JP2017098434A - Printed-circuit board - Google Patents
Printed-circuit board Download PDFInfo
- Publication number
- JP2017098434A JP2017098434A JP2015229980A JP2015229980A JP2017098434A JP 2017098434 A JP2017098434 A JP 2017098434A JP 2015229980 A JP2015229980 A JP 2015229980A JP 2015229980 A JP2015229980 A JP 2015229980A JP 2017098434 A JP2017098434 A JP 2017098434A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- wiring
- layer
- layers
- printed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
本発明は、配線抵抗を低減させる印刷配線板に関する。 The present invention relates to a printed wiring board that reduces wiring resistance.
近年、電子機器の小型化や高機能化に伴って、電子回路基板(印刷配線板)に搭載される外付け電子部品の部品点数の削減が求められている。このため、印刷配線板内にインダクタンス素子やキャパシタンス素子等の電子部品を直接形成する(内蔵させる)技術の開発が進められており、渦巻状の配線パターンのみで形成されるインダクタンス素子(コイル構造体)についてもさらなる小型化が求められている。 In recent years, with the miniaturization and high functionality of electronic devices, reduction in the number of external electronic components mounted on an electronic circuit board (printed wiring board) has been demanded. For this reason, development of technology for directly forming (incorporating) electronic components such as inductance elements and capacitance elements in a printed wiring board has been underway, and an inductance element (coil structure) formed only by a spiral wiring pattern is being developed. ) Is required to be further downsized.
例えば、特許文献1には、コア層の少なくとも片側に形成されたビルドアップ層に形成された導体パターンに沿って金属めっきされた長穴パターンを形成し、また隣接する導体間の誘電体を除去して溝状部を設けた多層基板インダクタ15が記載されている。このコア層に向かって凹んだ溝状部に、立体的に導体パターンが形成されるので、導体損失および浮遊容量を極力低減することができるとしている。
また、特許文献2には、電子回路基板(多層配線基板)の複数の配線層を所定の形状にパターニングするとともにビア(垂直配線)で接続して、螺旋状のコイル(配線)を形成したコイル内蔵多層基板が記載されている。
また、特許文献3には、基板と、各々が複数の個別のコイル・セグメントを含む複数の導体層と、複数の個別のフィラメントを規定するために、異なる層のコイル・セグメントを電気的に相互連結する複数の中間層コネクターであり、前記フィラメントの各々は、実質的に同一のうねりを前記複数の導体層を介して追従する、複数の中間層コネクターと、を有する、ペア・コイルとして使用する印刷回路基板コイルが記載されている。
For example, in
Further,
従来、インダクタンス素子は、図12に示すように、印刷配線板90の同じ層で渦巻状にコイル配線9を施して、インダクタンス値を得るものである。インダクタンス値を満たすために、コイル配線9の巻き数を増やし、配線抵抗が大きくなった場合は、導体を厚くするか、または配線幅を太くして、抵抗値を低減させている。コイル配線9は、上位の層から下位の層へ向かって順番に接続ビアにて接続して、コイル配線層を増やしていくことで螺旋状に形成される。このようにコイル配線の螺旋状の巻き数を増やしていくことで、高いインダクタンス値を得ることができ、コイル配線としての特性を得ることができる(このようなコイル配線を以下、コイルシングル配線と言う)。
しかしながら、この方法で所望のインダクタンス値を得た場合、巻数の増加による抵抗増加分を、銅箔厚や線幅を太くする方法では吸収できずに、効率の低下を招いてしまう。
Conventionally, as shown in FIG. 12, the inductance element is one in which a coil wiring 9 is spirally formed on the same layer of a printed
However, when a desired inductance value is obtained by this method, the increase in resistance due to the increase in the number of turns cannot be absorbed by the method of increasing the copper foil thickness or the line width, resulting in a decrease in efficiency.
