混合する薬液混合・凝集部と、
前記薬液混合・凝集部で生成した凝集汚泥を濃縮汚泥と分離液に固液分離する濃縮分離部と、
前記濃縮汚泥を回収し、嫌気性消化処理部へ定量供給できる濃縮汚泥供給部と、
前記濃縮汚泥を嫌気性消化処理する嫌気性消化処理部と、
前記し渣分離部からのし渣、及び前記濃縮分離部からの分離液の全量又は一部を混合して、前記濃縮汚泥を嫌気性消化して得られる嫌気性消化汚泥に混合する機構と、
を含む、嫌気性消化処理装置。
[6]前記濃縮汚泥供給部は、定量ポンプを具備する、[5]に記載の嫌気性消化処理装置。
[7]前記濃縮汚泥供給部は、前記嫌気性消化処理部よりも高い位置に設けられている、[5]又は[6]に記載の嫌気性消化処理装置。
[8]前記し渣及び分離液と前記嫌気性消化汚泥との混合物を脱水する脱水装置をさらに含む、[5]〜[7]のいずれか1に記載の嫌気性消化処理装置。
[9]前記し渣分離部は、孔径0.5mm以上又は孔径2.0mm以上の多孔板、または60〜100メッシュの金網を有するスクリーンを備える、[5]〜[8]のいずれか1に記載の嫌気性消化処理装置。
In the present invention, when separating the residue and the residue sludge in the residue separation step, it removes small impurities such as residue and hair, which are not removed in the past, and long and small fibrous impurities such as hair. This is the biggest feature. Since the sewage sludge obtained together with the residue is sufficiently removed compared to the conventional method, low-power and high-concentration concentrated sludge can be obtained without causing mechanical troubles such as entanglement of the rotating part in the concentration process. It becomes possible to improve the dewaterability by mixing the separated residue with anaerobic digested sludge at the subsequent stage.
Specific embodiments of the present invention are as follows.
[1] Sludge separation process for separating sludge into residue and residue sludge
A chemical solution mixing and agglomeration process for mixing the chemical solution with the debris sludge,
A concentration / separation step for solid-liquid separation of the agglomerated sludge produced in the chemical liquid mixing / aggregation step into a concentrated sludge concentrated to 4 to 12% by mass;
Concentrated sludge supply process that collects the concentrated sludge and supplies it quantitatively to the anaerobic digestion process,
An anaerobic digestion process for anaerobically digesting the concentrated sludge, and anaerobic digested sludge obtained by anaerobic digestion of the concentrated sludge by mixing all or part of the separated residue and separation liquid. An anaerobic digestion method including a mixing step of mixing.
[2] The anaerobic digestion treatment method according to [1], further including a dehydration step of dehydrating a mixture of the residue and separation liquid and the anaerobic digestion sludge.
[3] The anaerobic digestion method according to [1] or [2], wherein the screen residue separation step separates screen residue having a particle size of 0.5 mm or more or a particle size of 2.0 mm or more.
[4] Anaerobic digestion according to [1] to [3], wherein in the mixing / flocculation step, the amount of flocculant added is 0.2 to 1.0% with respect to the SS mass in the sewage sludge. Processing method.
[5] Sediment separation part for separating sludge into residue and residue sludge;
A chemical solution mixing / aggregation part for mixing the chemical solution with the debris sludge;
A concentration / separation unit that solid-liquid separates the agglomerated sludge produced in the chemical liquid mixing / aggregation unit into a concentrated sludge and a separated liquid;
A concentrated sludge supply unit that collects the concentrated sludge and can supply a fixed amount to the anaerobic digestion processing unit;
An anaerobic digestion treatment section for anaerobically digesting the concentrated sludge;
A mechanism for mixing the total amount or a part of the residue from the residue separation unit and the separation liquid from the concentration separation unit, and mixing the concentrated sludge with anaerobic digestion sludge obtained by anaerobic digestion;
Including anaerobic digestion treatment equipment.
[6] The anaerobic digestion apparatus according to [5], wherein the concentrated sludge supply unit includes a metering pump.
[7] The anaerobic digestion processing apparatus according to [5] or [6], wherein the concentrated sludge supply unit is provided at a position higher than the anaerobic digestion processing unit.
[8] The anaerobic digestion apparatus according to any one of [5] to [7], further including a dehydrator that dehydrates a mixture of the residue and separation liquid and the anaerobic digested sludge.
[9] The screen residue separation unit includes any one of [5] to [8], including a perforated plate having a hole diameter of 0.5 mm or more or a hole diameter of 2.0 mm or more, or a screen having a wire mesh of 60 to 100 mesh. The anaerobic digestion apparatus described.

本発明によれば、汚泥を、省スペース、低動力の装置で濃縮することが可能であり、分離したし渣を脱水助剤として他の工程で用いるか、保管し、所望のときに所望の汚泥処理に使用することができる。   According to the present invention, it is possible to concentrate sludge in a space-saving, low-power apparatus, and the separated residue is used in other processes as a dehydrating aid or stored, and desired when desired. Can be used for sludge treatment.

本発明の方法の一態様を実施するための濃縮装置の一例を含む、説明図である。It is explanatory drawing containing an example of the concentration apparatus for enforcing the one aspect | mode of the method of this invention. 従来の処理装置の構成を表す説明図である。It is explanatory drawing showing the structure of the conventional processing apparatus. 汚泥分離部の後段に嫌気性消化槽を備え、消化汚泥を濃縮汚泥と混合して嫌気性消化槽に返送する実施態様を示す説明図である。It is explanatory drawing which shows the embodiment which equips an anaerobic digester in the back | latter stage of a sludge separation part, mixes digested sludge with concentrated sludge, and returns it to an anaerobic digester.

