JP2014154273A - Release film for fuel cell manufacture, laminate, and manufacturing method of fuel cell - Google Patents

Release film for fuel cell manufacture, laminate, and manufacturing method of fuel cell Download PDF

Info

Publication number
JP2014154273A
JP2014154273A JP2013021250A JP2013021250A JP2014154273A JP 2014154273 A JP2014154273 A JP 2014154273A JP 2013021250 A JP2013021250 A JP 2013021250A JP 2013021250 A JP2013021250 A JP 2013021250A JP 2014154273 A JP2014154273 A JP 2014154273A
Authority
JP
Japan
Prior art keywords
membrane
release
release film
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013021250A
Other languages
Japanese (ja)
Other versions
JP6085185B2 (en
Inventor
Hiroshi Onomichi
浩 尾道
Kyo Nishimura
協 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Daicel Value Coating Ltd
Original Assignee
Daicel Corp
Daicel Value Coating Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, Daicel Value Coating Ltd filed Critical Daicel Corp
Priority to JP2013021250A priority Critical patent/JP6085185B2/en
Publication of JP2014154273A publication Critical patent/JP2014154273A/en
Application granted granted Critical
Publication of JP6085185B2 publication Critical patent/JP6085185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Laminated Bodies (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a release film capable of prolonging the lifetime of a solid polymer fuel cell by improving surface smoothness of an electrolyte membrane and/or electrode membrane of the fuel cell and thickness uniformity even when a release layer is thin.SOLUTION: As a release film for manufacturing a membrane-electrode assembly of a solid polymer fuel cell, a release film is used which includes a base material layer and a release layer laminated on at least one side of the base material layer and formed from a cyclic olefin-based resin, and in which a centerline average roughness Ra of a surface of the release layer is 0.001 to 0.05 μm and an average thickness of the release layer is 0.2 to 5 μm. The release layer may also be formed by coating. The release film may also be a film for laminating an electrolyte membrane and/or an electrode membrane containing an ion exchange resin thereon and for releasing from the membrane-electrode assembly after the membrane-electrode assembly is manufactured.

Description

本発明は、固体高分子型燃料電池の構成部材である膜電極接合体を製造(製膜)する際に使用される離型フィルム並びにこの離型フィルムを含む積層体(積層フィルム)及びこの離型フィルムを用いて前記膜電極接合体を製造する方法に関する。   The present invention relates to a release film used when manufacturing (forming a membrane) a membrane electrode assembly that is a constituent member of a polymer electrolyte fuel cell, a laminate (laminated film) including the release film, and the release film. The present invention relates to a method for producing the membrane electrode assembly using a mold film.

固体高分子型燃料電池は、膜電極接合体(Membrane Electrode Assembly:MEA)と称される基本構成を有している。MEAは、イオン交換膜である固体高分子電解質膜の両面に、白金族金属触媒を担持したカーボン粉末を主成分とする電極膜(触媒層又は電極触媒膜)を積層し、得られた積層体を導電性の多孔膜である燃料ガス供給層と空気供給層とでさらに挟み込んで得られる。このMEAにおいて、電解質膜及び電極膜のいずれにもイオン交換樹脂が含まれているが、通常、電解質膜及び電極膜はキャスト法及び/又はコーティング法で形成される。電解質膜と電極膜との積層方法としては、通常、支持体にそれぞれ形成された両層を接触させて、130〜150℃程度、圧力1〜10MPa程度で加熱圧着することにより密着した後、支持体を剥離する方法が用いられる。そのため、支持体としては離型フィルムが用いられるが、離型フィルムには、電解質膜及び電極膜に対する適度な剥離性と密着性とが要求される上に、耐熱性も要求される。   A polymer electrolyte fuel cell has a basic configuration called a membrane electrode assembly (MEA). MEA is a laminate obtained by laminating an electrode membrane (catalyst layer or electrode catalyst membrane) mainly composed of carbon powder carrying a platinum group metal catalyst on both surfaces of a solid polymer electrolyte membrane which is an ion exchange membrane. Is further sandwiched between a fuel gas supply layer and an air supply layer which are conductive porous membranes. In this MEA, both the electrolyte membrane and the electrode membrane contain an ion exchange resin, but the electrolyte membrane and the electrode membrane are usually formed by a casting method and / or a coating method. As a method of laminating an electrolyte membrane and an electrode membrane, usually, both layers formed on a support are brought into contact with each other, and are adhered by thermocompression bonding at about 130 to 150 ° C. and a pressure of about 1 to 10 MPa. A method of peeling the body is used. For this reason, a release film is used as the support, and the release film is required to have appropriate peelability and adhesion to the electrolyte membrane and the electrode film, as well as heat resistance.

例えば、離型フィルムとしては、フッ素系フィルムも知られており、特開2010−272136号公報(特許文献1)には、離型フィルムとして、ポリテトラフルオロエチレンフィルムを用いた燃料電池用電極の製造方法が開示されている。   For example, a fluorine-based film is also known as a release film, and Japanese Unexamined Patent Application Publication No. 2010-272136 (Patent Document 1) discloses a fuel cell electrode using a polytetrafluoroethylene film as a release film. A manufacturing method is disclosed.

しかし、フッ素系フィルムは、耐熱性、離型性、非汚染性には優れているもの、高価である上に、使用後の廃棄焼却処理において燃焼し難く、有毒ガスを発生するという問題点も有している。さらに、弾性率が低いため、ロール・ツー・ロール方式での製造が困難であり、生産性も低い。特に、フッ素系フィルムは押出成形フィルムであるため、フィッシュアイなどの凹凸状欠陥が発生し易く、表面平滑性が低い。離型フィルムの平滑性が低く、厚みが不均一であると、電解質膜及び電極膜の表面も離型フィルムの影響を受けて、平滑性が低下する。そのため、電解質膜と電極膜、電極膜とガス拡散層との界面において、密に接触する部分と疎に接触する部分とが発生し、触媒の劣化度合いに差が生じるため、電池寿命が短くなる。   However, the fluorine-based film has excellent heat resistance, releasability, and non-contamination, is expensive, and is difficult to burn in waste incineration after use, and generates toxic gases. Have. Furthermore, since the elastic modulus is low, it is difficult to manufacture by a roll-to-roll method, and productivity is low. In particular, since the fluorine-based film is an extruded film, irregularities such as fish eyes are easily generated, and the surface smoothness is low. When the smoothness of the release film is low and the thickness is not uniform, the surfaces of the electrolyte membrane and the electrode film are also affected by the release film, and the smoothness is lowered. As a result, at the interface between the electrolyte membrane and the electrode membrane and between the electrode membrane and the gas diffusion layer, a portion that contacts closely and a portion that contacts sparsely occur, resulting in a difference in the degree of deterioration of the catalyst, thereby shortening the battery life. .

特開2010−234570号公報(特許文献2)には、シクロオレフィン系コポリマーからなる離型フィルムが開示されており、ポリエチレンテレフタレートフィルムなどの基材のフィルムの上にシクロオレフィン系コポリマー溶液をコーティングして形成された離型フィルムも記載されている。この文献には、離型フィルムの表面平滑性については記載されておらず、実施例では、ポリエチレンテレフタレートフィルムの上に、流延装置を用いて、エチレンとノルボルネンとの共重合体を含む溶液をキャストし、厚さ0.5μmの離型フィルムを形成している。   Japanese Unexamined Patent Application Publication No. 2010-234570 (Patent Document 2) discloses a release film made of a cycloolefin copolymer, and a cycloolefin copolymer solution is coated on a base film such as a polyethylene terephthalate film. A release film formed in this way is also described. This document does not describe the surface smoothness of the release film. In the examples, a solution containing a copolymer of ethylene and norbornene is formed on a polyethylene terephthalate film using a casting apparatus. A release film having a thickness of 0.5 μm is formed by casting.

しかし、この離型フィルムも表面平滑性は低く、電池寿命を向上できない。なお、汎用のフィルムは、アンチブロッキング性や、ロール形態での保存性、ロール送り性などの取り扱い性を向上させるため、フィルム表面は適度な粗さを有している。   However, this release film also has low surface smoothness and cannot improve battery life. In addition, since the general purpose film improves handling properties such as anti-blocking properties, storability in roll form, and roll feedability, the film surface has an appropriate roughness.

特開2010−272136号公報(特許請求の範囲)JP 2010-272136 A (Claims) 特開2010−234570号公報(特許請求の範囲、段落[0025]、実施例2)JP 2010-234570 A (Claims, paragraph [0025], Example 2)

従って、本発明の目的は、離型層が薄肉であっても、固体高分子型燃料電池の電解質膜及び/又は電極膜の表面平滑性及び厚みの均一性を向上でき、前記燃料電池の電池寿命を向上できる離型フィルム並びにこの離型フィルムを含む積層フィルム及びこの離型フィルムを用いて燃料電池の膜電極接合体(電解質膜及び/又は電極膜)を製造する方法を提供することにある。   Accordingly, an object of the present invention is to improve the surface smoothness and thickness uniformity of the electrolyte membrane and / or electrode membrane of the solid polymer fuel cell even if the release layer is thin, and the fuel cell Disclosed is a release film capable of improving life, a laminated film including the release film, and a method for producing a membrane electrode assembly (electrolyte membrane and / or electrode membrane) of a fuel cell using the release film. .

本発明の他の目的は、表面が平滑で厚みが均一な電解質膜及び/又は電極膜を安定して製造でき、かつ膜電極接合体を製造するために適した剥離性を有する離型フィルム並びにこの離型フィルムを含む積層フィルム及びこの離型フィルムを用いて燃料電池の膜電極接合体(電解質膜及び/又は電極膜)を製造する方法を提供することにある。   Another object of the present invention is to provide a release film capable of stably producing an electrolyte membrane and / or an electrode membrane having a smooth surface and a uniform thickness and having a releasability suitable for producing a membrane / electrode assembly, and An object of the present invention is to provide a laminated film including the release film and a method for producing a membrane electrode assembly (electrolyte membrane and / or electrode membrane) of a fuel cell using the release film.

本発明のさらに他の目的は、高い耐熱性を有し、ロール・ツー・ロール(roll to roll)方式で固体高分子型燃料電池の電解質膜及び/又は電極膜を製造できる離型フィルム並びにこの離型フィルムを含む積層フィルム及びこの離型フィルムを用いて燃料電池の膜電極接合体(電解質膜及び/又は電極膜)を製造する方法を提供することにある。   Still another object of the present invention is to provide a release film having high heat resistance and capable of producing an electrolyte membrane and / or an electrode membrane of a polymer electrolyte fuel cell in a roll-to-roll manner. An object of the present invention is to provide a laminated film including a release film and a method for producing a membrane electrode assembly (electrolyte membrane and / or electrode membrane) of a fuel cell using the release film.

