JP2017096589A - Cooling device and electronic equipment mounting the same, and electric vehicle - Google Patents

Cooling device and electronic equipment mounting the same, and electric vehicle Download PDF

Info

Publication number
JP2017096589A
JP2017096589A JP2015231291A JP2015231291A JP2017096589A JP 2017096589 A JP2017096589 A JP 2017096589A JP 2015231291 A JP2015231291 A JP 2015231291A JP 2015231291 A JP2015231291 A JP 2015231291A JP 2017096589 A JP2017096589 A JP 2017096589A
Authority
JP
Japan
Prior art keywords
heat
working fluid
heat receiving
cooling device
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015231291A
Other languages
Japanese (ja)
Inventor
彩加 鈴木
Ayaka Suzuki
彩加 鈴木
郁 佐藤
Iku Sato
郁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015231291A priority Critical patent/JP2017096589A/en
Publication of JP2017096589A publication Critical patent/JP2017096589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device which stably repeats a cooling cycle, which does not deteriorate cooling performance and which can cool a heat generator, by suppressing accumulation of a liquefied refrigerant in a heat radiation part.SOLUTION: A cooling device 3 includes a heat receiving part 4 including a heat receiving plate 11 for transmitting heat to a working fluid 12, a heat radiation part 5 for discharging heat of the working fluid 12, and a heat radiation path 6 and a return path 7 for connecting the heat receiving part 4 and the heat radiation part 5, and it performs transfer of heat by circulating the working fluid 12 in the heat receiving part 4, the heat radiation path 6, the heat radiation part 5, the return path 7 and to the heat receiving part 4. An inflow tube 19 protruding in the heat receiving part 4 is provided on the heat receiving part 4 side of the return path 7, and a check valve 18 is provided at the return path 7 or the inflow tube 19. The heat radiation part 5 laminates hairpin tubes 21 penetrating heat radiation fins 20. The flow passage of the working fluid 12 in the hairpin tubes 21 are arranged to incline downward, and shielding bodies are inserted in gaps of the heat radiation fins 20 opposing to curved parts of the hairpin tubes 21.SELECTED DRAWING: Figure 3

Description

本発明は、冷却装置、これを搭載した電子機器、および電気自動車に関するものである。   The present invention relates to a cooling device, an electronic device equipped with the cooling device, and an electric vehicle.

従来この種の冷却装置は、電気自動車の電力変換回路に搭載されたものが知られている。電気自動車では、駆動動力源となる電動モータを電力変換回路であるインバータ回路でスイッチング駆動していた。インバータ回路には、パワートランジスタを代表とする半導体スイッチング素子が複数個使われていて、それぞれの素子に数十アンペアの大電流が流れていた。そのため半導体スイッチング素子は大きく発熱し、高性能な冷却装置が必要であった。そこで、従来は、スイッチング素子から発熱した熱を受熱する受熱部と、受熱部の上方に水平配管を有する放熱部と、受熱部と、放熱部を連結する循環経路を備えた沸騰冷却装置にて、スイッチング素子の冷却を行っていた(例えば特許文献1参照)。   Conventionally, this type of cooling device is known to be mounted on a power conversion circuit of an electric vehicle. In an electric vehicle, an electric motor serving as a driving power source is switched by an inverter circuit that is a power conversion circuit. A plurality of semiconductor switching elements represented by power transistors are used in the inverter circuit, and a large current of several tens of amperes flows through each element. Therefore, the semiconductor switching element generates a large amount of heat, and a high-performance cooling device is necessary. Therefore, conventionally, in a boiling cooling device provided with a heat receiving portion that receives heat generated from the switching element, a heat radiating portion having a horizontal pipe above the heat receiving portion, a heat receiving portion, and a circulation path that connects the heat radiating portions. The switching element was cooled (see, for example, Patent Document 1).

このような従来の冷却装置では、半導体スイッチング素子に接触して受熱部内の液体冷媒を気化させることによる潜熱で、スイッチング素子からの熱を除去する方式を採用している。具体的には、気化した冷媒は、上方に配置した放熱器へ上昇後、放熱器内の壁面で冷却されて凝縮し再び液化する。次に、液化冷媒は、循環経路の管壁面を伝って下部へ移動し再び同素子からの熱を奪って気化するというサイクルを連続的に繰り返すことで冷却が継続されている。   Such a conventional cooling device employs a method of removing heat from the switching element by latent heat generated by contacting the semiconductor switching element and vaporizing the liquid refrigerant in the heat receiving portion. Specifically, the vaporized refrigerant rises to the radiator disposed above, and is then cooled and condensed by the wall surface in the radiator to liquefy again. Next, cooling of the liquefied refrigerant is continued by continuously repeating a cycle in which the liquefied refrigerant moves downward along the tube wall surface of the circulation path and again takes heat from the element and vaporizes.

一般に、高発熱量の発熱体である半導体スイッチング素子等を冷却する際に除去された熱は、最終的には、広い面積を有する放熱部から空気へ放熱する方法が採られている。   Generally, the heat removed when cooling a semiconductor switching element or the like, which is a heating element having a high calorific value, is finally radiated from a heat radiating portion having a large area to the air.

特開平4−139368号公報JP-A-4-139368

しかしながら、このような放熱部では、凝縮した液化冷媒が放熱部の水平配管内で滞留することにより、冷媒が循環せず上記のサイクルが回らなくなり、冷却性能が著しく低下するという課題を有していた。   However, in such a heat radiating section, the condensed liquefied refrigerant stays in the horizontal piping of the heat radiating section, so that the refrigerant does not circulate and the above cycle does not rotate, and the cooling performance is significantly reduced. It was.

そこで、本発明は、放熱部内での液化冷媒の滞留を抑制することで、冷却のサイクルを安定的に繰り返し、冷却性能を低下させず発熱体を冷却することができる冷却装置を提供することを目的とするものである。   Therefore, the present invention provides a cooling device capable of stably repeating a cooling cycle and cooling a heating element without degrading the cooling performance by suppressing the retention of the liquefied refrigerant in the heat radiating section. It is the purpose.