本発明において、汚泥とは、下水、屎尿、厨芥などの有機性物質を処理する工程で排出される汚泥を意味する。このような汚泥としては、初沈汚泥、余剰汚泥等が挙げられる。   In this invention, sludge means the sludge discharged | emitted in the process of processing organic substances, such as sewage, manure, and sewage. Examples of such sludge include primary sedimentation sludge and excess sludge.

本発明において、し渣とは、上記汚泥から分離されるものであり、下水試験方法に準拠した呼び寸法74μmふるいで分離される粗浮遊物を含むものであり、好ましくは、粒径0.5mm以上又は粒径2.0mm以上、あるいは孔径0.5mm以上又は孔径2.0mm以上の多孔板、または60〜100メッシュの金網を有するスクリーンで分離される粗浮遊物を意味する。   In the present invention, the residue is separated from the sludge and contains coarse suspended solids separated by a sieve having a nominal size of 74 μm in accordance with a sewage test method, and preferably has a particle size of 0.5 mm. This means a coarse suspended substance separated by a screen having a particle size of 2.0 mm or more, a pore size of 0.5 mm or more, or a pore size of 2.0 mm or more, or a screen having a metal mesh of 60 to 100 mesh.

ここで、粒径は、篩により分級される値であり、孔径は穴の直径を意味する。   Here, the particle diameter is a value classified by a sieve, and the hole diameter means the diameter of the hole.

初めに、汚泥をし渣と除渣汚泥に分離するし渣分離工程について説明する。   First, a residue separation process for separating sludge into residue and residue sludge will be described.

し渣分離工程において、汚泥に含まれるし渣を分離、回収する工程、及びその工程で用いられる装置について説明する。   In the residue separation step, a step of separating and collecting residue contained in sludge and an apparatus used in the step will be described.

し渣が分離される汚泥は、スラリーであり、通常、SSが5g/L(リットル)以上のものである。   The sludge from which the residue is separated is a slurry and usually has an SS of 5 g / L (liter) or more.

し渣の分離は、基本的にし渣の粒径に応じて、あるいは所望に応じて分離したい粒径未満を有する孔径の篩手段を用いて、汚泥をろ過することにより行うことができる。例えば、一般的にし渣の含有量の多い初沈汚泥の比率が高い場合は上記のうち目の粗いスクリーンを使用し、し渣含有量の少ない余剰汚泥の比率が高い場合は目の細かいスクリーンを用いるが、この限りではない。   Separation of the residue can be basically performed by filtering the sludge using a sieve means having a pore size having a particle size less than the particle size to be separated according to the particle size of the residue or as desired. For example, when the ratio of primary sludge with a large amount of residue is generally high, a coarse screen is used. When the proportion of excess sludge with a small amount of residue is high, a fine screen is used. Used, but not limited to this.

該篩手段としては、上記多孔板、または金網を用いたスクリーン等が挙げられる。   Examples of the sieving means include the perforated plate or a screen using a wire mesh.

し渣と除渣汚泥に分離するし渣分離部の形態については、特に限定されるものではないが、例えば、分離したし渣の掻き寄せ装置、上記篩手段の目詰まりを防ぐための振動機構等を具備したものが好ましい。   The form of the screen residue separating unit that separates the screen residue and the residue sludge is not particularly limited. For example, the separated screen scraping device and the vibration mechanism for preventing clogging of the sieve means Etc. are preferable.

次に上記薬液混合・凝集工程について説明する。   Next, the chemical solution mixing / aggregation step will be described.

本願において、薬液とは、少なくとも凝集剤を含む薬剤を意味し、凝集剤以外の他の薬剤、例えば、pH調整剤、等を含んでいてもよい。また、薬液は液体に限定されない。薬液は、凝集剤のみの使用、凝集剤と他の薬剤との混合使用、あるいは時間差を設けた併用等で用いることができる。   In the present application, the chemical solution means a drug containing at least a flocculant, and may contain other drugs other than the flocculant, such as a pH adjuster. Moreover, a chemical | medical solution is not limited to a liquid. The chemical solution can be used by using only the flocculant, using the flocculant in combination with other chemicals, or using a combination with a time difference.

この薬液混合・凝集工程では、除渣汚泥は少なくとも凝集剤が注入、混和されることにより凝集汚泥が調製される。この除渣汚泥に凝集剤を混合する薬液混合・凝集部は、通常、凝集剤注入手段を備えた凝集混和槽であるが、凝集汚泥が調製可能であれば、凝集剤注入手段を備えた単なる管又は管状体であってもよい。また、薬液混合・凝集部は、凝集剤を定量溶解したものを収容する凝集剤貯留タンクを備えたものでもよく、該タンクから凝集剤溶液を除渣汚泥に凝集混和槽へ注入することにより行うことができる。この方法は、凝集剤を無駄なく効率的に注入することができ、好ましい。   In this chemical solution mixing / flocculation step, at least a flocculant is injected and mixed into the debris sludge to prepare the sludge. The chemical liquid mixing / aggregation part for mixing the flocculant with the debris sludge is usually a flocculent mixing tank equipped with a flocculant injecting means. It may be a tube or a tubular body. Further, the chemical liquid mixing / flocculation unit may be provided with a flocculant storage tank that contains a fixed amount of the flocculant dissolved therein, and is performed by injecting the flocculant solution from the tank into the slag sludge into the flocculent mixing tank. be able to. This method is preferable because the flocculant can be efficiently injected without waste.

薬液混合・凝集工程における、凝集剤の添加量は汚泥中のSS(Suspended Solid)質量に対して0.2〜1.0%が好ましく、0.3〜0.6%が更に好ましい。   In the chemical liquid mixing / flocculation step, the addition amount of the flocculant is preferably 0.2 to 1.0%, more preferably 0.3 to 0.6% with respect to the mass of SS (Suspended Solid) in the sludge.