一般的にコイル配線でインダクタンス値を大きくしたい場合は、配線長を長くすれば良いが、配線長を長くすると配線抵抗も大きくなる。すなわち、インダクタンス値が増えると、配線抵抗も増える。
しかしながら、導体を厚くする方法は、基材が規格品のため、選択肢が限られるという問題がある。さらに、多層板の内層の導体を厚くしても、層間絶縁材料であるプリプレグが積層時に溶融する樹脂であるため、層間の導体厚を埋めきれない場合があり、積層不良を誘発するという問題がある。
また、配線幅を太らせる方法は、基板上にコイル配線を作成できる領域の制約がある。また、配線幅を太らせると、コイル配線領域が大きくなり過ぎ、通常の信号配線の引き回しを阻害することになる。
In general, when it is desired to increase the inductance value of the coil wiring, the wiring length may be increased. However, when the wiring length is increased, the wiring resistance increases. That is, as the inductance value increases, the wiring resistance also increases.
However, the method of increasing the thickness of the conductor has a problem that the options are limited because the base material is a standard product. Furthermore, even if the inner conductor of the multilayer board is thickened, the prepreg, which is an interlayer insulating material, is a resin that melts at the time of lamination. is there.
In addition, the method of increasing the wiring width has a limitation on the area where the coil wiring can be created on the substrate. Further, if the wiring width is increased, the coil wiring area becomes too large, which hinders normal signal wiring.
本発明は、印刷配線板上に形成したコイル配線の配線長の長さを変えてもインダクタンス値が下がらず、しかも配線抵抗を下げることができる印刷配線板を提供することを課題とする。 It is an object of the present invention to provide a printed wiring board that does not decrease the inductance value even when the length of the coil wiring formed on the printed wiring board is changed, and can reduce the wiring resistance.
本発明は、上記課題を解決するべく完成されたものであって、以下の構成からなる。
(1)同一層で渦巻状に形成したコイル配線を、多層構造の上位の層から下位の層にわたって螺旋状になるように形成した少なくとも2層以上の印刷配線板において、上位の層または下位の層から総層数の二分の一の層数に当たる一方のコイル配線をそれぞれ相似に形成し、総層数の残り二分の一の層数に当たる他方のコイル配線をそれぞれ前記コイル配線と線対称の形状に形成し、隣接する層の相似のコイル配線同士を組としたことを特徴とする印刷配線板。
(2)前記一方のコイル配線は始点で組同士がビアで接続され、他方のコイル配線は終点で組同士がビアで接続され、一方のコイル配線の組の終点と他方のコイル配線の組の始点をさらにビアで接続する(1)に記載の印刷配線板。
(3)前記一方のコイル配線は始点で組同士が接続ビアで接続され、他方のコイル配線は終点で組同士が接続ビアで接続され、一方のコイル配線の組の終点と他方のコイル配線の組の始点をさらに貫通ビアで接続する(1)に記載の印刷配線板。
(4)前記コイル配線の組は、総層数に対して2を超える偶数で分割した偶数組である(2)乃至(3)に記載の印刷配線板。
The present invention has been completed in order to solve the above problems, and has the following configuration.
(1) In a printed wiring board having at least two or more layers in which a coil wiring formed in the same layer in a spiral shape is spirally formed from an upper layer of a multilayer structure to a lower layer, the upper layer or the lower layer One coil wiring corresponding to one half of the total number of layers from the layer is formed in a similar manner, and the other coil wiring corresponding to the remaining half of the total number of layers is symmetrical with the coil wiring. A printed wiring board formed by forming a pair of similar coil wirings in adjacent layers.
(2) The one coil wiring is connected at the start point to each other by vias, the other coil wiring is connected at the end point to each other by vias, and the end point of one coil wiring set and the other coil wiring set The printed wiring board according to (1), wherein the starting points are further connected by vias.
(3) The one coil wiring is connected at the start point to each other by connection vias, the other coil wiring is connected at the end point to each other by connection vias, and the end point of one coil wiring set and the other coil wiring The printed wiring board according to (1), wherein the starting point of the set is further connected by a through via.
(4) The printed wiring board according to any one of (2) to (3), wherein the set of coil wirings is an even number set divided by an even number exceeding 2 with respect to the total number of layers.
本発明によれば、コイル配線を各層に並列配線することで、コイル配線作成領域(平面方向)を拡大することなく、インダクタンス値を下げず、且つ配線抵抗を分散(並列接続)させて下げることができる。 According to the present invention, by arranging the coil wiring in parallel in each layer, the coil wiring creation area (in the plane direction) is not enlarged, the inductance value is not lowered, and the wiring resistance is distributed (parallel connection) and lowered. Can do.