そして、この目的を達成するために、本発明は、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とを備え、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路と前記受熱部との接続部から前記受熱部内に突出する流入管を備え、前記帰還経路または前記流入管に逆止弁を設け、前記放熱部は複数の放熱フィンを有するヘアピン管を備え、前記ヘアピン管は前記作動流体の流路が下り勾配になるように構成し、前記ヘアピン管の湾曲部と対向する前記放熱フィンの空隙に遮蔽体を挿入した構成とし、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention provides a heat receiving portion including a heat receiving plate that transfers heat from the heating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, the heat receiving portion, and the heat receiving portion. Cooling that includes a heat dissipation path and a return path for connecting to the heat dissipation section, and circulates the working fluid to the heat receiving section, the heat dissipation path, the heat dissipation section, the return path, and the heat receiving section to transfer heat. The apparatus includes an inflow pipe projecting into the heat receiving section from a connection portion between the return path and the heat receiving section, and a check valve is provided in the return path or the inflow pipe, and the heat radiating section includes a plurality of heat radiating fins. The hairpin tube is configured such that the flow path of the working fluid is downwardly inclined, and a shield is inserted into the gap of the heat radiating fin facing the curved portion of the hairpin tube, This achieves the intended purpose. It is intended.

本発明によれば、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とを備え、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路と前記受熱部との接続部から前記受熱部内に突出する流入管を備え、前記帰還経路または前記流入管に逆止弁を設け、前記放熱部は複数の放熱フィンを有するヘアピン管を備え、前記ヘアピン管は前記作動流体の流路が下り勾配になるように構成し、前記ヘアピン管の湾曲部と対向する前記放熱フィンの空隙に遮蔽体を挿入した構成としたことを特徴とするものであり、これにより、冷却性能を低下させずに発熱体を冷却することができる冷却装置を提供するものである。   According to the present invention, a heat receiving portion including a heat receiving plate that transfers heat from the heat generating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, and a heat radiating path that connects the heat receiving portion and the heat radiating portion. And a return path, wherein the working fluid is circulated to the heat receiving part, the heat radiating path, the heat radiating part, the feedback path, and the heat receiving part to transfer heat, and the return path And an inflow pipe projecting into the heat receiving part from a connection part between the heat receiving part, a check valve is provided in the return path or the inflow pipe, the heat radiating part is provided with a hairpin pipe having a plurality of heat radiating fins, The hairpin tube is configured such that the flow path of the working fluid has a downward slope, and is configured such that a shield is inserted into the gap of the heat radiating fin facing the curved portion of the hairpin tube. This reduces the cooling performance There is provided a cooling device which can cool a heating element without.

すなわち、放熱部は複数の放熱フィンを有するヘアピン管を備え、このヘアピン管は作動流体の流路が下り勾配になるように構成することにより、ヘアピン管の管壁で冷却され凝縮した液化冷媒が滞留することなく下り勾配の流路に沿って下方に流れる。結果として、放熱部内での液化冷媒の滞留を抑制することで、冷却のサイクルを安定的に繰り返し、冷却性能を低下させず発熱体を冷却することができる冷却装置を提供するものである。   In other words, the heat dissipating part includes a hairpin tube having a plurality of heat dissipating fins, and the hairpin tube is configured so that the flow path of the working fluid has a downward slope, whereby the liquefied refrigerant cooled and condensed by the tube wall of the hairpin tube It flows downward along a downwardly inclined channel without staying. As a result, by suppressing the retention of the liquefied refrigerant in the heat radiating section, a cooling device capable of stably repeating the cooling cycle and cooling the heating element without degrading the cooling performance is provided.

さらに、前記ヘアピン管の湾曲部と対向する前記放熱フィンの空隙に遮蔽体を挿入したことにより、放熱部を冷却する冷却空気が通過する部分における放熱フィンの空隙、すなわち、上方の放熱フィンの下端とその放熱フィンの下方の前記放熱フィンの上端に存在する空隙部が少なくなることで、冷却空気が圧損の少ない空隙部に偏って流入することがなく、放熱フィン間を効率よく通過することができる。冷却空気が放熱フィン間の空隙部に流入すると、冷却空気が放熱フィンから受熱することなく放熱部を通過してしまうため、冷却効率が低下することとなるが、上記の構成により冷却空気が放熱フィン間の空隙部に流入しないようにすることによって、冷却効率の低下を防ぐことができる。結果として、発熱体の冷却を連続して安定的に繰り返し、冷却性能を低下させず、発熱体を冷却できる冷却装置を提供することができる。   Further, by inserting a shielding body into the gap of the radiating fin facing the curved portion of the hairpin tube, the gap of the radiating fin in the portion through which the cooling air for cooling the radiating section passes, that is, the lower end of the upper radiating fin And the gap existing at the upper end of the radiating fin below the radiating fin is reduced, so that the cooling air does not flow unevenly into the vacant part with less pressure loss and can efficiently pass between the radiating fins. it can. When the cooling air flows into the gap between the radiating fins, the cooling air passes through the radiating portion without receiving heat from the radiating fins, so that the cooling efficiency is lowered. By preventing the air from flowing into the gaps between the fins, it is possible to prevent a decrease in cooling efficiency. As a result, it is possible to provide a cooling device that can cool the heating element continuously and stably and can cool the heating element without deteriorating the cooling performance.

本発明の実施の形態1の電気自動車の概略図Schematic of the electric vehicle according to the first embodiment of the present invention. 同冷却装置を示す概略図Schematic showing the cooling system (a)同冷却装置の放熱部の加工前の構成図、(b)同冷却装置の放熱部の加工後の構成図(A) Configuration diagram before processing of heat radiating portion of cooling device, (b) Configuration diagram after processing of heat radiating portion of cooling device 同冷却装置の放熱部の放熱フィンと遮蔽体の詳細断面図Detailed cross-sectional view of the heat dissipating fin and the shield of the heat dissipating part of the cooling device

発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とを備え、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路と前記受熱部側との接続部から前記受熱部内に突出する流入管を備え、前記帰還経路または前記流入管に逆止弁を設け、前記放熱部は複数の放熱フィンを有するヘアピン管を備え、前記ヘアピン管は前記作動流体の流路が下り勾配になるように構成し、前記ヘアピン管の湾曲部と対向する前記放熱フィンの空隙に遮蔽体を挿入した構成としたことにより、冷却性能を低下させずに発熱体を冷却することができる冷却装置を提供するものである。   A heat receiving portion having a heat receiving plate for transmitting heat from the heating element to the working fluid; a heat radiating portion that releases heat of the working fluid; a heat radiating path that connects the heat receiving portion and the heat radiating portion; and a feedback path. A cooling device that circulates the working fluid to the heat receiving part, the heat radiating path, the heat radiating part, the return path, and the heat receiving part to move heat, the return path and the heat receiving part side; An inflow pipe projecting into the heat receiving part from the connection part, and a check valve is provided in the return path or the inflow pipe, the heat radiating part is provided with a hairpin pipe having a plurality of radiating fins, and the hairpin pipe is operated The fluid flow path is configured to have a downward slope, and the shield is inserted into the gap of the radiating fin facing the curved portion of the hairpin tube, so that the heating element can be mounted without reducing the cooling performance. Cooling device that can be cooled It is intended to provide.

