JP2017098128A - Method for manufacturing membrane-electrode assembly - Google Patents

Method for manufacturing membrane-electrode assembly Download PDF

Info

Publication number
JP2017098128A
JP2017098128A JP2015230160A JP2015230160A JP2017098128A JP 2017098128 A JP2017098128 A JP 2017098128A JP 2015230160 A JP2015230160 A JP 2015230160A JP 2015230160 A JP2015230160 A JP 2015230160A JP 2017098128 A JP2017098128 A JP 2017098128A
Authority
JP
Japan
Prior art keywords
catalyst ink
release layer
temperature
electrolyte membrane
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015230160A
Other languages
Japanese (ja)
Other versions
JP6561800B2 (en
Inventor
恒政 西田
Tsunemasa Nishida
恒政 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015230160A priority Critical patent/JP6561800B2/en
Publication of JP2017098128A publication Critical patent/JP2017098128A/en
Application granted granted Critical
Publication of JP6561800B2 publication Critical patent/JP6561800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the deposition of an electrolyte membrane to a release layer when peeling a mold release film.SOLUTION: Peeling a first mold release film 24, a first catalyst ink 22 is divided into a transfer portion 22a and a removed portion 22b. The transfer portion 22a is a catalyst layer transferred to an electrolyte membrane 12. The removed portion 22b is, of the first catalyst ink 22, a portion sticking to a release layer 29, which is recovered together with the release layer 29 and the first mold release film 24.SELECTED DRAWING: Figure 4

Description

本発明は、膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly.

膜電極接合体の製造工程として、転写フィルム、離型層、触媒インクの順に積層された積層体を用い、触媒インクを電解質膜に転写することによって、電解質膜上に触媒層を形成する方法が知られている(特許文献1)。   As a manufacturing process of a membrane electrode assembly, there is a method of forming a catalyst layer on an electrolyte membrane by using a laminate in which a transfer film, a release layer, and a catalyst ink are laminated in this order and transferring the catalyst ink to the electrolyte membrane. Known (Patent Document 1).

特開2014−060167号公報JP, 2014-060167, A

上記先行技術の場合、電解質膜に触媒インクを転写した後、転写フィルムを剥離する際、離型層の一部が触媒インクに付着することがあった。付着した離型層は、膜電極接合体に残留し、燃料電池の発電性能を低下させる。本願発明は、上記先行技術を踏まえ、転写フィルムを剥離する際、電解質膜への離型層への付着を抑制することを解決課題とする。   In the case of the above prior art, a part of the release layer may adhere to the catalyst ink when the transfer film is peeled off after the catalyst ink is transferred to the electrolyte membrane. The attached release layer remains in the membrane electrode assembly and reduces the power generation performance of the fuel cell. This invention makes it a solution subject to suppress adhesion to a mold release layer to an electrolyte membrane, when peeling a transfer film based on the said prior art.

本発明は、上記課題を解決するためのものであり、以下の形態として実現できる。   SUMMARY An advantage of some aspects of the invention is to solve the above-described problems, and the invention can be implemented as the following forms.

本発明によれば、膜電極接合体の製造方法が提供される。この製造方法は;離型層を離型フィルムと共に挟み込んで積層体を形成する触媒インクを加熱しながら前記触媒インクを電解質膜に押圧することによって、前記電解質膜に触媒層を転写する第1工程と;前記第1工程を経た前記積層体から前記離型フィルムを剥離する第2工程とを含み;前記第1工程を、前記離型層のガラス転移温度未満の温度で実施する。この形態によれば、第1工程を経ても、離型層にガラス転移が生じないため、離型層と触媒インクとの高い密着力が保たれる。この結果、第2工程を経ると、触媒インクは、電解質膜に付着する部位と、離型層に付着する部位とに分割される一方、離型層はその全部が離型フィルムに付着する。このため、電解質膜への離型層への付着を抑制できる。   According to the present invention, a method for producing a membrane electrode assembly is provided. The manufacturing method includes: a first step of transferring the catalyst layer to the electrolyte membrane by pressing the catalyst ink against the electrolyte membrane while heating the catalyst ink sandwiching the release layer together with the release film to form a laminate. And a second step of peeling the release film from the laminate that has undergone the first step; and the first step is performed at a temperature lower than the glass transition temperature of the release layer. According to this aspect, since glass transition does not occur in the release layer even after the first step, high adhesion between the release layer and the catalyst ink is maintained. As a result, after passing through the second step, the catalyst ink is divided into a part that adheres to the electrolyte membrane and a part that adheres to the release layer, while the release layer is entirely attached to the release film. For this reason, adhesion to the release layer to the electrolyte membrane can be suppressed.