(コイルパラレル配線)
本発明の一実施形態である印刷配線板の102は、図1に示すように、上位の層10と、これに層間絶縁樹脂を介して対向する下位の層20とにより構成される2層構造からなる。上位の層10と下位の層20にはそれぞれコイル配線1とコイル配線2が平行配線され印刷配線板102を構成している。
(Coil parallel wiring)
As shown in FIG. 1, a printed
図2に示すように、第1層のコイル配線1と第2層のコイル配線2の形状は対称軸X−X線で線対称であり、上位の層であるコイル配線1から下位の層のコイル配線2にかけて螺旋状になるよう形成され、上下の層を接続する接続ビア12にて接続される。
また、コイル配線1,2はそれぞれ隣り合う端子11,22から他の部品などに接続される。なお、コイル配線1,2(配線パターン)の導体厚は、18〜35μmであるのがよい。
As shown in FIG. 2, the shape of the
The
本発明に係る印刷配線板は、相似の形状のコイル配線を有し、隣接する層同士を組としている。すなわち、上位の層または下位の層から総層数の二分の一の層数に当たり、隣接する層の相似した一方のコイル配線同士を一方の組とし、この一方の組の配線コイルと線対称の形状に形成され、総層数の残り二分の一の層数に当たる他方のコイル配線同士を他方の組とする。一方の組と他方の組を構成する層数は同じであり、一方の組と他方の組は一対の組である。なお、相似の形状のコイル配線とは、渦巻状のコイル配線は同じで、ビアへの引出し配線が異なる形状であることを指す。
このように、配線が線対称となった組で、総層数を分割する配線方法をコイルパラレル配線と呼び、例えば、図3(a)および(b)に示す4,6層構造の印刷配線板が挙げられる。なお、2層構造の場合は一般的なコイル配線(コイルシングル配線)と同じ形状である。
The printed wiring board according to the present invention has a coil wiring having a similar shape, and sets adjacent layers together. That is, when the number of layers is one half of the total number of layers from the upper layer or the lower layer, one coil wiring similar to the adjacent layer is set as one set, and is symmetrical with the wiring coil of this one set. The other coil wiring formed in the shape and corresponding to the number of remaining half of the total number of layers is defined as the other set. The number of layers constituting one set and the other set is the same, and one set and the other set are a pair. In addition, the coil wiring of the similar shape indicates that the spiral coil wiring is the same and the lead-out wiring to the via has a different shape.
In this way, a wiring method for dividing the total number of layers in a set in which the wirings are line symmetric is called a coil parallel wiring. For example, a printed wiring having a four-six-layer structure shown in FIGS. A board is mentioned. In the case of a two-layer structure, it has the same shape as a general coil wiring (coil single wiring).
図3(a)は、4層構造の印刷配線板104を構成する第1層から第4層のそれぞれに設けたコイル配線41〜44を示すものである。
印刷配線板104は、まず、第1層から第2層のコイル配線41、42の配線が終了した後、第3層に第1層および第2層とは対称軸X−X線で線対称となる形状でコイル配線43を形成する。次いで、第3層と同じ形状のコイル配線44を第4層に形成すれば、端子11と端子22が隣り合いコイル配線が完成する。
隣接する第1層と第2層のコイル配線41,42の形状は互いに相似しており、コイル配線41,42の始点が接続ビア45で接続される(一方の組)。同様に、第3層と第4層のコイル配線43,44は互いに相似しており、コイル配線43,44の終点が接続ビア34で接続される(他方の組)。さらに、第1層および第2層のコイル配線41,42の一方の組の終点と、第3層および第4層のコイル配線43,44の他方の組の始点とは、貫通ビア40で接続されている。
FIG. 3A shows
In the printed
The shapes of the adjacent first-layer and second-
図3(b)は、6層構造の印刷配線板106を構成する第1層から第6層のそれぞれに設けたコイル配線61〜66を示すものである。
隣接する第1層から第3層のコイル配線61〜63の形状は互いに相似しており、コイル配線61〜63のそれぞれの始点が接続ビア13で接続される(一方の組)。同様に、第4層〜第6層のコイル配線64〜66はそれぞれ相似しており、コイル配線64〜66の終点が接続ビア46で接続される(他方の組)。さらに、第1層〜第3層のコイル配線61〜63の終点と、第4層〜第6層のコイル配線64〜66の始点とは、貫通ビア60で接続される。
FIG. 3B shows coil wirings 61 to 66 provided in the first to sixth layers constituting the printed
The shapes of the adjacent first to third layer coil wirings 61 to 63 are similar to each other, and the respective starting points of the coil wirings 61 to 63 are connected by the connection via 13 (one set). Similarly, the fourth to sixth layer coil wirings 64 to 66 are similar to each other, and the end points of the coil wirings 64 to 66 are connected by the connection via 46 (the other set). Further, the end points of the first to third layer coil wirings 61 to 63 and the start points of the fourth to sixth layer coil wirings 64 to 66 are connected by a through via 60.