すなわち、放熱部は複数の放熱フィンを有するヘアピン管を備え、このヘアピン管は作動流体の流路が下り勾配になるように構成することにより、ヘアピン管の管壁で冷却され凝縮した液化冷媒が滞留することなく下り勾配の流路に沿って下方に流れる。結果として、放熱部内での液化冷媒の滞留を抑制することで、冷却のサイクルを安定的に繰り返し、冷却性能を低下させず発熱体を冷却することができる冷却装置を提供するものである。   In other words, the heat dissipating part includes a hairpin tube having a plurality of heat dissipating fins, and the hairpin tube is configured so that the flow path of the working fluid has a downward slope, whereby the liquefied refrigerant cooled and condensed by the tube wall of the hairpin tube It flows downward along a downwardly inclined channel without staying. As a result, by suppressing the retention of the liquefied refrigerant in the heat radiating section, a cooling device capable of stably repeating the cooling cycle and cooling the heating element without degrading the cooling performance is provided.

さらに、ヘアピン管の湾曲部と対向する前記放熱フィンの空隙に遮蔽体を挿入したことにより、放熱部を冷却する冷却空気が通過する部分における放熱フィンの空隙、すなわち、上方の放熱フィンの下端とその放熱フィンの下方の前記放熱フィンの上端に存在する空隙部が少なくなることで、冷却空気が圧損の少ない空隙部に偏って流入することがなく、放熱フィン間を効率よく通過することができる。冷却空気が放熱フィン間の空隙部に流入すると、冷却空気が放熱フィンから受熱することなく放熱部を通過してしまうため、冷却効率が低下することとなるが、上記の構成により冷却空気が放熱フィン間の空隙部に流入しないようにすることによって、冷却効率の低下を防ぐことができる。結果として発熱体の冷却を連続して安定的に繰り返し、冷却性能を低下させず、発熱体を冷却できる冷却装置を提供することができる。   Furthermore, by inserting a shielding body into the gap of the radiation fin facing the curved portion of the hairpin tube, the gap of the radiation fin in the part through which the cooling air for cooling the radiation part passes, that is, the lower end of the upper radiation fin and By reducing the gap that exists at the upper end of the radiating fin below the radiating fin, cooling air can be efficiently passed between the radiating fins without flowing into the gap with little pressure loss. . When the cooling air flows into the gap between the radiating fins, the cooling air passes through the radiating portion without receiving heat from the radiating fins, so that the cooling efficiency is lowered. By preventing the air from flowing into the gaps between the fins, it is possible to prevent a decrease in cooling efficiency. As a result, it is possible to provide a cooling device that can cool the heating element continuously and stably and can cool the heating element without deteriorating the cooling performance.

また、前記遮蔽体は、前記放熱部を冷却する冷却空気の流入方向に対向して突出した突出部を有する構成としてもよい。この構成により、前記遮蔽体に向かう冷却空気は、前記遮蔽体の突出部に沿い滑らかに前記放熱フィン間へ流れることができる。よって、冷却空気は前記放熱フィン間を効率よく通過することができる。よって、冷却空気の移動による圧力損失が大きくなることがなく、前記放熱フィンを冷却する効率が下がることがなくなるので、その結果として発熱体の冷却を連続して安定的に繰り返し、冷却性能を低下させず、発熱体を冷却できる冷却装置を提供することができる。   Moreover, the said shielding body is good also as a structure which has the protrusion part which protruded facing the inflow direction of the cooling air which cools the said thermal radiation part. With this configuration, the cooling air toward the shield can smoothly flow between the heat radiating fins along the protruding portion of the shield. Therefore, the cooling air can efficiently pass between the radiating fins. Therefore, the pressure loss due to the movement of the cooling air does not increase, and the efficiency of cooling the radiating fins does not decrease. As a result, the cooling of the heating element is repeated continuously and the cooling performance is lowered. Therefore, it is possible to provide a cooling device that can cool the heating element.

また、前記遮蔽体は、前記突出部が突出する方向と逆方向に突出する他の突出部を有する構成としてもよい。この構成により、前記遮蔽体を挿入した放熱フィンのどちらから冷却空気を吸い込んでも、すなわち、冷却空気が流れる方向が逆になった場合であっても、冷却空気は、前記遮蔽体の突出部に沿い滑らかに前記放熱フィン間へ流れることができる。よって、冷却空気は前記放熱フィン間を効率よく通過することができる。よって、冷却空気の移動による圧力損失が大きくなることがなく、前記放熱フィンを冷却する効率が下がることがなくなるので、その結果として発熱体の冷却を連続して安定的に繰り返し、冷却性能を低下させず、発熱体を冷却できる冷却装置を提供することができる。   Moreover, the said shielding body is good also as a structure which has the other protrusion part which protrudes in the reverse direction to the direction where the said protrusion part protrudes. With this configuration, even if the cooling air is sucked from any of the heat radiation fins into which the shield is inserted, that is, even when the direction in which the cooling air flows is reversed, the cooling air flows into the protruding portion of the shield. It can flow smoothly between the radiating fins. Therefore, the cooling air can efficiently pass between the radiating fins. Therefore, the pressure loss due to the movement of the cooling air does not increase, and the efficiency of cooling the radiating fins does not decrease. As a result, the cooling of the heating element is repeated continuously and the cooling performance is lowered. Therefore, it is possible to provide a cooling device that can cool the heating element.

また、本発明の冷却装置を搭載した電子機器という構成にしてもよい。これにより、放熱フィンを冷却するときの効率が下がることがない冷却装置で発熱体の冷却を行なう電子機器とすることができる。   Moreover, you may make it the structure of the electronic device carrying the cooling device of this invention. Thereby, it can be set as the electronic device which cools a heat generating body with the cooling device in which the efficiency at the time of cooling a radiation fin does not fall.

また、本発明の冷却装置を搭載した電気自動車という構成にしてもよい。これにより、放熱フィンを冷却するときの効率が下がることがない冷却装置で発熱体の冷却を行なう電気自動車とすることができる。   Moreover, you may make it the structure of the electric vehicle carrying the cooling device of this invention. Thereby, it can be set as the electric vehicle which cools a heat generating body with the cooling device in which the efficiency at the time of cooling a radiation fin does not fall.

(実施の形態1)
以下、本発明の実施の形態について図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すように、電気自動車1の車軸(図示せず)を駆動する電動機(図示せず)は、電気自動車1の内に配置した電力変換装置であるインバータ回路2に接続されている。   As shown in FIG. 1, an electric motor (not shown) that drives an axle (not shown) of an electric vehicle 1 is connected to an inverter circuit 2 that is a power conversion device arranged in the electric vehicle 1.