凝集剤としては特に限定されないが、無機系凝集剤(例えば、ポリ硫酸第二鉄またはPAC、硫酸バンド等)及び有機高分子凝集剤(以下、高分子凝集剤ともいう)などが挙げられ、各々、単独または組み合わせて用いることができるが、少なくとも高分子凝集剤を含むことが好ましい。高分子凝集剤としては、カチオン系、アニオン系、両性系、等が挙げられ、例えば、アミジン系凝集剤、アクリルアミド系凝集剤、アクリル酸系凝集剤等が挙げられる。   The flocculant is not particularly limited, and examples thereof include inorganic flocculants (for example, polyferric sulfate or PAC, sulfate bands, etc.) and organic polymer flocculants (hereinafter also referred to as polymer flocculants). These can be used alone or in combination, but preferably contain at least a polymer flocculant. Examples of the polymer flocculant include cationic, anionic, amphoteric, and the like, and examples thereof include amidine flocculants, acrylamide flocculants, and acrylic acid flocculants.

次に、薬液混合・凝集工程で調製された凝集汚泥を濃縮汚泥と分離液とに固液分離する濃縮分離工程について説明する。   Next, the concentration / separation process for solid-liquid separation of the coagulated sludge prepared in the chemical liquid mixing / coagulation process into the concentrated sludge and the separation liquid will be described.

本発明では、上述のように、この濃縮分離工程にて、凝集汚泥を固液分離することにより高濃度の濃縮汚泥を調製することができる。   In the present invention, as described above, high-concentration concentrated sludge can be prepared by solid-liquid separation of the coagulated sludge in this concentration and separation step.

ここで、凝集汚泥を濃縮汚泥と分離液とに固液分離する濃縮分離部としては、特に限定されず、重力濃縮法が適用される単なる槽、遠心濃縮法が適用される遠心分離機、浮上濃縮法が適用される分離機、スクリーンを用いた分離機等が挙げられる。中でも、スリット型濃縮機は好ましく、例えば、前記特許文献3に記載の、処理物をスリット板で受け止め、多数のスリットを形成したスリット板上に周面を突出せしめた多数の円板が処理物排出方向に回転軸により偏心回転することによって、処理物はスリット板上を排出側に送られ、この過程でスリット内の円板との隙間から液体成分が落下して濾過され、処理物中の固体成分は分離捕集され、さらにこの手段に加えてスリット板の上面に近接して処理物の排出方向に回転し、スリット板上の捕集物を圧搾して脱液するベルトコンベアを上記スリット板上に設けた機械構造が挙げられる。スリット型濃縮機を適用すると安定して確実に高濃縮、例えば、4〜12質量%の高濃度化が安価なランニングコストで可能である。   Here, the concentration / separation part for solid-liquid separation of the aggregated sludge into the concentrated sludge and the separation liquid is not particularly limited, and a simple tank to which the gravity concentration method is applied, a centrifugal separator to which the centrifugal concentration method is applied, and levitation Examples include a separator to which a concentration method is applied, a separator using a screen, and the like. Among them, the slit-type concentrator is preferable. For example, the processed product described in Patent Document 3 is a processed product that includes a processed plate with a slit plate, and a large number of disks whose peripheral surfaces protrude on the slit plate in which a large number of slits are formed. By rotating eccentrically with the rotating shaft in the discharge direction, the processed material is sent to the discharge side on the slit plate, and in this process, the liquid component falls from the gap between the disk in the slit and is filtered, The solid component is separated and collected, and in addition to this means, a belt conveyor that rotates close to the upper surface of the slit plate in the discharge direction of the processed material and squeezes the collected material on the slit plate to remove liquid is provided in the slit. The mechanical structure provided on the board is mentioned. When the slit type concentrator is applied, high concentration can be achieved stably and reliably, for example, high concentration of 4 to 12% by mass can be achieved at an inexpensive running cost.

上記濃縮分離工程で分離された濃縮汚泥は、所望の処理工程へ供給され、任意の処理を施すことができる。   The concentrated sludge separated in the concentration and separation step is supplied to a desired treatment step and can be subjected to any treatment.

濃縮汚泥を回収し、処理装置へ定量供給できる濃縮汚泥供給部としては、定量化手段と移送手段が一体化したポンプを備えることが好適であり、例えば、フィーダー一体型の一軸ねじ式ポンプ等が挙げられる。しかし、本発明による汚泥濃縮装置のうち少なくとも汚泥濃縮部を嫌気性消化槽の上部に設置することで濃縮部から排出される濃縮汚泥を直接又はスクリューコンベヤを介して消化槽に落下させて投入することも可能である。この場合、投入ポンプ等が不要となるため、その分の低動力化が可能となる。   The concentrated sludge supply unit that collects the concentrated sludge and can supply the fixed amount to the processing apparatus is preferably provided with a pump in which the quantification means and the transfer means are integrated. Can be mentioned. However, by installing at least the sludge concentrating part of the sludge concentrating apparatus according to the present invention on the upper part of the anaerobic digestion tank, the concentrated sludge discharged from the concentrating part is dropped into the digestion tank directly or via a screw conveyer and charged. It is also possible. In this case, since a charging pump or the like is not necessary, the power can be reduced correspondingly.

また、後段の処理工程が消化工程である場合は、図3に示すように、消化汚泥の引き抜き配管を分岐し、嫌気性消化槽に返送する配管を設け、その途中で濃縮汚泥と消化汚泥を混合させて投入することにより、嫌気性消化槽への投入汚泥の濃度及び粘性を下げることができ、投入にかかるポンプ動力を低減することも可能である。   In addition, when the subsequent treatment process is a digestion process, as shown in FIG. 3, a digestion sludge extraction pipe is branched and a pipe that returns to the anaerobic digestion tank is provided. By mixing and charging, the concentration and viscosity of the sludge charged into the anaerobic digester can be lowered, and the pump power required for charging can be reduced.