MEA製造設備の概略図。Schematic of MEA manufacturing equipment. 膜電極接合体を製造する処理を示すフローチャート。The flowchart which shows the process which manufactures a membrane electrode assembly. 第1の触媒インクを電解質膜に転写する様子を模式的に示す図。The figure which shows a mode that a 1st catalyst ink is transcribe | transferred to an electrolyte membrane. 離型フィルムを剥離する様子を模式的に示す図。The figure which shows a mode that a release film is peeled typically. 離型フィルムを剥離する様子を模式的に示す図(比較例)。The figure which shows a mode that a release film is peeled (comparative example). 実施形態2において製造された膜電極接合体を示す図。The figure which shows the membrane electrode assembly manufactured in Embodiment 2. FIG.

実施形態1を説明する。図1は、膜電極接合体90を連続的に製造するMEA製造設備1の概略図である。膜電極接合体は、MEAとも呼ばれる。MEAは、Membrane Electrode Assemblyの頭字語である。   Embodiment 1 will be described. FIG. 1 is a schematic view of an MEA manufacturing facility 1 that continuously manufactures a membrane electrode assembly 90. The membrane electrode assembly is also called MEA. MEA is an acronym for Membrane Electrode Assembly.

MEA製造設備1は、電解質膜ロール10と、第1の触媒インクロール20と、第2の触媒インクロール30と、合紙ロール40と、MEAロール50と、第1のロール62,64と、第2のロール82,84と、剥離ロール72,74,76とを備える。   The MEA manufacturing facility 1 includes an electrolyte membrane roll 10, a first catalyst ink roll 20, a second catalyst ink roll 30, a slip sheet roll 40, an MEA roll 50, first rolls 62 and 64, Second rolls 82 and 84 and peeling rolls 72, 74 and 76 are provided.

電解質膜ロール10は、支持基材14上に配された電解質膜12が、コア管に巻き取られているロールである。電解質膜12は、湿潤状態において良好な導電性を有するイオン交換膜である。電解質膜12は、ナフィオン(登録商標)などのフッ素系樹脂材料で構成される。支持基材14は、電解質膜12を搬送するための補強材である。支持基材14は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ETFEなどのフッ素樹脂で構成される。   The electrolyte membrane roll 10 is a roll in which an electrolyte membrane 12 disposed on a support base material 14 is wound around a core tube. The electrolyte membrane 12 is an ion exchange membrane having good conductivity in a wet state. The electrolyte membrane 12 is made of a fluorine resin material such as Nafion (registered trademark). The support base material 14 is a reinforcing material for conveying the electrolyte membrane 12. The support substrate 14 is made of a fluororesin such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or ETFE.

第1の触媒インクロール20は、離型層29(図3,図4参照)を第1の離型フィルム24(図3,図4参照)と第1の触媒インク22とが挟み込んで形成された積層体が、コア管に巻き取られているロールである。第1の触媒インク22は、カーボンブラックに白金を担持した触媒と、ナフィオンなどのフッ素系樹脂材料で構成される。   The first catalyst ink roll 20 is formed by sandwiching a release layer 29 (see FIGS. 3 and 4) between the first release film 24 (see FIGS. 3 and 4) and the first catalyst ink 22. The laminated body is a roll wound around the core tube. The first catalyst ink 22 is composed of a catalyst in which platinum is supported on carbon black and a fluorine resin material such as Nafion.