本発明者らは、前記課題を達成するため鋭意検討した結果、基材層の上に、環状オレフィン系樹脂で形成され、表面の中心線平均粗さRaが0.001〜0.05μmであり、かつ平均厚みが0.2〜5μmである離型層が積層された離型フィルムを、固体高分子型燃料電池の膜電極接合体を製造するための離型フィルムとして用いることにより、離型層が薄肉であっても、固体高分子型燃料電池の電解質膜及び/又は電極膜の表面平滑性及び厚みの均一性を向上でき、前記燃料電池の電池寿命を向上できる。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have formed a cyclic olefin-based resin on the base material layer, and the surface center line average roughness Ra is 0.001 to 0.05 μm. By using a release film on which a release layer having an average thickness of 0.2 to 5 μm is laminated as a release film for producing a membrane electrode assembly of a polymer electrolyte fuel cell, release Even if the layer is thin, the surface smoothness and thickness uniformity of the electrolyte membrane and / or electrode membrane of the polymer electrolyte fuel cell can be improved, and the battery life of the fuel cell can be improved.

すなわち、本発明の離型フィルムは、固体高分子型燃料電池の膜電極接合体を製造するための離型フィルムであって、基材層と、この基材層の少なくとも一方の面に積層され、かつ環状オレフィン系樹脂で形成された離型層とを含み、前記離型層表面の中心線平均粗さRaが0.001〜0.05μmであり、かつ前記離型層の平均厚みが0.2〜5μmである。前記離型層はコーティングにより形成された層であってもよい。前記基材層表面の中心線平均粗さRaは0.001〜0.05μmであってもよい。前記基材層は、ポリオレフィン、ポリビニルアルコール系重合体、ポリエステル、ポリアミド及びセルロース誘導体からなる群より選択された少なくとも1種で形成されていてもよい。本発明の離型フィルムは、イオン交換樹脂を含む電解質膜及び/又は電極膜をその上に積層し、膜電極接合体を製造した後、膜電極接合体から剥離するためのフィルムであってもよい。   That is, the release film of the present invention is a release film for producing a membrane electrode assembly of a polymer electrolyte fuel cell, and is laminated on at least one surface of the base material layer. And a release layer formed of a cyclic olefin resin, the centerline average roughness Ra of the release layer surface is 0.001 to 0.05 μm, and the average thickness of the release layer is 0 .2-5 μm. The release layer may be a layer formed by coating. The center line average roughness Ra on the surface of the base material layer may be 0.001 to 0.05 μm. The base material layer may be formed of at least one selected from the group consisting of polyolefin, polyvinyl alcohol polymer, polyester, polyamide, and cellulose derivative. The release film of the present invention may be a film for peeling an electrolyte membrane and / or electrode membrane containing an ion exchange resin from the membrane electrode assembly after the membrane and electrode membrane are laminated thereon. Good.

本発明には、固体高分子型燃料電池を製造するための積層体であり、前記離型フィルムと、この離型フィルムの離型層の上に積層され、かつイオン交換樹脂を含む層とで形成された積層体も含まれる。前記イオン交換樹脂を含む層は、電解質膜及び/又は電極膜であってもよい。   The present invention provides a laminate for producing a polymer electrolyte fuel cell, the release film, and a layer laminated on the release layer of the release film and containing an ion exchange resin. A formed laminate is also included. The layer containing the ion exchange resin may be an electrolyte membrane and / or an electrode membrane.

本発明には、前記離型フィルムの離型層の上に、イオン交換樹脂を含む電解質膜及び/又は電極膜を積層する積層工程を経て、固体高分子型燃料電池の膜電極接合体を製造する方法も含まれる。前記積層工程において、第1の離型フィルムの離型層の上に電解質膜をコーティングにより積層し、かつ第2の離型フィルムの離型層の上に電極膜をコーティングにより積層してもよい。本発明の方法は、第1及び第2の離型フィルムの離型層の上にそれぞれ積層された電解質膜と電極膜とを密着させて膜電極接合体を調製する密着工程をさらに含んでいてもよい。本発明の方法は、電解質膜及び/又は電極膜から離型フィルムを剥離する剥離工程をさらに含んでいてもよい。   In the present invention, a membrane / electrode assembly of a polymer electrolyte fuel cell is manufactured through a lamination step of laminating an electrolyte membrane and / or an electrode membrane containing an ion exchange resin on the release layer of the release film. The method of doing is also included. In the laminating step, an electrolyte membrane may be laminated on the release layer of the first release film by coating, and an electrode film may be laminated on the release layer of the second release film by coating. . The method of the present invention further includes an adhesion step of preparing a membrane / electrode assembly by closely adhering the electrolyte membrane and the electrode membrane respectively laminated on the release layers of the first and second release films. Also good. The method of the present invention may further include a peeling step of peeling the release film from the electrolyte membrane and / or the electrode membrane.

本発明では、基材層の上に、環状オレフィン系樹脂で形成され、表面の中心線平均粗さRaが0.001〜0.05μmであり、かつ平均厚みが0.2〜5μmである離型層が積層された離型フィルムを、固体高分子型燃料電池の膜電極接合体を製造するための離型フィルムとして用いるため、離型層が薄肉であっても、固体高分子型燃料電池の電解質膜及び/又は電極膜の表面平滑性及び厚みの均一性を向上でき、前記燃料電池の電池寿命を向上できる。また、離型層の表面は平滑で、かつ適度な表面粗さを有しており、基材層と離型層との密着性が高いため、表面が平滑で厚みが均一な電解質膜及び/又は電極膜を安定して製造でき、かつ膜電極接合体を製造するために適した剥離性も実現できる。さらに、高い耐熱性を有するとともに、適度な表面粗さを有するため、ロール・ツー・ロール(roll to roll)方式で固体高分子型燃料電池の電解質膜及び/又は電極膜を製造できる。   In the present invention, the separation is made of a cyclic olefin resin on the base material layer, the surface centerline average roughness Ra is 0.001 to 0.05 μm, and the average thickness is 0.2 to 5 μm. Since the release film with the mold layer laminated is used as a release film for producing a membrane electrode assembly of a polymer electrolyte fuel cell, the polymer electrolyte fuel cell can be used even if the release layer is thin. The surface smoothness and thickness uniformity of the electrolyte membrane and / or electrode membrane can be improved, and the battery life of the fuel cell can be improved. In addition, since the surface of the release layer is smooth and has an appropriate surface roughness, and the adhesion between the base material layer and the release layer is high, an electrolyte membrane having a smooth surface and a uniform thickness and / or Alternatively, it is possible to stably produce the electrode film and to realize releasability suitable for producing a membrane electrode assembly. Furthermore, since it has high heat resistance and moderate surface roughness, it is possible to manufacture an electrolyte membrane and / or an electrode membrane of a polymer electrolyte fuel cell by a roll-to-roll method.

[離型フィルム]
本発明の離型フィルムは、固体高分子型燃料電池の膜電極接合体(MEA)を製造するための離型フィルムであって、基材層と、この基材層の少なくとも一方の面(通常、一方の面)に積層され、かつ環状オレフィン系樹脂で形成された離型層とを含み、前記離型層表面の中心線平均粗さRaが0.001〜0.05μmであり、かつ前記離型層の平均厚みが0.2〜5μmである。本発明の離型フィルムは、特に、イオン交換樹脂を含む電解質膜及び/又は電極膜をその上に積層し、MEAを製造した後、MEAから剥離するためのフィルムであってもよい。
[Release film]
The release film of the present invention is a release film for producing a membrane electrode assembly (MEA) of a polymer electrolyte fuel cell, and comprises a base material layer and at least one surface of the base material layer (usually normal) , One surface) and a release layer formed of a cyclic olefin-based resin, the centerline average roughness Ra of the release layer surface is 0.001 to 0.05 μm, and The average thickness of the release layer is 0.2 to 5 μm. In particular, the release film of the present invention may be a film for peeling an MEA after laminating an electrolyte membrane and / or an electrode membrane containing an ion exchange resin on the membrane.

(離型層)
離型層表面の中心線平均粗さRaは0.001〜0.05μmである。本発明では、離型層表面の中心線平均粗さRaがこの範囲にあるため、表面平滑性に優れ、固体高分子型燃料電池の電解質膜及び/又は電極膜の表面平滑性及び厚みの均一性を向上できるだけでなく、適度な粗さを有しているため、基材層と離型層との密着性が高く、ロール・ツー・ロール方式での製造に用いることも可能である。Raが小さすぎると、基材層と離型層との密着性が低下することに加えて、ロール・ツー・ロール方式での製造も困難となる一方で、Raが大きすぎると、表面平滑性が低下し、電解質膜及び/又は電極膜の表面平滑性及び厚みの均一性が低下し、燃料電池の寿命が短くなる。中心線平均粗さRaは0.001〜0.04μmであってもよく、好ましくは0.0015〜0.03μm、さらに好ましくは0.002〜0.025μm(特に0.0025〜0.022μm)程度である。
(Release layer)
The center line average roughness Ra of the surface of the release layer is 0.001 to 0.05 μm. In the present invention, since the centerline average roughness Ra of the release layer surface is in this range, the surface smoothness is excellent, and the surface smoothness and thickness of the electrolyte membrane and / or electrode membrane of the solid polymer fuel cell are uniform. In addition to improving the properties, it has an appropriate roughness, so that the adhesion between the base material layer and the release layer is high, and it can be used for production in a roll-to-roll system. If Ra is too small, in addition to lowering the adhesion between the base material layer and the release layer, it becomes difficult to produce by a roll-to-roll method. On the other hand, if Ra is too large, surface smoothness is obtained. Decreases, and the surface smoothness and thickness uniformity of the electrolyte membrane and / or electrode membrane are reduced, and the life of the fuel cell is shortened. The center line average roughness Ra may be 0.001 to 0.04 μm, preferably 0.0015 to 0.03 μm, more preferably 0.002 to 0.025 μm (particularly 0.0025 to 0.022 μm). Degree.

なお、本明細書では、中心線平均粗さRaは、JIS B0601に準拠した方法で測定できる。   In the present specification, the center line average roughness Ra can be measured by a method based on JIS B0601.

