JP7373638B2 - Digested sludge treatment method and wastewater treatment equipment - Google Patents

Digested sludge treatment method and wastewater treatment equipment Download PDF

Info

Publication number
JP7373638B2
JP7373638B2 JP2022187686A JP2022187686A JP7373638B2 JP 7373638 B2 JP7373638 B2 JP 7373638B2 JP 2022187686 A JP2022187686 A JP 2022187686A JP 2022187686 A JP2022187686 A JP 2022187686A JP 7373638 B2 JP7373638 B2 JP 7373638B2
Authority
JP
Japan
Prior art keywords
tank
water
dehydration
flocs
cake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022187686A
Other languages
Japanese (ja)
Other versions
JP2023015390A (en
Inventor
征八朗 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022187686A priority Critical patent/JP7373638B2/en
Publication of JP2023015390A publication Critical patent/JP2023015390A/en
Application granted granted Critical
Publication of JP7373638B2 publication Critical patent/JP7373638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、バイオマス消化液の処理方法及びその廃水処理装置に関するものであり、更に詳しくは、バイオマス発電施設で発電を終えた後に残る残渣が含まれる廃水である所謂バイオマス消化液の処理方法及び該処理方法で使用するためのバイオマス消化液(以下、「廃水」と記載することがある。)の処理装置に関するものである。本発明は、上記バイオマス消化液の処理方法及びその廃水処理装置に関する新技術・新製品を提供するものである。 The present invention relates to a method for treating biomass digested fluid and its wastewater treatment device, and more specifically to a method for treating so-called biomass digested fluid, which is wastewater containing residue left after power generation in a biomass power generation facility. The present invention relates to a processing device for biomass digestive fluid (hereinafter sometimes referred to as "wastewater") for use in a processing method. The present invention provides new technology and new products related to the above-mentioned biomass digestive fluid treatment method and its wastewater treatment device.

2012年に始まった再生可能エネルギーの固定価格買取り制度(買取り期間:20年)の対象となるバイオマス発電は、再生可能エネルギーの拡大に伴って更に増加する傾向にある。しかし、原子力発電と同じように、発電を終えた後に残渣が残るという問題が発生しており、該残渣を含む廃水をバイオマス消化液と呼んでいる。 Biomass power generation, which is subject to the renewable energy feed-in tariff system (purchase period: 20 years) that began in 2012, is likely to further increase as renewable energy expands. However, similar to nuclear power generation, there is a problem that residue remains after power generation, and wastewater containing this residue is called biomass digestate.

このバイオマス消化液の処理には、ろ液にしてからの濃縮、蒸留技術の開発例はあるが、その手前の固液分離技術がなく、そのため、現在は、バイオマス消化液は、焼却、土壌の還元、草地の還元などに使用されている。ここで、バイオマス消化液の固液分離技術が不可能である理由としては、該消化液が乳化して安定なエマルジョンを形成していて凝集が困難である点、また、固形物が分解されていて粒子が細かくなって分子が会合してミセルを形成してコロイド状態になっているため、フロックの形成や脱水が困難である点、があげられる。 To process this biomass digestive fluid, there are examples of the development of concentration and distillation technology after converting it into a filtrate, but there is no prior solid-liquid separation technology. It is used for restoration, grassland restoration, etc. Here, the reason why solid-liquid separation technology for biomass digestive fluid is not possible is that the digestive fluid emulsifies to form a stable emulsion and is difficult to aggregate, and the solids are not decomposed. The particles become fine and the molecules combine to form micelles, creating a colloidal state, making it difficult to form flocs and dehydrate.

ここで、バイオマス消化液の処理技術について整理すると、従来、先行技術として、例えば、1)外食産業や食品製造所などから排出される食品廃棄物を飼料や燃料などとして効率良く再資源化するために、上記食品廃棄物をメタン醗酵させて、その消化液とガスを利用した再資源化システム(特許文献1)、2)醤油粕の水希釈スラリーを嫌気的に消化することにより醤油粕を殆ど完全に分解する嫌気的処理法(特許文献2)、3)バイオマス資源の可溶化液をメタン発酵するメタン発酵槽を備えたバイオマス燃料化システム及びその制御方法(特許文献3)、4)バイオマス資源を高効率に利用するために、メタン発酵処理によって生じた残渣及び消化液を水熱処理して回収する方法(特許文献4)、などが提案されている。 Here, to summarize the processing technologies for biomass digestive juices, conventional technologies include, for example, 1) efficient recycling of food waste discharged from the restaurant industry and food manufacturing plants as feed and fuel; 2) A recycling system that ferments the food waste with methane and uses the digestive fluid and gas (Patent Document 1); 2) anaerobically digests a water-diluted slurry of soy sauce lees to completely remove most of the soy sauce lees; Anaerobic treatment method for complete decomposition (Patent Document 2), 3) Biomass fuel conversion system equipped with a methane fermentation tank for methane fermentation of a solubilized solution of biomass resources and its control method (Patent Document 3), 4) Biomass resources In order to utilize methane with high efficiency, a method has been proposed in which the residue and digestive fluid produced by methane fermentation treatment are hydrothermally treated and recovered (Patent Document 4).

また、他の先行技術として、例えば、5)有機性廃棄物やバイオマス資源をメタン発酵して生じる残渣を含む消化液を焼却炉や溶融炉に導入して処理する方法及びその処理設備(特許文献5)、6)草系バイオマス消化液及び草系バイオマス消化方法(特許文献6)、7)バイオマスプラントにおいて発生する消化液から固形成分を再利用可能な形態で分離回収する消化液処理システム(特許文献7)、などが提案されている。 In addition, as other prior art, for example, 5) a method of introducing a digestive fluid containing a residue produced by methane fermentation of organic waste or biomass resources into an incinerator or melting furnace for treatment, and its treatment equipment (patent document 5), 6) Grass-based biomass digestive fluid and grass-based biomass digestion method (Patent Document 6), 7) Digestive fluid processing system that separates and recovers solid components from the digestive fluid generated in a biomass plant in a reusable form (Patent Document 6) Reference 7), etc. have been proposed.

また、一般に、8)水溶性タンパク質の分離には、荷電中和により凝集する作用を有する鉄塩や、アルミニウム塩で処理する方法が用いられ、この処理により、生成した微細なフロックを、水から分離し易くするために、合成高分子凝集剤が用いられ、このようにして凝集したフロックを固形分離するために、加圧浮上分離法を用いる方法(非特許文献1)、が提案されている。 Generally, 8) water-soluble proteins are separated using a method of treatment with iron salts or aluminum salts, which have the effect of flocculating through charge neutralization, and this treatment removes the fine flocs from water. In order to facilitate separation, a synthetic polymer flocculant is used, and in order to separate the flocs thus flocculated into solids, a method using pressure flotation separation has been proposed (Non-Patent Document 1). .

一般に、従来の水産加工廃水を集積して共同処理する施設のように、例えば、組成が大きく変動する水産加工廃水のフロスを処理する場合には、凝集したフロックを、スクリュープレスにより脱水することはほとんど不可能である。そのため、現状では、ボイラーによる蒸発工程により水分を飛ばして脱水する手法が採られているが、高コストであり、COを多く排出し、環境負荷が非常に大きいという問題がある。そこで、当技術分野においては、現状のボイラー蒸発工程による脱水システムに代わる低環境負荷型の新しい脱水システムを確立することが喫緊の課題として強く要請されていた。 In general, in facilities where conventional seafood processing wastewater is collected and jointly processed, for example, when treating fishery processing wastewater flocs whose composition varies widely, it is not possible to dewater the aggregated flocs using a screw press. Almost impossible. Therefore, the current method of dehydration is to remove water through an evaporation process using a boiler, but this method is expensive, emits a large amount of CO 2 , and has a very large environmental impact. Therefore, in this technical field, there has been an urgent need to establish a new dehydration system with a low environmental impact to replace the current dehydration system using a boiler evaporation process.

バイオマス発電消化液の浄化処理については、該バイオマス消化液を放流可能なレベルまで浄化処理する方法として、現状では、例えば、標準的な活性汚泥法による浄化処理が主流になりつつある。しかし、活性汚泥法による浄化設備を設置するには、例えば、調整池や、生物処理槽(曝気槽)、沈殿池、これらの運転設備などを備えた大掛かりの浄化設備の設置が必要となり、設備費用やランニングコストの点で、中小規模の事業者が個々に設置する設備としては、非効率で、かつ経済的ではない。そこで、当技術分野においては、より小規模で、効率のよい実用化可能な新しい浄化技術及び浄化施設を開発することが強く要請されていた。 Regarding the purification treatment of biomass power generation digested fluid, the standard activated sludge method, for example, is currently becoming mainstream as a method for purifying the biomass digested fluid to a level where it can be discharged. However, in order to install purification equipment using the activated sludge method, it is necessary to install large-scale purification equipment that includes, for example, a regulating pond, a biological treatment tank (aeration tank), a sedimentation tank, and equipment for operating these. In terms of costs and running costs, it is inefficient and uneconomical for equipment to be installed individually by small and medium-sized businesses. Therefore, there has been a strong demand in this technical field to develop new purification techniques and purification facilities that are smaller in size, more efficient, and more practical.

特開2003-88838号公報Japanese Patent Application Publication No. 2003-88838 特開2005-6649公報Japanese Patent Application Publication No. 2005-6649 特開2007-313427号公報Japanese Patent Application Publication No. 2007-313427 特開2008-43902号公報Japanese Patent Application Publication No. 2008-43902 特開2008-221105号公報Japanese Patent Application Publication No. 2008-221105 特開2012-16652号公報Japanese Patent Application Publication No. 2012-16652 特開2016-10742号公報Japanese Patent Application Publication No. 2016-10742

廃棄物処理・再資源化技術ハンドブック編集委員会編、「廃棄物処理・再資源化技術ハンドブック」、株式会社建設産業調査会発行、1993年11月25日、p.407左欄第9-32行Edited by the Waste Treatment and Recycling Technology Handbook Editorial Committee, "Waste Treatment and Recycling Technology Handbook", published by Construction Industry Research Group Co., Ltd., November 25, 1993, p. 407 left column lines 9-32

これまでに、本発明者らは、バイオマス発電消化液(以下、「バイオマス消化液」と記載することがある。)の浄化処理について種々検討を重ねる過程で、バイオマス消化液は、該バイオマス消化液が乳化していて安定なエマルジョン状態を形成するため、固液分離が不可能であり、その除去/脱水がきわめて難しいこと、そのため、実際には、バイオマス消化液を未処理のまま生物処理槽(曝気槽)に流入させている場合が多いこと、が判明した。 Until now, the present inventors have conducted various studies on the purification treatment of biomass power generation digestive fluid (hereinafter sometimes referred to as "biomass digestive fluid"). Since it is emulsified and forms a stable emulsion state, solid-liquid separation is impossible and removal/dehydration is extremely difficult. It has been found that in many cases, the water is allowed to flow into the aeration tank).

すなわち、従来公知の既存の技術では、上記消化液を含む汚染された廃液に、通常の脱水助剤や凝集剤などを添加してフロックを生成(形成)させても、残渣ケーキの含水率を
約70%以下に低下させることは技術的にきわめて難しく、それを解決することは至難とされているのが実情であった。
In other words, in the conventionally known existing technology, even if ordinary dehydration aids, flocculants, etc. are added to the contaminated waste liquid containing the digestive juices to generate (form) flocs, the moisture content of the residue cake cannot be reduced. The reality is that it is technically extremely difficult to reduce the temperature to about 70% or less, and it is considered extremely difficult to solve this problem.

このような状況の中で、本発明者らは、バイオマス消化液の乳化成分及び微粒子成分を生物処理槽(曝気槽)に流入させる前に除去するために、Mp値(Moisture percentage value;含水率評価)がMp(ケーキ含水率)≦70を有する特定の脱水助剤と、該脱水助剤に適合した凝集剤とを併用し、少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽(曝気槽)を備えた浄化施設において、混和槽で、被処理水に、上記特定の脱水助剤を添加する工程と、次いで、反応槽で、被処理水に凝集剤を添加して、フロック(flock);特大(φ10mm以上)~大(φ5~10mm)を形成させる工程と、汚泥脱水機で、該フロックを除去した透明度の高い脱離液と、脱水ケーキ;含水率70%以下、とに分離する工程とを採用し、次いで、該脱離液を生物処理槽(曝気槽)に投入して生物処理を実行すること、それにより、BOD容積負荷の低減、汚泥発生量の抑制、及び必要酸素量の削減による安定した水処理効果が達成でき、生物処理槽(曝気槽)での生物処理を効率よく実行できることを見出し、本発明を完成するに至った。 Under these circumstances, the present inventors determined the Mp value (Moisture percentage value; A specific dehydration aid having an Mp (cake moisture content) ≦70 (evaluation) is used in combination with a flocculant compatible with the dehydration aid, and at least a mixing tank - a reaction tank - a sludge dehydrator - (neutralization tank) - In a purification facility equipped with a biological treatment tank (aeration tank), the process of adding the above-mentioned specific dehydration aid to the water to be treated in a mixing tank, and then adding a flocculant to the water to be treated in a reaction tank. A step of forming flocs; extra large (φ10 mm or more) to large (φ5 to 10 mm); a highly transparent desorbed liquid from which the flocs are removed in a sludge dehydrator; and a dehydrated cake; water content of 70. % or less, and then the desorbed liquid is introduced into a biological treatment tank (aeration tank) to perform biological treatment, thereby reducing the BOD volume load and the amount of sludge generated. The present inventors have discovered that a stable water treatment effect can be achieved by suppressing the amount of water and reducing the amount of oxygen required, and that biological treatment can be efficiently carried out in a biological treatment tank (aeration tank), leading to the completion of the present invention.

本発明において、Mp値(Moisture percentage value;含水率評価)が、“Mp(ケーキ含水率)≦70を有する特定の脱水助剤”とは、被処理水のバイオマス消化液に、該脱水助剤及び凝集剤とを添加して、フロック;特大(φ10mm以上)~大(φ5~10mm)を形成する性能と、該フロックを除去した脱離液と、脱水ケーキ;含水率70%以下、とに分離できることが予想(期待)される性能、すなわち、ケーキ含水率を55%以下乃至55~70%に脱水することができる性能を備えた脱水助剤として定義される。 In the present invention, a specific dehydration aid having an Mp value (Moisture percentage value; moisture content evaluation) of "Mp (cake moisture content) ≦70" means that the dehydration aid is added to the biomass digested fluid of the water to be treated. and a flocculant to form flocs; extra large (φ10 mm or more) to large (φ5 to 10 mm); and a dehydrated cake; moisture content of 70% or less. It is defined as a dehydration aid that has the ability to be separated (expected), that is, the ability to dehydrate the cake moisture content from 55% or less to 55 to 70%.

本発明において、脱水試験を実施するために、少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽(曝気槽)を備えた浄化施設において、混和槽及び反応槽で、被処理水に各種の脱水助剤及び凝集剤を添加して試験したところ、後記する表5(段落0067参照)に示したように、フロック及びケーキ脱水率の評価で、フロックを除去した離脱水(上澄水)の透明度は、“濁→透明”、との結果と、反応槽で形成されるフロック(flock)の大きさは、E→A、すなわち、E;フロックできない、D;小(φ3mm以下)、C;中(φ3~5mm)B;大(φ5~10mm)、A;特大(φ10mm以上)、との結果と、汚泥脱水機から発生する予想(期待)されるケーキ含水率は、E→A、すなわち、E;90%以上、D;80~90%、C;70~80%、B;55~70%、A;55%以下、との結果、が得られた。 In the present invention, in order to conduct a dehydration test, in a purification facility equipped with at least a mixing tank, a reaction tank, a sludge dehydrator, a neutralization tank, and a biological treatment tank (aeration tank), in the mixing tank and the reaction tank, When various dewatering aids and flocculants were added to the water to be treated and tested, as shown in Table 5 (see paragraph 0067) below, the floc and cake dewatering rates were evaluated. The transparency of the supernatant water is "turbid → transparent" and the size of the flocs formed in the reaction tank is E → A, that is, E: no flocculation, D: small (φ3 mm). Below), C: Medium (φ3-5mm), B: Large (φ5-10mm), A: Extra-large (φ10mm or more), and the predicted (expected) moisture content of the cake generated from the sludge dehydrator. The following results were obtained: E→A, that is, E: 90% or more, D: 80-90%, C: 70-80%, B: 55-70%, and A: 55% or less.

本発明では、上記脱水ケーキの予想(期待)されるケーキ含水率の評価が、後記する表5(段落0067参照)の“評価”の項のE~Aの数値を、“Mp値(Moisture percentage value;含水率評価)”と定義することとする。そして、本発明において、脱水助剤の性能について、例えば、脱水ケーキのケーキ含水率の評価で、予想(期待)されるケーキ含水率が、例えば、55%以下である場合は、これを“Mp(ケーキ含水率)≦55”の性能を有する、また、55~70%である場合は、これを“Mp(ケーキ含水率)=55~70”の性能を有する、と表記することとする。 In the present invention, the predicted (expected) cake moisture content of the dehydrated cake is evaluated using the values E to A in the "Evaluation" section of Table 5 (see paragraph 0067) described later as the "Mp value (Moisture percentage value (moisture content evaluation)". In the present invention, regarding the performance of the dehydration aid, for example, when the predicted (expected) cake moisture content is 55% or less in the evaluation of the cake moisture content of the dehydrated cake, this is evaluated as "Mp". (Cake moisture content)≦55”, and when it is 55 to 70%, this will be expressed as “Mp (cake moisture content) = 55 to 70”.