第2の触媒インクロール30は、第2の離型フィルム34に離型層29を、この離型層29に第2の触媒インク32を積層した積層体が、コア管に巻き取られているロールである。   In the second catalyst ink roll 30, a laminate in which a release layer 29 is laminated on a second release film 34 and a second catalyst ink 32 is laminated on the release layer 29 is wound around a core tube. It is a roll.

合紙ロール40は、合紙44がコア管に巻き取られているロールである。合紙44は、MEA製造設備1において製造された膜電極接合体90をMEAロール50に巻き取る際に膜電極接合体90の間に挟むために用いられる。   The slip sheet roll 40 is a roll in which the slip sheet 44 is wound around the core tube. The interleaf paper 44 is used to sandwich the membrane electrode assembly 90 manufactured in the MEA manufacturing facility 1 between the membrane electrode assemblies 90 when the membrane electrode assembly 90 is wound around the MEA roll 50.

第1のロール62,64は、ステンレス等の金属でその円柱状の基本構造が形成され、その表面をシリコンゴムやテフロン(登録商標)でコートされた一対の押圧用のロールである。第1のロール62,64は、MEA製造設備1の運転時に加熱される。   The first rolls 62 and 64 are a pair of pressing rolls having a cylindrical basic structure formed of a metal such as stainless steel and having the surface coated with silicon rubber or Teflon (registered trademark). The first rolls 62 and 64 are heated during operation of the MEA manufacturing facility 1.

第1のロール62,64は、電解質膜12、第1の触媒インク22などを間に挟んで、互いに押圧しつつ同期して回転する。第1のロール62,64の温度や回転速度は、第1のロール制御部100(図1参照)によって制御される。   The first rolls 62 and 64 rotate synchronously while pressing each other with the electrolyte membrane 12 and the first catalyst ink 22 interposed therebetween. The temperature and rotation speed of the first rolls 62 and 64 are controlled by the first roll control unit 100 (see FIG. 1).

第2のロール82,84の特徴は、上記した第1のロール62,64の特徴と略同じである。第2のロール82,84の温度や回転速度は、第2のロール制御部200(図1参照)によって制御される。   The characteristics of the second rolls 82 and 84 are substantially the same as the characteristics of the first rolls 62 and 64 described above. The temperature and rotation speed of the second rolls 82 and 84 are controlled by the second roll control unit 200 (see FIG. 1).

図2は、膜電極接合体90を製造する処理を示すフローチャートである。まず、アノードとしての触媒層を電解質膜12に転写する(S110)。S110は、図1に示された符号3の部位において実施される。S110は、第1の触媒インクロール20から繰り出された積層体に含まれる第1の触媒インク22を加熱しながら、第1の触媒インク22を電解質膜12に押圧する工程である。   FIG. 2 is a flowchart showing a process for manufacturing the membrane electrode assembly 90. First, the catalyst layer as the anode is transferred to the electrolyte membrane 12 (S110). S110 is implemented in the site | part of the code | symbol 3 shown by FIG. S <b> 110 is a step of pressing the first catalyst ink 22 against the electrolyte membrane 12 while heating the first catalyst ink 22 included in the laminate fed from the first catalyst ink roll 20.

図3は、S110の様子を模式的に示す。図3に示すように、第1の触媒インク22と第1の離型フィルム24との間には、離型層29が配置されている。離型層29は、離型成分と不純物とを含む。   FIG. 3 schematically shows the state of S110. As shown in FIG. 3, a release layer 29 is disposed between the first catalyst ink 22 and the first release film 24. The release layer 29 includes a release component and impurities.

S110によって、第1の触媒インク22に含まれる電解質にガラス転移が発生する。このガラス転移が発生するのは、第1の触媒インク22が、第1のロール62,64によって加熱されるからである。つまり、第1の触媒インク22は、S110において、次に述べる温度Tg2に達する。温度Tg2は、第1の触媒インク22に含まれる電解質のガラス転移温度である。   By S110, a glass transition occurs in the electrolyte contained in the first catalyst ink 22. The glass transition occurs because the first catalyst ink 22 is heated by the first rolls 62 and 64. That is, the first catalyst ink 22 reaches a temperature Tg2 described below in S110. The temperature Tg <b> 2 is a glass transition temperature of the electrolyte contained in the first catalyst ink 22.