離型層の平均厚みは0.2〜5μmである。本発明では、離型層がこのような薄肉であっても、基材表面の平均粗さRaを調整することにより、基材表面の凹凸形状による影響を抑制して、離型層の平均粗さRaを前述の適度な範囲に調整できる。離型層の厚みが厚すぎると、基材の影響が小さくなるため、本発明の効果を発現できない上に、経済性も低下する。一方、離型層の厚みが薄すぎると、厚みの均一性を保持するもの困難である上に、基材との密着性が低下する。離型層の平均厚みは0.22〜4μmであってもよく、例えば、0.25〜3μm、好ましくは0.28〜2.5μm、さらに好ましくは0.3〜2μm(特に0.3〜1μm)程度である。   The average thickness of the release layer is 0.2 to 5 μm. In the present invention, even if the release layer is such a thin wall, by adjusting the average roughness Ra of the substrate surface, the influence of the uneven shape of the substrate surface is suppressed, and the average roughness of the release layer is reduced. The thickness Ra can be adjusted to the above-mentioned appropriate range. If the thickness of the release layer is too thick, the influence of the substrate is reduced, so that the effect of the present invention cannot be exhibited and the economic efficiency is also lowered. On the other hand, if the thickness of the release layer is too thin, it is difficult to maintain the uniformity of thickness, and the adhesion to the substrate is lowered. The average thickness of the release layer may be 0.22 to 4 μm, for example, 0.25 to 3 μm, preferably 0.28 to 2.5 μm, more preferably 0.3 to 2 μm (particularly 0.3 to About 1 μm).

なお、本明細書では、平均厚みは、離型層の塗工量(単位面積当たりの固形分重量)及び密度に基づいて算出できる。   In the present specification, the average thickness can be calculated based on the coating amount (solid content weight per unit area) and density of the release layer.

環状オレフィン系樹脂は、重合成分として環状オレフィンを含む。環状オレフィンは、環内にエチレン性二重結合を有する重合性の環状オレフィンであり、単環式オレフィン、二環式オレフィン、三環以上の多環式オレフィンなどに分類できる。   The cyclic olefin-based resin contains a cyclic olefin as a polymerization component. The cyclic olefin is a polymerizable cyclic olefin having an ethylenic double bond in the ring, and can be classified into a monocyclic olefin, a bicyclic olefin, a tricyclic or higher polycyclic olefin, and the like.

単環式オレフィンとしては、例えば、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテンなどの環状C4−12シクロオレフィン類などが挙げられる。 Examples of monocyclic olefins include cyclic C 4-12 cycloolefins such as cyclobutene, cyclopentene, cycloheptene, and cyclooctene.

二環式オレフィンとしては、例えば、2−ノルボルネン;5−メチル−2−ノルボルネン、5,5−ジメチル−2−ノルボルネン、5−エチル−2−ノルボルネン、5−ブチル−2−ノルボルネンなどのアルキル基(C1―4アルキル基)を有するノルボルネン類;5−エチリデン−2−ノルボルネンなどのアルケニル基を有するノルボルネン類;5−メトキシカルボニル−2−ノルボルネン、5−メチル−5−メトキシカルボニル−2−ノルボルネンなどのアルコキシカルボニル基を有するノルボルネン類;5−シアノ−2−ノルボルネンなどのシアノ基を有するノルボルネン類;5−フェニル−2−ノルボルネン、5−フェニル−5−メチル−2−ノルボルネンなどのアリール基を有するノルボルネン類;オクタリン;6−エチル−オクタヒドロナフタレンなどのアルキル基を有するオクタリンなどが例示できる。 Examples of the bicyclic olefin include 2-norbornene; alkyl groups such as 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, and 5-butyl-2-norbornene. Norbornenes having (C 1-4 alkyl group); norbornenes having an alkenyl group such as 5-ethylidene-2-norbornene; 5-methoxycarbonyl-2-norbornene, 5-methyl-5-methoxycarbonyl-2-norbornene Norbornenes having an alkoxycarbonyl group such as: norbornenes having a cyano group such as 5-cyano-2-norbornene; aryl groups such as 5-phenyl-2-norbornene and 5-phenyl-5-methyl-2-norbornene Having norbornenes; octaline; 6-ethyl-oct Examples include octaline having an alkyl group such as tahydronaphthalene.

多環式オレフィンとしては、例えば、ジシクロペンタジエン;2,3−ジヒドロジシクロペンタジエン、メタノオクタヒドロフルオレン、ジメタノオクタヒドロナフタレン、ジメタノシクロペンタジエノナフタレン、メタノオクタヒドロシクロペンタジエノナフタレンなどの誘導体;6−エチル−オクタヒドロナフタレンなどの置換基を有する誘導体;シクロペンタジエンとテトラヒドロインデン等との付加物、シクロペンタジエンの3〜4量体などが挙げられる。   Examples of the polycyclic olefin include dicyclopentadiene; 2,3-dihydrodicyclopentadiene, methanooctahydrofluorene, dimethanooctahydronaphthalene, dimethanocyclopentadienonaphthalene, methanooctahydrocyclopentadienaphthalene, and the like. Derivatives having substituents such as 6-ethyl-octahydronaphthalene; adducts of cyclopentadiene and tetrahydroindene, 3-pentamers of cyclopentadiene, and the like.

これらの環状オレフィンは、単独で又は二種以上組み合わせて使用できる。これらの環状オレフィンのうち、剥離性と柔軟性とのバランスに優れる点から、二環式オレフィンが好ましい。環状オレフィン全体に対して二環式オレフィン(特にノルボルネン類)の割合は10モル%以上であってもよく、例えば、30モル%以上、好ましくは50モル%以上、さらに好ましくは80モル%以上(特に90モル%以上)であり、二環式オレフィン単独(100モル%)であってもよい。特に、三環以上の多環式オレフィンの割合が大きくなると、ロール・ツー・ロール方式での製造に用いることが困難となる。   These cyclic olefins can be used alone or in combination of two or more. Of these cyclic olefins, bicyclic olefins are preferred because they have a good balance between peelability and flexibility. The ratio of bicyclic olefins (particularly norbornenes) to the whole cyclic olefins may be 10 mol% or more, for example, 30 mol% or more, preferably 50 mol% or more, more preferably 80 mol% or more ( In particular, it is 90 mol% or more), and may be a bicyclic olefin alone (100 mol%). In particular, when the ratio of the tricyclic or higher polycyclic olefin is increased, it becomes difficult to use for production in a roll-to-roll system.

代表的な二環式オレフィンとしては、例えば、置換基を有していてもよいノルボルネン(2−ノルボルネン)、置換基を有していてもよいオクタリン(オクタヒドロナフタレン)などが例示できる。前記置換基としては、アルキル基、アルケニル基、アリール基、ヒドロキシル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アシル基、シアノ基、アミド基、ハロゲン原子などが例示できる。これらの置換基は、単独で又は二種以上組み合わせてもよい。これらの二環式オレフィンのうち、ノルボルネンやアルキル基(メチル基、エチル基などのC1−4アルキル基)を有するノルボルネンなどのノルボルネン類が特に好ましい。 As typical bicyclic olefins, for example, norbornene (2-norbornene) which may have a substituent, octaline (octahydronaphthalene) which may have a substituent, and the like can be exemplified. Examples of the substituent include an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a cyano group, an amide group, and a halogen atom. These substituents may be used alone or in combination of two or more. Of these bicyclic olefins, norbornenes such as norbornene and norbornene having an alkyl group (C 1-4 alkyl group such as methyl group or ethyl group) are particularly preferable.

環状オレフィン系樹脂は、ロール・ツー・ロール方式での製造に利用できる点などから、さらに鎖状オレフィンを重合成分として含む環状オレフィン−鎖状オレフィン共重合体であるのが好ましい。   The cyclic olefin-based resin is preferably a cyclic olefin-chain olefin copolymer further containing a chain olefin as a polymerization component because it can be used for production in a roll-to-roll system.

鎖状オレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンなどの鎖状C2−10オレフィン類などが挙げられる。これらの鎖状オレフィンは、単独で又は二種以上組み合わせて使用できる。これらの鎖状オレフィンのうち、好ましくはα−鎖状C2−8オレフィン類であり、さらに好ましくはα−鎖状C2−4オレフィン類(特に、エチレン)である。 Examples of the chain olefin include chain C such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene and 1-octene. 2-10 olefins etc. are mentioned. These chain olefins can be used alone or in combination of two or more. Among these chain olefins, α-chain C 2-8 olefins are preferable, and α-chain C 2-4 olefins (particularly ethylene) are more preferable.

環状オレフィンと鎖状オレフィンとの割合(モル比)は、例えば、環状オレフィン/鎖状オレフィン=100/0〜1/99、好ましくは90/10〜10/90、さらに好ましくは70/30〜15/85(特に50/50〜20/80)程度である。環状オレフィンの割合が少なすぎると、剥離性が低下する。   The ratio (molar ratio) between the cyclic olefin and the chain olefin is, for example, cyclic olefin / chain olefin = 100/0 to 1/99, preferably 90/10 to 10/90, and more preferably 70/30 to 15 / 85 (particularly 50/50 to 20/80). If the ratio of the cyclic olefin is too small, the peelability is lowered.

他の共重合性単量体としては、例えば、ビニルエステル系単量体(例えば、酢酸ビニル、プロピオン酸ビニルなど);ジエン系単量体(例えば、ブタジエン、イソプレンなど);(メタ)アクリル系単量体[例えば、(メタ)アクリル酸、又はこれらの誘導体((メタ)アクリル酸エステルなど)など]などが例示できる。これらの他の共重合性単量体は単独で又は二種以上組み合わせてもよい。これらの他の共重合性単量体の含有量は、環状オレフィン系樹脂全体に対して、例えば、5モル%以下、好ましくは1モル%以下である。   Other copolymerizable monomers include, for example, vinyl ester monomers (eg, vinyl acetate, vinyl propionate, etc.); diene monomers (eg, butadiene, isoprene, etc.); (meth) acrylic monomers Monomer [for example, (meth) acrylic acid or derivatives thereof ((meth) acrylic acid ester etc.)] etc. can be illustrated. These other copolymerizable monomers may be used alone or in combination of two or more. The content of these other copolymerizable monomers is, for example, 5 mol% or less, preferably 1 mol% or less, based on the entire cyclic olefin resin.

環状オレフィン系樹脂は、付加重合により得られた樹脂であってもよく、開環重合(開環メタセシス重合など)により得られた樹脂であってもよい。また、開環メタセシス重合により得られた重合体は、水素添加された水添樹脂であってもよい。環状オレフィン系樹脂の重合方法は、慣用の方法、例えば、メタセシス重合触媒を用いた開環メタセシス重合、チーグラー型触媒を用いた付加重合、メタロセン系触媒を用いた付加重合(通常、メタセシス重合触媒を用いた開環メタセシス重合)などを利用できる。   The cyclic olefin-based resin may be a resin obtained by addition polymerization or a resin obtained by ring-opening polymerization (ring-opening metathesis polymerization or the like). The polymer obtained by ring-opening metathesis polymerization may be a hydrogenated hydrogenated resin. The polymerization method of the cyclic olefin resin is a conventional method, for example, ring-opening metathesis polymerization using a metathesis polymerization catalyst, addition polymerization using a Ziegler type catalyst, addition polymerization using a metallocene catalyst (usually a metathesis polymerization catalyst). The ring-opening metathesis polymerization used) can be used.