また、この濃縮分離工程で凝集汚泥を固液分離することにより得られる分離液の一部又は全部は、任意の処理工程に混合することができる。この場合、分離液は、上記し渣と混合されてもされなくともよい。   In addition, a part or all of the separation liquid obtained by solid-liquid separation of the coagulated sludge in this concentration / separation step can be mixed in any treatment step. In this case, the separation liquid may or may not be mixed with the residue.

次に、本発明の汚泥濃縮技術を、嫌気性消化処理の前処理として適用した一例を以下に挙げる。   Next, an example in which the sludge concentration technique of the present invention is applied as a pretreatment for the anaerobic digestion treatment will be given below.

本態様では、し渣分離工程で得られるし渣を嫌気性消化処理後の汚泥の脱水性を改善するために用いる。し渣を回収した除渣汚泥には薬液を添加、混合して調製後、高濃度(例えば、4〜12質量%)に濃縮にする。濃縮過程で分離した分離液は前段で分離したし渣とともに、その全量又は一部を嫌気性消化処理後の嫌気性消化汚泥に混合し、脱水処理工程に供給する。   In this embodiment, the residue obtained in the residue separation process is used to improve the dewaterability of sludge after the anaerobic digestion treatment. A chemical solution is added to the dewatered sludge from which the residue has been collected, mixed and prepared, and then concentrated to a high concentration (for example, 4 to 12% by mass). The separation liquid separated in the concentration process is mixed with the whole or a part of the residue separated in the previous stage with the anaerobic digested sludge after the anaerobic digestion treatment and supplied to the dehydration treatment step.

濃縮分離工程で分離された濃縮汚泥は嫌気性消化工程に導入される。従来は重力濃縮又は各種機械濃縮により汚泥を濃縮したが、嫌気性消化工程への供給汚泥の濃度は実情として3〜4%、高くても5%程度であった。また、汚泥中のし渣は濃縮工程で分離されないため、汚泥とともに嫌気性消化工程に導入され、嫌気性消化処理によってその大半は分解されていた。   The concentrated sludge separated in the concentration and separation step is introduced into the anaerobic digestion step. Conventionally, sludge was concentrated by gravity concentration or various mechanical concentrations, but the actual concentration of the sludge supplied to the anaerobic digestion process was about 3 to 4% and at most about 5%. In addition, since the residue in the sludge is not separated in the concentration step, it was introduced into the anaerobic digestion step together with the sludge, and most of it was decomposed by the anaerobic digestion treatment.

上述のように、し渣を回収された汚泥(除渣汚泥)は薬液混合・凝集工程へ、分離、回収されたし渣は、その全量又は一部が嫌気性消化処理後の嫌気性消化汚泥と混合される。この場合、嫌気性消化汚泥が、更に凝集剤による処理を施される場合は、し渣の該消化汚泥への添加は、し渣の粒径と凝集剤により生成する凝集汚泥を分離するための手段の孔径等の条件によって、凝集剤の添加前後、又は凝集剤の添加と同時から適宜、選択でき、併用も可能である。該し渣の添加が、凝集剤の添加後の場合は、少なくとも該生成した凝集汚泥が脱水工程で処理される間又はその前にし渣を該凝集汚泥に添加することが好ましい。   As described above, sludge from which the residue has been collected (residue sludge) is subjected to the chemical liquid mixing and agglomeration process, and the amount of the residue that has been separated and recovered is anaerobic digested sludge after anaerobic digestion treatment. Mixed with. In this case, when the anaerobic digested sludge is further treated with a flocculant, the addition of the residue to the digested sludge is for separating the particle size of the residue and the agglomerated sludge produced by the flocculant. Depending on conditions such as the pore size of the means, it can be appropriately selected before and after the addition of the flocculant or simultaneously with the addition of the flocculant, and can be used in combination. When the residue is added after the addition of the flocculant, it is preferable to add the residue to the aggregated sludge at least during or before the generated aggregated sludge is treated in the dehydration step.

該回収されたし渣は、所望により、乾燥処理を施す等を行い、保管してもよい。   The collected residue may be stored after being subjected to a drying process, if desired.

上記濃縮分離工程で分離された濃縮汚泥は、上述のように嫌気性消化工程へ供給される。汚泥濃縮部を嫌気性消化槽の上部に設置できる場合は、排出される濃縮汚泥を重力により消化槽に直接投入するが、そうでない場合は、濃縮汚泥を回収し、嫌気性消化工程へ定量供給できる濃縮汚泥供給工程を含むことが好ましく、より効率的な運転管理の嫌気性消化処理を行うことができる。   The concentrated sludge separated in the concentration separation step is supplied to the anaerobic digestion step as described above. If the sludge concentrating section can be installed in the upper part of the anaerobic digester, the concentrated sludge discharged is directly injected into the digester by gravity. Otherwise, the concentrated sludge is collected and supplied quantitatively to the anaerobic digestion process. It is preferable to include a process for supplying concentrated sludge that can be performed, and an anaerobic digestion process for more efficient operation management can be performed.

濃縮汚泥を回収し、例えば、嫌気性消化処理部へ定量供給できる濃縮汚泥供給部としては、定量化手段と移送手段が一体化した上述のポンプ等が挙げられる。   Examples of the concentrated sludge supply unit that collects the concentrated sludge and can quantitatively supply it to the anaerobic digestion processing unit include the above-described pump in which the quantification means and the transfer means are integrated.

また、この濃縮分離工程で凝集汚泥を固液分離することにより得られる分離液の一部又は全部は、嫌気性消化工程で得られる嫌気性消化汚泥に混合することができる。この場合、分離液は、上記し渣と混合されてもされなくともよい。   Moreover, a part or all of the separation liquid obtained by solid-liquid separation of the coagulated sludge in this concentration and separation step can be mixed with the anaerobic digestion sludge obtained in the anaerobic digestion step. In this case, the separation liquid may or may not be mixed with the residue.