本発明は、上記特定の脱水助剤と、該脱水助剤に適合した凝集剤とを併用した、バイオマス消化液のフロック;特大(φ10mm以上)~大(φ5~10mm)の形成と、該フロックの除去/脱水により、フロックを除去した脱離液と、脱水ケーキ;含水率70%以下、より詳しくは、含水率55%以下乃至55~70%に分離し、それにより、BOD容積負荷の低減、汚泥発生量の抑制、及び必要酸素量の削減による安定した水処理効果が期待でき、生物処理槽(曝気槽)での生物処理を実行可能としたことを特徴とするバイオマス消化液の処理方法を提供することを目的とするものである。 The present invention relates to the formation of flocs of biomass digestive fluid; By removing/dehydrating, the separated solution from which flocs have been removed and the dehydrated cake; water content of 70% or less, more specifically, water content of 55% or less or 55-70%, thereby reducing the BOD volume load. , a method for treating biomass digested fluid that can be expected to have a stable water treatment effect by suppressing the amount of sludge generated and reducing the amount of oxygen required, and that enables biological treatment to be carried out in a biological treatment tank (aeration tank). The purpose is to provide the following.

また、本発明は、上記特定の脱水助剤と、該脱水助剤に適合した凝集剤を併用することにより、反応槽で、フロック;特大(φ10mm以上)~大(φ5~10mm)を形成させることを可能とし、かつ脱水ケーキの含水率を70%以下、より詳しくは、含水率55%以下乃至55~70%に低減することを可能とし、それによって、生物処理槽(曝気槽)での生物処理を実行可能にしたことを特徴とするバイオマス消化液の処理方法及びその廃水処理装置を提供することを目的とするものである。 Furthermore, the present invention forms flocs; extra large (φ10 mm or more) to large (φ5 to 10 mm) in a reaction tank by using the specific dehydration aid and a flocculant compatible with the dehydration aid It also makes it possible to reduce the water content of the dehydrated cake to 70% or less, more specifically, to 55% or less to 55-70%, thereby reducing the water content in the biological treatment tank (aeration tank). The object of the present invention is to provide a method for treating biomass digestive fluid and a wastewater treatment device for the same, which are characterized by making biological treatment possible.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)バイオマス消化液の処理方法であって、
被処理水のバイオマス消化液に、Mp値(Moisture percentage value;含水率評価)がMp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する脱水助剤、及びフロック(Flock;綿毛状沈殿)形成能を有する凝集剤とを添加して、フロック;特大(φ10mm以上)~大(φ5~10mm)を形成させる工程、該フロックを除去した脱離液と、脱水ケーキ;含水率55%以下乃至55~70%とに分離する工程、次いで、該脱離液を生物処理槽(曝気槽)に投入して生物処理を実行する工程、を含むことを特徴とするバイオマス消化液の処理方法。
(2)少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽を備えた浄化施設において、混和槽で、被処理水のバイオマス消化液に、上記特定の脱水助剤を添加する工程、次いで、反応槽で、被処理水に、フロック形成能を有する凝集剤を添加して、バイオマス消化液中の乳化成分と微粒子成分を包接したフロック;特大(φ10mm以上)~大(φ5~10mm)を形成させる工程、汚泥脱水機で、該フロックを除去すると同時に、フロックを除去した脱離液と、脱水ケーキ;含水率55%以下乃至55~70%とに分離する工程、次いで、該脱離液を生物処理槽(曝気槽)に投入して生物処理を実行する工程、を備えた、前記(1)に記載の処理方法。
(3)Mp値(含水率評価)がMp(ケーキ含水率)=55~70を有する脱水助剤、及びフロック形成能を有する凝集剤とを添加して、フロック;大(φ5~10mm)を形成させる工程、フロックを除去した脱離液と、脱水ケーキ;含水率55~70%、とに分離する工程、次いで、該脱離液を生物処理槽(曝気槽)に投入して生物処理を実行する工程、を備えた、前記(1)又は(2)に記載の処理方法。
(4)被処理水の生物処理槽流入前に、バイオマス消化液中の乳化成分と微粒子成分を包接したフロックを除去する操作を実行する、前記(1)から(3)のいずれか一項に記載の処理方法。
(5)被処理水の生物処理槽(曝気槽)流入前に、必要により、中和槽で、消毒剤の中和の操作を実行する、前記(1)から(3)のいずれか一項に記載の処理方法。
(6)被処理水のバイオマス消化液に対して、混和槽で、上記脱水助剤を0.1%以下(対廃水容量)添加する、前記(1)から(3)のいずれか一項に記載の処理方法。
(7)被処理水のバイオマス消化液に対して、反応槽で、凝集剤を1%以下(0.2%水溶液)添加する、前記(1)から(3)のいずれか一項に記載の処理方法。
(8)上記前記(1)から(7)のいずれかに記載のバイオマス消化液の処理方法で使用するための廃水処理装置であって、
少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽を備えた浄化施設を構成要素として含み、
1)混和槽で、被処理水のバイオマス消化液に、Mp値(含水率評価)がMp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する脱水助剤を添加する工程、
2)反応槽で、被処理水にフロック形成能を有する凝集剤を添加してバイオマス消化液中の乳化成分と微粒子成分を包接したフロック;特大(φ10nm以上)~大(φ5~10mm)を形成させる工程、
3)汚泥脱水機で、該フロックを除去した脱離液と、脱水ケーキ;含水率55%以下乃至55~70%とに分離する工程、
を実行することにより、上記脱離液を生物処理槽(曝気槽)に投入して生物処理を実施するようにしたことを特徴とする上記廃水処理装置。
(9)1)混和槽で、被処理水のバイオマス消化液に、Mp値(含水率評価)がMp(ケーキ含水率)=55~70を有する脱水助剤を添加する工程、
2)反応槽で、被処理水に凝集剤を添加してバイオマス消化液中の乳化成分と微粒子成分を包接したフロック;大(φ5~10mm)を形成させる工程、
3)汚泥脱水機で、該フロックを除去した脱離液と、脱水ケーキ;含水率55~70%とに分離する工程、
を実行することにより、上記脱離液を生物処理槽(曝気槽)に投入して生物処理を実施するようにした、前記(8)に記載の廃水処理装置。
The present invention for solving the above problems is comprised of the following technical means.
(1) A method for processing biomass digestive fluid, comprising:
A dehydration aid having an Mp value (moisture percentage value) of Mp (cake moisture content) ≦55 to Mp (cake moisture content) = 55 to 70 and floc are added to the biomass digested liquid of the water to be treated. A process of adding a flocculant having the ability to form a fluff-like precipitate to form flocs; A biomass digestive liquid characterized by comprising the steps of separating the desorbed liquid into 55% or less to 55-70%, and then introducing the desorbed liquid into a biological treatment tank (aeration tank) to perform biological treatment. processing method.
(2) In a purification facility equipped with at least a mixing tank, a reaction tank, a sludge dehydrator, a (neutralization tank), and a biological treatment tank, the above-mentioned specific dehydration aid is added to the biomass digested liquid of the water to be treated in the mixing tank. Adding process, then in a reaction tank, a flocculant having floc-forming ability is added to the water to be treated to form flocs that include emulsified components and fine particle components in the biomass digestive fluid; extra large (φ10 mm or more) to large (5 to 10 mm in diameter), a step of removing the flocs with a sludge dehydrator and simultaneously separating it into a dehydrated liquid from which the flocs have been removed and a dehydrated cake with a water content of 55% or less to 55 to 70%; The treatment method according to (1) above, further comprising the step of introducing the desorbed liquid into a biological treatment tank (aeration tank) to perform biological treatment.
(3) A dehydration aid having an Mp value (moisture content evaluation) of Mp (cake moisture content) = 55 to 70 and a flocculant having floc formation ability are added to form large flocs (φ5 to 10 mm). A step of separating the desorbed liquid from which flocs have been removed and a dehydrated cake (water content: 55 to 70%). Next, the desorbed liquid is put into a biological treatment tank (aeration tank) for biological treatment. The processing method according to (1) or (2) above, comprising the step of performing.
(4) Any one of (1) to (3) above, wherein before the water to be treated enters the biological treatment tank, an operation is performed to remove flocs containing emulsified components and particulate components in the biomass digestive fluid. Processing method described in .
(5) Any one of (1) to (3) above, where, if necessary, neutralization of the disinfectant is performed in the neutralization tank before the water to be treated enters the biological treatment tank (aeration tank). Processing method described in .
(6) Adding 0.1% or less (based on wastewater volume) of the above-mentioned dehydration aid to the biomass digested liquid of the water to be treated in a mixing tank, according to any one of (1) to (3) above. Processing method described.
(7) The method according to any one of (1) to (3) above, wherein 1% or less (0.2% aqueous solution) of a flocculant is added to the biomass digested liquid of the water to be treated in the reaction tank. Processing method.
(8) A wastewater treatment device for use in the method for treating biomass digestive fluid according to any one of (1) to (7) above,
The components include a purification facility equipped with at least a mixing tank, a reaction tank, a sludge dewatering machine, a neutralization tank, and a biological treatment tank,
1) In a mixing tank, add a dehydration aid having an Mp value (moisture content evaluation) of Mp (cake water content) ≦55 to Mp (cake water content) = 55 to 70 to the biomass digested liquid of the water to be treated. process,
2) In the reaction tank, a flocculant with floc-forming ability is added to the water to be treated to form flocs that include emulsified components and fine particle components in the biomass digestive fluid; a step of forming;
3) Separating into a dehydrated liquid from which the flocs have been removed and a dehydrated cake with a water content of 55% or less to 55-70% using a sludge dehydrator;
The above-mentioned wastewater treatment apparatus is characterized in that the desorbed liquid is introduced into a biological treatment tank (aeration tank) to carry out biological treatment.
(9) 1) Adding a dehydration aid having an Mp value (moisture content evaluation) of Mp (cake water content) = 55 to 70 to the biomass digested liquid of the water to be treated in a mixing tank;
2) A step of adding a flocculant to the water to be treated in a reaction tank to form a large floc (φ5 to 10 mm) containing the emulsified component and particulate component in the biomass digestive fluid;
3) A step of separating into a dehydrated liquid from which the flocs have been removed and a dehydrated cake with a water content of 55 to 70% using a sludge dehydrator;
The wastewater treatment apparatus according to (8) above, wherein the desorbed liquid is introduced into a biological treatment tank (aeration tank) to carry out biological treatment.

次に、本発明について更に詳細に説明する。
本発明の被処理対象物であるバイオマス消化液とは、バイオマス発電施設で発電を終えた後に残る残渣などが含まれている上記施設から発生する廃水を意味する。このバイオマス消化液については、当技術分野では、バイオマス消化液が未処理のまま生物処理槽(曝気槽)に流入させている場合があるため、生物処理槽(曝気槽)における生物処理(浄化処理)がうまく行かないという問題が多々見られた。
Next, the present invention will be explained in more detail.
The biomass digested liquid, which is the object to be treated in the present invention, refers to wastewater generated from the above-mentioned facility, which contains residues remaining after power generation in the biomass power generation facility is completed. Regarding this biomass digested fluid, in this technical field, there are cases where the biomass digested fluid is allowed to flow into the biological treatment tank (aeration tank) untreated. ) did not go well.

また、バイオマス消化液の浄化は、消化液が乳化していて安定なエマルジョン状態を形成するため、凝集が困難であり、また、固形物が分解されて粒子が細かくなって分子が会合してミセルを形成してコロイド状態になることにより、公知の既存の技術では、特に、反応槽の反応工程における、大きさが、特大(φ10mm以上)~大(φ5~10mm)のフロックを形成させることが難しく、また、汚泥脱水機によるフロック除去/脱水の工程における脱離液と脱水ケーキとの分離作業がかなり困難であり、フロック;特大(φ10mm以上)~大(φ5~10mm)を除去した脱離液と、脱水ケーキ;含水率70%以下、すなわち含水率55%以下乃至55~70%とに分離することがきわめて難しく、当技術分野においては、バイオマス消化液を効率よく浄化処理する方法を開発することが強く要請されていた。 In addition, when purifying biomass digestive juices, the digestive juices are emulsified and form a stable emulsion state, which makes coagulation difficult.Also, the solids are decomposed and the particles become fine, and the molecules associate and form micelles. By forming flocs into a colloidal state, it is difficult to form flocs with sizes ranging from extra large (φ10 mm or more) to large (φ5 to 10 mm), especially in the reaction process of a reaction tank, using known existing techniques. In addition, it is quite difficult to separate the dehydrated liquid from the dehydrated cake in the floc removal/dehydration process using a sludge dehydrator, and the desorption process involves removing flocs from extra large (φ10 mm or more) to large (φ5 to 10 mm). It is extremely difficult to separate the liquid from the dehydrated cake; the moisture content is below 70%, that is, between 55% and 55% to 70%.In this technical field, we have developed a method to efficiently purify biomass digested liquid. It was strongly requested to do so.

本発明者らは、これまで、水産加工排水やパーラー廃水のフロスを処理する方法を種々研究/開発する中で、バイオマス発電施設から発生するバイオマス消化液を処理するために、バイオマス消化液中の乳化成分や、微粒子成分に着目し、これらを生物処理槽(曝気槽)に流入させる前に除去するために、特定の脱水助剤と、該脱水助剤に適合した凝集剤とを併用して、反応槽で、特大(φ10mm以上)~大(φ5~10mm)のフロックを形成させ、次いで、汚泥脱水機で、フロック除去/脱水をすることにより、汚泥脱水機で、フロック;特大(φ10mm以上)~大(φ5~10mm)を除去した透明度の高い脱離液と、脱水ケーキ;含水率70%以下、とに分離することが可能であること、その後、該脱離液を生物処理槽(曝気槽)に流入させて生物処理を行うことにより、高効率、かつ高精度の生物処理を実行することが可能になること、との新規知見を見出した。 The present inventors have so far researched and developed various methods for treating floss of fishery processing wastewater and parlor wastewater, and in order to treat biomass digestive liquid generated from biomass power generation facilities, we have developed Focusing on emulsifying components and particulate components, in order to remove them before they flow into the biological treatment tank (aeration tank), we use a specific dehydration aid and a flocculant that is compatible with the dehydration aid. , by forming extra-large (φ10 mm or more) to large (φ5-10 mm) flocs in a reaction tank, and then removing and dewatering the flocs in a sludge dehydrator. ) to large (φ5 to 10 mm), and a dehydrated cake with a water content of 70% or less. After that, the desorbed liquid should be separated into a biological treatment tank ( We have discovered new knowledge that it is possible to perform biological treatment with high efficiency and precision by allowing the biological treatment to flow into an aeration tank (aeration tank).

バイオマス消化液は、該消化液(廃水)中に乳化成分や、微粒子成分などの分子が会合してミセルを形成して乳化及び微粒子成分が分散したコロイド状態であると同時に、洗浄排水、微粒子成分などを含む汚泥で複雑に複合的に汚染された廃液である。そのために、汚泥脱水機で、フロック除去/脱水をしたとしても、含水率70%以下、とり分け、55%以下の脱水ケーキにすることはきわめて困難であり、従来、大規模で、高度な浄化設備で浄化処理しない限り、該バイオマス消化液を簡便な設備で、低コストで、効率よく浄化することはきわめて困難とされていた。 Biomass digestive juice is in a colloidal state in which molecules such as emulsified components and particulate components associate in the digestive fluid (wastewater) to form micelles, and the emulsified and particulate components are dispersed. This is wastewater that is complexly contaminated with sludge containing such substances. For this reason, even if floc removal/dehydration is performed using a sludge dehydrator, it is extremely difficult to obtain a dehydrated cake with a moisture content of 70% or less, especially 55% or less. It has been extremely difficult to efficiently purify the biomass digestive fluid with simple equipment, at low cost, unless purification treatment is performed using equipment.

そこで、本発明では、洗浄排水、微粒子成分などを含む汚泥で複雑に複合的に汚染された廃水を含むバイオマス消化液を処理するために、該消化液中の乳化成分、微粒子成分に
着目し、これらを生物処理槽(曝気槽)に流入させる前に除くために、特定の脱水助剤と、該脱水助剤に適合した凝集剤を併用して、フロックの形成と、その除去/脱水により、被処理水を浄化することを試みた。
Therefore, in the present invention, in order to treat biomass digestive fluid containing wastewater that is complexly contaminated with washing wastewater, sludge containing particulate components, etc., we focus on the emulsifying components and particulate components in the digestive fluid, In order to remove these before entering the biological treatment tank (aeration tank), a specific dehydration aid and a flocculant compatible with the dehydration aid are used in combination to form flocs and remove/dehydrate them. An attempt was made to purify treated water.