一方で、離型層29は、次に述べる温度Tg1に達しない。温度Tg1は、離型層29のガラス転移温度である。温度Tg1は、温度Tg2以上の温度であり、且つ、第1のロール62,64による加熱温度よりも高い。つまり、S110は、第1の触媒インク22と離型層29との温度が、温度Tg2以上、温度Tg1未満の条件で実施される。なお、本実施形態における温度Tg1は、150〜250℃である。   On the other hand, the release layer 29 does not reach the temperature Tg1 described below. The temperature Tg1 is the glass transition temperature of the release layer 29. The temperature Tg1 is a temperature equal to or higher than the temperature Tg2, and is higher than the heating temperature by the first rolls 62 and 64. That is, S110 is performed under conditions where the temperature of the first catalyst ink 22 and the release layer 29 is not less than the temperature Tg2 and less than the temperature Tg1. In addition, temperature Tg1 in this embodiment is 150-250 degreeC.

その後、S110で電解質膜12に押圧された積層体から第1の離型フィルム24が剥離される(S120)。S120は、図1に示された符号4の部位において実施される。   Thereafter, the first release film 24 is peeled from the laminate pressed against the electrolyte membrane 12 in S110 (S120). S120 is implemented in the site | part of the code | symbol 4 shown by FIG.

図4は、S120の様子を模式的に示す。図4に示すように、S120によって、第1の触媒インク22が、転写部位22aと、除去部位22bとに分割される。転写部位22aは、第1の触媒インク22のうち、電解質膜12に転写され、触媒層を形成する部位である。除去部位22bは、第1の触媒インク22のうち、離型層29に付着した部位であり、離型層29及び第1の離型フィルム24と共に、剥離ロール72に巻き取られる部位である。   FIG. 4 schematically shows the state of S120. As shown in FIG. 4, by S120, the first catalyst ink 22 is divided into a transfer portion 22a and a removal portion 22b. The transfer portion 22a is a portion of the first catalyst ink 22 that is transferred to the electrolyte membrane 12 to form a catalyst layer. The removal portion 22 b is a portion of the first catalyst ink 22 that is attached to the release layer 29, and is a portion that is wound around the release roll 72 together with the release layer 29 and the first release film 24.

上記のように、第1の触媒インク22が分割されるのは、S120においてもS110と同様、離型層29にガラス転移が発生していないからである。つまり、S120も、第1の触媒インク22と離型層29との温度が、温度Tg2以上、温度Tg1未満で実施される。   As described above, the first catalyst ink 22 is divided because glass transition does not occur in the release layer 29 in S120 as in S110. That is, S120 is also performed when the temperature of the first catalyst ink 22 and the release layer 29 is equal to or higher than the temperature Tg2 and lower than the temperature Tg1.

S120が上記の温度条件で実施されるのは、S110の終了後から短時間でS120が実施されるからである。特に、S120では加熱は実施されないので、離型層29の温度は、S110で温度Tg1に達していなければ、S120で温度Tg1に達することはない。つまり、離型層29は、S110でガラス転移が発生していなければ、S120でガラス転移が発生することはない。   The reason why S120 is performed under the above temperature condition is that S120 is performed in a short time after the end of S110. In particular, since heating is not performed in S120, the temperature of the release layer 29 does not reach the temperature Tg1 in S120 unless the temperature reaches the temperature Tg1 in S110. That is, in the release layer 29, if the glass transition does not occur in S110, the glass transition does not occur in S120.

上記のようにS120において離型層29にガラス転移が発生していなければ、離型層29と第1の触媒インク22との高い密着力が保たれる。このため、上記の通り、S120によって、第1の触媒インク22が分割される。   As described above, if no glass transition occurs in the release layer 29 in S120, high adhesion between the release layer 29 and the first catalyst ink 22 is maintained. For this reason, as described above, the first catalyst ink 22 is divided by S120.