また、このコイルパラレル配線の組は、上記してきたような一方の組と他方の組のような2組だけに限定されず、総層数に対して、2を超える偶数で分割する偶数組であってもよい。
例えば、図4は、8層構造の印刷配線板108を構成する第1層から第8層のそれぞれに設けたコイル配線81〜88を示している。また、図5は、各層のコイル配線81〜88間の接続ビアおよび貫通ビアの接続を示している。
隣接する第1層から第4層のコイル配線81〜84のうち、コイル配線81、82の形状は相似しており、図5に示すように、接続ビア14で接続される。また、コイル配線83,84の形状はコイル配線81,82と対称軸X−X線で線対称である。このコイル配線83,84は、接続ビア16で接続され、且つコイル配線81,82と接続される接続ビア15を備える。尚、接続ビア16は、図5に示すように、コイル配線85,86にも接続される。
第5層から第8層のコイル配線85〜88は、コイル配線85、86の形状が相似しており、図5に示すように、接続ビア16で接続される。また、コイル配線87,88の形状はコイル配線85,86と対称軸X−X線で線対称である。このコイル配線87,88は、接続ビア78で接続され、且つコイル配線85,86と接続される接続ビア58を備える。
さらに、第1層から第8層のコイル配線81〜88は、図5に示すように、貫通ビア80で接続される。
この8層構造の印刷配線板108は、図3(a)に示す4層構造の印刷配線板104をもう一組追加し、コイル配線85〜88としたものである。
なお、多層構造の印刷配線板では、各層のコイル配線が適正に接続されていれば、接続ビアと貫通ビアのどちらで接続してもよい。
In addition, the coil parallel wiring group is not limited to two groups such as one group and the other group as described above, and is an even group that is divided by an even number exceeding 2 with respect to the total number of layers. There may be.
For example, FIG. 4 shows coil wirings 81 to 88 provided in each of the first to eighth layers constituting the printed
Of the coil wirings 81 to 84 of the first to fourth layers adjacent to each other, the
The coil wirings 85 to 88 of the fifth layer to the eighth layer are similar in the shape of the
Further, the first to eighth layer coil wirings 81 to 88 are connected by through
The printed
In addition, in the printed wiring board of a multilayer structure, as long as the coil wiring of each layer is connected appropriately, it may be connected by either a connection via or a through via.
以下に示す表1は、図1に示した2層のコイル配線と、図3(a)および(b)に示した4,6層のコイルパラレル配線の配線抵抗とインダクタンス値のシミュレーション結果である。このシミュレーション結果は、印刷配線板の層が2,4,6層とも直流時の値としてシミュレーターQ3D(ANSYS社製)を用いて計算した結果である。なお、このときの配線幅、配線の間隙、銅厚、層間厚は2,4,6層とも表1に示すよう共通である。
表1から、層数が増えるに従い配線抵抗の低下が大きく改善しているにも関わらず、インダクタンス値の変化が少ないことがわかる。 From Table 1, it can be seen that the change in the inductance value is small even though the decrease in the wiring resistance is greatly improved as the number of layers is increased.