すなわち、本発明は、少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽を備えた浄化施設において、混和槽で、被処理水に、Mp値(含水率評価)がMp(ケーキ含水率)≦70、より詳しくは、Mp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する脱水助剤を添加し、次いで、反応槽で、被処理水に、該脱水助剤に適合した凝集剤、例えば、高分子凝集剤を添加して、バイオマス消化液中の乳化成分や、微粒子成分を包接したフロック;特大(φ10mm以上)~大(φ5~10mm)を形成させ、汚泥脱水機で、該フロックを除去した脱離液と、脱水ケーキ;含水率70%以下、より詳しくは、含水率55%以下乃至55~70%とに分離し、次いで、該脱離液を生物処理槽に投入して生物処理を実行することにより、生物処理槽(曝気槽)による生物処理(浄化処理)を効率よく実行することを特徴としている。 That is, the present invention provides a purification facility that includes at least a mixing tank, a reaction tank, a sludge dehydrator, a (neutralization tank), and a biological treatment tank. A dehydration aid having Mp (cake moisture content) ≦70, more specifically, Mp (cake moisture content) ≦55 to Mp (cake moisture content) = 55 to 70 is added, and then, in a reaction tank, the water to be treated is A flocculant compatible with the dehydration aid, such as a polymer flocculant, is added to the floc containing the emulsified components and particulate components in the biomass digestive juice; 10 mm), and separated in a sludge dehydrator into a desorbed liquid from which the flocs have been removed and a dehydrated cake; a water content of 70% or less, more specifically, a water content of 55% or less to 55 to 70%, and then The biological treatment tank (aeration tank) efficiently performs biological treatment (purification treatment) by charging the desorbed liquid into the biological treatment tank and performing biological treatment.

本発明では、反応槽におけるフロックの形成と、脱水工程におけるフロックの除去と、ケーキ含水率との関係がきわめて重要である。脱水試験の結果、後記する表5(段落0067参照)に示したように、ケーキ含水率が90%以上では、フロックができず、ケーキ含水率が80~90%では、フロックの大きさは小(φ3mm以下)であり、ケーキ含水率が70~80%では、フロックの大きさは中(φ3~5mm)であり、ケーキ含水率が55~70%では、フロックの大きさは大(φ5~10mm)であり、ケーキ含水率が55%以下では、フロックの大きさは特大(φ10mm以上)である。そして、この順に、例えば、上澄水の透明度は、濁→透明になり、評価は、E→Aのランクになることが判明し、かつ、これらの試験結果は、混和槽で添加する脱水助剤の種類の選定と、反応槽で添加する凝集剤の種類の選定、とり分け、前者の混和槽で添加する脱水助剤の種類の選定によって大きく左右されることが判明した。 In the present invention, the relationship between floc formation in the reaction tank, floc removal in the dehydration step, and cake moisture content is extremely important. As a result of the dehydration test, as shown in Table 5 (see paragraph 0067) below, when the moisture content of the cake is 90% or more, no flocs are formed, and when the moisture content of the cake is 80 to 90%, the size of the flocs is small. When the cake moisture content is 70-80%, the floc size is medium (φ3-5 mm), and when the cake moisture content is 55-70%, the floc size is large (φ5-5 mm). 10 mm), and when the cake moisture content is 55% or less, the size of the flocs is extra large (φ10 mm or more). In this order, for example, the clarity of the supernatant water changes from turbid to transparent, and the evaluation becomes rank E → A. These test results indicate that the dehydration aid added in the mixing tank It has been found that this is largely influenced by the selection of the type of flocculant added in the reaction tank, and especially the selection of the type of dehydration aid added in the former mixing tank.

本発明者らは、通常のルーチンの検討をはるかに上回る過度の試験又はそれ以上の試験を積み重ねた結果、少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽(曝気槽)を備えた浄化施設において、混和槽で、被処理水に、Mp値(含水率評価)がMp(ケーキ含水率)≦70、より詳しくは、Mp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する脱水助剤を添加する工程、次いで、反応槽で、被処理水に、該脱水助剤に適合した凝集剤、例えば、高分子凝集剤を添加して、バイオマス消化液中の乳化成分と微粒子成分を包接したフロックを形成させる工程を採用することによって、はじめて、脱水ケーキの含水率70%以下、より詳しくは、含水率55%以下乃至55~70%、フロックの大きさ:特大(φ10mm以上)~大(φ5~10mm)、上澄水:透明度が高い、という水処理結果(効果)を得た。そして、汚泥脱水機で、該フロックを除去すると同時に、上記フロックを除いた透明度の高い脱離液を生物処理槽(曝気槽)に投入して、生物処理を効率よく実施することに成功した。 The inventors of the present invention have conducted excessive or even more tests that far exceed normal routine considerations, and have determined that at least the mixing tank - reaction tank - sludge dehydrator - (neutralization tank) - biological treatment tank (aeration tank) In a purification facility equipped with a mixing tank, the water to be treated has an Mp value (moisture content evaluation) of Mp (cake water content) ≦70, more specifically, Mp (cake water content)≦55 to Mp ( a step of adding a dehydration aid having a cake moisture content) = 55 to 70, then adding a flocculant compatible with the dehydration aid, for example, a polymer flocculant, to the water to be treated in a reaction tank, By adopting a process of forming flocs that include emulsified components and particulate components in the biomass digestive fluid, it is possible to achieve a dehydrated cake with a moisture content of 70% or less, more specifically, a moisture content of 55% or less to 55-70%. The following water treatment results (effects) were obtained: floc size: extra large (φ10 mm or more) to large (φ5 to 10 mm); and supernatant water: high transparency. Then, while removing the flocs using a sludge dehydrator, the highly transparent desorbed liquid from which the flocs were removed was introduced into a biological treatment tank (aeration tank), thereby successfully implementing biological treatment efficiently.

ここで、更に、特定の脱水助剤と、該脱水助剤に適合した凝集剤とを併用した、バイオマス消化液中の乳化成分と微粒子成分を包接したフロックの形成と、その除去/脱水について詳しく説明すると、本発明で、フロックの形成と、その除去/脱水とは、少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽(曝気槽)を備えた浄化施設において、原水(脱水前の廃水)に、混和槽で、Mp値(含水率評価)がMp(ケーキ含水率)≦70、より詳しくは、Mp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する特定の脱水助剤を添加し、例えば、500rpm×2分間撹拌した後、反応槽で、該脱水助剤に適合した凝集剤、例えば、高分子凝集剤を添加して、例えば、120rpm×3分間撹拌して、バイオマス消化液中の乳化成分と微粒子成分を包接したフロックを形成させる。次いで、該フロックを、汚泥脱水機に投入し、バイオマス消化液中の
乳化成分と微粒子成分を含むフロックを除去/脱水して、脱離液と脱水ケーキに分離し、脱水ケーキの含水率を70%以下、より詳しくは、含水率55%以下乃至55~70%に低下させた後、該脱離液を生物処理槽(曝気槽)で生物処理することを意味する。
Here, we will further discuss the formation of flocs containing emulsified components and particulate components in biomass digestive juices using a specific dehydration aid and a flocculant compatible with the dehydration aid, and their removal/dehydration. To explain in detail, in the present invention, the formation of flocs and their removal/dehydration are carried out in a purification facility equipped with at least a mixing tank, a reaction tank, a sludge dehydrator, a neutralization tank, and a biological treatment tank (aeration tank). , in the raw water (wastewater before dehydration), in a mixing tank, the Mp value (moisture content evaluation) is Mp (cake water content) ≦70, more specifically, Mp (cake water content) ≦55 to Mp (cake water content) = 55 to 70, for example, after stirring at 500 rpm for 2 minutes, in a reaction tank, add a flocculant compatible with the dehydration aid, for example, a polymer flocculant, For example, the mixture is stirred at 120 rpm for 3 minutes to form flocs containing the emulsified components and particulate components in the biomass digestive fluid. Next, the flocs are put into a sludge dewatering machine to remove/dehydrate the flocs containing the emulsified components and fine particle components in the biomass digested liquid, and separate them into a dehydrated liquid and a dehydrated cake, and the moisture content of the dehydrated cake is reduced to 70. % or less, more specifically, it means that after reducing the moisture content to 55% or less or 55 to 70%, the desorbed liquid is subjected to biological treatment in a biological treatment tank (aeration tank).

本発明では、上記特定の脱水助剤として、例えば、植物性繊維を機械的剪断により粉砕した粒径1~100μmの粉砕物を主成分とする脱水助剤を使用することができ、凝集剤として、例えば、上記脱水助剤に適合した高分子凝集剤(市販製品)を使用することができる。ここで、植物性繊維を機械的剪断により粉砕した粒径1~100μmの粉砕物を主成分とするとは、当該粒径1~100μmの粉砕物を少なくとも50重量%以上(すなわち、半分以上)含有するものであることを意味する。上記脱水助剤の主成分である植物性繊維としては、例えば、針葉樹又は広葉樹の木粉、あるいは稈が木質化した単子葉植物である竹の粉末、間伐材チップや木工の切屑の粉砕物又は製材時に発生するノコ屑や廃棄物、サンダー掛けで発生する研削屑や、サンドブラストで発生する切削屑、製紙用パルプ、古紙パルプなどを例示することができる。しかし、これらに制限されるものではなく、植物性繊維が含まれる原材料(素材)であればその種類に拘わらず適宜使用することができる。 In the present invention, as the above-mentioned specific dehydration aid, for example, a dehydration aid whose main component is a pulverized product having a particle size of 1 to 100 μm obtained by pulverizing vegetable fibers by mechanical shearing, and as a coagulant. For example, a polymer flocculant (commercially available) compatible with the above-mentioned dehydration aid can be used. Here, the term ``mainly composed of a crushed product with a particle size of 1 to 100 μm obtained by crushing vegetable fibers by mechanical shearing'' means that it contains at least 50% by weight or more (that is, more than half) of the crushed product with a particle size of 1 to 100 μm. It means that something is done. The vegetable fibers that are the main components of the above-mentioned dehydration aid include, for example, wood flour from coniferous or broad-leaved trees, powder from bamboo, which is a monocotyledonous plant with a lignified culm, pulverized wood chips from thinning or woodworking shavings, or Examples include sawdust and waste generated during lumber sawing, grinding waste generated during sanding, cutting waste generated during sandblasting, papermaking pulp, and waste paper pulp. However, the material is not limited to these, and any raw material containing vegetable fiber can be used as appropriate.

これらの植物性繊維は、望ましくは、セルロース繊維としての純度を90%以上に高めたものが好適に使用される。このような植物性繊維を機械的剪断により粉砕した粒径1~100μmの粉砕物を主成分とする脱水助剤については、約40種類以上の市販製品があり、例えば、「リセルバーMTシリーズ」(リセルバー社製)として、品番を指定して適宜入手することが可能である。 These vegetable fibers preferably have a purity of 90% or more as cellulose fibers. There are more than 40 types of commercially available dehydration aids whose main ingredient is pulverized plant fibers with a particle size of 1 to 100 μm by mechanical shearing. (manufactured by Reserva), and can be obtained as appropriate by specifying the product number.

本発明において、脱水助剤の主成分である“植物性繊維”としては、例えば、粉砕もみがら、わら、粉砕コーンコブ、セルロースファイバー、微細木粉などの植物性繊維があり、これらの植物性繊維を機械的剪断により粉砕し、例えば、擂潰機などを用いて粉砕又は摩砕することにより、粒径1~100μmに微細化した粉砕物を主成分とする粉砕物(試料)を好適に使用することができる。しかし、本発明で使用できる脱水助剤は、これらに制限されるものではなく、Mp値(含水率評価)がMp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する試料、すなわち、後記する表5の評価の項のA~Bランクの試料であれば、同様に使用することができる。 In the present invention, the "vegetable fiber" which is the main component of the dehydration aid includes, for example, vegetable fibers such as crushed rice husk, straw, crushed corncob, cellulose fiber, and fine wood flour. It is preferable to use a pulverized product (sample) whose main component is a pulverized product that has been refined to a particle size of 1 to 100 μm by pulverizing it by mechanical shearing and then pulverizing or grinding it using a grinder or the like. can do. However, the dehydration aid that can be used in the present invention is not limited to these, and has an Mp value (moisture content evaluation) of Mp (cake moisture content) ≦55 to Mp (cake moisture content) = 55 to 70. Any sample, ie, a sample ranked A to B in the evaluation section of Table 5 below, can be used in the same manner.

本発明では、上記粉砕もみがらなどの特定の脱水助剤は、粒径1~100μmの粉砕物を主成分とする試料の状態で、少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽を備えた浄化施設において、混和槽で、被処理水に添加して利用することができる。上記特定の脱水助剤を用いてバイオマス消化液を処理するには、混和槽で、原水(処理前の廃水)に対し、例えば、上記特定の脱水助剤を0.1%(対廃水容量)添加し、次いで、反応槽で、上記脱水助剤に適合した凝集剤、例えば、有機高分子凝集剤(例えば、0.2質量%の水溶液)を添加する。この有機高分子凝集剤としては、ノニオン系、カチオン系又は両性合成高分子凝集剤が用いられる。 In the present invention, the specific dehydration aid such as the above-mentioned pulverized rice husks is added to at least a mixing tank, a reaction tank, a sludge dewatering machine (a neutralization tank ) - In purification facilities equipped with biological treatment tanks, it can be used by adding it to the water to be treated in the mixing tank. To treat biomass digestive fluid using the above specific dehydration aid, for example, add 0.1% of the above specific dehydration aid (relative to wastewater volume) to raw water (wastewater before treatment) in a mixing tank. Then, in a reaction tank, a flocculant compatible with the dehydration aid, for example, an organic polymer flocculant (for example, a 0.2% by mass aqueous solution) is added. As this organic polymer flocculant, a nonionic, cationic or amphoteric synthetic polymer flocculant is used.

上記ノニオン系合成高分子凝集剤としては、例えば、ポリアクリルアミド、ポリエチレンオキシド、尿素-ホルマリン樹脂などを例示することができ、カチオン系合成高分子凝集剤としては、例えば、ポリアミノメチルアクリルアミド、ポリビニルイミダゾリン、キトサン、アイオネン系共重合体、エポキシアミン共重合体などを例示することができる。また、両性合成高分子凝集剤としては、例えば、レシチン系両性界面活性剤、カゼイン分解物系両性界面活性剤などを例示することができる。これらの有機高分子凝集剤は、例えば、市販製品(浅田化学工業社製、ハイモ社製など)として適宜入手可能である。また、本発明では、上記脱水助剤に適合した凝集剤として、無機凝集剤、例えば、ポリ硫酸鉄(III)、ポリ塩化鉄(III)、ポリ塩化アルミニウム、ポリ硫酸アルミニウムや、塩
化第二鉄、硫酸アルミニウムなどを使用することができ、また、上記特定の脱水助剤に適合する凝集剤であれば適宜の凝集剤を使用することができる。
Examples of the nonionic synthetic polymer flocculants include polyacrylamide, polyethylene oxide, urea-formalin resin, and examples of the cationic synthetic polymer flocculants include polyaminomethylacrylamide, polyvinylimidazoline, Examples include chitosan, ionene copolymers, and epoxyamine copolymers. Examples of the amphoteric synthetic polymer flocculants include lecithin-based amphoteric surfactants, casein decomposition product-based amphoteric surfactants, and the like. These organic polymer flocculants are appropriately available as commercial products (manufactured by Asada Chemical Industry Co., Ltd., Heimo Co., Ltd., etc.), for example. In addition, in the present invention, as a flocculant suitable for the above-mentioned dehydration aid, inorganic flocculants such as polyferric sulfate (III), polyferric chloride (III), polyaluminum chloride, polyaluminum sulfate, and ferric chloride are used. , aluminum sulfate, etc. can be used, and any appropriate flocculant can be used as long as it is compatible with the above-mentioned specific dehydration aid.

本発明のバイオマス消化液の浄化処理を実行するに際しては、上記特定の脱水助剤と、該脱水助剤に適合した凝集剤、例えば、有機高分子凝集剤を添加する順序が重要である。少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽(曝気槽)を備えた浄化施設において、前段の混和槽で、上記特定の脱水助剤を添加し、次いで、反応槽で、該脱水助剤に適合した凝集剤、例えば、有機高分子凝集剤を添加し、撹拌すると、次第に、フロックが生成(形成)されるので、十分にフロックを形成させてから、汚泥脱水機による搾液処理を実行する。このフロックの生成(形成)に要する時間は、通常は、5~15分程度である。 When carrying out the biomass digestive juice purification treatment of the present invention, the order in which the above-mentioned specific dehydration aid and a flocculant compatible with the dehydration aid, such as an organic polymer flocculant, are added is important. In a purification facility equipped with at least a mixing tank, a reaction tank, a sludge dehydrator, a (neutralization tank), and a biological treatment tank (aeration tank), the above-mentioned specific dehydration aid is added in the mixing tank in the previous stage, and then the reaction When a flocculant compatible with the dehydration aid, for example, an organic polymer flocculant, is added and stirred in the tank, flocs are gradually generated (formed). After sufficient floc formation, sludge dewatering is started. Execute the juice extraction process using the machine. The time required to generate (form) this floc is usually about 5 to 15 minutes.