嫌気性消化工程で処理された濃縮汚泥の消化汚泥は、上述のように更に凝集剤により、所望によりし渣とともに処理することができるが、そのままであるとMアルカリ度が高く、凝集剤による処理が困難となるため希釈することが好ましく、その希釈に分離液を用いることができる。この場合、添加されるし渣は、上記分離液と混合されてもされなくともよい。   The digested sludge of the concentrated sludge treated in the anaerobic digestion step can be further treated with a coagulant as desired with a flocculant as described above, but if left as it is, the M alkalinity is high, and the treatment with the flocculant Is difficult to dilute, and it is preferable to dilute, and a separation liquid can be used for the dilution. In this case, the added residue may or may not be mixed with the separation liquid.

また、該分離液は、リン、カルシウム、シロキサン等を含むので、それらを回収する工程に回し、回収することもできる。   Further, since the separation liquid contains phosphorus, calcium, siloxane and the like, it can be recovered by sending it to the process of recovering them.

次に本発明の一例を、図を参照してさらに説明する。   Next, an example of the present invention will be further described with reference to the drawings.

図1は本発明の実施形態を示すブロックフロー図である。本発明の汚泥濃縮装置は、少なくともし渣分離部1と、凝集混和槽2と薬液貯留タンク3を含む薬液混合・凝集部と、汚泥濃縮部4を備える。まず、汚泥はし渣分離部1に送られ、し渣と除渣汚泥に分離される。次に除渣汚泥は配管を介して凝集混和槽2に送られるが、その配管途中または凝集混和槽2で薬液貯留タンク3の薬液を添加され、凝集・調製される。凝集した汚泥は汚泥濃縮部4に導入され高濃度の濃縮汚泥と分離液に分離される。濃縮汚泥は濃縮汚泥移送ポンプ5に備えられた供給機を介してポンプに供給され、定量的に後段の嫌気性消化工程に移送される。また、し渣分離部で分離されたし渣と汚泥濃縮部で分離された分離液はし渣・分離液受槽6で混合され、嫌気性消化処理後の消化汚泥と混合され脱水工程に供給される。   FIG. 1 is a block flow diagram showing an embodiment of the present invention. The sludge concentrating device of the present invention includes at least a residue separating unit 1, a chemical solution mixing / aggregating unit including a coagulation / mixing tank 2 and a chemical solution storage tank 3, and a sludge concentrating unit 4. First, the sludge is sent to the residue separator 1 and separated into residue and waste sludge. Next, the debris sludge is sent to the agglomeration mixing tank 2 via a pipe, and the chemical solution in the chemical liquid storage tank 3 is added in the middle of the pipe or in the agglomeration mixing tank 2 to be agglomerated and prepared. The agglomerated sludge is introduced into the sludge concentration unit 4 and separated into a high concentration concentrated sludge and a separation liquid. The concentrated sludge is supplied to the pump through a feeder provided in the concentrated sludge transfer pump 5 and quantitatively transferred to the subsequent anaerobic digestion step. In addition, the separation liquid separated in the residue separation part and the sludge concentration part is mixed in the residue / separation liquid receiving tank 6 and mixed with the digested sludge after the anaerobic digestion process and supplied to the dehydration process. The

図3は、濃縮分離部4の後段に、嫌気性消化槽7を設けた実施形態を示すブロックフロー図である。濃縮分離部4にて分離された濃縮汚泥は、嫌気性消化槽7で嫌気性消化されて嫌気性消化汚泥となり、消化汚泥引き抜き配管10aを介して引き抜かれる。消化汚泥引き抜き配管10aには、消化汚泥返送用配管10bが分岐しており、少なくとも一部の嫌気性消化汚泥を嫌気性消化槽7に戻す。消化汚泥返送用配管10bには、濃縮汚泥と嫌気性消化汚泥とを混合する混合槽9が設けられており、混合した汚泥を嫌気性消化槽7に供給する。図示した実施形態においては、濃縮汚泥又は濃縮汚泥と嫌気性消化汚泥との混合物を嫌気性消化槽7に供給するための投入ポンプ8と、嫌気性消化槽7から嫌気性消化汚泥を引き抜くための汚泥引き抜きポンプ10とを用いているが、自重により汚泥を供給又は引き抜くことができればポンプは不要である。   FIG. 3 is a block flow diagram showing an embodiment in which an anaerobic digester 7 is provided after the concentration and separation unit 4. The concentrated sludge separated in the concentration separation unit 4 is anaerobically digested in the anaerobic digestion tank 7 to become anaerobic digested sludge, and is extracted through the digested sludge extraction pipe 10a. The digested sludge extraction pipe 10a is branched by a digested sludge return pipe 10b, and at least a part of the anaerobic digested sludge is returned to the anaerobic digester tank 7. The digested sludge return pipe 10 b is provided with a mixing tank 9 for mixing concentrated sludge and anaerobic digested sludge, and the mixed sludge is supplied to the anaerobic digester 7. In the illustrated embodiment, the input pump 8 for supplying concentrated sludge or a mixture of concentrated sludge and anaerobic digested sludge to the anaerobic digester 7, and for extracting the anaerobic digested sludge from the anaerobic digester 7. Although the sludge extraction pump 10 is used, if the sludge can be supplied or extracted by its own weight, the pump is unnecessary.

以下、本発明の実施例を説明する。A下水処理場から発生した下水汚泥について、本発明の汚泥濃縮試験を図1の態様に準じて行った。試験に用いた下水汚泥は、初沈汚泥と余剰汚泥を約1:1で混合した汚泥を重力濃縮したものである。   Examples of the present invention will be described below. About the sewage sludge generated from A sewage treatment plant, the sludge concentration test of this invention was done according to the aspect of FIG. The sewage sludge used for the test is a gravity-concentrated sludge obtained by mixing primary sludge and surplus sludge at about 1: 1.