環状オレフィン系樹脂のガラス転移温度(Tg)は10〜220℃程度の範囲から選択できるが、耐熱性の点から、例えば、30〜215℃、好ましくは50〜215℃、さらに好ましくは100〜215℃程度である。ガラス転移温度が低すぎると、耐熱性が低下し、高すぎると、ロール・ツー・ロール方式での生産が困難となる。なお、本明細書において、ガラス転移温度は、示差走査熱量計(DSC)を用いて測定できる。   Although the glass transition temperature (Tg) of cyclic olefin resin can be selected from the range of about 10-220 degreeC, from a heat resistant point, for example, 30-215 degreeC, Preferably it is 50-215 degreeC, More preferably, it is 100-215. It is about ℃. If the glass transition temperature is too low, the heat resistance is lowered, and if it is too high, production in a roll-to-roll system becomes difficult. In the present specification, the glass transition temperature can be measured using a differential scanning calorimeter (DSC).

環状オレフィン系樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で、例えば、1000〜150000、好ましくは5000〜120000、さらに好ましくは10000〜100000(特に20000〜90000)程度である。   The number average molecular weight of the cyclic olefin-based resin is, for example, 1000 to 150,000, preferably 5000 to 120,000, more preferably 10,000 to 100,000 (particularly 20000 to 90000) in terms of polystyrene in gel permeation chromatography (GPC). .

離型層には、さらに慣用の添加剤が含まれていてもよい。慣用の添加剤としては、例えば、充填剤、滑剤(ワックス、脂肪酸エステル、脂肪酸アミドなど)、帯電防止剤、安定剤(酸化防止剤、熱安定剤、光安定剤など)、難燃剤、粘度調整剤、増粘剤、消泡剤などが含まれていてもよい。また、表面平滑性を損なわない範囲で、有機又は無機粒子(特にゼオライトなどのアンチブロッキング剤)を含んでいてもよい。   The release layer may further contain a conventional additive. Examples of conventional additives include fillers, lubricants (waxes, fatty acid esters, fatty acid amides, etc.), antistatic agents, stabilizers (antioxidants, heat stabilizers, light stabilizers, etc.), flame retardants, viscosity adjustments Agents, thickeners, antifoaming agents and the like may be included. In addition, organic or inorganic particles (particularly, anti-blocking agents such as zeolite) may be included as long as the surface smoothness is not impaired.

特に、本発明では、電解質膜や電極膜を汚染し易いシリコーン化合物などの低分子量の離型剤を含んでいなくても剥離性を向上でき、シリコーン化合物を実質的に含んでいないのが好ましい。   In particular, in the present invention, it is preferable that the releasability can be improved without containing a low molecular weight release agent such as a silicone compound that easily contaminates the electrolyte membrane or the electrode membrane, and it is preferable that the silicone compound is not substantially contained. .

(基材層)
基材層は、燃料電池の製造工程において、離型フィルムの寸法安定性を向上でき、特に、ロール・ツー・ロール方式において張力が負荷されても、伸びを抑制でき、さらに乾燥工程や加熱圧着処理などによって高温に晒されても、高い寸法安定性を維持し、電解質膜や電極膜との剥離を抑制できる点から、耐熱性及び寸法安定性の高い基材が好ましく、150℃における弾性率が100〜1000MPaの合成樹脂で形成されていてもよい。前記弾性率は、例えば、120〜1000MPa、好ましくは150〜1000MPa、さらに好ましくは200〜1000MPa程度であってもよい。弾性率が小さすぎると、寸法安定性が低下し、ロール・ツー・ロール方式での製造において電解質膜や電極膜との剥離が発生し、燃料電池の生産性が低下する。
(Base material layer)
The base material layer can improve the dimensional stability of the release film in the manufacturing process of the fuel cell. In particular, even when tension is applied in the roll-to-roll method, it can suppress the elongation, and further, the drying process and thermocompression bonding A base material having high heat resistance and high dimensional stability is preferable from the viewpoint of maintaining high dimensional stability even when exposed to a high temperature by treatment, etc., and suppressing peeling from the electrolyte membrane or electrode film, and an elastic modulus at 150 ° C. May be formed of a synthetic resin of 100 to 1000 MPa. The elastic modulus may be, for example, about 120 to 1000 MPa, preferably about 150 to 1000 MPa, and more preferably about 200 to 1000 MPa. When the elastic modulus is too small, the dimensional stability is lowered, and peeling from the electrolyte membrane and the electrode membrane occurs in the production by the roll-to-roll method, and the productivity of the fuel cell is lowered.

このような合成樹脂としては、例えば、各種の熱可塑性樹脂や熱硬化性樹脂が使用できるが、ロール・ツー・ロール方式で製造できる柔軟性を有する点から、熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、ポリオレフィン(ポリプロピレン系樹脂、環状ポリオレフィンなど)、ポリビニルアルコール系重合体、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、セルロース誘導体などが挙げられる。これらの熱可塑性樹脂は、単独で又は二種以上組み合わせて使用できる。これらの熱可塑性樹脂のうち、ポリオレフィン、ポリビニルアルコール系重合体、ポリエステル、ポリアミド及びセルロース誘導体からなる群より選択された少なくとも1種が好ましく、耐熱性と柔軟性とのバランスに優れる点から、ポリエステルが特に好ましい。さらに、ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリC2−4アルキレンアリレート系樹脂が好ましく使用できる。 As such a synthetic resin, for example, various thermoplastic resins and thermosetting resins can be used, but a thermoplastic resin is preferable from the viewpoint of flexibility that can be manufactured by a roll-to-roll method. Examples of the thermoplastic resin include polyolefin (polypropylene resin, cyclic polyolefin, etc.), polyvinyl alcohol polymer, polyester, polyamide, polyimide, polycarbonate, polyphenylene ether, polyphenylene sulfide, and cellulose derivatives. These thermoplastic resins can be used alone or in combination of two or more. Of these thermoplastic resins, at least one selected from the group consisting of polyolefins, polyvinyl alcohol polymers, polyesters, polyamides, and cellulose derivatives is preferred, and polyesters are preferred because of their excellent balance between heat resistance and flexibility. Particularly preferred. Furthermore, as the polyester, poly C 2-4 alkylene arylate resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) can be preferably used.

前記離型層は薄肉であり、基材層表面の凹凸形状が離型層に追随され易いため、基材層表面も適度な表面平滑性を有するのが好ましい。基材層表面の中心線平均粗さRaは0.001〜0.05μmであってもよく、例えば、0.001〜0.04μmであってもよく、好ましくは0.0015〜0.03μm、さらに好ましくは0.002〜0.025μm(特に0.0025〜0.022μm)程度である。Raが小さすぎると、基材層と離型層との密着性が低下し、ロール・ツー・ロール方式での製造に用いることも困難となる一方で、Raが大きすぎると、離型層の表面平滑性が低下する。   Since the release layer is thin and the uneven shape on the surface of the base material layer is easily followed by the release layer, the surface of the base material layer preferably has an appropriate surface smoothness. The center line average roughness Ra on the surface of the base material layer may be 0.001 to 0.05 μm, for example, 0.001 to 0.04 μm, preferably 0.0015 to 0.03 μm, More preferably, it is about 0.002 to 0.025 μm (particularly 0.0025 to 0.022 μm). If Ra is too small, the adhesiveness between the base material layer and the release layer is lowered, and it is difficult to use for production in a roll-to-roll method. On the other hand, if Ra is too large, the release layer Surface smoothness decreases.

基材層は、フィルム強度を向上させる点から、延伸フィルムで形成されていてもよい。延伸は、一軸延伸であってもよいが、フィルム強度を向上できる点から、二軸延伸が好ましい。さらに、二軸延伸は、逐次二軸延伸であってもよいが、表面平滑性に優れる点から、同時二軸延伸が好ましい。逐次二軸延伸では、縦延伸時にロールとの接触により傷が付きやすく、傷が付くと、平均粗さRaが大きくなり、離型層の剥離性が低下する上に、電解質膜や電極膜の表面平滑性が低下し、電池特性の低下(接着強度の低下による電池寿命の減少など)が生じ易い。延伸倍率は、縦及び横方向において、それぞれ、例えば、1.5倍以上(例えば、1.5〜6)であってもよく、好ましくは2〜5倍、さらに好ましくは3〜4倍程度である。延伸倍率が低すぎると、フィルム強度が不十分となり易い。   The base material layer may be formed of a stretched film from the viewpoint of improving the film strength. The stretching may be uniaxial stretching, but biaxial stretching is preferred from the viewpoint that the film strength can be improved. Further, the biaxial stretching may be sequential biaxial stretching, but simultaneous biaxial stretching is preferred from the viewpoint of excellent surface smoothness. In sequential biaxial stretching, scratches are easily caused by contact with the roll during longitudinal stretching, and when scratches are present, the average roughness Ra increases, the peelability of the release layer decreases, and the electrolyte membrane and electrode membrane Surface smoothness is lowered, and battery characteristics (such as a reduction in battery life due to a decrease in adhesive strength) are likely to occur. The draw ratio may be, for example, 1.5 times or more (for example, 1.5 to 6), preferably 2 to 5 times, more preferably about 3 to 4 times in the longitudinal and transverse directions, respectively. is there. If the draw ratio is too low, the film strength tends to be insufficient.

基材層の平均厚みは、例えば、1〜300μm、好ましくは5〜200μm、さらに好ましくは10〜100μm(特に20〜80μm)程度である。基材層の厚みが大きすぎると、ロール・ツー・ロール方式での生産が困難となり、薄すぎると、寸法安定性が低下する。   The average thickness of a base material layer is 1-300 micrometers, for example, Preferably it is 5-200 micrometers, More preferably, it is about 10-100 micrometers (especially 20-80 micrometers). If the thickness of the base material layer is too large, production by the roll-to-roll method becomes difficult, and if it is too thin, the dimensional stability is lowered.

基材層の表面は、離型層との密着性を向上させるために、表面処理に供してもよい。表面処理としては、慣用の表面処理、例えば、コロナ放電処理、火炎処理、プラズマ処理、オゾンや紫外線照射処理などが挙げられる。これらのうち、コロナ放電処理が好ましい。   The surface of the base material layer may be subjected to a surface treatment in order to improve the adhesion with the release layer. Examples of the surface treatment include conventional surface treatments such as corona discharge treatment, flame treatment, plasma treatment, ozone and ultraviolet irradiation treatment. Of these, corona discharge treatment is preferred.

(離型フィルムの製造方法)
離型フィルムは、基材層の上に環状オレフィン系樹脂を含む溶液をコーティング(又は流延)した後、乾燥する方法により製造できる。
(Manufacturing method of release film)
The release film can be produced by a method of coating (or casting) a solution containing a cyclic olefin resin on the base material layer and then drying.