このようにして十分にフロックを形成させてから、例えば、スクリュープレス、ベルトプレス又は加圧ろ過により搾液して、脱離液と脱水ケーキとに分離し、脱水ケーキを取り出す。本発明においては、バイオマス消化液中の乳化成分、微粒子成分に着目し、少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽を備えた浄化施設において、混和槽で、被処理水に、Mp値(含水率評価)がMp(ケーキ含水率)≦70を有する脱水助剤、例えば、植物性繊維を機械的剪断により粉砕した粒径1~100μmの粉砕物を主成分とする脱水助剤を添加し、次いで、反応槽で、被処理水に、上記脱水助剤に適合した凝集剤、例えば、高分子凝集剤を添加して、バイオマス消化液中の乳化成分と微粒子成分を包接したフロックを形成させる。 After sufficiently forming flocs in this manner, the liquid is squeezed by, for example, a screw press, a belt press, or pressure filtration to separate the dehydrated liquid and the dehydrated cake, and the dehydrated cake is taken out. In the present invention, we focus on emulsified components and particulate components in biomass digested liquid, and in a purification facility equipped with at least a mixing tank, a reaction tank, a sludge dehydrator, a (neutralization tank), and a biological treatment tank, in a mixing tank, A dehydration aid having an Mp value (moisture content evaluation) of Mp (cake moisture content) ≦70 is added to the water to be treated, for example, a main ingredient is a crushed product of particle size 1 to 100 μm obtained by crushing vegetable fiber by mechanical shearing. Then, in a reaction tank, a flocculant compatible with the dehydration aid, such as a polymer flocculant, is added to the water to be treated to separate the emulsified components and fine particles in the biomass digestive fluid. Forms flocs containing components.

次いで、汚泥脱水機で、該フロック;特大(φ10mm以上)~大(φ5~10mm)を除去すると同時に、フロックを除去した脱離液と、脱水ケーキ;含水率70%以下、とに分離し、必要により、中和槽で、消毒剤の中和も同時に実行する。次いで、該脱離液を生物処理槽(曝気槽)に投入して生物処理を実行する。本発明では、フロック;特大(φ10mm以上)~大(φ5~10mm)の形成と、該フロックを除去した脱離液と、脱水ケーキ;含水率70%以下、とに分離することが重要であり、これらの条件を全て満たして、はじめて、生物処理槽(曝気槽)による生物処理を効率よく実行することが可能になる。 Next, in a sludge dehydrator, the flocs; If necessary, neutralize the disinfectant in the neutralization tank at the same time. Next, the desorbed liquid is put into a biological treatment tank (aeration tank) to perform biological treatment. In the present invention, it is important to form extra large (φ10 mm or more) to large (φ5 to 10 mm) flocs, and to separate the dehydrated cake from which the flocs have been removed into a dehydrated cake with a water content of 70% or less. , Only when all of these conditions are satisfied, it becomes possible to efficiently perform biological treatment using a biological treatment tank (aeration tank).

本発明では、後記する実施例に示したように、凝集剤として、約30種類の市販の凝集剤の中から、特定の市販製品(品番;RB-PT、PB-C1805など)を選定したが、本発明では、脱水助剤、凝集剤の選定の中でも、“脱水助剤”の選定が最も重要であり、“凝集剤”については、フロック判定(上澄水、大きさ、硬さ、握り感)で、A~E:最高ランク~最低ランク、を基準にして、上記特定の脱水助剤に適合する好適な凝集剤を選定して使用すればよい。 In the present invention, as the flocculant, a specific commercially available product (product number: RB-PT, PB-C1805, etc.) was selected from about 30 types of commercially available flocculants, as shown in the examples below. In the present invention, among the selection of dehydration aids and flocculants, the selection of the "dehydration aid" is the most important. ), a suitable flocculant that is compatible with the above-mentioned specific dehydration aid may be selected and used based on A to E: highest rank to lowest rank.

本発明において、上記フロック;特大(φ10mm以上)~大(φ5~10mm)の形成と、該フロックを除去した脱離液と、脱水ケーキ;含水率70%以下、とに分離できない場合は、バイオマス消化液を生物処理槽(曝気槽)で生物処理しても、BOD容積負担の低減、汚泥発生量の抑制及び必要酸素量の削減による安定した水処理効果を期待することは困難である。その結果、上澄水の評価、フロックの評価(大きさ、硬さ、握り感)で良好な結果を得ることができず、生物処理槽(曝気槽)による生物処理がうまく行かなくなり、水質汚濁防止法による一般排水基準を満たすようなバイオマス消化液の処理方法及びその廃水処理装置を構築することができなくなる。 In the present invention, if it is not possible to separate the above-mentioned flocs; Even if the digestive fluid is biologically treated in a biological treatment tank (aeration tank), it is difficult to expect stable water treatment effects due to reduction in BOD volume burden, suppression of sludge generation amount, and reduction in required oxygen amount. As a result, it was not possible to obtain good results in the evaluation of supernatant water and evaluation of flocs (size, hardness, grip feeling), and biological treatment in the biological treatment tank (aeration tank) was not successful, preventing water pollution. It becomes impossible to construct a biomass digestive fluid treatment method and wastewater treatment equipment that meet the general wastewater standards set by the law.

本発明により、以下に示すような格別の作用効果が奏される。
(1)本発明では、バイオマス発電施設で発電を終えた後に残る残渣が含まれるバイオマ
ス消化液中の、特に、乳化成分、微粒子成分に着目し、これらを生物処理槽(曝気槽)に流入させる前に効率よく除くために、特定の脱水助剤と、該脱水助剤に適合した凝集剤とを併用して、バイオマス消化液中の乳化成分と微粒子成分を包接したフロックの形成と、フロック除去/脱水をすること、また、必要により、中和槽で消毒剤の中和も同時に行うことにより、生物処理槽(曝気槽)による生物処理を実行することを可能とした。
(2)上記特定の脱水助剤と、該脱水助剤に適合した凝集剤との併用により、バイオマス消化液を、水質汚濁防止法による一般排水基準を満たす形で排水することを可能とした。
(3)残渣として発生する含水率70%以下、より詳しくは、含水率55%以下乃至55~70%の脱水ケーキを堆肥化施設で再利用することが可能である。
(4)バイオマス消化液を、効率よく生物処理する方法及びその廃水処理装置(施設)を提供することができる。
(5)本発明により、フロック;大きさが特大(φ10mm以上)~大(φ5~10mm)の形成と、該フロックを除去した脱離液と、脱水ケーキ;予想(期待)されるケーキ含水率70%以下、より詳しくは、含水率55%以下乃至55~70%とに分離することができ、原水のBODを78%以下に除去することを可能にした。
(6)BOD容積負担の低減、汚泥発生量の抑制及び必要酸素量の削減による安定した水処理効果を期待することができる。
The present invention provides the following special effects.
(1) In the present invention, we focus on the emulsified components and particulate components in the biomass digestive fluid containing the residue remaining after power generation in the biomass power generation facility, and flow these into the biological treatment tank (aeration tank). In order to efficiently remove the components beforehand, a specific dehydration aid and a flocculant compatible with the dehydration aid are used in combination to form flocs containing the emulsified components and particulate components in the biomass digestive fluid, and to remove the flocs. By performing removal/dehydration and, if necessary, simultaneously neutralizing the disinfectant in a neutralization tank, it became possible to carry out biological treatment in a biological treatment tank (aeration tank).
(2) By using the above-described specific dehydration aid in combination with a coagulant compatible with the dehydration aid, it is possible to discharge biomass digestive fluid in a manner that meets the general wastewater standards according to the Water Pollution Control Law.
(3) It is possible to reuse the dehydrated cake generated as a residue with a moisture content of 70% or less, more specifically, a moisture content of 55% or less to 55-70% at a composting facility.
(4) A method for efficiently biologically treating biomass digestive fluid and a wastewater treatment device (facility) for the same can be provided.
(5) According to the present invention, formation of flocs; extra large (φ10 mm or more) to large (φ5 to 10 mm) in size, a desorbed liquid from which the flocs have been removed, and a dehydrated cake; predicted (expected) cake moisture content. It was possible to separate the water content from 55% or less to 55 to 70%, making it possible to remove the BOD of raw water to 78% or less.
(6) Stable water treatment effects can be expected by reducing the BOD volume burden, suppressing the amount of sludge generated, and reducing the amount of oxygen required.

リセルバー脱水システムの例を模式的に示した図である。図中、フロックセパレータはオプションである。1 is a diagram schematically showing an example of a reserva dehydration system. In the figure, the flock separator is optional. リセルバー脱水システムの例を模式的に示した図である。1 is a diagram schematically showing an example of a reserva dehydration system. 混和槽-反応槽-汚泥脱水機-生物処理槽を備えた浄化施設を含むバイオマス消化液(廃水)処理装置の処理フローを示した図である。FIG. 2 is a diagram showing a processing flow of a biomass digestive fluid (wastewater) treatment device including a purification facility equipped with a mixing tank, a reaction tank, a sludge dehydrator, and a biological treatment tank.

次に、実施例に基づいて本発明の実施形態を具体的に説明する。ただし、以下の実施例において、/D、/日、/dは、各々、“1日分”の値を表わす。 Next, embodiments of the present invention will be specifically described based on Examples. However, in the following examples, /D, /day, and /d each represent a value for "one day."

本実施例において、本発明のバイオマス発電消化液の処理に使用する廃水処理装置(設備)、少なくとも原水槽-混和槽-反応槽-調整槽-汚泥脱水機-(中和槽)-生物処理槽(曝気槽)-膜処理槽-処理水槽-希釈水槽-消毒槽を備えた廃水処理装置ついて具体的に説明する。
原水槽は、計画処理量に対し1日分以上の容量とするために、1槽の実容量を、W8.0m×L8.0m×H2.2m=140.8mとした。上記原水槽に、原水補助ポンプ;50A×0.75kw200Vを1台、原水ポンプ;80A×2.2kw200Vを1台、原水槽撹拌ブロワー;65A×3.7kw200Vを1台、散気撹拌装置;ディスク型を16個設置した。
In this example, the wastewater treatment equipment (equipment) used for processing the biomass power generation digestive fluid of the present invention, at least raw water tank - mixing tank - reaction tank - adjustment tank - sludge dehydrator - (neutralization tank) - biological treatment tank (Aeration tank) - A wastewater treatment device equipped with a membrane treatment tank, a treated water tank, a dilution tank, and a disinfection tank will be specifically explained.
The actual capacity of the raw water tank was set to W8.0m x L8.0m x H2.2m = 140.8m 3 in order to have a capacity of more than one day's worth of the planned treatment amount. In the above raw water tank, raw water auxiliary pump; 1 unit of 50A x 0.75kw 200V, raw water pump; 1 unit of 80A x 2.2kw 200V, raw water tank stirring blower; 1 unit of 65A x 3.7kw 200V, aeration stirring device; disk 16 molds were installed.

前処理リセルバー脱水設備は、処理量;140.0m/D、負荷量;BOD量420.0kg/日、除去量;BOD 420.0kg/D×83.3%=349.8kg/d(残量70.2kg/d)、SS;2100.0kg/D×98.0%=2058.0kg/d(残量42.0kg/d)、とした。 The pretreatment reservoir dewatering equipment has a processing capacity of 140.0 m 3 /D, a load capacity of 420.0 kg/day, and a removal capacity of 420.0 kg/D x 83.3% = 349.8 kg/d (remaining capacity). SS: 2100.0 kg/D x 98.0% = 2058.0 kg/d (remaining amount 42.0 kg/d).

使用機械設備として、汚水計量装置;FRP製90°三角堰(計量のみ)1基、混和・反応槽設備;SUS製 W900mm×L1,800mm×H1,260mm、実容量0.81m/槽×2槽を1基、撹拌機200~300rpm×0.75kw×200Vを2台(内1台インバーター制御)、フロックセパレータ;SUS製 0.2kw×200Vを2台、特殊目詰防止機構・自動洗浄装置付、スクリュープレス脱水機(RSP-300Y型);接液部SUS製、固定型自動洗浄装置付1.5kw×200Vを2台(インバーター制御)、脱水ケーキ移送コンベアー;SUS製 U200型×5m×0.75kw×200Vを2台、を設置した。 Mechanical equipment used: sewage metering device; 1 FRP 90° triangular weir (measuring only), mixing/reaction tank equipment; SUS W900mm x L1,800mm x H1,260mm, actual capacity 0.81m 3 /tank x 2 1 tank, 2 stirrers 200-300 rpm x 0.75 kW x 200 V (one of which is inverter controlled), flock separator; 2 SUS 0.2 kW x 200 V, special anti-clogging mechanism and automatic cleaning device Includes, screw press dehydrator (RSP-300Y type); liquid contact part made of SUS, fixed type automatic cleaning device, 2 units of 1.5kw x 200V (inverter control), dehydrated cake transfer conveyor; made of SUS, U200 type x 5m x Two 0.75kW x 200V units were installed.

脱水ケーキ発生量は、原水濃度2.1%、脱水ケーキ含水率70%として、(140.0m/d×2.1%)÷(1-0.7)=9.8t/Dであった。凝集助剤(リセルバーMT-2000)の使用量は、対液0.1%添加として、140.0m/D×0.1%=140.0kg/Dであった。高分子凝集剤使用量は、凝集剤1を0.5%濃度にて対液10.5%添加として、140.0m/D×10.5%×0.5%=73.5kg/D、0.5%溶解濃度液73.5kg÷0.5%=14.7m/Dであった。凝集剤2を0.2%濃度にて対液21%添加として、140.0m/D×21%×0.2%=58.8kg/D、0.2%溶解濃度液58.8kg÷0.2%=29.4m/Dであった。 The amount of dehydrated cake generated was (140.0 m 3 /d x 2.1%) ÷ (1-0.7) = 9.8 t/D, assuming that the raw water concentration was 2.1% and the water content of the dehydrated cake was 70%. Ta. The amount of the flocculation aid (Reserva MT-2000) used was 140.0 m 3 /D x 0.1% = 140.0 kg/D, assuming 0.1% addition to the liquid. The amount of polymer flocculant used is 140.0 m 3 /D x 10.5% x 0.5% = 73.5 kg/D, assuming that flocculant 1 is added at a concentration of 0.5% and 10.5% to the liquid. , 0.5% dissolved concentration solution 73.5 kg÷0.5%=14.7 m 3 /D. Assuming that flocculant 2 is added at a concentration of 0.2% and 21% to the liquid, 140.0 m 3 /D x 21% x 0.2% = 58.8 kg/D, 58.8 kg of 0.2% dissolved concentration liquid ÷ 0.2%=29.4 m 3 /D.

調整槽は、22時間で流入する廃水を24時間にて送水するために、実容量をW2.4m×L5.0m×H4.0m=48.0mとした。上記調整槽に、調整ポンプ;50A×0.75kw 200Vを1台、調整槽散気撹拌ブロワー;50A×2.2kw 200Vを1台、散気撹拌装置;ディスク型を6個設置した。 The actual capacity of the adjustment tank was set to W2.4m x L5.0m x H4.0m = 48.0m 3 in order to convey wastewater that flows in in 22 hours in 24 hours. In the above-mentioned adjustment tank, one adjustment pump; 50A x 0.75kw 200V; one adjustment tank diffused stirring blower; 50A x 2.2kw 200V; and six disc-type diffused stirring devices were installed.

生物処理槽は、間欠運転方式で、流入BOD負荷を0.2kg・BOD/m以下とするために、必要容量を140.0m/D×500mg/l÷0.2kg・BOD/m・日=350.0mとした。実容量は、W5.0m×L6.6m×H4.0m=132.0m、W4.2m×L6.6m×H4.0m=110.88m、W3.0m×L6.6m×H4.0m=79.2m、W5.0m×L4.0m×H4.0m(膜処理槽)=80.0m、合計402.08mとした。必要容気量は、O=(0.8×70.2kg/D)+(0.07×5kg/m×402.08m)=196.89kg/d、O=196.89kg/d÷0.49kg/m÷0.04=10,045.5m/d=10.1m/minであった。 The biological treatment tank is operated intermittently, and in order to keep the inflow BOD load below 0.2 kg・BOD/m 3 , the required capacity is 140.0 m 3 /D×500 mg/l ÷ 0.2 kg・BOD/m 3 - Day = 350.0m3 . Actual capacity is W5.0m x L6.6m x H4.0m = 132.0m 3 , W4.2m x L6.6m x H4.0m = 110.88m 3 , W3.0m x L6.6m x H4.0m = 79.2m 3 , W5.0m x L4.0m x H4.0m (membrane treatment tank) = 80.0m 3 , total 402.08m 3 . The required capacity is O 2 = (0.8 x 70.2 kg/D) + (0.07 x 5 kg/m 3 x 402.08 m 3 ) = 196.89 kg/d, O 2 = 196.89 kg/ d÷0.49kg/m 3 ÷0.04=10,045.5m 3 /d=10.1m 3 /min.