インバータ回路2は、電動機に電力を供給するもので、複数の半導体スイッチング素子(図2の10)を備えており、この半導体スイッチング素子(図2の10)が動作中に発熱する。このため、この半導体スイッチング素子(図2の10)を冷却するために、冷却装置3を備えている。冷却装置3は、受熱部4と、この受熱部4で吸収した熱を放熱する放熱部5を備え、受熱部4と放熱部5の間で熱媒体となる作動流体(図2の12で、例えば水)を循環させる放熱経路6と、帰還経路7を設けることで、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4と循環する循環経路を構成している。   The inverter circuit 2 supplies electric power to the electric motor, and includes a plurality of semiconductor switching elements (10 in FIG. 2). The semiconductor switching elements (10 in FIG. 2) generate heat during operation. For this reason, in order to cool this semiconductor switching element (10 in FIG. 2), a cooling device 3 is provided. The cooling device 3 includes a heat receiving portion 4 and a heat radiating portion 5 that radiates heat absorbed by the heat receiving portion 4, and a working fluid (12 in FIG. 2) serving as a heat medium between the heat receiving portion 4 and the heat radiating portion 5. For example, by providing the heat radiation path 6 for circulating water) and the return path 7, a circulation path that circulates with the heat receiving part 4, the heat radiation path 6, the heat radiation part 5, the return path 7, and the heat receiving part 4 is configured.

つまり、この循環経路においては、作動流体(図2の12)が、気体(水の場合水蒸気)や液体及びその混合状態で、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4と一方向に、循環するようになっている。   That is, in this circulation path, the working fluid (12 in FIG. 2) is a gas (water vapor in the case of water) or a liquid and a mixed state thereof, the heat receiving part 4, the heat radiation path 6, the heat radiation part 5, the return path 7, It circulates in one direction with the heat receiving part 4.

また、受熱部4は、図2に示すように、半導体スイッチング素子10に接触させて熱を吸収する受熱板11と、この受熱板11の表面を覆い、流れ込んだ作動流体12を蒸発させる受熱空間13を形成する受熱板カバー14とを備えている。   Further, as shown in FIG. 2, the heat receiving portion 4 is in contact with the semiconductor switching element 10 to absorb heat and a heat receiving space that covers the surface of the heat receiving plate 11 and evaporates the flowing working fluid 12. And a heat-receiving plate cover 14 that forms 13.

さらに、受熱板カバー14には、受熱空間13に液化した作動流体12を流し込む流入口15と、受熱空間13から作動流体12を気体にして排出する排出口16が設けられている。すなわち、受熱板カバー14の上面または側面に、流入口15と排出口16を設けており、流入口15には帰還経路7を接続し、また排出口16には放熱経路6を接続している。   Furthermore, the heat receiving plate cover 14 is provided with an inlet 15 for flowing the liquefied working fluid 12 into the heat receiving space 13 and an outlet 16 for discharging the working fluid 12 from the heat receiving space 13 as a gas. That is, the inlet 15 and the outlet 16 are provided on the upper surface or the side surface of the heat receiving plate cover 14, the return path 7 is connected to the inlet 15, and the heat dissipation path 6 is connected to the outlet 16. .

さらに、帰還経路7の受熱部4側には、受熱部4内に作動流体12を供給する流入管19を、受熱空間13内に突出させた状態で接続する。流入管19は、帰還経路7を受熱部4内に突入させた帰還経路7を延長したものであってもよいし、帰還経路7とは別部材の流入管19を帰還経路7に接続したものであってもよい。また、受熱部4の流入口15と、前記流入管19の接続部に逆止弁18を設けている。逆止弁18は、受熱部4の近傍であれば帰還経路7または流入管19に設けてもよい。   Further, an inflow pipe 19 that supplies the working fluid 12 into the heat receiving portion 4 is connected to the heat receiving portion 4 side of the return path 7 in a state of protruding into the heat receiving space 13. The inflow pipe 19 may be an extension of the return path 7 in which the return path 7 is plunged into the heat receiving portion 4, or an inflow pipe 19 that is a member different from the return path 7 is connected to the return path 7. It may be. Further, a check valve 18 is provided at the inlet 15 of the heat receiving part 4 and the connecting part of the inflow pipe 19. The check valve 18 may be provided in the return path 7 or the inflow pipe 19 as long as it is in the vicinity of the heat receiving portion 4.

放熱部5は、図3(a)に示すように、外気に熱を放出する放熱フィン20を有するヘアピン管21を備えており、例えばアルミニウムを短冊状に薄く形成した放熱フィン20は所定の間隔をあけて積層されている。そして、この放熱フィン20の表面に送風機9から外気を送風することで、放熱をさせている。なお、この放熱フィン20の表面からの放熱は、電気自動車1車内の暖房に活用することも出来る。また、放熱部5は、図3(a)の放熱フィン20に設けた各切欠部の僅かなつなぎ部を切断し、図3(b)に示すように、2本の直管をV字方向に拡げる(ヘアピン管21の両端を上下に広げる)ことにより作成する。すなわち、放熱部5は、上端を放熱経路6に、下端を帰還経路7に接続することにより、作動流体の流路が下り勾配になるように設置している。また、ヘアピン管21の湾曲部と対向する放熱フィン20の空隙、すなわち、放熱フィン20の下端と、下方に配置された放熱フィン20の上端との水平方向から見た空隙に、遮蔽体28を挿入した構成としたことにより、冷却空気が通行する部分における上方の放熱フィン20の下端と下方の放熱フィン20の上端に存在する空隙部が少なくなることで、冷却空気が圧損の少ない空隙部に偏って流入することがなく、放熱フィン20間を効率よく通過することができる。冷却空気が放熱フィン20間の空隙部に流入すると、冷却空気が放熱フィン20から受熱することなく放熱部5を通過してしまうため、冷却効率が低下することとなるが、上記の構成により冷却空気が放熱フィン20間の空隙部に流入しないようにすることによって、冷却効率の低下を防ぐことができる。結果として、発熱体である半導体スイッチング素子10の冷却を連続して安定的に繰り返し、冷却性能を低下させず、発熱体を冷却できる冷却装置3となる。   As shown in FIG. 3A, the heat dissipating part 5 includes a hairpin tube 21 having heat dissipating fins 20 for releasing heat to the outside air. For example, the heat dissipating fins 20 formed of aluminum in a thin strip shape have a predetermined interval. Are stacked. Then, heat is radiated by blowing outside air from the blower 9 to the surface of the radiating fin 20. The heat radiation from the surface of the heat radiation fin 20 can also be utilized for heating in the electric vehicle 1. Moreover, the heat radiating part 5 cut | disconnects the slight connection part of each notch part provided in the radiation fin 20 of Fig.3 (a), and as shown in FIG.3 (b), two straight pipes are V-shaped direction. (The both ends of the hairpin tube 21 are expanded vertically). That is, the heat radiating section 5 is installed so that the working fluid flow path has a downward slope by connecting the upper end to the heat radiating path 6 and the lower end to the return path 7. Further, the shielding body 28 is formed in the gap of the radiating fin 20 facing the curved portion of the hairpin tube 21, that is, the gap seen from the horizontal direction between the lower end of the radiating fin 20 and the upper end of the radiating fin 20 disposed below. By adopting the inserted configuration, the gap between the lower end of the upper radiating fin 20 and the upper end of the lower radiating fin 20 in the portion through which the cooling air passes is reduced, so that the cooling air is reduced to a gap with less pressure loss. There is no uneven flow, and the heat radiation fins 20 can be efficiently passed. When the cooling air flows into the gaps between the radiating fins 20, the cooling air passes through the radiating unit 5 without receiving heat from the radiating fins 20, so that the cooling efficiency is lowered. By preventing air from flowing into the gaps between the radiating fins 20, it is possible to prevent a decrease in cooling efficiency. As a result, cooling of the semiconductor switching element 10 that is a heating element is continuously and stably repeated, so that the cooling device 3 can cool the heating element without deteriorating the cooling performance.