(コイルパラレル配線の効率)
次に、印刷配線板の層数を2層、4層、6層と増やしていく中で、送信側基板と受信側基板を対向させた状態にてコイルパラレル配線のシミュレーションを実施し、印刷配線板の層が2層、4層、6層のそれぞれの送受信間電力を測定して、送信側から受信側に伝わった電力比率(効率)を求める。そのシミュレーション結果をグラフにしたものを図6に示す。なお、この送信側基板と受信側基板は、2,4,6層のそれぞれ同じ形状のコイル配線を持つ基板(印刷配線板)を対向させたものである。例えば、2層構造の印刷配線板102、102´では、図7に示すように、第1層から第2層のコイル配線1、2を送信側基板3とし、受信側基板4も送信側基板3と同様に第1層から第2層のコイル配線1´、2´を用いたものである。なお、このとき、送信側基板3と受信側基板4の距離は2.0mmとする。
(Efficiency of coil parallel wiring)
Next, while increasing the number of layers of the printed wiring board to 2 layers, 4 layers, and 6 layers, simulation of the coil parallel wiring was performed with the transmitting side substrate and the receiving side substrate facing each other. The power between transmission and reception of each of the 2 layers, 4 layers, and 6 layers of the plate is measured, and the power ratio (efficiency) transmitted from the transmission side to the reception side is obtained. FIG. 6 shows a graph of the simulation result. In addition, this transmission side board | substrate and the reception side board | substrate are the board | substrates (printed wiring board) which have the coil wiring of the same shape of 2, 4 and 6 layers, respectively. For example, in the printed
図6から、コイルパラレル配線を有する印刷配線板の層数を2,4,6層と増やしていくと、効率が改善していくのがわかる。 FIG. 6 shows that the efficiency improves when the number of printed wiring boards having coil parallel wiring is increased to 2, 4 and 6 layers.
(コイルシングル配線との比較)
図8(a)は、一般的に行われているコイル配線(コイルシングル配線)の4層構造の印刷配線板104・を構成する第1層から第4層のそれぞれに設けたコイル配線41´から44´を示している。
印刷配線板104´は、第1層から第4層までのコイル配線41´から44´の配線において、それぞれ上位の層の終点と下位の層の始点とが接続ビア51〜53の順で渦巻き状に連続して接続されている。また貫通ビア50が第1層から第4層までを接続する。
また、図8(b)に示す6層構造の印刷配線板106・も同様に、第1層から第6層までのコイル配線61´から66´の配線において、それぞれ上位の層の終点と下位の層の始点とが接続ビア71〜75の順で渦巻き状に連続して接続している。また貫通ビア70が第1層から第6層までを接続する。
また、コイルシングル配線の場合、8層構造の印刷配線板108・(図示せず)になっても同様に、第1層から第8層までのコイル配線のそれぞれ上位の層の終点と下位の層の始点とが渦巻き状に連続して接続している。
(Comparison with coil single wiring)
FIG. 8A shows a
In the printed wiring board 104 ', in the coil wirings 41' to 44 'from the first layer to the fourth layer, the end point of the upper layer and the start point of the lower layer are spiraled in the order of the connection vias 51 to 53, respectively. Connected continuously. The through via 50 connects the first layer to the fourth layer.
Similarly, the printed
Further, in the case of the coil single wiring, even if the printed wiring board 108 (not shown) having an eight-layer structure is used, the end point and the lower layer of the upper layer of the coil wiring from the first layer to the eighth layer are similarly applied. The starting point of the layer is connected continuously in a spiral.
図9は、4層、6層、8層のそれぞれのコイルシングル配線と、8層のパラレルコイル配線(図4参照)において、送信側基板と受信側基板を対向させた状態にて、それぞれの送受信間電力を測定して、送信側から受信側に伝わった電力比率(効率)を求めた。そのシミュレーション結果をグラフにしたものである。
なお、このとき、送信側基板と受信側基板の距離は2.0mmとし、測定方法は図6のときと同じである。
FIG. 9 is a schematic diagram of the coil single wiring of each of the 4th layer, the 6th layer, and the 8th layer, and the parallel coil wiring of 8 layers (see FIG. 4), with the transmission side substrate and the reception side substrate facing each other. The power between transmission and reception was measured, and the power ratio (efficiency) transmitted from the transmission side to the reception side was determined. The simulation results are graphed.
At this time, the distance between the transmission side substrate and the reception side substrate is 2.0 mm, and the measurement method is the same as in FIG.