コーティング方法としては、慣用の方法、例えば、ロールコーター、エアナイフコーター、ブレードコーター、ロッドコーター、リバースコーター、バーコーター、コンマコーター、ダイコーター、グラビアコーター、スクリーンコーター法、スプレー法、スピナー法などが挙げられる。これらの方法のうち、バーコーター法などが汎用される。   As the coating method, conventional methods such as roll coater, air knife coater, blade coater, rod coater, reverse coater, bar coater, comma coater, die coater, gravure coater, screen coater method, spray method, spinner method and the like can be mentioned. It is done. Of these methods, the bar coater method is widely used.

溶媒としては、非極性溶媒を利用でき、例えば、ヘキサンなどの脂肪族炭化水素類、シクロヘキサンなどの脂環族炭化水素類、トルエンやキシレンなどの芳香族炭化水素類、ソルベントナフサなどの芳香族系油などを利用できる。これらの溶媒は単独で又は2種以上組み合わせてもよい。これらのうち、トルエンなどの芳香族炭化水素類、ソルベントナフサなどの芳香族系油が好ましい。   As the solvent, a nonpolar solvent can be used, for example, aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene, and aromatics such as solvent naphtha. Oil can be used. These solvents may be used alone or in combination of two or more. Of these, aromatic hydrocarbons such as toluene and aromatic oils such as solvent naphtha are preferred.

溶液中における固形分濃度は、例えば、1〜50重量%、好ましくは3〜30重量%、さらに好ましくは5〜25重量%(特に10〜20重量%)程度である。   The solid content concentration in the solution is, for example, about 1 to 50% by weight, preferably 3 to 30% by weight, more preferably 5 to 25% by weight (particularly 10 to 20% by weight).

乾燥は、自然乾燥であってもよいが、加熱して乾燥することにより溶媒を蒸発させてもよい。乾燥温度は、50℃以上であってもよく、例えば、50〜200℃、好ましくは60〜150℃、さらに好ましくは80〜120℃程度である。   Drying may be natural drying, or the solvent may be evaporated by heating and drying. 50 degreeC or more may be sufficient as drying temperature, for example, 50-200 degreeC, Preferably it is 60-150 degreeC, More preferably, it is about 80-120 degreeC.

[積層体]
本発明の積層体は、固体高分子型燃料電池を製造するための積層体であり、離型フィルムと、この離型フィルムの離型層の上に積層され、かつイオン交換樹脂を含む層(電解質膜、電極膜、膜電極接合体)とで形成されている。
[Laminate]
The laminate of the present invention is a laminate for producing a polymer electrolyte fuel cell. The laminate is laminated on a release film and a release layer of the release film and contains an ion exchange resin ( Electrolyte membrane, electrode membrane, membrane electrode assembly).

前記イオン交換樹脂としては、燃料電池で利用される慣用のイオン交換樹脂を利用できるが、なかでも、強酸性陽イオン交換樹脂や弱酸性陽イオン交換樹脂などの陽イオン交換樹脂が好ましく、スルホン酸基を有するイオン交換樹脂(例えば、スルホン酸基を有するフッ素樹脂、架橋ポリスチレンのスルホン化物)が特に好ましい。特に、固体高分子型燃料電池では、側鎖にスルホン酸基(又は−CFCFSOH基)を有するフッ素樹脂、例えば、[2−(2−スルホテトラフルオロエトキシ)ヘキサフルオロプロポキシ]トリフルオロエチレンとテトラフルオロエチレンとのブロック共重合体などが好ましく利用される。 As the ion exchange resin, conventional ion exchange resins used in fuel cells can be used. Among them, cation exchange resins such as strong acid cation exchange resins and weak acid cation exchange resins are preferable, and sulfonic acid An ion exchange resin having a group (for example, a fluororesin having a sulfonic acid group, a sulfonated product of crosslinked polystyrene) is particularly preferable. In particular, in a polymer electrolyte fuel cell, a fluororesin having a sulfonic acid group (or —CF 2 CF 2 SO 3 H group) in the side chain, for example, [2- (2-sulfotetrafluoroethoxy) hexafluoropropoxy] A block copolymer of trifluoroethylene and tetrafluoroethylene is preferably used.

イオン交換樹脂のイオン交換容量は0.1meq/g以上であってもよく、例えば、0.1〜2.0meq/g、好ましくは0.2〜1.8meq/g、さらに好ましくは0.3〜1.5meq/g(特に0.5〜1.5meq/g)程度であってもよい。   The ion exchange capacity of the ion exchange resin may be 0.1 meq / g or more, for example, 0.1 to 2.0 meq / g, preferably 0.2 to 1.8 meq / g, more preferably 0.3. It may be about ~ 1.5 meq / g (particularly 0.5 to 1.5 meq / g).

このようなイオン交換樹脂としては、デュポン社製「登録商標:ナフィオン(Nafion)」、旭硝子(株)製「登録商標:フレミオン(Flemion)」、旭化成(株)製「登録商標:アシプレックス(Aciplex)」、ジャパンゴアテックス(株)製「登録商標:ゴアセレクト(GORE−SELECT)」などの市販品を利用できる。なお、イオン交換樹脂としては、特開2010−234570号公報に記載のイオン交換樹脂などを用いてもよい。   Examples of such ion exchange resins include “Registered trademark: Nafion” manufactured by DuPont, “Registered trademark: Flemion” manufactured by Asahi Glass Co., Ltd., and “Registered trademark: Aciplex manufactured by Asahi Kasei Corporation. ) "," Registered trademark: GORE-SELECT "manufactured by Japan Gore-Tex Co., Ltd. can be used. In addition, as an ion exchange resin, you may use the ion exchange resin etc. which are described in Unexamined-Japanese-Patent No. 2010-234570.

イオン交換樹脂を含む層は、前記イオン交換樹脂で形成された電解質膜、前記イオン交換樹脂及び触媒粒子を含む電極膜であってもよい。   The layer containing the ion exchange resin may be an electrolyte membrane formed of the ion exchange resin, an electrode membrane containing the ion exchange resin and catalyst particles.

電極膜(触媒層又は電極触媒膜)において、触媒粒子は触媒作用を有する金属成分(特に、白金などの貴金属単体又は貴金属を含む合金)を含んでおり、通常、カソード電極用電極膜では白金を含み、アノード電極用電極膜では白金−ルテニウム合金を含む。さらに、触媒粒子は、通常、前記金属成分を、導電材料(カーボンブラックなどの炭素材料など)に担持させた複合粒子として使用される。電極膜において、イオン交換樹脂の割合は、例えば、触媒粒子100重量部に対して、例えば、5〜100重量部、好ましくは10〜80重量部、さらに好ましくは20〜50重量部程度である。   In an electrode film (catalyst layer or electrode catalyst film), the catalyst particles contain a metal component having a catalytic action (particularly, a noble metal element such as platinum or an alloy containing a noble metal). In addition, the electrode film for an anode electrode contains a platinum-ruthenium alloy. Furthermore, the catalyst particles are usually used as composite particles in which the metal component is supported on a conductive material (carbon material such as carbon black). In the electrode film, the ratio of the ion exchange resin is, for example, about 5 to 100 parts by weight, preferably about 10 to 80 parts by weight, and more preferably about 20 to 50 parts by weight with respect to 100 parts by weight of the catalyst particles.

電解質膜の平均厚みは、例えば、例えば、1〜500μm、好ましくは5〜300μm、さらに好ましくは10〜200μm程度である。   The average thickness of the electrolyte membrane is, for example, about 1 to 500 μm, preferably 5 to 300 μm, and more preferably about 10 to 200 μm.

電極膜の平均厚みは、例えば、例えば、1〜100μm、好ましくは5〜80μm、さらに好ましくは10〜50μm程度である。   The average thickness of the electrode film is, for example, about 1 to 100 μm, preferably 5 to 80 μm, and more preferably about 10 to 50 μm.

[膜電極接合体の製造方法]
本発明では、前記積層体を用いて、膜電極接合体(MEA)を製造できる。すなわち、本発明の膜電極接合体の製造方法は、前記離型フィルムの離型層の上に、イオン交換樹脂を含む層(イオン交換樹脂を含む電解質膜及び/又はイオン交換樹脂を含む電極膜)を積層する積層工程を経て前記積層体を製造し、この積層体を用いて固体高分子型燃料電池の膜電極接合体を製造できる。
[Production method of membrane electrode assembly]
In this invention, a membrane electrode assembly (MEA) can be manufactured using the said laminated body. That is, the method for producing a membrane electrode assembly of the present invention comprises a layer containing an ion exchange resin (an electrolyte membrane containing an ion exchange resin and / or an electrode membrane containing an ion exchange resin) on the release layer of the release film. The laminated body is manufactured through a stacking step of stacking a), and a membrane electrode assembly of a polymer electrolyte fuel cell can be manufactured using the stacked body.

詳細には、積層工程(積層体の製造方法)では、第1の離型フィルムの離型層の上に電解質膜をコーティングにより積層し、離型フィルムの離型層の上に電解質膜が積層された積層体を製造し、かつ第2の離型フィルムの離型層の上に電極膜をコーティングにより積層し、離型フィルムの離型層の上に電極膜が積層された積層体を製造してもよい。   Specifically, in the laminating step (laminated body manufacturing method), an electrolyte membrane is laminated on the release layer of the first release film by coating, and the electrolyte membrane is laminated on the release layer of the release film. The laminated body is manufactured, and the electrode film is laminated on the release layer of the second release film by coating, and the laminate in which the electrode film is laminated on the release layer of the release film is produced. May be.

電解質膜及び電極膜をコーティング(又は流延)により形成するために、電解質膜及び電極膜は、イオン交換樹脂(及び触媒粒子)を溶媒に溶解した溶液の状態でコーティングされる。   In order to form the electrolyte membrane and the electrode membrane by coating (or casting), the electrolyte membrane and the electrode membrane are coated in a state in which an ion exchange resin (and catalyst particles) is dissolved in a solvent.

溶媒としては、例えば、水、アルコール類(メタノール、エタノール、イソプロパノール、1−ブタノールなどのC1−4アルカノールなど)、ケトン類(アセトン、メチルエチルケトンなど)、エーテル類(ジオキサン、テトラヒドロフランなど)、スルホキシド類(ジメチルスルホキシドなど)などが挙げられる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。これらの溶媒のうち、取り扱い性などの点から、水や、水とC1−4アルカノールとの混合溶媒が汎用される。溶液中の溶質(イオン交換樹脂、触媒粒子)の濃度は、例えば、1〜80重量%、好ましくは5〜60重量%、さらに好ましくは10〜40重量%程度である。 Examples of the solvent include water, alcohols (C 1-4 alkanols such as methanol, ethanol, isopropanol, and 1-butanol), ketones (acetone, methyl ethyl ketone, etc.), ethers (dioxane, tetrahydrofuran, etc.), and sulfoxides. (Such as dimethyl sulfoxide). These solvents can be used alone or in combination of two or more. Among these solvents, water or a mixed solvent of water and C 1-4 alkanol is generally used from the viewpoint of handleability. The concentration of the solute (ion exchange resin, catalyst particles) in the solution is, for example, about 1 to 80% by weight, preferably about 5 to 60% by weight, and more preferably about 10 to 40% by weight.