また、遮蔽体28は、放熱部5を冷却する冷却空気の流入方向に対向して突出した突出部30を有する構成としてもよい。この構成により、遮蔽体28に向かう冷却空気は、遮蔽体28の突出部30に沿い滑らかに放熱フィン20間へ流れることができる。よって、冷却空気は放熱フィン20間を効率よく通過することができる。よって、冷却空気の移動による圧力損失が大きくなることがなく、放熱フィン20を冷却する効率が下がることがなくなるので、その結果として発熱体の冷却を連続して安定的に繰り返し、冷却性能を低下させず、発熱体を冷却できる冷却装置3を提供することができる。   Further, the shield 28 may have a protruding portion 30 that protrudes in the inflow direction of the cooling air that cools the heat radiating portion 5. With this configuration, the cooling air toward the shield 28 can smoothly flow between the heat radiating fins 20 along the protrusion 30 of the shield 28. Therefore, the cooling air can efficiently pass between the radiation fins 20. Therefore, the pressure loss due to the movement of the cooling air does not increase, and the efficiency of cooling the radiating fin 20 does not decrease. As a result, the cooling of the heating element is repeated continuously and the cooling performance is lowered. Therefore, it is possible to provide the cooling device 3 that can cool the heating element.

また、遮蔽体28は、突出部30が突出する方向と逆方向に突出する他の突出部30を有する構成としてもよい。この構成により、遮蔽体28を挿入した放熱フィン20のどちらから冷却空気を吸い込んでも、すなわち、冷却空気が流れる方向が逆になった場合であっても、冷却空気は、遮蔽体28の突出部30に沿い滑らかに放熱フィン20間へ流れることができる。よって、冷却空気は放熱フィン20間を効率よく通過することができる。よって、冷却空気の移動による圧力損失が大きくなることがなく、放熱フィン20を冷却する効率が下がることがなくなるので、その結果として発熱体の冷却を連続して安定的に繰り返し、冷却性能を低下させず、発熱体を冷却できる冷却装置3を提供することができる。   The shield 28 may have another protrusion 30 that protrudes in the direction opposite to the direction in which the protrusion 30 protrudes. With this configuration, even if the cooling air is sucked in from which of the heat radiation fins 20 with the shield 28 inserted, that is, even when the direction in which the cooling air flows is reversed, the cooling air is not protruded from the shield 28. 30 can smoothly flow between the radiating fins 20. Therefore, the cooling air can efficiently pass between the radiation fins 20. Therefore, the pressure loss due to the movement of the cooling air does not increase, and the efficiency of cooling the radiating fin 20 does not decrease. As a result, the cooling of the heating element is repeated continuously and the cooling performance is lowered. Therefore, it is possible to provide the cooling device 3 that can cool the heating element.

このような構成による冷却装置3の作用について説明する。   The operation of the cooling device 3 having such a configuration will be described.

上記構成において、インバータ回路2の半導体スイッチング素子10が動作を開始すると電動機に電力が供給されて、電気自動車1は、動き出すこととなる。このとき、半導体スイッチング素子10には大電流が流れることになり、少なくとも全電力の数%が損失となって大きく発熱する。一方で、半導体スイッチング素子10から発される熱は、受熱空間13の受熱板11上に供給された作動流体12が、一瞬にして気化するときの潜熱によって除去され、次に、この蒸気が、排出口16から放熱経路6へと流れ、放熱部5内での凝縮により放熱フィン20から熱を外気に放出し、液化する。放熱部5内で液化した作動流体12は、帰還経路7へと流れ、流入口15の逆止弁18上に溜まることとなる。液化した作動流体12は、徐々に帰還経路7内で増加する一方、受熱空間13内の圧力は、作動流体12の気化に伴って逆に減少してくる。この受熱空間13内の圧力が、逆止弁18上に溜まった作動流体12の水頭圧よりも小さくなった時に、逆止弁18が押され、再び受熱空間13内の受熱板11上へ作動流体12が供給される。このようにして作動流体12が冷却装置3内を循環することで、半導体スイッチング素子10の冷却を行なうことになる。   In the above configuration, when the semiconductor switching element 10 of the inverter circuit 2 starts to operate, electric power is supplied to the electric motor, and the electric vehicle 1 starts to move. At this time, a large current flows through the semiconductor switching element 10, and at least several percent of the total power is lost to generate a large amount of heat. On the other hand, the heat generated from the semiconductor switching element 10 is removed by the latent heat generated when the working fluid 12 supplied onto the heat receiving plate 11 of the heat receiving space 13 is instantly vaporized. The heat flows from the discharge port 16 to the heat radiation path 6, and heat is released from the heat radiation fins 20 to the outside air due to condensation in the heat radiation unit 5 to be liquefied. The working fluid 12 liquefied in the heat radiating section 5 flows to the return path 7 and accumulates on the check valve 18 at the inlet 15. The liquefied working fluid 12 gradually increases in the return path 7, while the pressure in the heat receiving space 13 decreases conversely as the working fluid 12 is vaporized. When the pressure in the heat receiving space 13 becomes smaller than the water head pressure of the working fluid 12 accumulated on the check valve 18, the check valve 18 is pushed and operates again on the heat receiving plate 11 in the heat receiving space 13. Fluid 12 is supplied. In this way, the working fluid 12 circulates in the cooling device 3 to cool the semiconductor switching element 10.