続いて、支持基材14を剥離する(S140)。次に、カソードとしての触媒層を電解質膜12に転写する(S150)。つまり、第2の触媒インクロール30から繰り出された積層体に含まれる第2の触媒インク32を加熱しながら、第2の触媒インク32を電解質膜12に押圧する。続いて、第2の離型フィルム34を剥離する(S170)。   Then, the support base material 14 is peeled (S140). Next, the catalyst layer as the cathode is transferred to the electrolyte membrane 12 (S150). That is, the second catalyst ink 32 is pressed against the electrolyte membrane 12 while heating the second catalyst ink 32 included in the laminate fed from the second catalyst ink roll 30. Subsequently, the second release film 34 is peeled off (S170).

S150及びS170は、S120及びS140と同様な特徴を有する。つまり、第2の触媒インク32は分割され、離型層(図示しない)は全て、第2の離型フィルム34に付着して回収される。   S150 and S170 have the same characteristics as S120 and S140. That is, the second catalyst ink 32 is divided, and the release layer (not shown) is all collected by adhering to the second release film 34.

第2の触媒インク32、電解質膜12、および第1の触媒インク22の接合体は、膜電極接合体90である。最後に、膜電極接合体90と合紙44とが重ねられてMEAロール50に巻き取られる(S180)。   The joined body of the second catalyst ink 32, the electrolyte membrane 12, and the first catalyst ink 22 is a membrane electrode assembly 90. Finally, the membrane electrode assembly 90 and the interleaf paper 44 are overlapped and wound around the MEA roll 50 (S180).

図5は、比較例におけるS120の様子を模式的に示す。この比較例は、後述するようにS110の条件が、実施形態と異なる。図5に示すように、比較例における第1の触媒インク22は、分割されることなく、その全体が電解質膜12に転写される。   FIG. 5 schematically shows the state of S120 in the comparative example. In this comparative example, as described later, the condition of S110 is different from that of the embodiment. As shown in FIG. 5, the entire first catalyst ink 22 in the comparative example is transferred to the electrolyte membrane 12 without being divided.

その一方で、離型層29は、残留部位29aと、除去部位29bとに分割される。残留部位29aは、離型層29のうち、第1の触媒インク22に残留した部位である。除去部位29bは、離型層29のうち、第1の離型フィルム24に付着した部位であり、第1の離型フィルム24と共に、剥離ロール72に巻き取られる。   On the other hand, the release layer 29 is divided into a remaining portion 29a and a removed portion 29b. The remaining portion 29 a is a portion remaining in the first catalyst ink 22 in the release layer 29. The removal portion 29 b is a portion of the release layer 29 that is attached to the first release film 24, and is wound around the release roll 72 together with the first release film 24.

比較例のS110においては、第1のロール62,64による加熱温度が、実施形態における加熱温度よりも高い。この結果、S110において、離型層29の温度が、温度Tg1に達する。離型層29は、温度Tg1に達すると、ガラス転移が発生する。このため、離型層29の流動性が増して、S120で離型層29が分割される。   In S110 of the comparative example, the heating temperature by the first rolls 62 and 64 is higher than the heating temperature in the embodiment. As a result, in S110, the temperature of the release layer 29 reaches the temperature Tg1. When the release layer 29 reaches the temperature Tg1, a glass transition occurs. For this reason, the fluidity | liquidity of the mold release layer 29 increases, and the mold release layer 29 is divided | segmented by S120.

残留部位29aの少なくとも一部は、S180によって得られる膜電極接合体90に残留する。つまり、離型層29の離型成分と不純物とが、膜電極接合体90に残留する。残留した離型成分および不純物は、第1の触媒インク22のガス拡散性およびプロトン伝導性を低下させ、ひいては発電性能を低下させる。   At least a part of the remaining portion 29a remains in the membrane electrode assembly 90 obtained by S180. That is, the release component and impurities of the release layer 29 remain in the membrane electrode assembly 90. The remaining release components and impurities reduce the gas diffusibility and proton conductivity of the first catalyst ink 22 and, consequently, the power generation performance.