コーティング方法としては、前記離型フィルムの製造方法で例示された慣用の方法が挙げられる。これらの方法のうち、ブレードコーター法、バーコーター法などが汎用される。   As a coating method, the conventional method illustrated by the manufacturing method of the said release film is mentioned. Of these methods, the blade coater method, the bar coater method and the like are widely used.

イオン交換樹脂(及び触媒粒子)を含む溶液をコーティングした後、加熱して乾燥することにより溶媒を蒸発させてもよい。乾燥温度は、50℃以上であってもよく、電解質膜では、例えば、80〜200℃(特に100〜150℃)程度であり、電極膜では、例えば、50〜150℃(特に60〜120℃)程度である。   After coating the solution containing the ion exchange resin (and catalyst particles), the solvent may be evaporated by heating and drying. The drying temperature may be 50 ° C. or more, for example, about 80 to 200 ° C. (especially 100 to 150 ° C.) for the electrolyte membrane, and 50 to 150 ° C. (particularly 60 to 120 ° C.) for the electrode membrane. )

本発明では、前記離型フィルムが柔軟性に優れるため、このような積層工程をロール・ツー・ロール方式で行うことができ、生産性を向上できる。さらに、離型層と基材層との組み合わせにより、寸法安定性にも優れるため、ロール・ツー・ロール方式でも、離型フィルムが張力による伸びが抑制される。そのため、イオン交換樹脂を含む層が剥離することなく、ロール状に巻き取ることができ、生産性を向上できる。   In this invention, since the said release film is excellent in a softness | flexibility, such a lamination process can be performed by a roll-to-roll system, and productivity can be improved. Furthermore, since the combination of the release layer and the base material layer is excellent in dimensional stability, the release film can be prevented from being stretched by tension even in the roll-to-roll method. Therefore, the layer containing the ion exchange resin can be wound up in a roll shape without peeling off, and productivity can be improved.

積層工程で得られた積層体は、密着工程に供される。密着工程では、第1及び第2の離型フィルムの離型層の上にそれぞれ積層された電解質膜と電極膜とを密着させて膜電極接合体が調製される。   The laminate obtained in the laminating step is subjected to an adhesion step. In the adhesion step, the membrane electrode assembly is prepared by closely adhering the electrolyte membrane and the electrode film respectively laminated on the release layers of the first and second release films.

電解質膜と電極膜との密着は、通常、加熱圧着により密着される。加熱温度は、例えば、80〜200℃、好ましくは100〜180℃、さらに好ましくは110〜150℃程度である。圧力は、例えば、0.1〜20MPa、好ましくは0.5〜15MPa、さらに好ましくは1〜10MPa程度である。   The adhesion between the electrolyte membrane and the electrode membrane is usually brought about by thermocompression bonding. The heating temperature is, for example, about 80 to 200 ° C, preferably about 100 to 180 ° C, and more preferably about 110 to 150 ° C. The pressure is, for example, about 0.1 to 20 MPa, preferably about 0.5 to 15 MPa, and more preferably about 1 to 10 MPa.

密着工程で密着した複合体(電解質層と電極膜とが密着して積層体)は、イオン交換樹脂を含む層(電解質膜及び/又は電極膜)から離型フィルムを剥離する剥離工程に供される。本発明では、前述の乾燥工程や加熱圧着処理を経た積層体であっても適度な剥離強度を有するため、積層工程や密着工程では離型フィルムとイオン交換樹脂を含む層とが剥離せずに、剥離工程では容易に離型フィルムを剥離でき、作業性を向上できる。   The composite (the electrolyte layer and the electrode film are in close contact with each other) in the adhesion process is subjected to a peeling process in which the release film is peeled from the layer containing the ion exchange resin (electrolyte film and / or electrode film). The In the present invention, even a laminate that has undergone the drying process or thermocompression treatment described above has an appropriate peel strength, so that the release film and the layer containing the ion exchange resin do not peel in the lamination process or the adhesion process. In the peeling step, the release film can be easily peeled off and workability can be improved.

離型フィルムの離型層とイオン交換樹脂を含む層との剥離強度(特に、剥離工程での積層体の剥離強度)は、例えば、0.1〜20mN/mm、好ましくは0.5〜15mN/mm、さらに好ましくは1〜13mN/mm(特に2〜10mN/mm)程度である。剥離強度が大きすぎると、剥離作業が困難となり、小さすぎると、積層工程及び密着工程での作業性が低下する。   The peel strength between the release layer of the release film and the layer containing the ion exchange resin (particularly, the peel strength of the laminate in the peeling step) is, for example, 0.1 to 20 mN / mm, preferably 0.5 to 15 mN. / Mm, more preferably about 1 to 13 mN / mm (particularly 2 to 10 mN / mm). If the peel strength is too high, the peeling work becomes difficult, and if it is too low, workability in the laminating step and the adhesion step is lowered.

本明細書では、剥離強度は、23℃、50%RHで1時間以上静置した後、300mm/分の条件で180°剥離する方法で測定できる。   In this specification, the peel strength can be measured by a method in which the film is allowed to stand at 23 ° C. and 50% RH for 1 hour or longer and then peeled by 180 ° under the condition of 300 mm / min.

さらに、第1の離型フィルムを剥離した電解質膜に対して、前記密着工程及び剥離工程と同様に、さらに第3の離型フィルムの離型層の上に電極膜(第2の離型フィルムがアノード電極用電極膜である場合、カソード電極用電極膜)が積層された積層体の電極膜を密着させて剥離し、慣用の方法で、各電極膜の上に燃料ガス供給層及び空気供給層をそれぞれ積層することにより膜電極接合体(MEA)が得られる。   Further, with respect to the electrolyte membrane from which the first release film has been peeled off, an electrode film (second release film) is further formed on the release layer of the third release film, similarly to the adhesion step and the release step. When the electrode film for the anode electrode is used, the electrode film of the cathode electrode film) is adhered and peeled off, and the fuel gas supply layer and the air supply are provided on each electrode film by a conventional method. A membrane electrode assembly (MEA) is obtained by laminating the layers.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例で得られた離型フィルムの剥離性は、以下の方法で評価した。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. The peelability of the release films obtained in Examples and Comparative Examples was evaluated by the following method.

[塗布量]
離型フィルムを10cm×25cmに切り出してサンプルとした。サンプルの重量を測定した後、テトラヒドロフランを用いて、基材層から離型層を溶出させて剥離した後、拭き取って完全に離型層を基材層から除去した。離型層を剥離した基材層の重量を測定し、重量の減少量に基づいて塗布量を算出した。
[Coating amount]
A release film was cut into 10 cm × 25 cm to prepare a sample. After measuring the weight of the sample, the release layer was eluted from the substrate layer by using tetrahydrofuran and peeled off, and then wiped off to completely remove the release layer from the substrate layer. The weight of the base material layer from which the release layer was peeled was measured, and the coating amount was calculated based on the weight reduction amount.

[平均厚み]
離型層の平均厚みは、離型層の塗布量及び密度に基づいて算出した。
[Average thickness]
The average thickness of the release layer was calculated based on the coating amount and density of the release layer.

[平均粗さRa]
JIS B0601(2001)に準拠し、非接触表面形状計測システム((株)菱化システム製「VertScan2.0」)を用いてフィルムの離型層表面の粗さを測定し、測定数N=5の平均値を用いた。
[Average roughness Ra]
In accordance with JIS B0601 (2001), the roughness of the release layer surface of the film was measured using a non-contact surface shape measurement system (“VertScan 2.0” manufactured by Ryoka System Co., Ltd.), and the number of measurements N = 5 The average value of was used.

[離型層の密着性]
温度23±5℃、相対湿度50±10%の条件下で、離型フィルムの離型層表面に、50mmを超える長さのテープ(ニチバン(株)製「セロテープ(登録商標)CT405AP−24」)を重ね、離型層に接触させるために指先でしっかりとテープをこすって押し付けた。テープ全体が均一に離型層に付着していることを確認後、5分以内に、離型層の表面に対してできるだけ60°に近い角度でテープの端をつかみ、0.5〜1秒間で引き離した。テープを付着した部分を観察し、密着性を以下の基準で評価した。
[Adhesion of release layer]
On the surface of the release layer of the release film under conditions of a temperature of 23 ± 5 ° C. and a relative humidity of 50 ± 10%, a tape having a length exceeding 50 mm (“Cello Tape (registered trademark) CT405AP-24” manufactured by Nichiban Co., Ltd.) ) And rubbed the tape firmly with the fingertips to make contact with the release layer. After confirming that the entire tape is uniformly attached to the release layer, within 5 minutes, grasp the end of the tape at an angle as close to 60 ° as possible with respect to the surface of the release layer, and take 0.5 to 1 second. Pulled apart. The part to which the tape was attached was observed, and the adhesion was evaluated according to the following criteria.

○…全く剥がれない
△…部分的に剥がれる
×…全面が剥がれる。
○… No peeling at all △… Partial peeling ×… The whole surface is peeled off.

[剥離性]
実施例及び比較例で得られた電解質膜を150mm×15mmのサイズにカットし、イオン交換膜上に両面テープ(ニチバン(株)製「ナイスタックNW−15」)を貼り合わせ、23℃、50RH%で1時間以上静置後、300mm/分の条件で180°剥離を行った。
[Peelability]
The electrolyte membranes obtained in the examples and comparative examples were cut into a size of 150 mm × 15 mm, and a double-sided tape (“Nystack NW-15” manufactured by Nichiban Co., Ltd.) was bonded onto the ion exchange membrane, and 23 ° C., 50 RH. After leaving at 1% for 1 hour or longer, 180 ° peeling was performed under the condition of 300 mm / min.

[燃料電池特性]
各セルへの供給ガスは水素及び酸素を用いた。供給ガスは、いずれもバブリングにて加湿し、2.5気圧の供給圧とした上で、単セルにかかる温度を70℃に保持した状態で運転した。電流密度が1A/cmで1000時間までのセル電圧を測定した。
[Fuel cell characteristics]
Hydrogen and oxygen were used as the supply gas to each cell. All the supply gases were humidified by bubbling to a supply pressure of 2.5 atm, and operated with the temperature applied to the single cell maintained at 70 ° C. The cell voltage was measured up to 1000 hours at a current density of 1 A / cm 2 .