ここで、受熱空間13内の冷却のメカニズムについて説明を加える。   Here, the cooling mechanism in the heat receiving space 13 will be described.

受熱空間13内では、帰還経路7からの作動流体12は、流入管19から受熱板11上に液滴となって滴下される。滴下した作動流体12は、流入管19の端部開口と受熱板11の隙間から外周部へ拡散される。このとき受熱板11の表面には、放射状に流路が拡大する形状にしており、作動流体12は、薄い液膜として受熱板11上に広がる。受熱板11の裏面側は、半導体スイッチング素子10に接触しているので、薄い液膜となった作動流体12は、一瞬にして気化することになる。   In the heat receiving space 13, the working fluid 12 from the return path 7 is dropped as droplets from the inflow pipe 19 onto the heat receiving plate 11. The dropped working fluid 12 is diffused from the gap between the end opening of the inflow pipe 19 and the heat receiving plate 11 to the outer peripheral portion. At this time, the surface of the heat receiving plate 11 has a shape in which the flow path radially expands, and the working fluid 12 spreads on the heat receiving plate 11 as a thin liquid film. Since the back surface side of the heat receiving plate 11 is in contact with the semiconductor switching element 10, the working fluid 12 that has become a thin liquid film is vaporized in an instant.

例えば、作動流体12を水として、受熱空間13を含む循環経路内の気圧を大気圧よりも低く設定した場合、大気圧中の水の沸騰に比べて低い温度で気化させることができる。   For example, when the working fluid 12 is water and the atmospheric pressure in the circulation path including the heat receiving space 13 is set lower than the atmospheric pressure, the vapor can be vaporized at a temperature lower than the boiling of water in the atmospheric pressure.

本実施の形態のように、気圧を−97kPaにして、循環経路内を飽和状態にしておくことで、外気温に応じた沸騰温度が決定され容易に水を気化させることができ、このときに半導体スイッチング素子10の熱を奪い、冷却することができる。   As in this embodiment, by setting the atmospheric pressure to -97 kPa and keeping the inside of the circulation path saturated, the boiling temperature according to the outside air temperature is determined and water can be easily vaporized. The semiconductor switching element 10 can be deprived of heat and cooled.

また、作動流体12が気化するときに受熱空間13内の圧力が増加するが、逆止弁18の作用により作動流体12は逆流して帰還経路7側へ戻ることはなく、確実に排出口16から放熱経路6へ放出させることができる。このように冷却装置3を動作させることで、規則的な受熱と放熱のサイクルができ、連続して作動流体12を受熱空間13内で気化させて半導体スイッチング素子10の冷却を行なうことができ、大きな冷却効果を得ることができる。   Further, when the working fluid 12 is vaporized, the pressure in the heat receiving space 13 increases. However, the working fluid 12 does not flow back to the return path 7 due to the action of the check valve 18, and the discharge port 16 is surely provided. To the heat dissipation path 6. By operating the cooling device 3 in this manner, a regular heat receiving and releasing cycle can be performed, and the working fluid 12 can be continuously vaporized in the heat receiving space 13 to cool the semiconductor switching element 10. A large cooling effect can be obtained.

通常、放熱部5内では作動流体12が気相と液相の混合状態でヘアピン管21に流入し、ヘアピン管21の最下端、すなわち帰還経路7との接続部の直前では完全に液化し、帰還経路7へと流れ、流入口15の逆止弁18上に溜まる。   Normally, the working fluid 12 flows into the hairpin tube 21 in a mixed state of the gas phase and the liquid phase in the heat radiating unit 5, and is completely liquefied immediately before the lowermost end of the hairpin tube 21, that is, immediately before the connection part with the return path 7. It flows to the return path 7 and accumulates on the check valve 18 at the inlet 15.

前述したように、放熱部5は、図3(b)に示すように、上端を放熱経路6に、下端を帰還経路7に接続することにより、ヘアピン管21内の作動流体12の流路が下り勾配になるように設置している。下り勾配にする理由は、ヘアピン管21が水平の場合、液化した作動流体12がヘアピン管21内に滞留してしまい(特に、水の場合、管内壁に付着しやすいため)、帰還経路7に流れなくなる恐れがあるためで、低い外気温である時には、液化が促進されヘアピン管21の上端側で滞留が発生しやすく、この構成とすることは特に有効である。さらにその下り勾配は、上から下に向かい、その勾配、すなわち傾斜角がθ1<θ2<θ3となるように構成している。液化した作動流体12がヘアピン管21内に滞留しにくくするには、傾斜角は一定で大きくすればよいが、図3(a)(b)から明らかなように、冷却装置3の大きさを考慮した場合、勾配をつけないほうが小型で好ましいため、作動流体12が気液混合状態で気体の量が多い上端側のヘアピン管21内では、液化した水も圧力により流れやすく傾斜角を小さくでき、冷却装置3の大型化の低減には有効である。一方、気体の量が少ない下端側のヘアピン管21内での作動流体12の流れは重力の影響が大きく、傾斜角も大きくする必要があるため、重力の影響が上から下に向かうにつれて大きくなるように、傾斜角も順に大きくしている。   As described above, as shown in FIG. 3B, the heat dissipating unit 5 connects the upper end to the heat dissipating path 6 and the lower end to the return path 7 so that the working fluid 12 in the hairpin tube 21 has a flow path. It is installed so as to have a downward slope. The reason for the downward slope is that when the hairpin tube 21 is horizontal, the liquefied working fluid 12 stays in the hairpin tube 21 (particularly, in the case of water, it tends to adhere to the inner wall of the tube), This is because there is a possibility that it will not flow, and when the outside air temperature is low, liquefaction is promoted and stagnation is likely to occur on the upper end side of the hairpin tube 21, and this configuration is particularly effective. Further, the downward gradient is from top to bottom, and the gradient, that is, the inclination angle, is configured to satisfy θ1 <θ2 <θ3. In order to make it difficult for the liquefied working fluid 12 to stay in the hairpin tube 21, the inclination angle may be constant and large. However, as is apparent from FIGS. 3 (a) and 3 (b), the size of the cooling device 3 is increased. In consideration of this, since it is preferable that the gradient is not small, it is preferable that the working fluid 12 is in a gas-liquid mixed state and the amount of gas in the upper hairpin tube 21 is large. This is effective in reducing the size of the cooling device 3. On the other hand, the flow of the working fluid 12 in the hairpin tube 21 on the lower end side where the amount of gas is small is greatly influenced by gravity, and it is necessary to increase the inclination angle, so that the influence of gravity increases as it goes from top to bottom. As can be seen, the inclination angle is also increased in order.