膜処理槽は、24H/D(8分運転-2分洗浄)で、透過流量を0.275m/m・Dとするために、必要膜枚数を140.0m/D÷0.275m/m・D÷0.8m/枚÷0.8H=796枚、使用膜基数を200枚/基×4基=800枚とした。膜処理必要空気量は、膜1枚当たりの空気量は10L/minとするために、10L/min×800枚=8.0m/minとした。返送循環比は、5倍以上とした。上記膜処理槽に、浸漬型膜分離装置;孔径0.1~0.4μm 200枚/基を4基、膜ブロワー;65A×45kPa×4.1m/min×5.5kwを2台、返送循環ポンプ;50A×1.5kwを1台、膜処理水ポンプ;40A×0.75kwを2台(陸上耐蝕型)、設置した。 The membrane treatment tank is 24H/D (8 minutes operation - 2 minutes washing), and in order to make the permeation flow rate 0.275m 3 /m 2 ·D, the required number of membranes is 140.0m 3 / D ÷ 0.275m. 3 /m 2 ·D ÷ 0.8 m 2 /sheet ÷ 0.8H = 796 membranes, and the number of membranes used was 200 membranes/group x 4 membranes = 800 membranes. The amount of air required for membrane processing was set to 10 L/min x 800 sheets = 8.0 m 3 /min in order to set the air amount per membrane to 10 L/min. The return circulation ratio was set to 5 times or more. Return to the above membrane treatment tank 4 units of immersion type membrane separator; pore size 0.1-0.4 μm, 200 sheets/unit; 2 units of membrane blower; 65A x 45kPa x 4.1m 3 /min x 5.5kW; One circulation pump, 50A x 1.5kw, and two membrane treated water pumps, 40A x 0.75kw (land-based corrosion resistant type) were installed.

処理水槽は、膜処理水12時間分を貯留できる容量とするために、必要容積を140.0m/D<5.84m/h×12時間=70.08mとし、実容積をW1.8m×L(6.6m+5.9m)×H3.5m=78.75mとした。上記処理水槽に、処理水移送ポンプ65A×2.2kwを1台設置した。 In order to make the treated water tank have a capacity that can store membrane treated water for 12 hours, the required volume is 140.0 m 3 /D<5.84 m 3 /h x 12 hours = 70.08 m 3 and the actual volume is W1. 8m x L (6.6m + 5.9m) x H3.5m = 78.75m3 . One treated water transfer pump 65A x 2.2 kW was installed in the treated water tank.

希釈水槽は、希釈水(井水+膜処理水)1日分を貯留できる容量とするために、必要容積を70m/Dとし、実容積をW4.5m×L5.0m×H3.5m=79.0mとした。上記希釈水槽に、希釈水移送ポンプ65A×2.2kwを1台(井水用電磁弁40A)を設置した。 In order to store the dilution water (well water + membrane treated water) for one day, the required volume of the dilution water tank is 70 m 3 /D, and the actual volume is W4.5m x L5.0m x H3.5m = The total area was 79.0m3 . One dilution water transfer pump 65A x 2.2 kW (well water solenoid valve 40A) was installed in the dilution water tank.

消毒槽設備は、処理量を140.0m/Dとした。処理量に対して10mg/Lの注入とするために、必要塩素量を140.0m/D×10mg/L×10-3=1.40kg/D、1.40kg/D÷70%=2.0kg/Dとした。上記消毒槽設備に、滅菌器(次亜塩素酸錠剤溶解方式、PVC型、15kg型)を1基設置した。 The disinfection tank equipment had a throughput of 140.0 m 3 /D. In order to inject 10 mg/L for the treatment amount, the required amount of chlorine is 140.0 m 3 /D x 10 mg/L x 10-3 = 1.40 kg/D, 1.40 kg/D ÷ 70% = 2 .0 kg/D. One sterilizer (hypochlorous acid tablet dissolving method, PVC type, 15 kg type) was installed in the above disinfection tank equipment.

本実施例では、上記実施例1で設置した、原水槽-混和槽-フロックセパレータ-スクリュープレス脱水機-調整槽-計量槽-生物処理槽(曝気槽)-膜処理槽-処理水槽-希釈水槽-消毒槽(→流出)(図3参照)を使用し、MP値(含水率評価)がMP(ケーキ含水率)≦70を有する脱水助剤として、“粉砕もみがら”;植物性繊維のもみがらを機械的剪断により粉砕した粒径1~100μmの粉砕物を主成分とする粉砕もみがら(試料)を用いた。また、以下の実施例では、試料として、上記“粉砕もみがら”と同等の市販製品である「リセルバー」(リセルバー社製、品番;MT2000、MT5000、MT7000)を用いた。これらのリセルバー製品は、主成分の粉砕もみがらの他に、ダンボール粉砕物を添加した製品であり、その含有量の違いによって各品番に分けたものである。
なお、リセルバー製品としては、これらのリセルバー製品の他に、主成分の粉砕もみがらの他に、例えば、むぎわら、わら及び/又はコーンコブの粉砕物を添加した市販製品(リセルバー社製)などが入手可能である。
In this example, the following configurations were installed in Example 1: Raw water tank - Mixing tank - Flock separator - Screw press dehydrator - Adjustment tank - Measuring tank - Biological treatment tank (aeration tank) - Membrane treatment tank - Treated water tank - Dilution tank - Using a disinfection tank (→ outflow) (see Figure 3), use “crushed rice husks”; vegetable fiber rice as a dehydration aid with an MP value (moisture content evaluation) of MP (cake moisture content) ≦70. Crushed rice husks (sample) whose main component was pulverized rice husks with a particle size of 1 to 100 μm were used by mechanical shearing. In addition, in the following examples, "Reserva" (manufactured by Reserva Co., Ltd., product numbers: MT2000, MT5000, MT7000), which is a commercial product equivalent to the above-mentioned "ground rice husks", was used as a sample. These reserva products are products in which pulverized cardboard is added to the main ingredient, pulverized rice husks, and are divided into product numbers based on the difference in content.
In addition to these Reserva products, there are also commercially available products (manufactured by Reserva Co., Ltd.) that contain, for example, ground wheat straw, straw and/or corn cob in addition to the main ingredient, pulverized rice husks. available.

(1)凝集剤の選定
被処理対象物の試料として、バイオマス発電消化液[前処理後水質;pH値:7.5-8.5、BOD値:500mg/l(除去率83.3%)、SS値:300mg/l(除去率98.0%)]を使用し、該汚泥100mlに、脱水助剤として、試料(市販製品)のリセルバー(MT2000)を0.1%(対汚泥容量)添加し、約30種類の凝集剤(高分子凝集剤など)を各々添加し、反応を確認した。例えば、凝集剤(RB-C1805)を添加率46%で添加し、フロック判定を行った。
(1) Selection of flocculant As a sample of the object to be treated, biomass power generation digestive fluid [water quality after pretreatment; pH value: 7.5-8.5, BOD value: 500 mg/l (removal rate 83.3%) , SS value: 300 mg/l (removal rate 98.0%)], and 0.1% (relative to sludge volume) of the sample (commercial product) Reserva (MT2000) as a dehydration aid was added to 100 ml of the sludge. Approximately 30 types of flocculants (polymer flocculants, etc.) were added, and the reaction was confirmed. For example, a flocculant (RB-C1805) was added at an addition rate of 46%, and flocculation was determined.

その結果を、表1に示した。判定条件は、A~E;Aが最高ランク、Eが最低ランクとした。上澄水の評価が、凝集剤RB-C1805において、全品番中最良のA++となったため、約30種類の凝集剤の中から、凝集剤(RB-C1805)を、脱水助剤のリセルバー(MT2000)の凝集剤(脱水助剤に適合する高分子凝集剤)として選定した。 The results are shown in Table 1. The judgment conditions were A to E; A was the highest rank and E was the lowest rank. The evaluation of the supernatant water was the best A++ among all product numbers for the flocculant RB-C1805, so from among about 30 types of flocculants, we selected the flocculant (RB-C1805) and the dehydration aid Reserva (MT2000). was selected as a flocculant (polymer flocculant compatible with dehydration aid).

Figure 0007373638000001
Figure 0007373638000001

(2)脱水助剤の選定
次に、脱水助剤として、植物性繊維を機械的剪断により粉砕した粉砕物の中から、本発明に使用できる特定の粉砕物を選定するために、汚泥100mlに、市販製品(リセルバー社製の「リセルバーMT2000」、「同MT5000」、「同MT7000」の3種類を各々0.1%(対汚泥容量)添加し、フロック判定(上澄水,大きさ、硬さ、握り感)及び総合評価を行った。その結果を、表2に示した。判定条件は、A~E;Aが最高ランク、Eが最低ランクとした。
(2) Selection of dehydration aid Next, in order to select a specific crushed product that can be used in the present invention as a dehydration aid from among crushed products obtained by crushing vegetable fibers by mechanical shearing, 100 ml of sludge was , commercially available products (reserva MT2000, MT5000, and MT7000 manufactured by Reserva) were added at 0.1% each (relative to sludge volume), and floc judgment (supernatant water, size, hardness) was performed. , grip feeling) and overall evaluation.The results are shown in Table 2.The judgment conditions were A to E; A was the highest rank and E was the lowest rank.

反応を確認したところ、フロック判定での上澄水の評価が、MT7000において全品番中最良のA+++となったため、脱水助剤のリセルバーはMT7000を選定した。そこで、本実施例の以下の脱水試験では、脱水助剤として、植物性繊維のもみがらを機械的剪断により粉砕した粒径1~100μmの粉砕物を主成分とする粉砕物(試料)と同等の市販製品の「リセルバー(MT7000)」を使用することとした。 When the reaction was confirmed, the evaluation of the supernatant water in the floc judgment was A+++, which is the best among all product numbers for MT7000, so MT7000 was selected as the dehydration aid reserva. Therefore, in the following dehydration test of this example, the dehydration aid was equivalent to a pulverized product (sample) whose main component was a pulverized product with a particle size of 1 to 100 μm obtained by pulverizing vegetable fiber rice husks by mechanical shearing. We decided to use the commercially available product "Reserva (MT7000)".

Figure 0007373638000002
Figure 0007373638000002

(3)脱水試験
汚泥600mlに、脱水助剤の「リセルバー(MT7000)」を添加し、凝集剤(品番:RB-C1805)を添加率46%(対汚泥容積、0.2%水溶液)で添加してフロックを形成させた。次いで、フロックをスクリュープレス脱水機を備えた脱水試験機に投入し、脱水試験を行い、フロックを除去した脱離液と、脱水ケーキに分離し、脱水ケーキは含水率測定を、脱離水は水質分析を行った。脱水圧力・保持時間は、スクリュープレス脱水機を想定した。その結果を、表3に示した。リセルバーを0.1%添加したことで、脱水ケーキ含水率は、59.03%であった。
(3) Dewatering test To 600 ml of sludge, add the dewatering aid "Reserva (MT7000)" and add flocculant (product number: RB-C1805) at an addition rate of 46% (based on sludge volume, 0.2% aqueous solution). to form flocs. Next, the flocs are put into a dehydration tester equipped with a screw press dehydrator, a dehydration test is performed, and the dehydrated liquid from which the flocs have been removed is separated into a dehydrated cake. Analysis was carried out. The dehydration pressure and holding time were based on a screw press dehydrator. The results are shown in Table 3. By adding 0.1% of Reserva, the moisture content of the dehydrated cake was 59.03%.

Figure 0007373638000003
Figure 0007373638000003

(4)脱離液の水質分析
原水(脱水前の水)と上記脱水試験での脱離液(“リセルバー脱水脱離液”と記載することがある。)の水質分析(BOD、COD、SS、T-Nの分析)を公的機関で行った。その結果を、表4に示した。リセルバー脱水によって、BODは、86.5%除去、CODは91.8%除去、SSは99.8%除去、T-Nは54%除去が確認された。
(4) Water quality analysis of dehydrated liquid Water quality analysis (BOD, COD, SS , TN analysis) was conducted at a public institution. The results are shown in Table 4. It was confirmed that 86.5% of BOD, 91.8% of COD, 99.8% of SS, and 54% of TN were removed by Reserva dehydration.

Figure 0007373638000004
Figure 0007373638000004

(5)まとめ
リセルバー脱水によって、脱離液の水質分析の全項目で大幅な低減が確認された。これで、浄化槽の建設コストの大幅な削減が見込めることが分かった。リセルバー脱水によって、ケーキ含水率が59.3%までの低減が確認されたことで、現状が処理不能で全量産廃処分に出した場合と比較すると、その量は、現状の1/18となった。
(5) Summary Reserva dehydration confirmed a significant reduction in all items of water quality analysis of the desorbed liquid. It turns out that this can lead to a significant reduction in the construction cost of septic tanks. It was confirmed that the moisture content of the cake was reduced to 59.3% through Reserva dehydration, and the amount was reduced to 1/18th of the current amount compared to the case where the entire amount was disposed of due to unprocessable conditions. .

また、好適な凝集剤は、品番;RB-C1805で、添加率は46%(対汚泥容量、0.2%水溶液)であり、好適なリセルバーは、品番;MT7000で、添加率は、0.1%(対汚泥容量)であった。 Further, a suitable coagulant has a product number of RB-C1805 and an addition rate of 46% (relative to sludge volume, 0.2% aqueous solution), and a suitable reservoir has a product number of MT7000 and an addition rate of 0. It was 1% (relative to sludge volume).

上澄水の評価;濁→透明、フロックの評価;A~E、“大きさ”;フロックできない、小(φ3mm以下)、中(φ3~5mm)、大(φ5~10mm)、特大(φ10mm以上)、“硬さ”;柔→硬、“握り感”;握れない→しっかり握れる、予想(期待)されるケーキ含水率;90%以上、80~90%、70~80%、55~70%、55%以下、の結果をまとめて、表5に示した。 Evaluation of supernatant water: cloudy → transparent, evaluation of flocculation: A to E, “Size”: cannot be flocculated, small (φ3 mm or less), medium (φ3 to 5 mm), large (φ5 to 10 mm), extra large (φ10 mm or more) , "Hardness": soft → hard, "grip feeling": unable to grasp → can be firmly grasped, Expected (expected) cake moisture content: 90% or more, 80-90%, 70-80%, 55-70%, The results of 55% or less are summarized in Table 5.

上記脱水試験によって、上澄水は、透明(フロックの大きさは、特大(φ10mm以上))であり、脱水ケーキの含水率は、55~70%の59.3%であった。また、本発明では、MP(ケーキ含水率)≦55の脱水助剤を用いた場合に限らず、MP(ケーキ含水率)=55~70%の脱水助剤を用いた場合にも、上澄水は、ほぼ、透明(フロックの大きさは、大(φ5~10mm))であり、脱水ケーキの含水率は55~70%の範囲であれば、浄化された液相を河川に廃棄できる程度に浄化できることが確認された。 According to the above dehydration test, the supernatant water was transparent (the size of the flocs was extra large (φ10 mm or more)), and the moisture content of the dehydrated cake was 59.3%, which was 55 to 70%. In addition, in the present invention, not only when a dehydration aid with MP (cake moisture content) ≦55 is used, but also when a dehydration aid with MP (cake moisture content) = 55 to 70% is used, the supernatant water is almost transparent (the size of the flocs is large (φ5 to 10 mm)), and if the moisture content of the dehydrated cake is in the range of 55 to 70%, the purified liquid phase can be disposed of in the river. It was confirmed that it can be purified.

Figure 0007373638000005
Figure 0007373638000005

本実施例では、自治体(K市)下水処理場の消化汚泥を対象試料として、該試料の浄化処理を実施した。 In this example, the target sample was digested sludge from a municipal (K City) sewage treatment plant, and the sample was purified.

(1)凝集剤の選定
汚泥[試料の性状;TS(固形物)濃度:1.33%、pH:7.25.外観:黒濁色、臭い:炭臭、繊維状物(100メッシュ):5.2%/ss、繊維状物(200メッシュ):14.2%/ss]100mlに、リセルバー MT2000を0.1%(対汚泥容量)添加し、約30種類の凝集剤(K市指定凝集剤を含む)を各々添加し、反応を確認した。表6に、その結果を示した。
(1) Selection of flocculant Sludge [Properties of sample: TS (solids) concentration: 1.33%, pH: 7.25. Appearance: cloudy color, odor: charcoal odor, fibrous material (100 mesh): 5.2%/ss, fibrous material (200 mesh): 14.2%/ss] Add 0.1 of Reserva MT2000 to 100ml. % (relative to sludge volume), and approximately 30 types of flocculants (including flocculants designated by K City) were added to each, and the reaction was confirmed. Table 6 shows the results.

Figure 0007373638000006
Figure 0007373638000006

反応を確認したところ、フロック判定での“握り感”の評価で、B-となったため、凝集剤は、自治体(K市)指定凝集剤を選定した。 When the reaction was confirmed, the "grip feeling" evaluation in the floc evaluation was B-, so the flocculant designated by the local government (K City) was selected.

(2)リセルバーの選定
汚泥100mlに、リセルバーMT2000、MT5000、MT7000の3種類を各々0.1%(対汚泥容量)添加し、反応を確認した。表7に、その結果を示した。
(2) Selection of Reservoir To 100ml of sludge, 0.1% (relative to sludge volume) of three types of Reservoir, MT2000, MT5000, and MT7000, was added to confirm the reaction. Table 7 shows the results.

Figure 0007373638000007
Figure 0007373638000007

反応を確認したところ、フロック判定での“握り感”の評価が、全品番で一番評価となったリセルバーMT2000を選定した。 After checking the reactions, we selected Reserva MT2000, which received the highest evaluation of "grip feeling" among all the product numbers based on flocking.