図9により、インダクタンス値を増加させるため、コイルシングル配線にて層数を増やし、配線長を長くした場合、4層よりも配線長が長く、効率の改善が期待できる6層との差異は軽微であることがわかる。さらに、コイルシングル配線にて層数を8層とした場合、4層および6層よりも効率が大きく低下している。
これは、配線長を長くするとインダクタンス値は増加するが、それとともに配線抵抗も増加し、配線抵抗による損失が、インダクタンス値増加による効率改善効果を上回ってしまい効率を低下させてしまうためである。このことから、本結果においては、巻数増加による効果は6層が限界に近い配線長と考える。
このとき、シミュレーションに用いたコイルシングル配線のおおよその配線長を、表2に表記する。
This is because, when the wiring length is increased, the inductance value increases, but the wiring resistance also increases at the same time, and the loss due to the wiring resistance exceeds the efficiency improvement effect due to the increase in the inductance value, thereby reducing the efficiency. Therefore, in this result, the effect of increasing the number of turns is considered to be a wiring length in which six layers are close to the limit.
At this time, the approximate wiring length of the coil single wiring used for the simulation is shown in Table 2.
図6と図9において、周波数240kHzにおける効率まとめたものを表3に示す。
表3からコイルシングル配線は、4層が54.85%、6層が52.61%、8層が28.09%となっているのに対して、コイルパラレル配線は、4層が33.19%、6層が42.75%、8層が70.19%となっており、コイルパラレル配線の8層が最も良い結果となっていることがわかる。
また、コイルパラレル配線を有する印刷配線板の層数を2,4,6層と増やしていくと、効率が改善していくが、コイルシングル配線を有する印刷配線板の層数を2,4,6層と増やしていくと効率が悪くなっていく。
From Table 3, coil single wiring is 54.85%, 6 layer is 52.61%, 8 layer is 28.09%, while coil parallel wiring is 33. 19%, 6 layers are 42.75%, 8 layers are 70.19%, and 8 layers of coil parallel wiring show the best results.
Further, when the number of printed wiring boards having coil parallel wiring is increased to 2, 4 and 6, the efficiency is improved. However, the number of printed wiring boards having coil single wiring is increased to 2, 4, and 6. As you increase to 6 layers, the efficiency becomes worse.
また、コイルシングル配線4層板とコイルパラレル配線8層板の配線抵抗とインダクタンス値をシミュレーションにて比較し、その結果を表4に示す。なお、このシミュレーションは、先述した表1と同じ測定方法や測定装置により行われる。
表4からコイルパラレル配線8層の方が、コイルシングル配線4層よりも配線抵抗が低下しており、且つインダクタンス値の差異は少ない結果となっている。これにより、コイルシングル配線4層よりもコイルパラレル配線8層の方が、印刷配線板の層数を利用した並列配線を行うことで、配線抵抗を低下させることができるため、効率改善への寄与が期待できる。
このように、コイルパラレル配線の組は、上記してきたような一方の組と他方の組のような2組だけに限定されず、総層数に対して、2を超える偶数で分割された偶数組であってもよく、この偶数組が増えることによって、印刷配線板の層数を利用した並列配線を行うことで、配線抵抗を低下させることができる。これにより、狭い配線領域で効率改善することが可能となる。
From Table 4, the coil parallel wiring 8 layer has lower wiring resistance than the coil
Thus, the set of coil parallel wiring is not limited to only two sets such as one set and the other set as described above, and is an even number divided by an even number exceeding 2 with respect to the total number of layers. A set may be sufficient, and when this even number set increases, wiring resistance can be reduced by performing parallel wiring using the number of layers of a printed wiring board. Thereby, the efficiency can be improved in a narrow wiring area.
(Qi規格およびRF−IDへの応用)
コイルパラレル配線を印刷配線板上で作成する優位性は、製品の小型化やコイル配置領域の制限などにより、領域の拡大が望めない場合に、コイルシングル配線で限界となった効率を、コイルパラレル配線を行うことで、コイル配線領域を拡大することなく、コイルシングル配線よりも効率を向上させることができる点である。
この優位性は、例えば、ワイヤレス給電(無線給電)のQi規格や、ICタグなどに利用されるRF−IDで用いられる周波数帯においても応用することができる。
(Application to Qi standard and RF-ID)
The advantage of creating coil parallel wiring on a printed wiring board is that if the expansion of the area cannot be expected due to the downsizing of the product or the limitation of the coil arrangement area, the efficiency that is limited by the coil single wiring is By performing the wiring, the efficiency can be improved over the coil single wiring without expanding the coil wiring area.