[離型フィルムの製造例1]
環状オレフィン系樹脂(ポリプラスチックス(株)製「TOPAS 6013S」)をトルエンに攪拌溶解し、固形分濃度15重量%の塗布液を調製した。
[Production Example 1 of Release Film]
Cyclic olefin resin (“TOPAS 6013S” manufactured by Polyplastics Co., Ltd.) was stirred and dissolved in toluene to prepare a coating solution having a solid concentration of 15% by weight.

離型フィルムの基材層として、二軸延伸ポリエチレンテレフタレートフィルム((株)東レ製「ルミラー50T60」、厚み50μm、中心線平均粗さRa0.010〜0.015μm)を用い、このフィルムの片面にコロナ放電処理を施した。コロナ放電処理を施した面に、塗布液をメイヤーバーコーティング法によりコーティングし、100℃の温度で1分間乾燥して離型層を形成し、離型層の乾燥厚みが0.3μmであり、表面の平均粗さRが0.010μmの離型フィルムAを得た。   A biaxially stretched polyethylene terephthalate film (“Lumirror 50T60” manufactured by Toray Industries, Inc., thickness 50 μm, centerline average roughness Ra0.010 to 0.015 μm) is used as the base layer of the release film. Corona discharge treatment was performed. The surface subjected to the corona discharge treatment is coated with the coating solution by the Mayer bar coating method, and dried at a temperature of 100 ° C. for 1 minute to form a release layer. The dry thickness of the release layer is 0.3 μm, A release film A having an average surface roughness R of 0.010 μm was obtained.

[離型フィルムの製造例2]
離型層の乾燥厚みを0.1μmに変更する以外は製造例1と同様の方法で、表面の平均粗さRaが0.009μmの離型フィルムBを得た。
[Production Example 2 of Release Film]
A release film B having an average surface roughness Ra of 0.009 μm was obtained in the same manner as in Production Example 1 except that the dry thickness of the release layer was changed to 0.1 μm.

[離型フィルムの製造例3]
基材層として、二軸延伸ポリエチレンテレフタレートフィルム(帝人デュポンフィルム(株)製「テオネックスQ65WFA、表面処理品」、厚み125μm、中心線平均粗さRa0.001〜0.003μm)を用い、離型層の乾燥厚み0.5μmに変更する以外は製造例1と同様の方法で、表面の平均粗さRaが0.003μmの離型フィルムCを得た。
[Production Example 3 of Release Film]
As a base material layer, a biaxially stretched polyethylene terephthalate film (“Teonex Q65WFA, surface-treated product” manufactured by Teijin DuPont Films Ltd., thickness 125 μm, centerline average roughness Ra 0.001 to 0.003 μm) is used as a release layer. A release film C having an average surface roughness Ra of 0.003 μm was obtained in the same manner as in Production Example 1 except that the dry thickness was changed to 0.5 μm.

[離型フィルムの製造例4]
基材層として、二軸延伸ポリエチレンテレフタレートフィルム(ユニチカ(株)製「エンブレットS50」、厚み50μm、中心線平均粗さRa0.025〜0.030μm)を用い、離型層の乾燥厚みを2.5μmに変更する以外は製造例1と同様の方法で、表面の平均粗さRaが0.022μmの離型フィルムDを得た。
[Production Example 4 of Release Film]
A biaxially stretched polyethylene terephthalate film ("Embret S50" manufactured by Unitika Ltd., thickness 50 µm, centerline average roughness Ra 0.025 to 0.030 µm) is used as the base material layer, and the dry thickness of the release layer is 2 A release film D having an average surface roughness Ra of 0.022 μm was obtained in the same manner as in Production Example 1 except that the thickness was changed to 0.5 μm.

離型フィルムA〜Cの中心線平均粗さ及び離型層の密着性を測定した結果を表1に示す。   Table 1 shows the results of measuring the center line average roughness of the release films A to C and the adhesiveness of the release layer.

Figure 2014154273
Figure 2014154273

表1の結果から明らかなように、離型フィルムBは、離型層の厚みが薄いため、離型層の密着性が低い。   As is clear from the results in Table 1, since the release film B has a thin release layer, the release layer has low adhesion.

実施例1
(電解質膜の製造)
離型フィルムAの離型層の上に、イオン交換樹脂の溶液として、イオン交換樹脂溶液(デュポン社製「ナフィオン(登録商標)DE2020CS」、イオン交換樹脂の水−アルコール分散液、固形分濃度20重量%)を用意し、ドクターブレードを用いて、前記離型層の上にイオン交換樹脂溶液をキャストし、その塗膜を130℃のオーブン内で乾燥させて、電解質膜であるイオン交換樹脂層(厚さ20μm)を形成した。
Example 1
(Manufacture of electrolyte membrane)
On the release layer of the release film A, an ion exchange resin solution (“Nafion (registered trademark) DE2020CS” manufactured by DuPont, water-alcohol dispersion of ion exchange resin, solid content concentration 20 as an ion exchange resin solution) The ion exchange resin solution is cast on the release layer using a doctor blade, the coating film is dried in an oven at 130 ° C., and the ion exchange resin layer as an electrolyte membrane is prepared. (Thickness 20 μm) was formed.

(アノード電極用電極膜の製造)
Pt−Ru担持カーボン(田中貴金属工業(株)製「TEC66E50」、Pt/Ruのモル比1/1)10重量部、前記イオン交換樹脂溶液40重量部をボールミルで混合し、アノード電極用電極膜の塗布液とした。離型フィルムAの離型層の上に、ドクターブレードを用いてアノード電極用触媒の塗布液を塗工後、80℃で10分乾燥し、膜厚が30μmのアノード電極用電極膜を形成した。
(Manufacture of electrode film for anode electrode)
10 parts by weight of Pt-Ru-supported carbon (“TEC66E50” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt / Ru molar ratio 1/1) and 40 parts by weight of the ion-exchange resin solution were mixed by a ball mill to form an electrode film for an anode electrode It was set as the coating liquid. On the release layer of the release film A, the anode electrode catalyst coating solution was applied using a doctor blade and then dried at 80 ° C. for 10 minutes to form an anode electrode electrode film having a thickness of 30 μm. .

(カソード電極用電極膜の製造)
Pt担持カーボン(田中貴金属工業(株)製「TEC10E50E」)7重量部、前記イオン交換樹脂溶液35重量部をボールミルで混合し、カソード電極用触媒の塗布液とした。離型フィルムAの離型層の上に、ドクターブレードを用いてカソード電極用触媒の塗布液を塗工後、80℃で10分乾燥し、膜厚が30μmのカソード電極用電極膜を形成した。
(Manufacture of electrode film for cathode electrode)
7 parts by weight of Pt-supported carbon (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and 35 parts by weight of the ion exchange resin solution were mixed by a ball mill to obtain a coating solution for a cathode electrode catalyst. On the release layer of release film A, a cathode electrode catalyst coating solution was applied using a doctor blade and then dried at 80 ° C. for 10 minutes to form a cathode electrode film having a thickness of 30 μm. .

(燃料電池の製造)
アノード電極用電極膜とカソード電極用電極膜の間に、電解質膜をアノード電極/電解質膜/カソード電極の順になるよう積層し、120℃の熱圧プレスで接合して膜電極接合体(MEA)とした。離型フィルムを剥がし、得られたMEAの両端にガス拡散電極としてカーボンペーパーを配して単セルに組み込み、評価用のセルとした。
(Manufacture of fuel cells)
Between the electrode film for the anode electrode and the electrode film for the cathode electrode, the electrolyte film is laminated in the order of anode electrode / electrolyte film / cathode electrode, and bonded by hot press at 120 ° C. to form a membrane electrode assembly (MEA) It was. The release film was peeled off, and carbon paper was disposed as gas diffusion electrodes on both ends of the obtained MEA and incorporated into a single cell to obtain a cell for evaluation.

実施例2
離型フィルムCを用いる以外は実施例1と同様の方法でMEAを作製し、評価用のセルを得た。
Example 2
An MEA was produced in the same manner as in Example 1 except that the release film C was used, and an evaluation cell was obtained.

実施例3
離型フィルムDを用いる以外は実施例1と同様の方法でMEAを作製し、評価用のセルを得た。
Example 3
An MEA was produced in the same manner as in Example 1 except that the release film D was used, and an evaluation cell was obtained.

比較例1
離型フィルムとして、市販のフッ素系フィルム(日東電工(株)製「ニトフロン900UL」、ポリテトラフルオロエチレン(PTFE)膜)を用いる以外は実施例1と同様の方法でMEAを作製し、評価用のセルを得た。
Comparative Example 1
An MEA was prepared in the same manner as in Example 1 except that a commercially available fluorine-based film (“Nitoflon 900UL” manufactured by Nitto Denko Corporation, polytetrafluoroethylene (PTFE) film) was used as the release film, and for evaluation. Cell.

比較例2
離型フィルムとして、市販のポリオレフィン系フィルム(三井化学(株)製「オピュランX88B」、ポリ4−メチル−ペンテン−1)を用いる以外は実施例1と同様にしてMEAを作製し、評価用のセルを得た。
Comparative Example 2
An MEA was prepared in the same manner as in Example 1 except that a commercially available polyolefin film (“Opylan X88B” manufactured by Mitsui Chemicals, Inc., poly-4-methyl-pentene-1) was used as the release film. I got a cell.

実施例及び比較例で得られたMEAの剥離性及び燃料電池特性を評価した結果を表2に示す。   Table 2 shows the results of evaluating the peelability and fuel cell characteristics of the MEAs obtained in the examples and comparative examples.

Figure 2014154273
Figure 2014154273

表2の結果から明らかなように、実施例のMEAは、適度な剥離性を有し、作業性が優れる上に、電池特性も優れている。一方、比較例1のMEAは、剥離性が高く、作業性が低く、電池特性も低い。また、比較例2のMEAは、剥離性が若干高く、電池特性も低い。   As is clear from the results in Table 2, the MEAs of the examples have moderate peelability, excellent workability, and excellent battery characteristics. On the other hand, the MEA of Comparative Example 1 has high peelability, low workability, and low battery characteristics. Moreover, the MEA of Comparative Example 2 has a slightly high peelability and low battery characteristics.

本発明の離型フィルムは、固体高分子型燃料電池の膜電極接合体を製造するために用いられる。   The release film of the present invention is used for producing a membrane electrode assembly of a polymer electrolyte fuel cell.

[離型フィルムの製造例3]
基材層として、二軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製「テオネックスQ65WFA、表面処理品」、厚み125μm、中心線平均粗さRa0.001〜0.003μm)を用い、離型層の乾燥厚み0.5μmに変更する以外は製造例1と同様の方法で、表面の平均粗さRaが0.003μmの離型フィルムCを得た。
[Production Example 3 of Release Film]
As a base material layer, a biaxially stretched polyethylene naphthalate film (“Teonex Q65WFA, surface-treated product” manufactured by Teijin DuPont Films Ltd., thickness 125 μm, centerline average roughness Ra 0.001 to 0.003 μm) is used as a release layer. A release film C having an average surface roughness Ra of 0.003 μm was obtained in the same manner as in Production Example 1 except that the dry thickness was changed to 0.5 μm.