(3)脱水試験
汚泥500mlに、リセルバーMT2000を添加し、高分子凝集剤(0.2%水溶液)を添加してフロックを形成させた。フロックを脱水試験機(加圧面積81cm、圧力・保持時間可変型)に投入して脱水試験を行い、排出された脱水ケーキの含水率を測定した。脱水圧力・保持時間は、スクリュープレス脱水機を想定して設定した。表8に、その結果を示した。
(3) Dewatering test Reserva MT2000 was added to 500 ml of sludge, and a polymer flocculant (0.2% aqueous solution) was added to form flocs. A dehydration test was performed by putting the flocs into a dehydration tester (pressure area: 81 cm 2 , variable pressure/holding time type), and the water content of the discharged dehydrated cake was measured. The dehydration pressure and holding time were set assuming a screw press dehydrator. Table 8 shows the results.

Figure 0007373638000008
Figure 0007373638000008

リセルバー0.04%添加(対TS添加率3%)により、ケーキ含水率は、78.67%となった。リセルバー0.1%添加(対TS添加率7.5%)により、ケーキ含水率は、74,18%となった。リセルバー0.3%添加(対TS添加率22.5%)により、ケーキ含水率は、69.92%となった。 By adding 0.04% of Reserva (3% of TS addition rate), the cake moisture content was 78.67%. By adding 0.1% of Reserva (7.5% of TS addition rate), the cake moisture content became 74.18%. By adding 0.3% of Reserva (addition rate of TS: 22.5%), the moisture content of the cake was 69.92%.

(4)脱離水の水質分析
原水(脱水前の水)と、脱水試験での脱離後のSS値と、T-P値を公的機関で測定した。表9に、その結果を示した。
(4) Water quality analysis of desorbed water The raw water (water before dehydration), the SS value after desorption in the dehydration test, and the TP value were measured at a public institution. Table 9 shows the results.

Figure 0007373638000009
Figure 0007373638000009

(5)SSの回収率
SSの回収率は、リセルバー0.1%添加(対TS添加率7.5%)、自治体(K市)指定凝集剤により、99.6%であり、リセルバー0.3%添加(対TS添加率22.5%)、自治体(K市)指定凝集剤により、99.75%であり、リセルバー0.1%添加(対TS添加率7.5%)、高分子凝集剤(0.2%水溶液)により、99.7%であり、リセルバー0.3%添加(対TS添加率22.5%)、高分子凝集剤(0.2%水溶液)により、99.76%であった。
(5) Recovery rate of SS The recovery rate of SS was 99.6% with the addition of 0.1% Reserva (compared to the TS addition rate of 7.5%) and the flocculant specified by the local government (K City). 3% addition (22.5% of TS addition rate), 99.75% using a flocculant designated by the local government (K City), 0.1% addition of Reserva (7.5% of TS addition rate), polymer It was 99.7% with the flocculant (0.2% aqueous solution), and 99.7% with the addition of 0.3% Reserva (22.5% of TS addition rate) and the polymer flocculant (0.2% aqueous solution). It was 76%.

(6)T-Pの回収率
T-Pの回収率は、リセルバー0.1%添加(対TS添加率7.5%)、自治体(K市)指定凝集剤により、81%であり、リセルバー0.3%添加(対TS添加率22.5%)、自治体(K市)指定凝集剤により、81%であり、リセルバー0.1%添加(対TS添加率7.5%)、高分子凝集剤(0.2%水溶液)により、78.4%であり、リセルバー0.3%添加(対TS添加率22.5%)、高分子凝集剤(0.2%水溶液)により、80.6%であった。
(6) Recovery rate of TP The recovery rate of TP was 81% with the addition of 0.1% Reserva (compared to the TS addition rate of 7.5%) and the flocculant designated by the local government (K City). Addition of 0.3% (addition rate of TS 22.5%), 81% due to the flocculant specified by the local government (K City), addition of 0.1% of Reserva (addition rate of TS 7.5%), polymer With the flocculant (0.2% aqueous solution), it was 78.4%, and with the addition of 0.3% Reserva (22.5% of TS addition rate) and the polymer flocculant (0.2% aqueous solution), it was 80. It was 6%.

(7)まとめ
好適なリセルバー品番は、MT2000で、添加率は、0.04%~0.3%(対汚泥容量)であり、対TS添加率は、3%~22.5%(汚泥量1mに対し、0.4kg~3kg使用)であった。また、好適な凝集剤の品番は、自治体(K市)指定凝集剤で、添加率は、12%(0.2%水溶液)であり、対TS添加率は、1.8%(汚泥量1mに対し、0.24kg使用)であった。
(7) Summary The preferred reservoir product number is MT2000, and the addition rate is 0.04% to 0.3% (relative to sludge volume), and the addition rate to TS is 3% to 22.5% (sludge volume). (0.4 kg to 3 kg was used per 1 m3 ). In addition, the preferred coagulant product number is a coagulant specified by the local government (K City), and the addition rate is 12% (0.2% aqueous solution), and the addition rate to TS is 1.8% (sludge volume 1 m 3 , 0.24 kg was used).

好適な凝集剤の品番は、自治体(K市)指定凝集剤で、添加率は、12%(0.2%水溶液)であり、対TS添加率(汚泥量1mに対し、0.24kg使用)は、1.8%であった。リセルバー脱水によって、ケーキ含水率は、69.92%~78.67%であり、SSの回収率は、99.6%~99.75%であり、T-Pの回収率は、81%であった。 The preferred coagulant product number is a coagulant designated by the local government (K City), and the addition rate is 12% (0.2% aqueous solution), and the addition rate is 12% ( 0.2% aqueous solution). ) was 1.8%. By reserva dehydration, the cake moisture content was 69.92% to 78.67%, the recovery rate of SS was 99.6% to 99.75%, and the recovery rate of TP was 81%. there were.

上澄水の評価;濁→透明であり、フロックの評価;“大きさ”は、フロックできない、小(φ3mm以下)、中(φ3~5mm)、大(φ5~10mm)、特大(φ10mm以上)であり、“硬さ”は、柔→硬、“握り感”は、握れない→しっかり握れる、であり、総合的な“評価”は、E~Aであり、“予想(予期)されるケーキ含水率は、90%以上、80~90%、70~80%、55~70%、55%以下、であった(表5参照)。 Evaluation of supernatant water: turbid → transparent, and evaluation of flocculation: “size” is non-floccable, small (φ3mm or less), medium (φ3-5mm), large (φ5-10mm), extra large (φ10mm or more). "Hardness" goes from soft to hard, "grip feeling" goes from not being able to grip to being able to grip firmly, and the overall "evaluation" is E to A, with "expected (expected) cake moisture content". The rates were 90% or more, 80-90%, 70-80%, 55-70%, and 55% or less (see Table 5).

本実施例では、バイオマス消化液の脱水処理で、ケーキ含水率を低減できるかどうかの検証を行った。 In this example, it was verified whether the moisture content of the cake could be reduced by dehydrating the biomass digestive fluid.

(1)汚泥性状の確認
試料として、バイオマス消化液(食品廃棄物原料の湿式メタン発酵消化液[試料の性状;TS(固形物)濃度:5.49%、pH:7.59.外観:黒濁色、臭い:硝化臭])を対象試料として使用した。
(1) Confirmation of sludge properties As a sample, biomass digestive liquid (wet methane fermentation digestive liquid of food waste raw material [sample properties: TS (solids) concentration: 5.49%, pH: 7.59. Appearance: black Cloudy color, odor: nitrification odor]) was used as the target sample.

(2)脱水試験
汚泥300mlに、脱水助剤のリセルバー(MT2000)を添加し、高分子凝集剤A(0.2%水溶液)を添加してフロックを形成させた。フロックを脱水試験機(加圧面積81cm、加圧・保持時間可変型)に投入して脱水試験を行い、排出されたケーキの含水率を測定した。脱水加圧・保持時間は、遠心機を想定して、2,000Gで1分間、スクリュープレス機を想定して490kPaで5分間とした。表10に、その結果を示した。
(2) Dewatering test To 300 ml of sludge, a dewatering aid, Reserva (MT2000), was added, and a polymer flocculant A (0.2% aqueous solution) was added to form flocs. The flocs were put into a dehydration tester (pressure area: 81 cm 2 , variable pressure/holding time type) to perform a dehydration test, and the water content of the discharged cake was measured. The dehydration pressurization/holding time was 2,000 G for 1 minute assuming a centrifuge, and 490 kPa for 5 minutes assuming a screw press. Table 10 shows the results.

Figure 0007373638000010
Figure 0007373638000010

リセルバーMT2000、高分子凝集剤A(0.2%水溶液)を添加し、遠心機想定で脱水した結果、ケーキ含水率は、77.62%であった。また、リセルバーMT2000,高分子凝集剤A(0.2%水溶液)を添加し、スクリュープレス機想定で脱水した結果、ケーキ含水率は、67.92%であった。脱離液中へのSSのリーク(漏れ)は、遠心機想定試験では、ほとんど無く、スクリュープレス機想定試験においても少量であった。 As a result of adding Reserva MT2000 and polymer flocculant A (0.2% aqueous solution) and dehydrating using a centrifuge, the cake moisture content was 77.62%. Further, Reserva MT2000 and polymer flocculant A (0.2% aqueous solution) were added, and the cake was dehydrated using a screw press, and the moisture content of the cake was 67.92%. There was almost no leakage of SS into the desorbed liquid in the test assuming a centrifuge, and there was also a small amount in the test assuming a screw press.

(3)まとめ
リセルバー脱水によって、遠心機想定試験でケーキ含水率は、77.62%であり、遠心機による75%以下への脱水は、脱水圧力が低いため不可能と考えられた。また、スクリュープレス機想定試験でケーキ含水率は、67.92%であったことで、スクリュープレス機により75%以下への脱水は可能であると判断された。
(3) Summary Due to Reserva dehydration, the cake moisture content was 77.62% in a centrifuge simulation test, and dehydration to 75% or less using a centrifuge was considered impossible due to the low dehydration pressure. In addition, the moisture content of the cake was 67.92% in a test assuming a screw press machine, so it was determined that dehydration to 75% or less was possible using a screw press machine.

本実施例では、バイオマス発電施設において発生した消化液の脱水処理を実施した。 In this example, the digestive fluid generated in a biomass power generation facility was dehydrated.

試料として、バイオマス発電の消化液[固液分離前の汚泥;TS(固形物)濃度:4.36%、pH:7.51、外観:黒濁色、臭い:硝化臭、固形分離後の汚泥;TS(固形物)濃度:1.04%、pH:8.14、外観:茶色、臭い:硝化臭]を使用して、該消化液の脱水処理試験を実施した。固液分離の前と後では、TS(固形物)濃度で、4倍以上の差があった。 The sample was digested fluid from biomass power generation [sludge before solid-liquid separation; TS (solids) concentration: 4.36%, pH: 7.51, appearance: cloudy black, odor: nitrification odor, sludge after solid separation. ; TS (solids) concentration: 1.04%, pH: 8.14, appearance: brown, odor: nitrification odor] was used to conduct a dehydration treatment test of the digestive fluid. There was a difference of more than 4 times in TS (solid matter) concentration before and after solid-liquid separation.

(1)凝集剤の選定
汚泥100mlに、脱水助剤のリセルバーMT2000を添加し、約20種類の凝集剤を各々添加し、リセルバーと汚泥との相性を確認し、品番選定を行うために、反応を確認した。表11に、その結果を示した。固液分離前と後の汚泥では、適合する凝集剤は同じ品番であった。固液分離前と後の汚泥では、凝集剤の添加量は、1.6倍の差があった。
(1) Selection of flocculant To 100 ml of sludge, add Reserva MT2000, a dewatering aid, and each of about 20 types of flocculants, check the compatibility between Reserva and sludge, and perform a reaction to select the product number. It was confirmed. Table 11 shows the results. The compatible coagulant had the same product number for the sludge before and after solid-liquid separation. There was a 1.6 times difference in the amount of flocculant added between the sludge before and after solid-liquid separation.

Figure 0007373638000011
Figure 0007373638000011

(2)脱水試験
汚泥に、リセルバー(MT2000)を添加率0.05%(対廃水容量)で添加し、高分子凝集剤Aを添加して、フロックを形成させた。フロックを脱水試験機(加圧面積81cm、圧力・保持時間可変型)に投入して脱水試験を行い、排出された脱水ケーキの含水率を測定した。脱水圧力・保持時間は、スクリュープレス脱水機を想定し、480kPaで5分間とした。表12に、その結果を示した。
(2) Dewatering test Reserva (MT2000) was added to the sludge at an addition rate of 0.05% (relative to wastewater volume), and polymer flocculant A was added to form flocs. A dehydration test was performed by putting the flocs into a dehydration tester (pressure area: 81 cm 2 , variable pressure/holding time type), and the water content of the discharged dehydrated cake was measured. The dewatering pressure and holding time were 480 kPa and 5 minutes assuming a screw press dehydrator. Table 12 shows the results.

Figure 0007373638000012
Figure 0007373638000012

(固液分離前の汚泥)
汚泥500mlに、リセルバーMT2000、高分子凝集剤A(0.2%水溶液)を添加量340mlで添加し、スクリュープレス機想定で脱水した結果、ケーキ含水率は、69.01%となった。
(固液分離後の汚泥)
汚泥700mlに、リセルバーMT2000、高分子凝集剤A(0.2%水溶液)を添加量300mlで添加し、スクリュープレス機想定で脱水した結果、ケーキ含水率は、73.88%となった。
(Sludge before solid-liquid separation)
Reserva MT2000 and polymer flocculant A (0.2% aqueous solution) were added to 500 ml of sludge in an amount of 340 ml, and dewatered using a screw press, resulting in a cake moisture content of 69.01%.
(Sludge after solid-liquid separation)
Reserva MT2000 and polymer flocculant A (0.2% aqueous solution) were added to 700 ml of sludge in an amount of 300 ml, and dewatered using a screw press, resulting in a cake moisture content of 73.88%.

(3)水質分析
廃水原水(脱水前の水)と、脱水試験での脱離液の水質分析を行った。T-Nは、公的機関で行い、BODは、BOD計により行った。表13に、その結果を示した。
(3) Water quality analysis We conducted water quality analysis of raw waste water (water before dehydration) and the desorbed liquid from the dehydration test. TN was conducted at a public institution, and BOD was conducted using a BOD meter. Table 13 shows the results.

Figure 0007373638000013
Figure 0007373638000013

(固液分離前の汚泥)
リセルバー脱水によって、BODが63.6%除去され、480mg/lとなった。T-Nは、除去率35%にとどまった。残った窒素のほとんどがアンモニア性窒素と考えられた。
(固液分離後の汚泥)
リセルバー脱水によって、BODが83.5%除去され、400mg/lとなった。
(Sludge before solid-liquid separation)
Reserva dehydration removed 63.6% of BOD to 480 mg/l. For TN, the removal rate remained at 35%. Most of the remaining nitrogen was thought to be ammonia nitrogen.
(Sludge after solid-liquid separation)
Reservoir dehydration removed 83.5% of BOD to 400 mg/l.

(4)まとめ
リセルバー脱水処理によって、BODが1/3になったことで、生物処理槽(曝気槽)の設置計画容量は、原水そのままを処理する場合の1/3になることが判明した。また、ケーキ含水率も70%前半を達成したことで、その後の処理が容易となり、堆肥化や産廃処分の計画が立て易くなることが判明した。
(4) Summary As the BOD was reduced to 1/3 by Reserva dehydration treatment, it was found that the planned installation capacity of the biological treatment tank (aeration tank) would be 1/3 of that for treating raw water as is. It was also found that the moisture content of the cake was in the low 70% range, making subsequent processing easier and making plans for composting and industrial waste disposal easier.

本実施例では、バイオマス発電の消化液(高濃度)を使用して、該消化液の脱水処理を実施した。 In this example, the digestive fluid (high concentration) from biomass power generation was used to dehydrate the digestive fluid.

試料として、バイオマス発電の消化液[廃水の性状;TS(固形物)の濃度:81.17%、pH:8.05、外観:濃茶色、臭い:少硝化臭)を使用した。TS(固形物)濃度が8%と非常に高く、以後の試験では、これを2倍希釈したものを使用した。 As a sample, digested fluid from biomass power generation [wastewater properties: TS (solids) concentration: 81.17%, pH: 8.05, appearance: dark brown, odor: low nitrification odor) was used. The TS (solid matter) concentration was very high at 8%, and in subsequent tests, a 2-fold dilution of this was used.

(1)脱水試験
廃水300mlに、脱水助剤のリセルバー(MT2000)を添加率0.05%(対廃水容量)添加し、凝集剤A又はBを添加して、フロックを形成させた。フロックを脱水試験機(加圧面積81cm、圧力・保持時間可変型)に投入し、脱水試験を行い、排出されたケーキの含水率を測定した。脱水圧力・保持試験は、スクリュープレス脱水機を想定し、480kPaで5分間とした。表14に、その結果を示した。
(1) Dehydration test To 300 ml of wastewater, a dehydration aid, Reserva (MT2000), was added at a rate of 0.05% (relative to wastewater volume), and flocculant A or B was added to form flocs. The flocs were put into a dehydration tester (pressure area: 81 cm 2 , variable pressure/holding time type), a dehydration test was conducted, and the water content of the discharged cake was measured. The dehydration pressure/retention test was conducted at 480 kPa for 5 minutes assuming a screw press dehydrator. Table 14 shows the results.