先述した実施形態によれば、離型成分および不純物は膜電極接合体90に殆ど残留しないので、上記のような問題を回避できる。   According to the above-described embodiment, the mold release component and the impurity hardly remain in the membrane electrode assembly 90, so that the above problem can be avoided.

実施形態および比較例に関する実験を行った。この実験は、触媒インク残りと、温度Tg1との関係を調べるためのものである。触媒インク残りは、次式で算出される。
触媒インク残り(%)
=100×除去部位22bの質量/(転写部位22aの質量+除去部位22bの質量)
Experiments related to the embodiment and the comparative example were conducted. This experiment is for examining the relationship between the remaining catalyst ink and the temperature Tg1. The remaining catalyst ink is calculated by the following equation.
Catalyst ink remaining (%)
= 100 × mass of removal site 22b / (mass of transfer site 22a + mass of removal site 22b)

実験結果は、次の通りである。温度Tg1が160℃の場合は触媒インク残り1%、温度Tg1が200℃の場合は触媒インク残り0.4%、温度Tg1が250℃の場合は触媒インク残り0%、温度Tg1が270℃の場合は触媒インク残り0%であった。   The experimental results are as follows. When the temperature Tg1 is 160 ° C., the remaining catalyst ink is 1%. When the temperature Tg1 is 200 ° C., the remaining catalyst ink is 0.4%. When the temperature Tg1 is 250 ° C., the remaining catalyst ink is 0% and the temperature Tg1 is 270 ° C. In this case, the remaining catalyst ink was 0%.

触媒インク残りが0%であることは、比較例の場合に相当する。上記の結果から、温度Tg1は、おおよそ160℃以上250℃未満が好ましいと言える。   The remaining catalyst ink is 0%, which corresponds to the comparative example. From the above results, it can be said that the temperature Tg1 is preferably about 160 ° C. or higher and lower than 250 ° C.

実施形態2を説明する。図6は、実施形態2において製造された膜電極接合体90を示す。実施形態2では、膜電極接合体90の一部(以下、第1の部位90a)については比較例と同じく離型層29を電解質膜12に付着させる手法で製造しつつ、残りの部位(以下、第2の部位90b)については実施形態1と同じく離型層29を電解質膜12に付着させない手法で製造する。   A second embodiment will be described. FIG. 6 shows a membrane electrode assembly 90 manufactured in the second embodiment. In the second embodiment, a part of the membrane electrode assembly 90 (hereinafter referred to as the first portion 90a) is manufactured by the method of attaching the release layer 29 to the electrolyte membrane 12 as in the comparative example, and the remaining portion (hereinafter referred to as the following portion). The second portion 90b) is manufactured by a technique that does not allow the release layer 29 to adhere to the electrolyte membrane 12 as in the first embodiment.

第1の部位90aは、エアーの出口側に配置する。第2の部位90bは、エアーの入口側に配置する。エアーの出口側とは、燃料電池スタックとして組み付けられた状態において、カソードガスとしてのエアーの流れにおける出口側のことである。入口側についても同様である。   The first portion 90a is disposed on the air outlet side. The second portion 90b is disposed on the air inlet side. The air outlet side is the outlet side in the flow of air as the cathode gas in the state assembled as a fuel cell stack. The same applies to the entrance side.

エアーの出口側に第1の部位90aを配置する効果は、次の通りである。第1の部位90aは、第1の触媒インク22が分割されないので、第1の触媒インク22の表面が平滑になる。このため、排水性が向上することでフラッディングが抑制され、発電性能が向上する。なお、残留部位29aは、発電による生成水によって除去される。   The effect of disposing the first portion 90a on the air outlet side is as follows. Since the first catalyst ink 22 is not divided in the first portion 90a, the surface of the first catalyst ink 22 becomes smooth. For this reason, flooding is suppressed by improving drainage, and power generation performance is improved. The remaining portion 29a is removed by water generated by power generation.