なお、本発明はこの実施例により何等制限されるものではない。   In addition, this invention is not restrict | limited at all by this Example.

表1に試験に用いた汚泥濃縮装置の仕様を示す。試験では除渣汚泥にカチオン性高分子凝集剤(平均分子量300万)を0.5%(対SS比)添加混合した。   Table 1 shows the specifications of the sludge concentrator used in the test. In the test, 0.5% (vs. SS ratio) of cationic polymer flocculant (average molecular weight: 3 million) was added to and mixed with the sewage sludge.

表2に濃縮処理前後の汚泥及び濃縮分離工程で得られた分離液の性状を示す。原汚泥は、投入汚泥である。   Table 2 shows the sludge before and after the concentration treatment and the properties of the separation liquid obtained in the concentration separation step. Raw sludge is input sludge.

なお、分析方法は下記の方法で行った。
・TS(Total solids、全蒸発残留物);105℃蒸発残留物重量(JIS K 0102)
・VTS(Volatile total solids、強熱減量);600℃強熱減量(JIS K 0102)
・SS(Suspended solids、懸濁粒子);遠心分離法による回転数3,000rpm,10分間での沈殿物重量(JIS K 0102)
・VSS(Volatile suspended solids、揮発性懸濁粒子);懸濁粒子の600℃強熱減量(JIS K 0102)
・Mアルカリ度;遠心分離機による回転数3,000rpm,3分間での上澄液を0.1mol/Lの塩酸溶液でpH4.8まで滴定(下水試験方法)
・粗浮遊物;呼び寸法74μmふるいでの粗浮遊物分析(下水試験方法)
The analysis method was as follows.
TS (Total solids, total evaporation residue); 105 ° C. evaporation residue weight (JIS K 0102)
・ VTS (Volatile total solids, loss on ignition); 600 ° C loss on ignition (JIS K 0102)
SS (Suspended solids): Precipitation weight at 3,000 rpm for 10 minutes by centrifugation (JIS K 0102)
-VSS (Volatile suspended solids, volatile suspended particles); loss of ignition of suspended particles at 600 ° C (JIS K 0102)
・ M alkalinity; titration of supernatant with 0.1 mol / L hydrochloric acid solution to pH 4.8 with 3,000 rpm rotation speed by centrifuge (method of sewage test)
・ Coarse suspended solids; analysis of coarse suspended solids with a nominal size of 74 μm (sewage test method)

以上の結果より、本発明により効率的に汚泥を高濃度に濃縮できることがあきらかである。   From the above results, it is clear that sludge can be efficiently concentrated to a high concentration according to the present invention.

次に、上記濃縮汚泥を嫌気性消化処理した汚泥について脱水試験を行い、前処理で分離したし渣の添加の有無による脱水性の変化について検討した。   Next, a dehydration test was performed on the sludge obtained by subjecting the concentrated sludge to anaerobic digestion, and changes in dewaterability due to the presence or absence of addition of residue separated by pretreatment were examined.

嫌気性消化処理条件は表3に示す通りである。嫌気性消化処理前後の汚泥の性状を表4に示す。   The anaerobic digestion treatment conditions are as shown in Table 3. Table 4 shows the properties of the sludge before and after the anaerobic digestion treatment.

この嫌気性消化汚泥に嫌気性消化の前処理で分離したし渣の全量と濃縮分離液の全量を混合した液を1:1の割合で混合した汚泥を脱水試験に供した。比較例として嫌気性消化汚泥と濃縮分離液を1:1で混合した汚泥についても脱水試験を行った。汚泥脱水にはカチオン性高分子凝集剤(平均分子量300万)を用いた。また、脱水機はベルトプレス式脱水機を用い、脱水処理条件は、ろ布緊張力4.9kN/m、ろ布スピード1.0m/分で行った。その結果、高分子凝集剤注入率と脱水汚泥の含水率は表5の通りであった。   Sludge obtained by mixing the anaerobic digested sludge in a ratio of 1: 1 with a mixture of the total amount of residue and the total amount of concentrated separated liquid separated by the pretreatment of anaerobic digestion was subjected to a dehydration test. As a comparative example, a dehydration test was also performed on sludge in which anaerobic digested sludge and concentrated separated liquid were mixed at a ratio of 1: 1. A cationic polymer flocculant (average molecular weight of 3 million) was used for sludge dewatering. Further, a belt press type dehydrator was used as the dehydrator, and the dehydration conditions were a filter cloth tension of 4.9 kN / m and a filter cloth speed of 1.0 m / min. As a result, the polymer flocculant injection rate and the moisture content of the dewatered sludge were as shown in Table 5.

以上の結果から、本発明によれば、少ない薬注率で含水率の低い脱水汚泥が得られることが分かる。   From the above results, it can be seen that according to the present invention, a dewatered sludge having a low chemical injection rate and a low water content can be obtained.