Figure 0007373638000014
Figure 0007373638000014

リセルバーMT2000、凝集剤Aを添加量60ml(0.5%水溶液)、凝集剤Bを添加量120ml(0.2%水溶液)添加し、スクリュープレス機想定で脱水した結果、ケーキ含水率は、61.1%となった。 As a result of adding Reserva MT2000, 60 ml of flocculant A (0.5% aqueous solution), 120 ml of flocculant B (0.2% aqueous solution), and dehydration using a screw press, the cake moisture content was 61 It became .1%.

(2)水質分析
廃水原水(脱水前の水)と、脱水試験での脱離液のBOD測定をBOD計により行った。表15に、その結果を示した。
リセルバー脱水において、BODが82.2%除去され、535mg/lとなった。目視による確認では、SSは、ほとんど除去された。原水の希釈倍率は、2倍以上が好適であり、リセルバー脱水処理においては、ケーキ含水率が61.1%となり、BODは82.2%除去され、535mlとなった。
(2) Water quality analysis BOD measurements of the wastewater raw water (water before dehydration) and the desorbed liquid from the dehydration test were performed using a BOD meter. Table 15 shows the results.
In the Reserva dehydration, 82.2% of BOD was removed, resulting in 535 mg/l. Visual confirmation showed that most of the SS was removed. The dilution ratio of the raw water is preferably 2 times or more, and in the reserva dehydration treatment, the cake water content was 61.1%, 82.2% of BOD was removed, and the volume was 535 ml.

Figure 0007373638000015
Figure 0007373638000015

本実施例では、バイオマス消化液を、リセルバー脱水処理することによって、BODやSS濃度をどれだけ下げられるか、また、ケーキ含水率をどれだけ下げられるかについて試験した。図1に、本実施例で使用したリセルバー脱水システムの例を模式的に示した。図中、フロックセパレータを、オプションとして示した。 In this example, tests were conducted to determine how much the BOD and SS concentrations could be lowered and how much the cake water content could be lowered by subjecting the biomass digestive fluid to a reservoir dehydration process. FIG. 1 schematically shows an example of the reservoir dewatering system used in this example. In the figure, a flock separator is shown as an option.

被処理試料の廃水として、バイオマス消化液[試料の性状;TS(固形物)濃度:4.17%、pH:7.50、外観:濃茶褐色、臭い:硝化臭]を使用し、該試料の脱水試験及び水質分析試験を行った。 Biomass digestive fluid [sample properties: TS (solids) concentration: 4.17%, pH: 7.50, appearance: dark brown, odor: nitrification odor] was used as the wastewater of the sample to be treated. Dehydration tests and water quality analysis tests were conducted.

(1)脱水試験
廃水500mlに、脱水助剤のリセルバー(MT2000)を0.30%(対廃水容量)添加し、凝集剤A(0.5%水溶液)を150ml、凝集剤B(0.2%水溶液)を350ml添加してフロックを形成させた。ろ布で一旦フロックの水を切り、水分は、脱離水として後段の水質分析試験を行い、固形物は、脱水試験機(加圧面積81m、圧力・保持時間可変型)に投入して脱水試験を行い、排出されたケーキの含水率測定を行った。脱水圧力・保持時間は、スクリュープレス脱水機を想定し、480kPaで5分間とした。表16に、その結果を示した。
(1) Dehydration test To 500 ml of wastewater, add 0.30% (based on wastewater volume) of Reserva (MT2000), a dehydration aid, 150 ml of flocculant A (0.5% aqueous solution), and flocculant B (0.2 % aqueous solution) was added to form flocs. Water is removed from the floc using a filter cloth, and the moisture is used as desorbed water for a subsequent water quality analysis test.The solids are dehydrated by putting them into a dehydration tester (pressure area 81 m 2 , variable pressure and holding time). A test was carried out and the moisture content of the discharged cake was measured. The dewatering pressure and holding time were 480 kPa and 5 minutes assuming a screw press dehydrator. Table 16 shows the results.

Figure 0007373638000016
Figure 0007373638000016

表に示した通り、リセルバーMT2000を添加し、凝集剤A、Bを添加し脱水したことで、ケーキ含水率は、71.95%となった。凝集剤の添加量は、バイオマス原料によって異なってくるが、牛糞、鶏糞由来のバイオマス消化液の場合は、添加量が多くなる傾向にある。 As shown in the table, the moisture content of the cake was 71.95% by adding Reserva MT2000 and adding flocculants A and B for dehydration. The amount of flocculant added varies depending on the biomass raw material, but in the case of biomass digestive fluid derived from cow dung or chicken dung, the amount added tends to be large.

(2)水質分析試験
廃水原水(脱水前の水)と脱水試験での脱水液のBOD、SS(浮遊物質)、リン、窒素の測定を公的機関(環境計量士)により行った。表17に、その結果を示した。
(2) Water quality analysis test Measurements of BOD, SS (suspended solids), phosphorus, and nitrogen in the raw wastewater (water before dehydration) and the dehydrated liquid in the dehydration test were conducted by a public organization (environmental measurer). Table 17 shows the results.

Figure 0007373638000017
Figure 0007373638000017

廃水原水(脱水前の水)のBODが、90.5%除去され、リセルバー脱水脱離液のBODが、4,300mg/lから410mg/lとなり、リセルバーの水処理効果が顕著に発揮されることが確認された。また、廃水原水(脱水前の水)のSSが99%除去され、リセルバー脱水脱離液のSSが、26,000mg/lから25mg/lとなり、これについても、リセルバーの水処理効果が顕著に発揮されることが確認された。 The BOD of wastewater raw water (water before dehydration) is removed by 90.5%, and the BOD of Reserva dehydration and dehydrated liquid is reduced from 4,300 mg/l to 410 mg/l, and the water treatment effect of Reserva is significantly demonstrated. This was confirmed. In addition, 99% of the SS in the wastewater raw water (water before dehydration) was removed, and the SS of the Reserva dehydration solution decreased from 26,000 mg/l to 25 mg/l, indicating that Reserva's water treatment effect was remarkable. It was confirmed that it works.

リセルバー脱水によって、廃水原水(脱水前の水)のBODが、90.5%除去され、リセルバー脱離液のSSが99.9%除去され25mg/lとなった。また、ケーキ含水率も71.95%という低い値となった。これらの値から、バイオマス消化液のリセルバー脱水は、脱水、水処理性能とも高効率での処理が可能であることが確認された。 By Reserva dehydration, 90.5% of the BOD of the wastewater raw water (water before dehydration) was removed, and 99.9% of the SS of the Reserva desorbed liquid was removed to 25 mg/l. Furthermore, the cake moisture content was as low as 71.95%. From these values, it was confirmed that reservoir dehydration of biomass digested fluid can be performed with high efficiency in both dehydration and water treatment performance.

(3)まとめ
リセルバーによる脱水処理により、脱水ケーキ含水率は75%~65%に下がり、含水率は、リセルバー添加量の増減により自由に設定できることが確認された。リセルバー脱水脱離液の水質分析試験により、該リセルバー脱水脱離液のリンは、平均95%除去され、SS(浮遊物質)は、平均95%除去され、BODは、平均60%除去され、窒素は、平均60%除去されることが確認された。リセルバーによる脱水システムは、水処理システムとして、水のリサイクル技術として使用できることが確認された。
(3) Summary It was confirmed that the water content of the dehydrated cake was reduced to 75% to 65% by dehydration treatment using Reserva, and that the water content can be freely set by increasing or decreasing the amount of Reserva added. A water quality analysis test of the Reserva dehydration and dehydration solution revealed that phosphorus in the Reserva dehydration and dehydration solution was removed by an average of 95%, SS (suspended solids) by an average of 95%, BOD by an average of 60%, and nitrogen. was confirmed to be removed by an average of 60%. It was confirmed that the dewatering system using the reserva can be used as a water treatment system and as a water recycling technology.

本実施例では、バイオマス発電において発生する消化液を、リセルバー脱水処理することによって、BODをどれだけ下げられるか、また、ケーキ脱水率をどれだけ下げられるかについて試験した。実施例7で使用したリセルバー脱水システムと同様のリセルバー脱水システムを使用した。 In this example, tests were conducted to determine how much the BOD and cake dehydration rate could be reduced by subjecting the digestive fluid generated in biomass power generation to a reservoir dehydration process. A reserva dehydration system similar to that used in Example 7 was used.

(1)脱水試験
汚泥500mlに、脱水助剤のリセルバー(MT2000)並びに高分子凝集剤A(0.2%水溶液)を90ml添加してフロックを形成させた。フロックを脱水試験機(加圧面積81cm、加圧・保持時間可変)に投入して脱水試験を行い、排出されたケーキの含水率を測定をした。脱水圧力・保持時間は、スクリュープレス脱水機を想定し、480kPaで5分間とした。表18に、その結果を示した。
(1) Dewatering test To 500 ml of sludge, 90 ml of dewatering aid Reserva (MT2000) and polymer flocculant A (0.2% aqueous solution) were added to form flocs. The flocs were put into a dehydration tester (pressure area: 81 cm 2 , pressure/holding time variable) to conduct a dehydration test, and the moisture content of the discharged cake was measured. The dewatering pressure and holding time were 480 kPa and 5 minutes assuming a screw press dehydrator. Table 18 shows the results.

Figure 0007373638000018
Figure 0007373638000018

表に示した通り、リセルバーMT2000を0.30%添加(対廃水容量)し、高分子凝集剤A(0.2%水溶液)を90ml添加し、スクリュープレス機想定で脱水した結果、ケーキ含水率は、72.75%となった。 As shown in the table, as a result of adding 0.30% of Reserva MT2000 (relative to waste water volume), adding 90 ml of polymer flocculant A (0.2% aqueous solution), and dehydrating using a screw press, the cake water content was was 72.75%.

(2)水質分析試験
廃水原水(脱水前の水)と、脱水試験による脱離液の測定をBOD計(セントラル科学(社)、OxiTop System)により行った。表19に、その結果を示した。リセルバー脱水によって、廃水原水(脱水前の水)のBOD;6,920mg/lからリセルバー脱水脱離液(脱水後の水)のBOD;3,450mg/lに半減した。
(2) Water quality analysis test Waste water raw water (water before dehydration) and the dehydrated liquid from the dehydration test were measured using a BOD meter (Central Kagaku Co., Ltd., OxiTop System). Table 19 shows the results. By Reserva dehydration, the BOD of raw waste water (water before dehydration) was halved from 6,920 mg/l to the BOD of Reserva dehydration solution (water after dehydration) of 3,450 mg/l.

Figure 0007373638000019
Figure 0007373638000019

リセルバー脱水処理によって、廃水原水(脱水前の水)のBODが半減したことで、生物処理槽(曝気槽)の設計計画容量は、原液をそのまま処理する場合の半分になることが確認された。また、ケーキ含水率も70%前半を達成したことで、その後の処理が容易となり、堆肥化や産廃処分の計画が立て易くなることが確認された。 It was confirmed that the BOD of wastewater raw water (water before dehydration) was halved by Reserva dehydration treatment, and the design capacity of the biological treatment tank (aeration tank) was halved compared to when the raw solution was treated as is. It was also confirmed that the moisture content of the cake was in the low 70% range, making subsequent processing easier and making plans for composting and industrial waste disposal easier.

(3)まとめ
脱水処理により、脱水ケーキ含水率は、75%~65%に下がることが確認された。リセルバー脱水の脱離液の水質分析試験の結果、リンは平均95%除去され、SS(浮遊物質)は平均95%除去され、BODは平均60%除去され、窒素は平均60%除去されることが確認された。リセルバー脱水システムは、水処理システムのリサイクル技術として使用できることが確認された。
(3) Summary It was confirmed that the water content of the dehydrated cake was reduced to 75% to 65% by dehydration treatment. As a result of the water quality analysis test of the dewatered liquid from Reserva dehydration, it was found that phosphorus was removed by an average of 95%, SS (suspended solids) was removed by an average of 95%, BOD was removed by an average of 60%, and nitrogen was removed by an average of 60%. was confirmed. It was confirmed that the Reserva dewatering system can be used as a recycling technology for water treatment systems.

本実施例では、バイオマス発電消化液を脱水処理することにより、ケーキ含水率の測定と、リセルバー脱水脱離液の水質分析試験を実施した。 In this example, by dehydrating the biomass power generation digestive fluid, the cake water content was measured and the water quality analysis test of the reserva dehydrated and dehydrated fluid was conducted.

本実施例では、試料として汚泥[汚泥性状;TS(固形物)濃度:2.73%、pH:7.63、外観:濃茶黒褐色、臭い:少腐敗臭]を使用し、該汚泥の脱水試験並びにリセルバー脱水脱離液の水質分析[リン、SS(浮遊物質)、BOD、窒素]を行った。図2に、本実施例で使用したリセルバー脱水システムプラントの例を模式的に示した。 In this example, sludge [sludge properties: TS (solids) concentration: 2.73%, pH: 7.63, appearance: dark brown blackish brown, odor: slight putrid odor] was used as a sample, and the sludge was dehydrated. Tests and water quality analysis of Reserva dehydration and desorption fluid [phosphorus, SS (suspended solids), BOD, nitrogen] were conducted. FIG. 2 schematically shows an example of the reservoir dewatering system plant used in this example.

(1)脱水試験
汚泥800mlに、脱水助剤のリセルバー(MT2000)を0.10%(対汚泥容量)添加し、高分子凝集剤(0.2%水溶液)を添加し、フロックを形成させた。フロックを脱水試験機(加圧面積81cm、加圧・保持時間可変)に投入し、脱水試験を行い、排出されたケーキの含水率を測定をした。脱水圧力・保持時間は、スクリュープレス脱水機を想定し、480kPaで5分間とした。表20に、その結果を示した。
(1) Dewatering test To 800 ml of sludge, 0.10% (based on sludge volume) of Reserva (MT2000), a dehydration aid, was added, and a polymer flocculant (0.2% aqueous solution) was added to form flocs. . The flocs were put into a dehydration tester (pressure area 81 cm 2 , pressure and holding time variable), a dehydration test was conducted, and the moisture content of the discharged cake was measured. The dewatering pressure and holding time were 480 kPa and 5 minutes assuming a screw press dehydrator. Table 20 shows the results.

Figure 0007373638000020
Figure 0007373638000020

表に示した通り、リセルバーMT2000を0.1%、高分子凝集剤(既存品)を100ml(対TS1.5%)添加し、スクリュープレス想定で脱水した結果、ケーキ含水率は72.11%となった。元々脱水し易い汚泥であるが、リセルバーを添加することでSSのリーク(漏れ)がほとんど無くなることや、その後の発酵促進につながることが確認された。リセルバーを添加して脱水した結果、ケーキ含水率は72.11%となり、添加量を増やすことにより、更なる低減が可能であることが確認された。 As shown in the table, as a result of adding 0.1% of Reserva MT2000 and 100ml of polymer flocculant (existing product) (1.5% of TS) and dehydration assuming a screw press, the cake moisture content was 72.11%. It became. Although sludge is originally easy to dehydrate, it was confirmed that adding Reserva almost eliminates SS leakage and promotes subsequent fermentation. As a result of dehydration by adding Reserva, the cake moisture content was 72.11%, and it was confirmed that further reduction was possible by increasing the amount added.

(2)水質分析試験
リセルバー脱水脱離液の水質分析試験を行った。その結果、リンは平均95%除去され、SS(浮遊物質)は平均95%除去され、BODは平均60%除去され、窒素は平均60%除去される、という脱水効果が得られた。含水率は、リセルバー添加量の増減により自由に設定できることが確認された。リセルバー脱水システムは、水処理システムのリサイクル技術として使用できることが確認された。
(2) Water quality analysis test A water quality analysis test of Reserva dehydrated and desorbed liquid was conducted. As a result, dehydration effects were obtained in which phosphorus was removed by an average of 95%, SS (suspended solids) by an average of 95%, BOD by an average of 60%, and nitrogen by an average of 60%. It was confirmed that the water content can be freely set by increasing or decreasing the amount of reservoir added. It was confirmed that the Reserva dewatering system can be used as a recycling technology for water treatment systems.

本実施例では、インク洗浄廃水の汚泥の脱水処理によって、どれだけケーキ含水率を低減できるかを調べた。
本実施例では、試料として、インク洗浄廃水汚泥[汚泥性状;TS(固形物濃度:0.45%、pH:6.24、外観:黒濁やや透明色、臭い:鉱物油臭]を使用し、リセルバー脱水試験、リセルバー脱水脱離液の水質分析試験[リン、SS(浮遊物質)、BOD、窒素]を行った。
In this example, it was investigated how much the moisture content of the cake could be reduced by dehydrating the sludge of ink cleaning wastewater.
In this example, ink cleaning wastewater sludge [sludge properties: TS (solids concentration: 0.45%, pH: 6.24, appearance: cloudy and slightly transparent color, odor: mineral oil smell) was used as a sample. , Reserva dehydration test, and water quality analysis test of Reserva dehydration and dehydrated liquid [phosphorus, SS (suspended solids), BOD, nitrogen].