次に、図3(b)に示す放熱部は、以下のように簡単に製造することができる。   Next, the heat dissipating part shown in FIG. 3B can be easily manufactured as follows.

図3(a)に示すように、放熱フィン20には、例えばアルミニウムの細長い方形状の板体に前記ヘアピン管21を貫通させる貫通孔23を複数設け、貫通孔23と隣の貫通孔23との間に、板体の短手方向の中央部に短手方向に細長い切欠部24を設けている。そして、ヘアピン管21は直管と湾曲管とで構成され、複数の板体を所定の間隔をあけて貫通孔23が連なるように並べ、連なった貫通孔23に直管を各々貫通させ、直管と隣の直管の端部を湾曲管の両端と接続し、複数の板体のつなぎ部27を例えば円盤カッターで切り離し、2本の直管をV字方向に拡げることにより放熱フィン20を形成し製造する。さらに、放熱フィン20の下端と、下方に配置された放熱フィン20の上端との水平方向から見た空間に、あらかじめ形作った遮蔽体28を挿入する。図4には冷却空気29が遮蔽体28と放熱フィン20の間を通過する様子を示した図である。冷却空気29は、放熱フィン20間へ流入すると、遮蔽体28に衝突するが、遮蔽体28の楔形部分に沿って移動し、放熱フィン20間を通過することができる。また、遮蔽体28は、図4に示したような楔型を組合せた形状でもよい。この構成により、冷却空気29の流入方向が入れ替わっっても同様の効果が得られることとなる。   As shown in FIG. 3A, the heat dissipating fin 20 is provided with a plurality of through-holes 23 through which the hairpin tube 21 is penetrated, for example, in a long and narrow aluminum plate, and the through-hole 23 and the adjacent through-hole 23 A notch 24 that is elongated in the lateral direction is provided at the center in the lateral direction of the plate. The hairpin tube 21 is composed of a straight tube and a curved tube, and a plurality of plates are arranged so that the through-holes 23 are connected at a predetermined interval, and the straight tubes are respectively passed through the connected through-holes 23. The end of the straight pipe adjacent to the pipe is connected to both ends of the curved pipe, the connecting portions 27 of the plurality of plate bodies are separated by, for example, a disk cutter, and the two straight pipes are expanded in the V-shaped direction to thereby dissipate the radiating fins 20. Form and manufacture. Further, the shield 28 formed in advance is inserted into a space viewed from the horizontal direction between the lower end of the heat radiating fin 20 and the upper end of the heat radiating fin 20 disposed below. FIG. 4 is a view showing how the cooling air 29 passes between the shield 28 and the heat radiating fins 20. When the cooling air 29 flows into the space between the radiating fins 20, it collides with the shield 28, but moves along the wedge-shaped portion of the shield 28 and can pass between the radiating fins 20. Further, the shield 28 may have a shape combining wedge shapes as shown in FIG. With this configuration, the same effect can be obtained even if the inflow direction of the cooling air 29 is switched.

以上のように、放熱部5のヘアピン管21内の作動流体12の流路が下り勾配になるように設置したことにより、ヘアピン管21内での作動流体12の滞留を抑制でき、作動流体12が冷却装置3内を連続的に循環することが可能となり、半導体スイッチング素子10の冷却を安定して連続的に行なうことができる。さらに、放熱部5内に滞留する作動流体12の量を低減できるので、初期に冷却装置3内に封入する作動流体12の量を低減できるとともに、貯留タンク等を設ける場合には、この貯留タンク容量も小さくでき、冷却装置3の小型化、軽量化という効果を創出できる。さらに、流路の下がり勾配を持つ放熱部5の製造は、放熱フィン20の切欠部24の間の僅かなつなぎ部27を切断し、2本の直管をV字方向に拡げ、まだ簡単な構造の遮蔽体を挿入することで、簡単に製造でき、放熱フィンを冷却する効率が下がることがなくなるので、その結果として発熱体の冷却を連続して安定的に繰り返し、冷却性能を低下させず、発熱体を冷却できる冷却装置を提供することができる。   As described above, the installation of the working fluid 12 in the hairpin tube 21 of the heat radiating unit 5 so as to have a downward slope can suppress the retention of the working fluid 12 in the hairpin tube 21. Can be continuously circulated through the cooling device 3, and the semiconductor switching element 10 can be cooled stably and continuously. Furthermore, since the amount of the working fluid 12 staying in the heat radiating section 5 can be reduced, the amount of the working fluid 12 initially sealed in the cooling device 3 can be reduced, and when a storage tank or the like is provided, this storage tank A capacity | capacitance can also be made small and the effect of size reduction and weight reduction of the cooling device 3 can be created. Furthermore, the manufacture of the heat radiating part 5 having the downward gradient of the flow path is still simple, by cutting the slight connecting part 27 between the notches 24 of the heat radiating fin 20 and expanding the two straight pipes in the V-shape. By inserting a shield with a structure, it can be easily manufactured, and the efficiency of cooling the radiating fins will not decrease. As a result, the cooling of the heating element is repeated continuously and stably, without reducing the cooling performance. In addition, a cooling device that can cool the heating element can be provided.

なお、上記実施形態においては、冷却装置3を電気自動車1に適用したものを説明したが、電気とガソリン併用のハイブリッド型の自動車にも適用でき、さらに電力変換装置であるインバータ回路2は電子機器でもあり、電子機器に冷却装置3を適用することも出来る。   In the above embodiment, the cooling device 3 is applied to the electric vehicle 1. However, the cooling device 3 can also be applied to a hybrid vehicle using both electricity and gasoline, and the inverter circuit 2 that is a power converter is an electronic device. However, the cooling device 3 can also be applied to electronic equipment.

本発明にかかる冷却装置は、冷媒となる作動流体の循環経路を、受熱部、放熱経路、放熱部、帰還経路、前記受熱部とすることで、作動流体の循環方向を一方向とすると共に、前記帰還経路の受熱部側に、前記受熱部内に前記作動流体を供給する流入管を接続し、前記受熱部と前記流入管の接続部に逆止弁を設けることで、受熱部内で作動流体を急激に気化させ、その受熱板部分において作動流体を勢い良く移動させることができ、その結果として伝熱面における伝熱効率を高め、冷却効果を高めることができる。   The cooling device according to the present invention has a circulation path of the working fluid as one direction by setting a circulation path of the working fluid serving as a refrigerant as a heat receiving section, a heat radiation path, a heat radiation section, a return path, and the heat receiving section. An inflow pipe that supplies the working fluid into the heat receiving part is connected to the heat receiving part side of the return path, and a check valve is provided at a connection part between the heat receiving part and the inflow pipe, so that the working fluid is supplied in the heat receiving part. It is possible to rapidly vaporize and move the working fluid vigorously in the heat receiving plate portion. As a result, the heat transfer efficiency on the heat transfer surface can be increased and the cooling effect can be increased.