This advantage can also be applied to, for example, the Qi standard for wireless power feeding (wireless power feeding) and the frequency band used for RF-ID used for IC tags and the like.
図10は、Qi規格に用いられる周波数帯(125kHz)付近において、コイルシングル配線の4層、6層、8層と、コイルパラレル配線8層との効率を比較したグラフである。図10から、125kHzにおいて、コイルパラレル配線8層がコイルシングル配線4層よりも効率が良いことがわかる。
FIG. 10 is a graph comparing the efficiency of the coil
図11は、RF−IDに用いられる周波数帯(13.56MHz)付近において、コイルシングル配線の4層、6層、8層と、コイルパラレル配線8層との効率を比較するグラフである。図11から、13.56MHzにおいて、コイルパラレル配線8層がコイルシングル配線4層よりも効率が良いことがわかる。
FIG. 11 is a graph comparing the efficiency of the coil
図10,11の結果から、本発明コイルパラレル配線構造は、例えば、印刷配線板上に作成した無線給電用のコイル配線として、製品の小型化への貢献が期待できる。 From the results of FIGS. 10 and 11, the coil parallel wiring structure of the present invention can be expected to contribute to the miniaturization of the product, for example, as the coil wiring for wireless power feeding created on the printed wiring board.
1 コイル配線
1´ コイル配線
2 コイル配線
2´ コイル配線
3 送信側基板
4 受信側基板
9 コイル配線
10 上位の層
20 下位の層
11,22 端子
11´,22´ 端子
12,13,14,15,16 接続ビア
12´ 接続ビア
34,45,46,58 接続ビア
51〜53 接続ビア
71〜75、78 接続ビア
41〜44 コイル配線
41´〜44´ コイル配線
61〜66 コイル配線
61´〜66´ コイル配線
81〜88 コイル配線
40,50,60,70、80 貫通ビア
90 印刷配線板
102,104,106,108 印刷配線板
102´、104´,106´、108´ 印刷配線板
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015229980A JP2017098434A (en) | 2015-11-25 | 2015-11-25 | Printed-circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015229980A JP2017098434A (en) | 2015-11-25 | 2015-11-25 | Printed-circuit board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017098434A true JP2017098434A (en) | 2017-06-01 |
Family
ID=58818192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015229980A Pending JP2017098434A (en) | 2015-11-25 | 2015-11-25 | Printed-circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017098434A (en) |
-
2015
- 2015-11-25 JP JP2015229980A patent/JP2017098434A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7843303B2 (en) | Multilayer inductor | |
JP6369536B2 (en) | Coil module | |
US7170384B2 (en) | Printed circuit board having three-dimensional spiral inductor and method of fabricating same | |
US8686821B2 (en) | Inductor structure | |
US20180254139A1 (en) | Coil-incorporated component | |
TWI382431B (en) | Power inductor structure | |
KR101532171B1 (en) | Inductor and Manufacturing Method for the Same | |
JP2016515305A (en) | Apparatus and method for planar magnetic technology using laminated polymer | |
US9999129B2 (en) | Microelectronic device and method of manufacturing same | |
CN107112112B (en) | Coil component | |
JP2016006816A (en) | Transformer and multilayer substrate | |
JP2009016504A (en) | Multilayer wiring board with built-in inductor | |
JP2013207149A (en) | Toroidal coil | |
CN112740343B (en) | Balanced symmetric coil | |
CN105957691A (en) | Three-dimensional winding inductor, transformer, equalizer and LC filter | |
JP2012182286A (en) | Coil component | |
US11075029B2 (en) | Coil module | |
JP2017098434A (en) | Printed-circuit board | |
CN107077952B (en) | Coil component | |
JP2013207151A (en) | Transformer | |
CN107146677A (en) | High frequency high voltage transformer | |
JPH11186040A (en) | Laminated noise filter | |
KR100940529B1 (en) | Vertically Turned Metal Line Inductor and Electric Device including the Inductor | |
CN207097576U (en) | High frequency high voltage transformer | |
KR101625971B1 (en) | flexible inductor and its manufacture method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20160509 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180710 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190409 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20191015 |