1…し渣分離部、2…凝集混和槽、3…薬液貯留タンク、4…汚泥濃縮部、5…濃縮汚泥移送ポンプ、6…し渣・分離液受槽、7・・・嫌気性消化槽、8・・・投入ポンプ、9・・・混合槽、10・・・汚泥引き抜きポンプ、10a・・・消化汚泥引き抜き配管、10b・・・消化汚泥返送用配管、11…汚泥、12…貯留装置、13…固液分離装置、14…濃縮汚泥、16…嫌気性消化装置、17…消化汚泥凝集物調製装置、18…分離液、19…消化汚泥凝集物、20…脱水装置、21…分離液、23…廃水処理設備 DESCRIPTION OF SYMBOLS 1 ... Sediment separation part, 2 ... Coagulation mixing tank, 3 ... Chemical liquid storage tank, 4 ... Sludge concentration part, 5 ... Concentrated sludge transfer pump, 6 ... Sediment / separation liquid receiving tank, 7 ... Anaerobic digestion tank, 8 ... charging pump, 9 ... mixing tank, 10 ... sludge extraction pump, 10a ... digested sludge extraction piping, 10b ... digested sludge return piping, 11 ... sludge, 12 ... storage device, DESCRIPTION OF SYMBOLS 13 ... Solid-liquid separator, 14 ... Concentrated sludge, 16 ... Anaerobic digester, 17 ... Digested sludge aggregate preparation apparatus, 18 ... Separation liquid, 19 ... Digested sludge aggregate, 20 ... Dehydrator, 21 ... Separation liquid, 23 ... Wastewater treatment equipment

Claims (9)

汚泥をし渣と除渣汚泥とに分離するし渣分離工程、
前記除渣汚泥に薬液を混合する薬液混合・凝集工程、
前記薬液混合・凝集工程で生成した凝集汚泥を、4〜12質量%に濃縮された濃縮汚泥と、分離液とに固液分離する濃縮分離工程、
前記濃縮汚泥を回収し、嫌気性消化工程へ定量供給する濃縮汚泥供給工程、
前記濃縮汚泥を嫌気性消化処理する嫌気性消化処理工程、及び
前記分離したし渣及び分離液の全量又は一部を混合して、前記濃縮汚泥を嫌気性消化して得られる嫌気性消化汚泥に混合する混合工程
を含む、嫌気性消化処理方法。
Separation process for separating sludge into residue and residue sludge,
A chemical solution mixing and agglomeration process for mixing the chemical solution with the debris sludge,
A concentration / separation step for solid-liquid separation of the agglomerated sludge produced in the chemical liquid mixing / aggregation step into a concentrated sludge concentrated to 4 to 12% by mass;
Concentrated sludge supply process that collects the concentrated sludge and supplies it quantitatively to the anaerobic digestion process,
An anaerobic digestion process for anaerobically digesting the concentrated sludge, and anaerobic digested sludge obtained by anaerobic digestion of the concentrated sludge by mixing all or part of the separated residue and separation liquid. An anaerobic digestion method including a mixing step of mixing.
前記し渣及び分離液と前記嫌気性消化汚泥との混合物を脱水する脱水工程をさらに含む、請求項1に記載の嫌気性消化処理方法。   The anaerobic digestion method according to claim 1, further comprising a dehydration step of dehydrating a mixture of the residue and separation liquid and the anaerobic digested sludge. 前記し渣分離工程は、粒径0.5mm以上又は粒径2.0mm以上のし渣を分離する、請求項1又は2に記載の嫌気性消化処理方法。   The anaerobic digestion method according to claim 1 or 2, wherein the residue separation step separates residue having a particle size of 0.5 mm or more or a particle size of 2.0 mm or more. 前記混合・凝集工程において、凝集剤の添加量は除渣汚泥中のSS質量に対して0.2〜1.0%である、請求項1〜3に記載の嫌気性消化処理方法。   4. The anaerobic digestion method according to claim 1, wherein, in the mixing and aggregating step, the addition amount of the aggregating agent is 0.2 to 1.0% with respect to the SS mass in the debris sludge. 汚泥をし渣と除渣汚泥に分離するし渣分離部と、
前記除渣汚泥に薬液を混合する薬液混合・凝集部と、
前記薬液混合・凝集部で生成した凝集汚泥を、4〜12質量%に濃縮された濃縮汚泥と分離液とに固液分離する濃縮分離部と、
前記濃縮汚泥を回収し、嫌気性消化処理部へ定量供給できる濃縮汚泥供給部と、
前記濃縮汚泥を嫌気性消化処理する嫌気性消化処理部と、
前記し渣分離部からのし渣、及び前記濃縮分離部からの分離液の全量又は一部を混合して、前記濃縮汚泥を嫌気性消化して得られる嫌気性消化汚泥に混合する機構と、
を含む、嫌気性消化処理装置。
A residue separating unit for separating sludge into residue and residue sludge;
A chemical solution mixing / aggregation part for mixing the chemical solution with the debris sludge;
A concentration / separation unit that solid-liquid separates the agglomerated sludge produced in the chemical liquid mixing / aggregation unit into a concentrated sludge concentrated to 4 to 12% by mass and a separation liquid;
A concentrated sludge supply unit that collects the concentrated sludge and can supply a fixed amount to the anaerobic digestion processing unit;
An anaerobic digestion treatment section for anaerobically digesting the concentrated sludge;
A mechanism for mixing the total amount or a part of the residue from the residue separation unit and the separation liquid from the concentration separation unit, and mixing the concentrated sludge with anaerobic digestion sludge obtained by anaerobic digestion;
Including anaerobic digestion treatment equipment.
前記濃縮汚泥供給部は、定量ポンプを具備する、請求項5に記載の嫌気性消化処理装置。   The anaerobic digestion apparatus according to claim 5, wherein the concentrated sludge supply unit includes a metering pump. 前記濃縮汚泥供給部は、前記嫌気性消化部よりも高い位置に設けられている、請求項5又は6に記載の嫌気性消化処理装置。   The anaerobic digestion apparatus according to claim 5 or 6, wherein the concentrated sludge supply unit is provided at a position higher than the anaerobic digestion unit. 前記し渣及び分離液と前記嫌気性消化汚泥との混合物を脱水する脱水装置をさらに含む、請求項5〜7のいずれか1に記載の嫌気性消化処理装置。   The anaerobic digestion processing apparatus of any one of Claims 5-7 which further contains the dehydration apparatus which spin-dry | dehydrates the mixture of the said residue and separation liquid, and the said anaerobic digestion sludge. 前記し渣分離部は、孔径0.5mm以上又は孔径2.0mm以上の多孔板、または60〜100メッシュの金網を有するスクリーンを備える、請求項5〜8のいずれか1に記載の嫌気性消化処理装置。   The anaerobic digestion according to any one of claims 5 to 8, wherein the residue separating unit includes a perforated plate having a pore diameter of 0.5 mm or more or a pore diameter of 2.0 mm or more, or a screen having a wire mesh of 60 to 100 mesh. Processing equipment.
JP2017012056A 2011-04-26 2017-01-26 Anaerobic digestion treatment method and anaerobic digestion treatment apparatus Active JP6395877B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011098289 2011-04-26
JP2011098289 2011-04-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013511982A Division JP6383150B2 (en) 2011-04-26 2012-04-03 Sludge concentration method and apparatus as pretreatment for anaerobic digestion treatment