エアーの入口側に第2の部位90bを配置する効果は、次の通りである。第2の部位90bは、触媒インクとしての転写部位22aが第1の触媒インク22の分割によって形成されているため、触媒インクの表面に凹凸が形成される。この凹凸によって保水性が向上することで、電解質膜12の乾燥が抑制される。この結果、発電性能が向上する。   The effect of disposing the second portion 90b on the air inlet side is as follows. In the second portion 90b, the transfer portion 22a as the catalyst ink is formed by dividing the first catalyst ink 22, so that irregularities are formed on the surface of the catalyst ink. The water retention is improved by the unevenness, so that drying of the electrolyte membrane 12 is suppressed. As a result, the power generation performance is improved.

本発明は、本明細書の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現できる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、先述の課題の一部又は全部を解決するために、あるいは、先述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことができる。その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除できる。例えば、以下のものが例示される。   The present invention is not limited to the embodiments, examples, and modifications of the present specification, and can be implemented with various configurations without departing from the spirit of the present invention. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in the embodiments described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects described above, replacement or combination can be performed as appropriate. If the technical feature is not described as essential in this specification, it can be deleted as appropriate. For example, the following are exemplified.

S110(加熱しながら押圧)を、温度Tg2未満の条件で実施してもよい。つまり、第1の触媒インクに含まれる電解質にガラス転移が発生しない条件で、S110を実行してもよい。第1の触媒インクに含まれる電解質にガラス転移が発生しなくても、離型層にガラス転移が発生しなければ、実施形態と同じく第1の触媒インクが分割される。第2の触媒インクについても同様である。   S110 (pressing while heating) may be carried out under a temperature lower than Tg2. That is, S110 may be executed under the condition that glass transition does not occur in the electrolyte contained in the first catalyst ink. Even if the glass transition does not occur in the electrolyte contained in the first catalyst ink, if the glass transition does not occur in the release layer, the first catalyst ink is divided as in the embodiment. The same applies to the second catalyst ink.

1…MEA製造設備
10…電解質膜ロール
12…電解質膜
14…支持基材
20…第1の触媒インクロール
22…第1の触媒インク
22a…転写部位
22b…除去部位
24…第1の離型フィルム
29…離型層
29a…残留部位
29b…除去部位
30…第2の触媒インクロール
32…第2の触媒インク
34…第2の離型フィルム
40…合紙ロール
44…合紙
50…MEAロール
62…第1のロール
72…剥離ロール
82…第2のロール
90…膜電極接合体
90a…第1の部位
90b…第2の部位
100…第1のロール制御部
200…第2のロール制御部
DESCRIPTION OF SYMBOLS 1 ... MEA manufacturing equipment 10 ... Electrolyte membrane roll 12 ... Electrolyte membrane 14 ... Support base material 20 ... 1st catalyst ink roll 22 ... 1st catalyst ink 22a ... Transfer site 22b ... Removal site 24 ... 1st release film DESCRIPTION OF SYMBOLS 29 ... Release layer 29a ... Residual site | part 29b ... Removal site | part 30 ... 2nd catalyst ink roll 32 ... 2nd catalyst ink 34 ... 2nd release film 40 ... Interleaf paper roll 44 ... Interleaf paper 50 ... MEA roll 62 ... 1st roll 72 ... Peeling roll 82 ... 2nd roll 90 ... Membrane electrode assembly 90a ... 1st site | part 90b ... 2nd site | part 100 ... 1st roll control part 200 ... 2nd roll control part

Claims (1)