(1)脱水試験
汚泥800mlに、脱水助剤のリセルバー(MT2000)を0.3%(対汚泥容量)添加し、高分子凝集剤A(0.2%水溶液)を75ml添加し、フロックを形成させた。フロックを脱水試験機(加圧面積81cm、加圧・保持時間可変)に投入し、排出されたケーキの含水率を測定をした。脱水圧力・保持時間は、フィルタープレス脱水機想定で、960kPaで10分間とし、スクリュープレス機想定で、480kPaで5分間とした。表21に、脱水試験の結果を示した。
(1) Dewatering test To 800 ml of sludge, add 0.3% (relative to sludge volume) of the dewatering aid Reserva (MT2000) and 75 ml of polymer flocculant A (0.2% aqueous solution) to form flocs. I let it happen. The flocs were placed in a dehydration tester (pressure area: 81 cm 2 , pressurization/holding time variable), and the moisture content of the discharged cake was measured. The dewatering pressure and holding time were 960 kPa for 10 minutes assuming a filter press dehydrator, and 480 kPa for 5 minutes assuming a screw press machine. Table 21 shows the results of the dehydration test.

Figure 0007373638000021
Figure 0007373638000021

表に示した通り、リセルバーMT2000、高分子凝集剤Aを添加し、フィルタープレス想定で脱水した結果、ケーキ含水率は72.74%となり、また、フィルタープレス想定で脱水した結果、ケーキ含水率は77.54%となった。リセルバー脱水によって、ケーキ含水率は72.74%~77.54%となり、現状から15%~20%以上の低減となった。これで、脱水ケーキ量は現状の1/3となった。 As shown in the table, as a result of adding Reserva MT2000 and polymer flocculant A and dehydrating assuming a filter press, the cake moisture content was 72.74%. It was 77.54%. As a result of Reserva dehydration, the moisture content of the cake became 72.74% to 77.54%, which was a reduction of 15% to 20% or more from the current state. This reduced the amount of dehydrated cake to 1/3 of the current amount.

(2)脱水効果
ケーキ含水率は、リセルバー添加量の増減により自由に設定することができること、水処理効果として、リンは平均95%が除去され、SS(浮遊物質)は平均95%が除去され、BODは平均60%が除去され、窒素は平均60%が除去されることが確認された。リセルバー脱水システムは、水処理システムのリサイクル技術として使用できることが確認された。
(2) Dehydration effect The moisture content of the cake can be freely set by increasing or decreasing the amount of reserva added, and as a water treatment effect, an average of 95% of phosphorus is removed, and an average of 95% of SS (suspended solids) is removed. It was confirmed that 60% of BOD and 60% of nitrogen were removed on average. It was confirmed that the Reserva dewatering system can be used as a recycling technology for water treatment systems.

以上詳述したとおり、本発明は、バイオマス消化液の処理方法及びその廃水処理装置に係るものであり、本発明は、1)バイオマス消化液中の、特に、乳化成分、微粒子成分に着目し、これらを曝気槽に流入させる前に効率よく除くために、Mp値(含水率評価)がMp(ケーキ含水率)≦70、より詳しくは、Mp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する特定の脱水助剤と凝集剤とを併用して、バイオマス消化液中の乳化成分と微粒子成分を包接したフロックの形成と、フロック除去/脱水をすることにより、生物処理槽(曝気槽)による生物処理を実行可能とした、2)上記特定の脱水助剤と凝集剤との併用により、バイオマス消化液を、水質汚濁防止法による一般排水基準を満たす形で排水することを可能とした、3)残渣として発生する脱水ケーキを堆肥化施設で再利用することが可能である、4)バイオマス消化液を、効率よく生物処理する方法及びその廃水処理装置(施設)を提供することができる、5)本発明により、フロック;特大(φ10mm以上)~大(φ5~10mm)を除去した脱離液と、脱水ケーキ;含水率70%以下、より詳しくは、含水率55%以下乃至55~70%とに分離することができ、原水のBODを78%以下に除去することを可能にした、6)BOD容積負担の低減、汚泥発生量の抑制及び必要酸素量の削減による安定した水処理効果を期待することができる、という産業上の利用可能性を有するものである。 As detailed above, the present invention relates to a method for treating biomass digestive fluid and a wastewater treatment device thereof. In order to efficiently remove these before flowing into the aeration tank, the Mp value (moisture content evaluation) should be set to Mp (cake moisture content) ≦70, more specifically, Mp (cake moisture content) ≦55 to Mp (cake moisture content). ) = 55 to 70 in combination with a flocculant and the formation of flocs that include emulsified components and fine particle components in the biomass digestive fluid, as well as floc removal/dehydration. Biological treatment using a treatment tank (aeration tank) is now possible; 2) By using the specific dehydration aid and flocculant in combination, biomass digestive fluid is discharged in a manner that meets the general wastewater standards stipulated by the Water Pollution Prevention Act. 3) It is possible to reuse the dehydrated cake generated as a residue in a composting facility. 4) A method for efficiently biologically processing biomass digested fluid and its wastewater treatment equipment (facility) 5) According to the present invention, a desorbed liquid from which flocs; % or less to 55-70%, making it possible to remove the BOD of raw water to less than 78%. 6) Reducing the BOD volume burden, suppressing the amount of sludge generated, and reducing the amount of oxygen required. It has industrial applicability in that stable water treatment effects can be expected.

Claims (5)

エマルジョンを形成している消化汚泥の処理方法であって、
被処理水の消化汚泥に、植物性繊維を機械的剪断により粉砕した粒径1~100μmの粉砕物を主成分とし、Mp値(Moisture percentage value;含水率評価)がMp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する脱水助剤、及びフロック(Flock;綿毛状沈殿)形成能を有する凝集剤とを添加して、フロック;特大(φ10mm以上)~大(φ5~10mm)を形成させる工程、該フロックを除去した脱離液と、脱水ケーキ;含水率55%以下乃至55~70%とに分離する工程、次いで、該脱離液を生物処理槽(曝気槽)に投入して生物処理を実行する工程、を含むことを特徴とする消化汚泥の処理方法。
A method for treating digested sludge forming an emulsion, the method comprising:
The digested sludge of the water to be treated is mainly composed of pulverized vegetable fibers with a particle size of 1 to 100 μm by mechanical shearing, and the Mp value (moisture percentage value; moisture content evaluation) is ≦ Mp (cake moisture content) ≦ 55 to Mp (cake moisture content) = 55 to 70, and a flocculant having the ability to form fluff (Flock) are added to form flocs; extra large (φ10 mm or more) to large (φ5 10 mm), a step of separating the desorbed liquid from which the flocs have been removed and a dehydrated cake; a water content of 55% or less to 55-70%; then, the desorbed liquid is transferred to a biological treatment tank (aeration tank ) and performing biological treatment.
少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽を備えた浄化施設において、混和槽で、被処理水の消化汚泥に、上記特定の脱水助剤を添加する工程、次いで、反応槽で、被処理水に、フロック形成能を有する凝集剤を添加して、消化汚泥中の乳化成分と微粒子成分を包接したフロック;特大(φ10mm以上)~大(φ5~10mm)を形成させる工程、汚泥脱水機で、該フロックを除去すると同時に、フロックを除去した脱離液と、脱水ケーキ;含水率55%以下乃至55~70%とに分離する工程、次いで、該脱離液を生物処理槽(曝気槽)に投入して生物処理を実行する工程、を備えた、請求項1に記載の処理方法。 In a purification facility equipped with at least a mixing tank, a reaction tank, a sludge dehydrator, a (neutralization tank), and a biological treatment tank, a step of adding the specific dehydration aid to the digested sludge of the water to be treated in the mixing tank; Next, in a reaction tank, a flocculant having floc-forming ability is added to the water to be treated to form flocs containing emulsified components and fine particle components in the digested sludge; extra large (φ10 mm or more) to large (φ5 to 10 mm). a step of removing the flocs in a sludge dewatering machine and simultaneously separating the dehydrated liquid from which the flocs have been removed and a dehydrated cake with a water content of 55% or less to 55-70%; The treatment method according to claim 1, comprising the step of performing biological treatment by introducing the liquid into a biological treatment tank (aeration tank). 被処理水の生物処理槽流入前に、消化汚泥中の乳化成分と微粒子成分を包接したフロックを除去する操作を実行する、請求項1又は2に記載の処理方法。 3. The treatment method according to claim 1, wherein an operation for removing flocs containing emulsified components and particulate components in the digested sludge is performed before the water to be treated flows into the biological treatment tank. 上記請求項1から3のいずれかに記載の消化汚泥の処理方法で使用するための廃水処理装置であって、
少なくとも混和槽-反応槽-汚泥脱水機-(中和槽)-生物処理槽を備えた浄化施設を構成要素として含み、
1)混和槽で、被処理水のエマルジョンを形成している消化汚泥に、植物性繊維を機械的剪断により粉砕した粒径1~100μmの粉砕物を主成分とし、Mp値(含水率評価)がMp(ケーキ含水率)≦55乃至Mp(ケーキ含水率)=55~70を有する脱水助剤を添加する工程、
2)反応槽で、被処理水にフロック形成能を有する凝集剤を添加して消化汚泥中の乳化成分と微粒子成分を包接したフロック;特大(φ10mm以上)~大(φ5~10mm)を形成させる工程、
3)汚泥脱水機で、該フロックを除去した脱離液と、脱水ケーキ;含水率55%以下乃至55~70%とに分離する工程、
を実行することにより、上記脱離液を生物処理槽(曝気槽)に投入して生物処理を実施するようにしたことを特徴とする上記廃水処理装置。
A wastewater treatment device for use in the method for treating digested sludge according to any one of claims 1 to 3, comprising:
The components include a purification facility equipped with at least a mixing tank, a reaction tank, a sludge dewatering machine, a neutralization tank, and a biological treatment tank,
1) In the mixing tank, the digested sludge forming an emulsion of the water to be treated is mixed with the main component of crushed vegetable fibers with a particle size of 1 to 100 μm by mechanical shearing, and the Mp value (moisture content evaluation) is added. a step of adding a dehydration aid having Mp (cake moisture content) ≦55 to Mp (cake moisture content) = 55 to 70;
2) In the reaction tank, a flocculant with floc-forming ability is added to the water to be treated to form flocs that include emulsified components and fine particle components in the digested sludge; extra-large (φ10 mm or more) to large (φ5-10 mm) The process of making
3) A step of separating the dehydrated liquid from which the flocs have been removed and a dehydrated cake with a water content of 55% or less to 55 to 70% using a sludge dehydrator;
The above-mentioned wastewater treatment apparatus is characterized in that the desorbed liquid is introduced into a biological treatment tank (aeration tank) to carry out biological treatment.
1)混和槽で、被処理水の消化汚泥に、Mp値(含水率評価)がMp(ケーキ含水率)=55~70を有する脱水助剤を添加する工程、
2)反応槽で、被処理水に凝集剤を添加して消化汚泥中の乳化成分と微粒子成分を包接したフロック;大(φ5~10mm)を形成させる工程、
3)汚泥脱水機で、該フロックを除去した脱離液と、脱水ケーキ;含水率55~70%とに分離する工程、
を実行することにより、上記脱離液を生物処理槽(曝気槽)に投入して生物処理を実施するようにした、請求項4に記載の廃水処理装置。
1) A step of adding a dehydration aid having an Mp value (moisture content evaluation) of Mp (cake water content) = 55 to 70 to the digested sludge of the water to be treated in a mixing tank;
2) A step of adding a flocculant to the water to be treated in a reaction tank to form large flocs (φ5 to 10 mm) that include emulsified components and fine particle components in the digested sludge;
3) A step of separating into a dehydrated liquid from which the flocs have been removed and a dehydrated cake with a water content of 55 to 70% using a sludge dehydrator;
The wastewater treatment apparatus according to claim 4, wherein the desorbed liquid is introduced into a biological treatment tank (aeration tank) to carry out biological treatment.
JP2022187686A 2018-05-09 2022-11-24 Digested sludge treatment method and wastewater treatment equipment Active JP7373638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022187686A JP7373638B2 (en) 2018-05-09 2022-11-24 Digested sludge treatment method and wastewater treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018090796A JP7184535B2 (en) 2018-05-09 2018-05-09 Biomass digestive juice treatment method and its wastewater treatment equipment
JP2022187686A JP7373638B2 (en) 2018-05-09 2022-11-24 Digested sludge treatment method and wastewater treatment equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018090796A Division JP7184535B2 (en) 2017-05-12 2018-05-09 Biomass digestive juice treatment method and its wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2023015390A JP2023015390A (en) 2023-01-31
JP7373638B2 true JP7373638B2 (en) 2023-11-02

Family

ID=68538573

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018090796A Active JP7184535B2 (en) 2017-05-12 2018-05-09 Biomass digestive juice treatment method and its wastewater treatment equipment
JP2022187686A Active JP7373638B2 (en) 2018-05-09 2022-11-24 Digested sludge treatment method and wastewater treatment equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018090796A Active JP7184535B2 (en) 2017-05-12 2018-05-09 Biomass digestive juice treatment method and its wastewater treatment equipment

Country Status (1)

Country Link
JP (2) JP7184535B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145199A (en) 2001-11-06 2003-05-20 Fuji Electric Co Ltd Method for treating methane-fermentation digestive- fluid of livestock excretion
JP2005248337A (en) 2004-03-01 2005-09-15 Seihachiro Miura Highly active cellulose fiber, method for producing the same, and dehydrating auxiliary using the same
WO2006022188A1 (en) 2004-08-26 2006-03-02 Miura, Etsuko Dewatering promoter and method for production thereof
JP2006297229A (en) 2005-04-18 2006-11-02 Daiyanitorikkusu Kk Livestock waste water treatment method
JP2013233519A (en) 2012-05-10 2013-11-21 Ishigaki Co Ltd Sludge dehydration treatment system
JP5613099B2 (en) 2011-04-20 2014-10-22 東海ゴム工業株式会社 Sound insulation structure
JP2018192383A (en) 2017-05-12 2018-12-06 征八朗 三浦 Parlor waste water processing method and parlor waste water processing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613099A (en) * 1979-07-10 1981-02-07 Nichireki Chem Ind Co Ltd Treating method of sludge
JPH0538495A (en) * 1991-08-08 1993-02-19 Hitachi Chem Co Ltd Pretreatment of hospital drainage for performing purifying treatment
JPH10109094A (en) * 1996-10-04 1998-04-28 Mori Plant:Kk Treatment of waste water or the like of barn
JP2005021839A (en) 2003-07-04 2005-01-27 Fuji Electric Holdings Co Ltd Treatment method and treatment apparatus for methane fermentation waste
JP4457824B2 (en) 2004-09-21 2010-04-28 パナソニック株式会社 Parlor wastewater treatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145199A (en) 2001-11-06 2003-05-20 Fuji Electric Co Ltd Method for treating methane-fermentation digestive- fluid of livestock excretion
JP2005248337A (en) 2004-03-01 2005-09-15 Seihachiro Miura Highly active cellulose fiber, method for producing the same, and dehydrating auxiliary using the same
WO2006022188A1 (en) 2004-08-26 2006-03-02 Miura, Etsuko Dewatering promoter and method for production thereof
JP2006297229A (en) 2005-04-18 2006-11-02 Daiyanitorikkusu Kk Livestock waste water treatment method
JP5613099B2 (en) 2011-04-20 2014-10-22 東海ゴム工業株式会社 Sound insulation structure
JP2013233519A (en) 2012-05-10 2013-11-21 Ishigaki Co Ltd Sludge dehydration treatment system
JP2018192383A (en) 2017-05-12 2018-12-06 征八朗 三浦 Parlor waste water processing method and parlor waste water processing equipment

Also Published As

Publication number Publication date
JP2023015390A (en) 2023-01-31
JP7184535B2 (en) 2022-12-06
JP2019195768A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US9771292B2 (en) Treatment of waste products with anaerobic digestion
JP6121589B2 (en) Anaerobic treatment method
CN104245601A (en) Method for treating a waste stream using a bioreactor and a membrane filter
CN101186423A (en) Heat treatment-dehydration-fertilizer making method for town sewage and sludge
KR102317178B1 (en) Livestock excrement and food disposal facility non-discharge system
CN103524001A (en) Treatment method for high fat food processing wastewater
Ansari et al. Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater
CN113664023A (en) System and process for purifying sewage by using kitchen waste hydrolysis as denitrification carbon source
JP5371510B2 (en) Combined treatment of wastewater and organic residue
AU2012292946A1 (en) A water treatment system
WO2018207927A1 (en) Method for treating wastewater and device for treating wastewater for same
JP7373638B2 (en) Digested sludge treatment method and wastewater treatment equipment
JP6996866B2 (en) Parlor wastewater treatment method and its wastewater treatment equipment
WO2009021552A1 (en) Improved separation/purification method / installation for aqueous liquid dispersions of organic material, and use of such method / installation in an integrated treatment of manure and/or organic disgestates
JP6395877B2 (en) Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
KR101262192B1 (en) Device of manufacturing bio-fuel made of solid separated from livestock wastewater
CA2982728C (en) Method and system for anaerobic treatment of organically loaded wastewater
EP2746231A1 (en) Method and apparatus for the treatment of process water from a hydrothermal organic material conversion process
CN114871253A (en) Kitchen waste leachate treatment system and method
EP2653452B1 (en) Method for the treatment of process water from a hydrothermal organic conversion process
KR101393554B1 (en) Food waste to produce a de-icing salt device and method for it&#39;s
JP7246462B2 (en) Parlor wastewater treatment method and its wastewater treatment equipment
CN219823906U (en) Garbage leachate and kitchen sewage cooperative treatment system
Frenkel et al. Food‐Processing Wastes
JP2018134568A (en) Organic waste treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7373638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150