Publications (2)

Publication Number Publication Date
JP2017100130A true JP2017100130A (en) 2017-06-08
JP6395877B2 JP6395877B2 (en) 2018-09-26

Family

ID=47071992

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013511982A Active JP6383150B2 (en) 2011-04-26 2012-04-03 Sludge concentration method and apparatus as pretreatment for anaerobic digestion treatment
JP2017012056A Active JP6395877B2 (en) 2011-04-26 2017-01-26 Anaerobic digestion treatment method and anaerobic digestion treatment apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013511982A Active JP6383150B2 (en) 2011-04-26 2012-04-03 Sludge concentration method and apparatus as pretreatment for anaerobic digestion treatment

Country Status (5)

Country Link
JP (2) JP6383150B2 (en)
KR (1) KR101938024B1 (en)
CN (2) CN109336351A (en)
AU (1) AU2012248673B2 (en)
WO (1) WO2012147467A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944715A (en) * 2014-03-28 2015-09-30 中联环有限公司 Method for reducing sludge and recycling sludge in UASB (upflow anaerobic sludge blanket) system and sludge treatment system
JP2018167258A (en) * 2017-03-29 2018-11-01 住友重機械エンバイロメント株式会社 Digestion facility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254300A (en) * 1985-05-07 1986-11-12 Kurita Water Ind Ltd Method for concentrating organic sludge
JPS61268400A (en) * 1985-05-22 1986-11-27 Tsukishima Kikai Co Ltd Method for modifying sludge for dehydration
JPS62160183A (en) * 1986-01-08 1987-07-16 Ebara Res Co Ltd Method for treating excretion
JPH03293098A (en) * 1990-04-11 1991-12-24 Nishihara Environ Sanit Res Corp Device and method for separating and thickening system type treatment of sludge
JPH04131197A (en) * 1990-09-20 1992-05-01 Ebara Infilco Co Ltd Disposal of night soil type sewage and apparatus therefor
JPH11300323A (en) * 1998-04-23 1999-11-02 Kubota Corp Treatment of organic waste
JP2000015231A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for methane fermentation of organic waste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114799A (en) * 1984-11-12 1986-06-02 Ebara Infilco Co Ltd Treatment of excretion
JP5649279B2 (en) * 2006-10-24 2015-01-07 Mtアクアポリマー株式会社 Dewatering method for sewage digested sludge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254300A (en) * 1985-05-07 1986-11-12 Kurita Water Ind Ltd Method for concentrating organic sludge
JPS61268400A (en) * 1985-05-22 1986-11-27 Tsukishima Kikai Co Ltd Method for modifying sludge for dehydration
JPS62160183A (en) * 1986-01-08 1987-07-16 Ebara Res Co Ltd Method for treating excretion
JPH03293098A (en) * 1990-04-11 1991-12-24 Nishihara Environ Sanit Res Corp Device and method for separating and thickening system type treatment of sludge
JPH04131197A (en) * 1990-09-20 1992-05-01 Ebara Infilco Co Ltd Disposal of night soil type sewage and apparatus therefor
JPH11300323A (en) * 1998-04-23 1999-11-02 Kubota Corp Treatment of organic waste
JP2000015231A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for methane fermentation of organic waste

Also Published As

Publication number Publication date
JP6383150B2 (en) 2018-08-29
KR101938024B1 (en) 2019-01-11
AU2012248673A1 (en) 2013-11-14
CN103492325A (en) 2014-01-01
JPWO2012147467A1 (en) 2014-07-28
JP6395877B2 (en) 2018-09-26
AU2012248673B2 (en) 2017-04-13
KR20140036162A (en) 2014-03-25
CN109336351A (en) 2019-02-15
WO2012147467A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP6121589B2 (en) Anaerobic treatment method
JP6209046B2 (en) Sludge treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP4253353B1 (en) Sludge dewatering method and system
JP6395877B2 (en) Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
JP6908514B2 (en) Deodorizing treatment system and organic matter treatment method
JP4671780B2 (en) Organic wastewater treatment method and system
JP6239327B2 (en) Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP6670192B2 (en) Organic sludge processing method and processing apparatus
WO2018207927A1 (en) Method for treating wastewater and device for treating wastewater for same
JP6146665B2 (en) Sludge treatment method
JP6362305B2 (en) Sludge treatment method and apparatus
JP2018192383A (en) Parlor waste water processing method and parlor waste water processing equipment
JP6193716B2 (en) Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP4472154B2 (en) Legume wastewater treatment method and legume wastewater treatment apparatus
JP4294540B2 (en) Organic sludge treatment method and treatment equipment
JPH11285698A (en) Biological dephosphorization method
JP7373638B2 (en) Digested sludge treatment method and wastewater treatment equipment
JPH11277099A (en) Dephosphorizing method
JP2023080648A (en) Liquid waste concentration method and apparatus
JPH11277097A (en) Dephosphorizing method
KR20030018427A (en) Natural cohesion on self-weisht dehydration method by separation betwen human and livestock manare

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180828

R150 Certificate of patent or registration of utility model

Ref document number: 6395877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250