離型層を離型フィルムと共に挟み込んで積層体を形成する触媒インクを加熱しながら前記触媒インクを電解質膜に押圧することによって、前記電解質膜に触媒層を転写する第1工程と、
前記第1工程を経た前記積層体から前記離型フィルムを剥離する第2工程とを含み、
前記第1工程を、前記離型層のガラス転移温度未満の温度で実施する
膜電極接合体の製造方法。
A first step of transferring the catalyst layer to the electrolyte membrane by pressing the catalyst ink against the electrolyte membrane while heating the catalyst ink sandwiching the release layer with the release film to form a laminate; and
Including a second step of peeling the release film from the laminate through the first step,
The manufacturing method of the membrane electrode assembly which implements the said 1st process at the temperature below the glass transition temperature of the said mold release layer.
JP2015230160A 2015-11-26 2015-11-26 Manufacturing method of membrane electrode assembly Active JP6561800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015230160A JP6561800B2 (en) 2015-11-26 2015-11-26 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230160A JP6561800B2 (en) 2015-11-26 2015-11-26 Manufacturing method of membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2017098128A true JP2017098128A (en) 2017-06-01
JP6561800B2 JP6561800B2 (en) 2019-08-21

Family

ID=58804988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230160A Active JP6561800B2 (en) 2015-11-26 2015-11-26 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP6561800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021437A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Method for manufacturing membrane-electrode assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087604A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Catalyst layer transfer film
JP2014154273A (en) * 2013-02-06 2014-08-25 Daicel Corp Release film for fuel cell manufacture, laminate, and manufacturing method of fuel cell
JP2015118916A (en) * 2013-11-14 2015-06-25 株式会社ダイセル Mold releasing film, laminate, producing method thereof, and method for producing fuel battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087604A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Catalyst layer transfer film
JP2014154273A (en) * 2013-02-06 2014-08-25 Daicel Corp Release film for fuel cell manufacture, laminate, and manufacturing method of fuel cell
JP2015118916A (en) * 2013-11-14 2015-06-25 株式会社ダイセル Mold releasing film, laminate, producing method thereof, and method for producing fuel battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021437A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Method for manufacturing membrane-electrode assembly

Also Published As

Publication number Publication date
JP6561800B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
CN102823040B (en) Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
US20140011116A1 (en) Manufacturing method and apparatus for membrane electrode assembly, and polymer electrolyte fuel cell
JP6641812B2 (en) Manufacturing method of membrane electrode assembly
JP4861025B2 (en) Electrode for solid polymer electrolyte fuel cell and method for producing the same
JP5044062B2 (en) Method for producing membrane-catalyst layer assembly
JP2010198948A (en) Membrane-electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
JP5742457B2 (en) Manufacturing method of electrolyte membrane for fuel cell
JP6561800B2 (en) Manufacturing method of membrane electrode assembly
JP5954233B2 (en) Method and apparatus for manufacturing transfer roller and membrane electrode assembly
JP2019053822A (en) Catalyst transfer method
JP7131524B2 (en) Manufacturing method of membrane electrode gas diffusion layer assembly
JP6163812B2 (en) Manufacturing method of electrolyte membrane with supporting substrate, manufacturing apparatus of electrolyte membrane with supporting substrate, manufacturing method of catalyst layer-electrolyte membrane laminate using electrolyte membrane with supporting substrate, and electrolyte membrane with supporting substrate Catalyst layer-electrolyte membrane laminate manufacturing apparatus
CN103918113B (en) Membrane electrode assembly manufacturing method
JP5137008B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
JP2016076366A (en) Method of manufacturing fuel battery membrane - electrode assembly, and membrane - electrode assembly
JP5461370B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP6127598B2 (en) Membrane electrode assembly manufacturing apparatus and membrane electrode assembly manufacturing method
JP2015053201A (en) Catalyst layer transfer sheet
JP2017117786A (en) Assembly manufacturing method and manufacturing device
JP2015022858A (en) Method of manufacturing solid polymer fuel cell
JP6746994B2 (en) Method for manufacturing membrane electrode assembly of fuel cell
WO2020026796A1 (en) Method of manufacturing and device for manufacturing membrane-catalyst assembly
JP6550917B2 (en) Membrane-electrode assembly manufacturing method and membrane-electrode assembly
JP2018077980A (en) Method of manufacturing membrane electrode assembly
JP2017054598A (en) Method for manufacturing membrane-electrode structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R151 Written notification of patent or utility model registration

Ref document number: 6561800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151