Claims (11)

固体高分子型燃料電池の膜電極接合体を製造するための離型フィルムであって、基材層と、この基材層の少なくとも一方の面に積層され、かつ環状オレフィン系樹脂で形成された離型層とを含み、前記離型層表面の中心線平均粗さRaが0.001〜0.05μmであり、かつ前記離型層の平均厚みが0.2〜5μmである離型フィルム。   A release film for producing a membrane / electrode assembly of a polymer electrolyte fuel cell, comprising a base material layer, laminated on at least one surface of the base material layer, and formed of a cyclic olefin resin A release film comprising a release layer, wherein the centerline average roughness Ra of the release layer surface is 0.001 to 0.05 μm, and the average thickness of the release layer is 0.2 to 5 μm. 離型層がコーティングにより形成された層である請求項1記載の離型フィルム。   The release film according to claim 1, wherein the release layer is a layer formed by coating. 基材層表面の中心線平均粗さRaが0.001〜0.05μmである請求項1又は2記載の離型フィルム。   The release film according to claim 1 or 2, wherein the center line average roughness Ra of the surface of the base material layer is 0.001 to 0.05 µm. 基材層が、ポリオレフィン、ポリビニルアルコール系重合体、ポリエステル、ポリアミド及びセルロース誘導体からなる群より選択された少なくとも1種で形成されている請求項1〜3のいずれかに記載の離型フィルム。   The release film according to any one of claims 1 to 3, wherein the base material layer is formed of at least one selected from the group consisting of polyolefins, polyvinyl alcohol polymers, polyesters, polyamides, and cellulose derivatives. イオン交換樹脂を含む電解質膜及び/又は電極膜をその上に積層し、膜電極接合体を製造した後、膜電極接合体から剥離するためのフィルムである請求項1〜4のいずれかに記載の離型フィルム。   The electrolyte membrane and / or electrode membrane containing an ion exchange resin is laminated thereon to produce a membrane / electrode assembly, which is then a film for peeling from the membrane / electrode assembly. Release film. 固体高分子型燃料電池を製造するための積層体であり、請求項1〜5のいずれかに記載の離型フィルムと、この離型フィルムの離型層の上に積層され、かつイオン交換樹脂を含む層とで形成された積層体。   A laminate for producing a polymer electrolyte fuel cell, wherein the release film according to any one of claims 1 to 5 is laminated on a release layer of the release film, and an ion exchange resin A laminate formed of a layer containing イオン交換樹脂を含む層が、電解質膜及び/又は電極膜である請求項6記載の積層体。   The laminate according to claim 6, wherein the layer containing an ion exchange resin is an electrolyte membrane and / or an electrode membrane. 請求項1〜5のいずれかに記載の離型フィルムの離型層の上に、イオン交換樹脂を含む電解質膜及び/又は電極膜を積層する積層工程を経て、固体高分子型燃料電池の膜電極接合体を製造する方法。   A membrane of a polymer electrolyte fuel cell through a laminating step of laminating an electrolyte membrane and / or an electrode membrane containing an ion exchange resin on the release layer of the release film according to any one of claims 1 to 5. A method for producing an electrode assembly. 積層工程において、第1の離型フィルムの離型層の上に電解質膜をコーティングにより積層し、かつ第2の離型フィルムの離型層の上に電極膜をコーティングにより積層する請求項8記載の方法。   9. The laminating step includes laminating an electrolyte membrane on the release layer of the first release film by coating, and laminating an electrode film on the release layer of the second release film by coating. the method of. 第1及び第2の離型フィルムの離型層の上にそれぞれ積層された電解質膜と電極膜とを密着させて膜電極接合体を調製する密着工程をさらに含む請求項9記載の方法。   The method according to claim 9, further comprising an adhesion step of preparing a membrane electrode assembly by closely adhering the electrolyte membrane and the electrode membrane respectively laminated on the release layers of the first and second release films. 電解質膜及び/又は電極膜から離型フィルムを剥離する剥離工程をさらに含む請求項8〜10のいずれかに記載の方法。   The method according to any one of claims 8 to 10, further comprising a peeling step of peeling the release film from the electrolyte membrane and / or the electrode membrane.
JP2013021250A 2013-02-06 2013-02-06 Release film and laminate for manufacturing fuel cell, and method for manufacturing fuel cell Active JP6085185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013021250A JP6085185B2 (en) 2013-02-06 2013-02-06 Release film and laminate for manufacturing fuel cell, and method for manufacturing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013021250A JP6085185B2 (en) 2013-02-06 2013-02-06 Release film and laminate for manufacturing fuel cell, and method for manufacturing fuel cell

Publications (2)

Publication Number Publication Date
JP2014154273A true JP2014154273A (en) 2014-08-25
JP6085185B2 JP6085185B2 (en) 2017-02-22

Family

ID=51575971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021250A Active JP6085185B2 (en) 2013-02-06 2013-02-06 Release film and laminate for manufacturing fuel cell, and method for manufacturing fuel cell

Country Status (1)

Country Link
JP (1) JP6085185B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072372A1 (en) * 2013-11-14 2015-05-21 株式会社ダイセル Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell
WO2017026365A1 (en) * 2015-08-11 2017-02-16 東洋紡株式会社 Release film for molding solid polymer fuel cell members
JP2017098128A (en) * 2015-11-26 2017-06-01 トヨタ自動車株式会社 Method for manufacturing membrane-electrode assembly
JP2019021437A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Method for manufacturing membrane-electrode assembly
JPWO2019039392A1 (en) * 2017-08-23 2019-11-07 リンテック株式会社 Film-like laminate and method for producing polymer thin film
KR20230116054A (en) 2021-01-26 2023-08-03 도요보 가부시키가이샤 Laminated film and manufacturing method of the laminated film
KR20230152102A (en) 2021-03-02 2023-11-02 도요보 가부시키가이샤 Laminated films and methods for producing laminated films
KR20240031359A (en) 2021-08-31 2024-03-07 도요보 가부시키가이샤 Release film for resin sheet molding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309943A (en) * 1995-05-24 1996-11-26 Teijin Ltd Release film
JPH09278912A (en) * 1996-04-11 1997-10-28 Toray Ind Inc Polyphenylene sulfide film for mold-releasing and its production
JP2000117900A (en) * 1998-10-20 2000-04-25 Toyobo Co Ltd Release film
JP2001160405A (en) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd Manufacturing method of solid polymer fuel cell
JP2003317735A (en) * 2002-04-18 2003-11-07 Nec Corp Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell
JP2006150812A (en) * 2004-11-30 2006-06-15 Mitsubishi Polyester Film Copp Release film
JP2008251376A (en) * 2007-03-30 2008-10-16 Dainippon Printing Co Ltd Transfer sheet for manufacturing electrolyte membrane-electrode assembly
JP2010234570A (en) * 2009-03-30 2010-10-21 Japan Gore Tex Inc Laminated body and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309943A (en) * 1995-05-24 1996-11-26 Teijin Ltd Release film
JPH09278912A (en) * 1996-04-11 1997-10-28 Toray Ind Inc Polyphenylene sulfide film for mold-releasing and its production
JP2000117900A (en) * 1998-10-20 2000-04-25 Toyobo Co Ltd Release film
JP2001160405A (en) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd Manufacturing method of solid polymer fuel cell
JP2003317735A (en) * 2002-04-18 2003-11-07 Nec Corp Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell
JP2006150812A (en) * 2004-11-30 2006-06-15 Mitsubishi Polyester Film Copp Release film
JP2008251376A (en) * 2007-03-30 2008-10-16 Dainippon Printing Co Ltd Transfer sheet for manufacturing electrolyte membrane-electrode assembly
JP2010234570A (en) * 2009-03-30 2010-10-21 Japan Gore Tex Inc Laminated body and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072372A1 (en) * 2013-11-14 2015-05-21 株式会社ダイセル Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell
JP2015118916A (en) * 2013-11-14 2015-06-25 株式会社ダイセル Mold releasing film, laminate, producing method thereof, and method for producing fuel battery
US10622658B2 (en) 2013-11-14 2020-04-14 Daicel Corporation Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell
WO2017026365A1 (en) * 2015-08-11 2017-02-16 東洋紡株式会社 Release film for molding solid polymer fuel cell members
JPWO2017026365A1 (en) * 2015-08-11 2018-05-24 東洋紡株式会社 Release film for molding polymer electrolyte fuel cell members
JP2017098128A (en) * 2015-11-26 2017-06-01 トヨタ自動車株式会社 Method for manufacturing membrane-electrode assembly
JP2019021437A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Method for manufacturing membrane-electrode assembly
JPWO2019039392A1 (en) * 2017-08-23 2019-11-07 リンテック株式会社 Film-like laminate and method for producing polymer thin film
KR20230116054A (en) 2021-01-26 2023-08-03 도요보 가부시키가이샤 Laminated film and manufacturing method of the laminated film
KR20230152102A (en) 2021-03-02 2023-11-02 도요보 가부시키가이샤 Laminated films and methods for producing laminated films
KR20240031359A (en) 2021-08-31 2024-03-07 도요보 가부시키가이샤 Release film for resin sheet molding

Also Published As

Publication number Publication date
JP6085185B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6085185B2 (en) Release film and laminate for manufacturing fuel cell, and method for manufacturing fuel cell
JP6062407B2 (en) Release film, laminate, method for producing the same, and method for producing fuel cell
EP2422975B1 (en) Laminate and method for producing same
JP6069036B2 (en) FUEL CELL MANUFACTURING LAMINATE, ITS MANUFACTURING METHOD, AND FUEL CELL MANUFACTURING METHOD
US10355298B2 (en) Resin film, laminate, method for producing same, and method for producing fuel cell
JP6946644B2 (en) Release film for molding polymer electrolyte fuel cell members
JP6967128B1 (en) Laminated film and its manufacturing method and fuel cell manufacturing method
JP6013398B2 (en) Resin film, laminate, method for producing the same, and method for producing fuel cell
JP7504181B2 (en) Laminated film, its manufacturing method, and fuel cell manufacturing method
JP2017081011A (en) Laminated film, method for producing the same, laminated body, and method for producing catalyst layer-electrolyte membrane composite
JP6276134B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND METHOD FOR MANUFACTURING MEMBRANE ELECTRODE ASSEMBLY
JP2022040112A (en) Laminated film and method for producing the same and method for manufacturing fuel battery
JP6329203B2 (en) Resin film, method for producing the same, laminate, and method for adjusting releasability
JP2016210128A (en) Laminated film, laminated body and method for producing the same, and method for producing fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250