また、本発明においては、前記放熱部内での前記作動流体の流路が下り勾配になるように構成したものであり、前記放熱部は、放熱フィンを有するヘアピン管で構成し、前記放熱フィンの下端と、下方に配置された放熱フィンの上端との水平方向から見た空間に、遮蔽体を挿入する構成としたことにより、前記放熱フィンの冷却の効率が下がることがなくなる。   Further, in the present invention, the flow path of the working fluid in the heat radiating portion is configured to have a downward slope, and the heat radiating portion is configured by a hairpin tube having a heat radiating fin, By adopting a configuration in which the shield is inserted into the space viewed from the horizontal direction between the lower end and the upper end of the heat dissipating fins disposed below, the cooling efficiency of the heat dissipating fins does not decrease.

このため、電気自動車の駆動装置としての電力変換装置に使用されるパワー半導体、高い発熱量を有するCPUなどの冷却に有用である。   For this reason, it is useful for cooling power semiconductors used in power conversion devices as drive devices for electric vehicles, CPUs with high heat generation, and the like.

1 電気自動車
2 インバータ回路
3 冷却装置
4 受熱部
5 放熱部
6 放熱経路
7 帰還経路
9 送風機
10 半導体スイッチング素子
11 受熱板
12 作動流体
13 受熱空間
14 受熱板カバー
15 流入口
16 排出口
18 逆止弁
19 流入管
20 放熱フィン
21 ヘアピン管
23 貫通孔
24 切欠部
27 つなぎ部
28 遮蔽体
29 冷却空気
30 突出部
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Inverter circuit 3 Cooling device 4 Heat receiving part 5 Heat radiating part 6 Heat radiating path 7 Return path 9 Blower 10 Semiconductor switching element 11 Heat receiving plate 12 Working fluid 13 Heat receiving space 14 Heat receiving plate cover 15 Inlet 16 Outlet 18 Check valve DESCRIPTION OF SYMBOLS 19 Inflow pipe 20 Radiation fin 21 Hairpin pipe 23 Through-hole 24 Notch part 27 Connection part 28 Shielding body 29 Cooling air 30 Protrusion part

Claims (5)

発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、
前記作動流体の熱を放出する放熱部と、
前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とを備え、
前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、
前記帰還経路と前記受熱部との接続部から前記受熱部内に突出する流入管を備え、
前記帰還経路または前記流入管に逆止弁を設け、
前記放熱部は複数の放熱フィンを有するヘアピン管を備え、
前記ヘアピン管は前記作動流体の流路が下り勾配になるように構成し、
前記ヘアピン管の湾曲部と対向する前記放熱フィンの空隙に遮蔽体を挿入した構成としたことを特徴とする冷却装置。
A heat receiving section having a heat receiving plate for transferring heat from the heating element to the working fluid;
A heat dissipating part for releasing the heat of the working fluid;
A heat dissipation path and a return path that connect the heat receiving section and the heat dissipation section;
A cooling device that circulates the working fluid to the heat receiving portion, the heat radiating path, the heat radiating portion, the return path, and the heat receiving portion to move heat;
An inflow pipe projecting into the heat receiving portion from a connection portion between the return path and the heat receiving portion;
Provide a check valve in the return path or the inflow pipe,
The heat dissipating part includes a hairpin tube having a plurality of heat dissipating fins,
The hairpin tube is configured so that the flow path of the working fluid has a downward slope,
A cooling device, characterized in that a shielding body is inserted into the gap of the heat radiating fin facing the curved portion of the hairpin tube.
前記遮蔽体は、前記放熱部を冷却する冷却空気の流入方向に対向して突出した突出部を有する構成としたことを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the shield has a protruding portion that protrudes in an inflow direction of cooling air that cools the heat radiating portion. 前記遮蔽体は、前記突出部が突出する方向と逆方向に突出する他の突出部を有する構成としたことを特徴とする請求項2に記載の冷却装置。 The cooling device according to claim 2, wherein the shielding body has another protrusion that protrudes in a direction opposite to a direction in which the protrusion protrudes. 請求項1〜3のいずれか1つに記載の冷却装置を備えたことを特徴とする電子機器。 An electronic apparatus comprising the cooling device according to claim 1. 請求項1〜3のいずれか1つに記載の冷却装置を備えたことを特徴とする電気自動車。 An electric vehicle comprising the cooling device according to any one of claims 1 to 3.
JP2015231291A 2015-11-27 2015-11-27 Cooling device and electronic equipment mounting the same, and electric vehicle Pending JP2017096589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231291A JP2017096589A (en) 2015-11-27 2015-11-27 Cooling device and electronic equipment mounting the same, and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231291A JP2017096589A (en) 2015-11-27 2015-11-27 Cooling device and electronic equipment mounting the same, and electric vehicle

Publications (1)

Publication Number Publication Date
JP2017096589A true JP2017096589A (en) 2017-06-01

Family

ID=58816561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231291A Pending JP2017096589A (en) 2015-11-27 2015-11-27 Cooling device and electronic equipment mounting the same, and electric vehicle

Country Status (1)

Country Link
JP (1) JP2017096589A (en)

Similar Documents

Publication Publication Date Title
JP6588654B2 (en) Working medium contact cooling system for high power components and method of operating the same
US8345425B2 (en) Cooling system and electronic apparatus applying the same therein
CA2820330C (en) Two-phase cooling system for electronic components
JP4978401B2 (en) Cooling system
US20150181756A1 (en) Cooling device, electric automobile and electronic device equipped with said cooling device
CN112930091B (en) Heat radiation structure and electronic equipment
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP4899997B2 (en) Thermal siphon boiling cooler
JP2010080507A (en) Electronic apparatus
JP2009147367A (en) Electric power conversion apparatus for electric train
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP5252059B2 (en) Cooling system
JP2017009253A (en) Cooler, electronic equipment mounted with the same, and electric vehicle
WO2017150415A1 (en) Cooling system, cooler, and cooling method
JP2017096589A (en) Cooling device and electronic equipment mounting the same, and electric vehicle
JP6028232B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP5887479B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2014048002A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP2018031557A (en) Cooling device and electric equipment mounting the same, and electric car
JP6035513B2 (en) Cooling device and electric vehicle equipped with the same
KR101172679B1 (en) Outdoor unit of air conditioner
JP2015140949A (en) Cooling device and data center including the same
JP5938574B2 (en) Cooling device and electric vehicle equipped with the same
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP5903548B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR