JP2017094418A - Grinding device - Google Patents

Grinding device Download PDF

Info

Publication number
JP2017094418A
JP2017094418A JP2015227037A JP2015227037A JP2017094418A JP 2017094418 A JP2017094418 A JP 2017094418A JP 2015227037 A JP2015227037 A JP 2015227037A JP 2015227037 A JP2015227037 A JP 2015227037A JP 2017094418 A JP2017094418 A JP 2017094418A
Authority
JP
Japan
Prior art keywords
wafer
thickness
grinding
grinding wheel
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015227037A
Other languages
Japanese (ja)
Other versions
JP6576801B2 (en
Inventor
恒成 清原
Tsunenari Kiyohara
恒成 清原
信 前嶋
Makoto Maejima
信 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2015227037A priority Critical patent/JP6576801B2/en
Publication of JP2017094418A publication Critical patent/JP2017094418A/en
Application granted granted Critical
Publication of JP6576801B2 publication Critical patent/JP6576801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize thickness of a wafer when forming a circular recessed part at a center of the wafer.SOLUTION: A grinding device comprises: a holding table (22); a table rotating shaft (35); a grinding wheel (49) which has a diameter smaller than a radius of a wafer (W) and in which grinding stones (48) are annularly arranged; grinding means (46) comprising a grinding wheel rotating shaft (45); inclination adjustment means (31) that adjusts inclinations of the table rotating shaft and the grinding wheel rotating shaft relatively; a thickness measuring instrument (71) that measures wafer thickness of the circular recessed part (15) to be formed in the wafer; and scanning means (73) that makes the thickness measuring instrument perform scanning. In the grinding device, an inclination of the table rotating shaft is calculated from at least three thickness values at three positions of a thickness value at the center of the wafer, the maximum value of the thickness values measured by scanning by the thickness measuring instrument and a thickness value at an outer periphery of the circular recessed part, and then the inclination adjustment means is made to adjust the inclination so that a difference among the thickness values at the three positions becomes minimum.SELECTED DRAWING: Figure 1

Description

本発明は、保持テーブルに保持されたウエーハを研削ホイールで研削する研削装置に関する。   The present invention relates to a grinding apparatus for grinding a wafer held on a holding table with a grinding wheel.

研削装置では、チャックテーブルが回転するとともに、研削ホイールが回転しながらチャックテーブルに保持されたウエーハに接触してウエーハが研削される。従来、この種の研削装置として、ウエーハの研削を仕上げ厚みに達する前に一時停止させて径方向におけるウエーハの厚みを確認して、チャックテーブルと研削ホイールの傾きを修正するものが知られている(例えば、特許文献1、2参照)。この研削装置は、ウエーハの中心と、外周と、半径1/2の箇所との3箇所でウエーハの厚みをチャックテーブルを回転させスポット的に測定し、3箇所でのウエーハの厚みが不均一な場合にはチャックテーブルや研削ホイールの傾きを修正してウエーハを仕上げ厚みまで研削する。   In the grinding apparatus, the chuck table rotates, and the wafer is ground by contacting the wafer held by the chuck table while the grinding wheel rotates. Conventionally, as this kind of grinding apparatus, one that temporarily stops the grinding of the wafer before reaching the finished thickness, confirms the thickness of the wafer in the radial direction, and corrects the inclination of the chuck table and the grinding wheel is known. (For example, refer to Patent Documents 1 and 2). In this grinding apparatus, the wafer thickness is measured in a spot manner by rotating the chuck table at three locations of the wafer center, outer periphery, and radius ½, and the wafer thickness is uneven at the three locations. In some cases, the wafer is ground to the finished thickness by correcting the tilt of the chuck table and grinding wheel.

特開2007−54922号公報JP 2007-54922 A 特開2013−119123号公報JP 2013-119123 A

ところで、ウエーハの研削方法としては、ウエーハ最外周のエッジ部分を残し、その内周のみを研削して薄化するTAIKO研削という研削方法が提案されている。TAIKO研削は、ウエーハの半径より小さい直径の研削ホイールを用いてウエーハの中央に円形凹部を形成する。しかしながら、特許文献1、2の記載の傾き修正は、ウエーハ全体を一様に薄化するものであって、TAIKO研削に適用することはできない。すなわち、TAIKO研削用の研削ホイールをウエーハに対して半円状に接触させて、ウエーハの円形凹部の厚みを均一にする調節は困難であった。   By the way, as a method for grinding a wafer, there has been proposed a grinding method called TAIKO grinding in which the edge portion of the outermost periphery of the wafer is left and only the inner periphery thereof is ground and thinned. In TAIKO grinding, a circular recess is formed in the center of a wafer using a grinding wheel having a diameter smaller than the radius of the wafer. However, the tilt correction described in Patent Documents 1 and 2 is to thin the entire wafer uniformly and cannot be applied to TAIKO grinding. That is, it has been difficult to adjust the thickness of the circular concave portion of the wafer by bringing the grinding wheel for TAIKO grinding into contact with the wafer in a semicircular shape.

本発明はかかる点に鑑みてなされたものであり、ウエーハの中央に円形凹部を形成する際に、円形凹部におけるウエーハの厚みを均一にすることができる研削装置を提供することを目的とする。   This invention is made | formed in view of this point, and when forming a circular recessed part in the center of a wafer, it aims at providing the grinding apparatus which can make the thickness of the wafer in a circular recessed part uniform.

本発明の研削装置は、砥石でウエーハの中央を研削し、中央に円形凹部を形成すると共に外周部に環状凸部を形成し、円形凹部の厚みを予め設定した仕上げ厚みまで研削する研削装置であって、ウエーハを保持する保持テーブルと、保持テーブルを回転させるテーブル回転軸と、ウエーハの半径より小さい直径で環状に砥石を配設する研削ホイールと、研削ホイールを取付け回転させる研削ホイール回転軸を備える研削手段と、保持テーブルと研削手段とを相対的に接近および離間させる方向に移動させる研削送り手段と、テーブル回転軸と研削ホイール回転軸とを相対的に傾き調節する傾き調節手段と、保持テーブルに保持されるウエーハを研削し形成される円形凹部のウエーハ厚みを測定する厚み測定器と、厚み測定器をウエーハの径方向に走査させる走査手段と、厚み測定器を走査手段で走査させウエーハの厚みを測定した円形凹部の少なくとも3箇所の厚み値を記憶する記憶部と、記憶部に記憶された厚み値から研削ホイール回転軸に対するテーブル回転軸の傾きを算出する算出部と、を備え、少なくとも3箇所の厚み値を測定する測定動作は、円形凹部の厚みが予め設定した仕上げ厚みに達する前に研削送りを一時停止させて行い、少なくとも3箇所の厚み値は、ウエーハの中心の厚み値と、走査手段で厚み測定器をウエーハの中心から外周に向かって走査させ測定した厚み値の極大値と、円形凹部の外周部の厚み値と、からなり、少なくとも3箇所の厚み値の差が最も小さくなるときの研削ホイール回転軸に対するテーブル回転軸の傾きを算出部で算出し、算出部が算出した傾きに傾き調節手段でテーブル回転軸と研削ホイール回転軸とを相対的に傾き調節したのち、円形凹部の厚みが仕上げ厚みになるまで研削する。   The grinding device of the present invention is a grinding device that grinds the center of a wafer with a grindstone, forms a circular concave portion at the center and an annular convex portion on the outer peripheral portion, and grinds the thickness of the circular concave portion to a preset finish thickness. A holding table for holding the wafer, a table rotating shaft for rotating the holding table, a grinding wheel having a grinding wheel having a diameter smaller than the radius of the wafer, and a grinding wheel rotating shaft for attaching and rotating the grinding wheel. A grinding means, a grinding feed means for moving the holding table and the grinding means in a relatively approaching and separating direction, an inclination adjusting means for adjusting the inclination of the table rotating shaft and the grinding wheel rotating shaft, and holding Thickness measuring device that measures the thickness of the circular recess formed by grinding the wafer held on the table, and the thickness measuring device Scanning means for scanning, a storage unit for storing thickness values of at least three circular recesses measured by a scanning unit with a thickness measuring device and measuring the thickness of the wafer, and rotation of the grinding wheel from the thickness values stored in the storage unit A measuring section for calculating the inclination of the table rotation axis with respect to the axis, and the measuring operation for measuring the thickness value of at least three places temporarily stops the grinding feed before the thickness of the circular recess reaches the preset finish thickness. The thickness values of at least three locations are the thickness value at the center of the wafer, the maximum value of the thickness value measured by scanning the thickness measuring instrument from the center of the wafer toward the outer periphery with the scanning means, and the outer peripheral portion of the circular recess. The calculation unit calculates the inclination of the table rotation axis with respect to the grinding wheel rotation axis when the difference between the thickness values of at least three locations is the smallest. After the the table rotation axis adjustment means inclination to the inclination and the grinding wheel rotation axis relative to the tilt adjusting, ground to a thickness of finishing the thickness of the circular recess.

この構成によれば、厚み測定部が走査手段により走査されることで、ウエーハの中心の厚み値と、ウエーハの中心から外周に向かって測定した厚み値が極大となる位置の厚み値と、円形凹部の外周部の厚み値との少なくとも3箇所の厚み値を測定する。これら厚み値の差が最も小さくなるように、傾き調節手段によりテーブル回転軸と研削ホイール回転軸とが相対的に傾き調節される。よって、ウエーハの円形凹部に面内厚みバラツキが生じる場合であっても、面内厚みバラツキを修正して円形凹部におけるウエーハの厚みを均一にすることができる。   According to this configuration, the thickness measurement unit is scanned by the scanning unit, so that the thickness value at the center of the wafer, the thickness value at the position where the thickness value measured from the center of the wafer toward the outer periphery is maximized, and the circular shape At least three thickness values are measured together with the thickness value of the outer peripheral portion of the recess. The inclination of the table rotating shaft and the grinding wheel rotating shaft is relatively adjusted by the inclination adjusting means so that the difference between the thickness values is minimized. Therefore, even when the in-plane thickness variation occurs in the circular concave portion of the wafer, the in-plane thickness variation can be corrected to make the wafer thickness uniform in the circular concave portion.

本発明によれば、ウエーハの中央に円形凹部を形成する際に、円形凹部におけるウエーハの厚みを均一にすることができる。   According to the present invention, when the circular recess is formed in the center of the wafer, the thickness of the wafer in the circular recess can be made uniform.

本実施の形態に係る研削装置の研削手段の斜視図である。It is a perspective view of the grinding means of the grinding device concerning this embodiment. 本実施の形態に係る傾き調節手段を示す斜視図である。It is a perspective view which shows the inclination adjustment means which concerns on this Embodiment. TAIKO研削におけるウエーハの測定箇所を説明するための図である。It is a figure for demonstrating the measurement location of the wafer in TAIKO grinding. 本実施の形態に係る保持テーブルの傾き調節の説明図である。It is explanatory drawing of inclination adjustment of the holding table which concerns on this Embodiment. 本実施の形態に係る傾き調節の一例を示す図である。It is a figure which shows an example of the inclination adjustment which concerns on this Embodiment. 本実施の形態に係るウエーハの研削動作の遷移図である。It is a transition diagram of the grinding operation of the wafer concerning this embodiment.

以下、添付図面を参照して、本実施の形態に係る研削装置について説明する。本実施の形態に係るウエーハの研削は、ウエーハの裏面の外周部分だけを残す。図1は、本実施の形態に係る研削装置の研削手段の斜視図である。   Hereinafter, the grinding apparatus according to the present embodiment will be described with reference to the accompanying drawings. The grinding of the wafer according to the present embodiment leaves only the outer peripheral portion of the back surface of the wafer. FIG. 1 is a perspective view of the grinding means of the grinding apparatus according to the present embodiment.

研削装置1では、ウエーハWの裏面12を上に向けた状態で、研削テープ18を介してウエーハWの表面側が保持テーブル22に保持される。ウエーハWの表面は、複数のデバイスが形成されたデバイス領域と、デバイス領域を囲繞する外周余剰領域とに分けられている。ウエーハWは、研削装置1の研削ホイール49がZ軸回りに回転しながら保持テーブル22に近付けられ、研削ホイール49とウエーハWの裏面12とが回転接触することでデバイス領域の裏面側が研削される。これにより、ウエーハWの裏面12には、デバイス領域に対応する領域に円形凹部15が形成され、外周余剰領域に対応する領域に環状凸部16が形成される。   In the grinding apparatus 1, the front side of the wafer W is held on the holding table 22 via the grinding tape 18 with the back surface 12 of the wafer W facing upward. The surface of the wafer W is divided into a device region in which a plurality of devices are formed and an outer peripheral surplus region surrounding the device region. The wafer W is brought close to the holding table 22 while the grinding wheel 49 of the grinding apparatus 1 rotates around the Z axis, and the grinding wheel 49 and the back surface 12 of the wafer W are brought into rotational contact so that the back surface side of the device region is ground. . Thereby, on the back surface 12 of the wafer W, the circular concave portion 15 is formed in the region corresponding to the device region, and the annular convex portion 16 is formed in the region corresponding to the outer peripheral surplus region.

ウエーハWは、円形凹部15が形成された中央部分だけが薄化されて、円形凹部15を囲む環状凸部16によって剛性が高められている。よって、ウエーハWのデバイス領域が薄化されると共に、環状凸部16によってウエーハWの反りが抑えられて搬送時の破損等が防止される。なお、ウエーハWは、シリコン、ガリウム砒素等の半導体ウエーハでもよいし、セラミック、ガラス、サファイア系の光デバイスウェーハでもよい。   The wafer W is thinned only at the central portion where the circular concave portion 15 is formed, and the rigidity is enhanced by the annular convex portion 16 surrounding the circular concave portion 15. Therefore, the device area of the wafer W is thinned, and the warpage of the wafer W is suppressed by the annular convex portion 16, thereby preventing breakage during transportation. The wafer W may be a semiconductor wafer such as silicon or gallium arsenide, or a ceramic, glass, or sapphire optical device wafer.

また、保持テーブル22の近辺には、コラム41が立設されている。コラム41には、研削手段46を上下動させる研削送り手段61が設けられている。研削送り手段61は、コラム41の前面に配置されたZ軸方向に平行な一対のガイドレール62と、一対のガイドレール62にスライド可能に設置されたモータ駆動のZ軸テーブル63とを有している。   A column 41 is erected in the vicinity of the holding table 22. The column 41 is provided with a grinding feed means 61 for moving the grinding means 46 up and down. The grinding feed means 61 has a pair of guide rails 62 arranged in front of the column 41 and parallel to the Z-axis direction, and a motor-driven Z-axis table 63 slidably installed on the pair of guide rails 62. ing.

Z軸テーブル63の前面には、ハウジング64を介して研削手段46が支持されている。Z軸テーブル63の背面側にはボールネジ65が螺合されており、ボールネジ65の一端には駆動モータ66が連結されている。駆動モータ66によってボールネジ65が回転駆動され、研削手段46がガイドレール62に沿ってZ軸方向に移動される。   A grinding means 46 is supported on the front surface of the Z-axis table 63 via a housing 64. A ball screw 65 is screwed to the back side of the Z-axis table 63, and a drive motor 66 is connected to one end of the ball screw 65. The ball screw 65 is rotationally driven by the drive motor 66 and the grinding means 46 is moved along the guide rail 62 in the Z-axis direction.

研削手段46は、円筒状の研削ホイール回転軸45の下端にマウント47を設けて構成されている。研削手段46では、研削手段46のマウント47の下面には、複数の研削砥石48が環状に配設された研削ホイール49が回転可能に取り付けられている。研削ホイール49の直径は、ウエーハWの半径より小さくなっている。研削砥石48は、例えば、ダイヤモンド砥粒をレジンボンドやビトリファイドボンド等の結合剤で固めたダイヤモンド砥石で構成される。研削加工では、研削砥石48によってウエーハWの円形凹部15の厚みが予め設定した仕上げ厚みまで研削されて薄化される。   The grinding means 46 is configured by providing a mount 47 at the lower end of a cylindrical grinding wheel rotating shaft 45. In the grinding means 46, a grinding wheel 49 in which a plurality of grinding wheels 48 are annularly arranged is rotatably attached to the lower surface of the mount 47 of the grinding means 46. The diameter of the grinding wheel 49 is smaller than the radius of the wafer W. The grinding wheel 48 is composed of, for example, a diamond wheel in which diamond abrasive grains are hardened with a binder such as resin bond or vitrified bond. In the grinding process, the thickness of the circular recess 15 of the wafer W is ground and thinned by the grinding wheel 48 to a preset finish thickness.

本実施の形態では、研削位置の近傍には、保持テーブル22の上面(保持面)高さを測定する第1のゲージ91と、保持テーブル22が保持するウエーハWの被研削面高さを測定する第2のゲージ92とが設けられている。第1のゲージ91及び第2のゲージ92は接触式のゲージで構成される。第1のゲージ91が保持面22aに接触され、第2のゲージ92がウエーハWの円形凹部15の底面に接触されて、保持面22aの高さと円形凹部15の底面の高さとの差分からウエーハWの円形凹部15の厚みが測定される。   In the present embodiment, in the vicinity of the grinding position, the first gauge 91 for measuring the height of the upper surface (holding surface) of the holding table 22 and the height of the surface to be ground of the wafer W held by the holding table 22 are measured. A second gauge 92 is provided. The 1st gauge 91 and the 2nd gauge 92 are comprised with a contact-type gauge. The first gauge 91 is brought into contact with the holding surface 22a, the second gauge 92 is brought into contact with the bottom surface of the circular recess 15 of the wafer W, and the wafer is determined from the difference between the height of the holding surface 22a and the bottom surface of the circular recess 15. The thickness of the W circular recess 15 is measured.

また、第1のゲージ91及び第2のゲージ92の近傍には、保持テーブル22に保持されるウエーハWを研削し形成される円形凹部15のウエーハ厚みを測定する非接触式の厚み測定器71が設けられている。走査手段73は、回転可能なスタンド74と、スタンド74から延びるアーム75とを有している。走査手段73のアーム75の先端には厚み測定器71が固定されており、スタンド74の回転によりウエーハWの径方向に厚み測定器71が走査される。すなわち、ウエーハWの径方向とは、ウエーハWの中心から外周に向かう直線方向に限らず、ウエーハWの中心と外周との間で旋回される旋回方向を含む概念である。厚み測定器71は、例えば反射型の光変位センサであり、ウエーハWに向けて測定光を照射し、ウエーハWの上面で反射した反射光とウエーハWの下面で反射した反射光とを受光して、上面で反射した反射光と下面で反射した反射光との光路差によってウエーハWの厚みを測定する。ウエーハWの厚み値(測定値)は、制御部85に出力される。   Further, in the vicinity of the first gauge 91 and the second gauge 92, a non-contact type thickness measuring device 71 that measures the wafer thickness of the circular recess 15 formed by grinding the wafer W held on the holding table 22. Is provided. The scanning unit 73 includes a rotatable stand 74 and an arm 75 extending from the stand 74. A thickness measuring device 71 is fixed to the tip of the arm 75 of the scanning means 73, and the thickness measuring device 71 is scanned in the radial direction of the wafer W by the rotation of the stand 74. That is, the radial direction of the wafer W is a concept including not only a linear direction from the center of the wafer W toward the outer periphery but also a turning direction in which the wafer W is turned between the center and the outer periphery. The thickness measuring device 71 is, for example, a reflection type optical displacement sensor, which irradiates the measurement light toward the wafer W and receives the reflected light reflected from the upper surface of the wafer W and the reflected light reflected from the lower surface of the wafer W. Then, the thickness of the wafer W is measured by the optical path difference between the reflected light reflected from the upper surface and the reflected light reflected from the lower surface. The thickness value (measured value) of the wafer W is output to the control unit 85.

制御部85には、記憶部86と算出部87とが設けられている。記憶部86は、厚み測定器71で測定された円形凹部15の厚み値を記憶する。算出部87は、記憶部86に記憶された厚み値から研削ホイール回転軸45に対するテーブル回転軸35(図2参照)の傾きを算出する。制御部85は、各種処理を実行するプロセッサやメモリ等により構成される。メモリは、用途に応じてROM(Read Only Memory)、RAM(Random Access Memory)等の一つ又は複数の記憶媒体で構成される。制御部85は、算出部87からの出力結果に応じ、テーブル回転軸35の傾きを制御する。なお、テーブル回転軸35の制御方法については後述する。算出部87によって、テーブル回転軸35の傾き角度(傾き量)と傾き方向とを算出することができる。   The control unit 85 is provided with a storage unit 86 and a calculation unit 87. The storage unit 86 stores the thickness value of the circular recess 15 measured by the thickness measuring device 71. The calculation unit 87 calculates the inclination of the table rotation shaft 35 (see FIG. 2) with respect to the grinding wheel rotation shaft 45 from the thickness value stored in the storage unit 86. The control unit 85 includes a processor that executes various processes, a memory, and the like. The memory is composed of one or a plurality of storage media such as a ROM (Read Only Memory) and a RAM (Random Access Memory) depending on the application. The control unit 85 controls the inclination of the table rotation shaft 35 according to the output result from the calculation unit 87. A method for controlling the table rotation shaft 35 will be described later. The calculating unit 87 can calculate the tilt angle (tilt amount) and tilt direction of the table rotation shaft 35.

図2は、本実施の形態に係る傾き調節手段を示す斜視図である。傾き調節手段31は、保持テーブル22に連結されたフランジ部32と、フランジ部32の周方向に設けられた一対の可動軸33a、33b(可動軸33bについては図4参照)及び固定軸34とから構成されている。傾き調節手段31は、可動軸33a、33bを可動させることによって固定軸34を支点にしてフランジ部32を傾けることにより、テーブル回転軸35の傾きを調節する。   FIG. 2 is a perspective view showing the tilt adjusting means according to the present embodiment. The inclination adjusting means 31 includes a flange portion 32 connected to the holding table 22, a pair of movable shafts 33 a and 33 b (see FIG. 4 for the movable shaft 33 b) and a fixed shaft 34 provided in the circumferential direction of the flange portion 32. It is composed of The inclination adjusting means 31 adjusts the inclination of the table rotation shaft 35 by moving the movable shafts 33a and 33b and inclining the flange portion 32 with the fixed shaft 34 as a fulcrum.

各可動軸33a、33bは、筒部36を介してターンテーブル42に取り付けられており、筒部36の内側の雌ネジに雄ネジシャフト37を螺合して構成されている。雄ネジシャフト37の先端はフランジ部32に連結され、雄ネジシャフト37の下端はモータ38が連結されている。モータ38によって、雄ネジシャフト37が回転駆動されることで、フランジ部32が上下方向に可動される。また、テーブル回転軸35とテーブル回転手段39とにベルト39aが巻き掛けられている。テーブル回転手段39が回転することにより、その回転力がベルト39aを介してテーブル回転軸35に伝達される。そして、テーブル回転軸35が回転することにより保持テーブル22が回転する構成となっている。   Each of the movable shafts 33 a and 33 b is attached to the turntable 42 via a cylindrical portion 36, and is configured by screwing a male screw shaft 37 into a female screw inside the cylindrical portion 36. The tip of the male screw shaft 37 is connected to the flange portion 32, and the motor 38 is connected to the lower end of the male screw shaft 37. When the male screw shaft 37 is rotationally driven by the motor 38, the flange portion 32 is moved in the vertical direction. A belt 39 a is wound around the table rotation shaft 35 and the table rotation means 39. As the table rotating means 39 rotates, the rotational force is transmitted to the table rotating shaft 35 via the belt 39a. The holding table 22 is configured to rotate as the table rotation shaft 35 rotates.

図3は、TAIKO研削におけるウエーハの測定箇所を説明するための図である。図3Aに示すように、一般的なウエーハWの全面研削では、ウエーハWの直径と略同一径の研削ホイール50で、円弧状の研削領域(例えば、研削ホイール50の半周の略1/3)をウエーハWに当てて研削している。このとき、ウエーハWの中心O側及び外周C1側のどちらか一方に研削ホイール50が強く当たり易い。図3Bの場合、ウエーハWの中心O側に研削ホイール50が強く当たり、ウエーハWの外周C1側に研削ホイール50が弱く当たるため、ウエーハWの厚みは中心Oから径方向外側に向かって大きくなる。このため、ウエーハWの中心O、外周C1、半径1/2の箇所C2の3箇所でウエーハWの厚みをスポット的に測定して、テーブル回転軸35を傾き調節している。これにより、ウエーハWの厚みを均一に研削している。   FIG. 3 is a diagram for explaining the measurement points of the wafer in TAIKO grinding. As shown in FIG. 3A, in general grinding of a wafer W, a grinding wheel 50 having a diameter substantially the same as the diameter of the wafer W is used to form an arc-shaped grinding region (for example, approximately 1/3 of a half circumference of the grinding wheel 50). Is applied to the wafer W for grinding. At this time, the grinding wheel 50 easily hits either the center O side or the outer periphery C1 side of the wafer W. In the case of FIG. 3B, since the grinding wheel 50 hits the center O side of the wafer W strongly and the grinding wheel 50 hits the outer periphery C1 side of the wafer W weakly, the thickness of the wafer W increases from the center O toward the radially outer side. . For this reason, the thickness of the wafer W is spot-measured at three locations: the center O of the wafer W, the outer periphery C1, and the location C2 having a radius ½, and the table rotation shaft 35 is adjusted in inclination. Thereby, the thickness of the wafer W is ground uniformly.

図3Cに示すように、本実施の形態のウエーハWのTAIKO研削では、ウエーハWの半径よりも小径の研削ホイール49で、半円状の研削領域をウエーハWに当ててウエーハWの中央に円形凹部15を形成している。円形凹部15の底面はウエーハWの中心Oと外周部Cとの間が凹状に湾曲している。TAIKO研削では、円形凹部15の厚みを均一に近付けるために、保持テーブル22の保持面22aをウエーハWの凹状の湾曲面に平行になるように事前に研削しておく必要がある。ウエーハWよりも保持面22aの径が大きいため、ウエーハWと保持面22aとに同じ径の研削ホイール49が使用されると、保持面22aの外周部分に研削できない箇所ができるので、ウエーハWの外周部が保持面22aから浮いてしまう。このため、異なる径の研削ホイール49によってウエーハWと保持面22aとが研削されるが、円形凹部15の底面の曲率と保持面22aの曲率とが異なるため、面内厚み差をゼロにすることはできない。   As shown in FIG. 3C, in the TAIKO grinding of the wafer W according to the present embodiment, a semicircular grinding region is applied to the wafer W with a grinding wheel 49 having a diameter smaller than the radius of the wafer W, and a circle is formed in the center of the wafer W. A recess 15 is formed. The bottom surface of the circular concave portion 15 is curved in a concave shape between the center O of the wafer W and the outer peripheral portion C. In TAIKO grinding, it is necessary to grind the holding surface 22a of the holding table 22 in advance so as to be parallel to the concave curved surface of the wafer W in order to make the thickness of the circular recess 15 uniform. Since the diameter of the holding surface 22a is larger than that of the wafer W, if a grinding wheel 49 having the same diameter is used for the wafer W and the holding surface 22a, a portion that cannot be ground is formed on the outer peripheral portion of the holding surface 22a. An outer peripheral part will float from the holding surface 22a. For this reason, the wafer W and the holding surface 22a are ground by the grinding wheels 49 having different diameters. However, since the curvature of the bottom surface of the circular recess 15 and the curvature of the holding surface 22a are different, the in-plane thickness difference is made zero. I can't.

図3Cの場合、ウエーハWの半径1/2よりも若干内寄りの位置P0で研削ホイール49が強くあたるため、ウエーハWの厚みは中心Oから位置P0に向かって小さくなり、位置P0から円形凹部15の外周部Cに向かって大きくなる。すなわち、研削ホイール49でウエーハWを研削した際、ウエーハWの中心Oの厚み値に対して差が最大になる箇所がウエーハWの半径1/2の箇所とは限らない。したがって、全面研削と同じ3箇所をスポット的に測定しただけでは、面内厚みバラツキを精度よく測定することができない。また、研削ホイール49の研削領域も半円状であるため、全面研削と同じような調整方法では、テーブル回転軸35の傾きを精度よく調整することができない。   In the case of FIG. 3C, since the grinding wheel 49 is strongly applied at the position P0 slightly inward of the radius W of the wafer W, the thickness of the wafer W decreases from the center O toward the position P0, and the circular recess from the position P0. 15 increases toward the outer peripheral portion C. That is, when the wafer W is ground by the grinding wheel 49, the portion where the difference is the maximum with respect to the thickness value of the center O of the wafer W is not necessarily the portion having the radius 1/2 of the wafer W. Therefore, the in-plane thickness variation cannot be accurately measured only by spot-measuring the same three points as the entire surface grinding. In addition, since the grinding area of the grinding wheel 49 is also semicircular, the tilt of the table rotation shaft 35 cannot be adjusted with high accuracy by an adjustment method similar to that for full-surface grinding.

そこで本実施の形態では、厚み測定器71を径方向に走査してウエーハWの厚みを測定して、ウエーハWの中心Oの厚み値と、ウエーハWの厚み値が極大となる位置の厚み値と、円形凹部15の外周部Cの厚み値とを取得している。これら厚み値の差が最も小さくなるように、傾き調節手段31によりテーブル回転軸35により傾き調節してウエーハWを研削することで、ウエーハWの厚みを均一にしている。   Therefore, in the present embodiment, the thickness measuring device 71 is scanned in the radial direction to measure the thickness of the wafer W, and the thickness value at the center O of the wafer W and the thickness value at the position where the thickness value of the wafer W is maximized. And the thickness value of the outer peripheral portion C of the circular recess 15 is acquired. The thickness of the wafer W is made uniform by grinding the wafer W by adjusting the tilt by the table rotating shaft 35 by the tilt adjusting means 31 so that the difference between these thickness values is minimized.

図4は、本実施の形態に係る保持テーブルの傾き調節の説明図である。保持テーブル22の傾き調節手段31として、フランジ部32(図2参照)の周方向に120°間隔で2つの可動軸33a、33bと1つの固定軸34とが設けられている。ウエーハの全面研削の場合、研削ホイール50の研削領域が円弧状であり、一対の可動軸33a、33bの片側だけを上下動させることで、ウエーハWに研削ホイール50が当たる強さを調節できる。例えば、研削領域の略延長方向にある可動軸33bを上下動することで研削ホイール50によるウエーハWの中心O側又は外周C1側の当たり具合を調節することができる。研削領域の直交する方向にある可動軸33aを上下動することで研削ホイール50によるウエーハWの半径1/2の箇所C2に当たり具合を調節することができる。   FIG. 4 is an explanatory diagram of tilt adjustment of the holding table according to the present embodiment. As the tilt adjusting means 31 of the holding table 22, two movable shafts 33 a and 33 b and one fixed shaft 34 are provided at 120 ° intervals in the circumferential direction of the flange portion 32 (see FIG. 2). In the case of the entire surface grinding of the wafer, the grinding area of the grinding wheel 50 is arcuate, and the strength with which the grinding wheel 50 strikes the wafer W can be adjusted by moving only one side of the pair of movable shafts 33a and 33b up and down. For example, the degree of contact of the grinding wheel 50 on the center O side or the outer periphery C1 side with the grinding wheel 50 can be adjusted by moving the movable shaft 33b substantially in the extending direction of the grinding region. By moving up and down the movable shaft 33a in the direction orthogonal to the grinding region, the contact condition can be adjusted to the location C2 of the radius W of the wafer W by the grinding wheel 50.

これに対し、本実施の形態のようなTAIKO研削の場合、研削ホイール49の研削領域が半円状であるため、一対の可動軸33a、33bのどちらか片側だけを上下動させても、ウエーハWに研削ホイール49が当たる強さを調節することができない。ウエーハWに研削ホイール49が当たる強さを調節するためには、一対の可動軸33a、33bを組み合わせて調節する必要がある。例えば、可動軸33aを上昇させて可動軸33bを下降させると、研削ホイール49の半円状の研削領域の中間位置P3がウエーハWの中心Oに強く当たる。可動軸33aを下降させて可動軸33bを上昇させると、研削ホイール49の半円状の研削領域の一端P1及び他端P2がウエーハWの中心O及び円形凹部15の外周部Cに強く当たる。可動軸33a及び可動軸33bを共に上昇させると、研削ホイール49の半円状の研削領域の一端P1がウエーハWの中心Oに強く当たる。可動軸33a及び可動軸33b共に下降させると、研削ホイール49の半円状の研削領域の他端P2が、ウエーハWの円形凹部15の外周部Cに強く当たる。   On the other hand, in the case of TAIKO grinding as in the present embodiment, since the grinding area of the grinding wheel 49 is semicircular, the wafer can be moved even if only one of the pair of movable shafts 33a and 33b is moved up and down. The strength with which the grinding wheel 49 hits W cannot be adjusted. In order to adjust the strength with which the grinding wheel 49 hits the wafer W, it is necessary to adjust the pair of movable shafts 33a and 33b in combination. For example, when the movable shaft 33a is raised and the movable shaft 33b is lowered, the intermediate position P3 of the semicircular grinding region of the grinding wheel 49 strongly hits the center O of the wafer W. When the movable shaft 33a is lowered and the movable shaft 33b is raised, the one end P1 and the other end P2 of the semicircular grinding region of the grinding wheel 49 strongly contact the center O of the wafer W and the outer peripheral portion C of the circular recess 15. When both the movable shaft 33a and the movable shaft 33b are raised, one end P1 of the semicircular grinding region of the grinding wheel 49 strongly hits the center O of the wafer W. When both the movable shaft 33a and the movable shaft 33b are lowered, the other end P2 of the semicircular grinding region of the grinding wheel 49 strongly hits the outer peripheral portion C of the circular recess 15 of the wafer W.

次に、本実施の形態に係る保持テーブルの傾き調節の一例について説明する。図5は、本実施の形態に係る傾き調節の一例を示す図である。なお、図5においては、図示左側が一時停止して測定したときのウエーハの厚みを示し、図示右側が傾き調節の状態を示している。図5においては、説明の便宜上、研削ホイールを傾けているように図示しているが、実際には保持テーブルを傾けている。   Next, an example of tilt adjustment of the holding table according to the present embodiment will be described. FIG. 5 is a diagram illustrating an example of tilt adjustment according to the present embodiment. In FIG. 5, the left side of the drawing shows the thickness of the wafer when measured while being paused, and the right side of the drawing shows the state of tilt adjustment. In FIG. 5, for convenience of explanation, the grinding wheel is illustrated as being inclined, but the holding table is actually inclined.

図5に示すように、TAIKO研削においてはウエーハWが研削ホイール49で研削されて円形凹部15が形成されると、円形凹部15にウエーハWの中心Oから外周に向かって測定した厚み値が極大となる極大値が生じる。図5Eは、ウエーハWを研削して円形凹部15が良好に形成された状態を示している。ウエーハWの中心付近に極大値が存在し、円形凹部15の外周部Cの厚み値と、ウエーハWの中心Oの厚み値がほぼ等しくなる。図5EにおけるウエーハWを基準とする。   As shown in FIG. 5, in the TAIKO grinding, when the wafer W is ground by the grinding wheel 49 to form the circular recess 15, the thickness value measured from the center O of the wafer W toward the outer periphery is maximized in the circular recess 15. A local maximum is generated. FIG. 5E shows a state in which the wafer W is ground and the circular recess 15 is well formed. A maximum value exists near the center of the wafer W, and the thickness value of the outer peripheral portion C of the circular recess 15 and the thickness value of the center O of the wafer W are substantially equal. The wafer W in FIG. 5E is used as a reference.

図5Aは、ウエーハWの中心Oと円形凹部15の外周部Cとの間の中間位置の厚みが中心O及び外周部Cの厚みよりも大きくなった状態、すなわち中心Oと外周部Cの中間位置に極大値が存在する状態を示している。図5AにおけるウエーハWは、図5Eの基準となるウエーハWと比べて、円形凹部15の外周部Cの厚み値はわずか小さくなり、極大値は大きくなり、ウエーハWの中心Oの厚み値はわずかに小さくなる。この場合、可動軸33a(図4参照)を1ステップ(1μm)上昇させ、可動軸33bを2ステップ(2μm)下降させる。これにより、研削ホイール49の半円状の研削領域の中間位置P3(図4参照)が、ウエーハWの円形凹部15の外周部Cとの間の中間位置に強く当たり、中間位置が研削されてウエーハWの厚みを均一にすることができる。   FIG. 5A shows a state where the thickness of the intermediate position between the center O of the wafer W and the outer peripheral portion C of the circular recess 15 is larger than the thickness of the center O and the outer peripheral portion C, that is, between the center O and the outer peripheral portion C. A state in which a maximum value exists at the position is shown. In the wafer W in FIG. 5A, the thickness value of the outer peripheral portion C of the circular recess 15 is slightly smaller, the maximum value is larger, and the thickness value of the center O of the wafer W is slightly smaller than the reference wafer W in FIG. 5E. Becomes smaller. In this case, the movable shaft 33a (see FIG. 4) is raised by one step (1 μm), and the movable shaft 33b is lowered by two steps (2 μm). Thereby, the intermediate position P3 (see FIG. 4) of the semicircular grinding region of the grinding wheel 49 strongly hits the intermediate position between the outer peripheral portion C of the circular recess 15 of the wafer W, and the intermediate position is ground. The thickness of the wafer W can be made uniform.

図5Bは、ウエーハWの中心Oと円形凹部15の外周部Cとの間の中間位置の厚みが小さくなった状態を示している。図5BにおけるウエーハWは、図5Eの基準となるウエーハWと比べて、円形凹部15の外周部Cの厚み値はわずかに大きくなり、ウエーハWの中心付近の極大値は小さくなり、ウエーハWの中心Oの厚み値はわずかに大きくなる。この場合、可動軸33aを1ステップ(1μm)下降させ、可動軸33bを2ステップ(2μm)上昇させる。これにより、研削ホイール49の半円状の研削領域の一端P1及び他端P2(図4参照)が、ウエーハWの中心O及び円形凹部15の外周部Cに強く当たり、中心O及び外周部Cが研削されてウエーハWの厚みを均一にすることができる。   FIG. 5B shows a state where the thickness of the intermediate position between the center O of the wafer W and the outer peripheral portion C of the circular recess 15 is reduced. In the wafer W in FIG. 5B, the thickness value of the outer peripheral portion C of the circular recess 15 is slightly larger than the reference wafer W in FIG. 5E, and the maximum value near the center of the wafer W is smaller. The thickness value of the center O is slightly increased. In this case, the movable shaft 33a is lowered by one step (1 μm), and the movable shaft 33b is raised by two steps (2 μm). As a result, one end P1 and the other end P2 (see FIG. 4) of the semicircular grinding region of the grinding wheel 49 strike the center O of the wafer W and the outer peripheral portion C of the circular recess 15 so that the center O and the outer peripheral portion C Can be ground to make the thickness of the wafer W uniform.

図5Cは、ウエーハWの中心Oの厚みが大きくなった状態を示している。図5CにおけるウエーハWは、図5Eの基準となるウエーハWと比べて、円形凹部15の外周部Cの厚み値は小さくなり、ウエーハWの中心付近の極大値は大きくなり、ウエーハWの中心Oの厚み値は大きくなる。この場合、可動軸33a及び可動軸33bをそれぞれ1ステップ(1μm)上昇させる。これにより、研削ホイール49の半円状の研削領域の一端P1が、ウエーハWの中心Oに強く当たり、中心Oが研削されてウエーハWの厚みを均一にすることができる。   FIG. 5C shows a state where the thickness of the center O of the wafer W is increased. In the wafer W in FIG. 5C, the thickness value of the outer peripheral portion C of the circular recess 15 is smaller, the maximum value near the center of the wafer W is larger, and the center O of the wafer W is larger than the reference wafer W in FIG. The thickness value of increases. In this case, each of the movable shaft 33a and the movable shaft 33b is raised by one step (1 μm). Thereby, one end P1 of the semicircular grinding region of the grinding wheel 49 hits the center O of the wafer W, and the center O is ground to make the thickness of the wafer W uniform.

図5Dは、ウエーハWの円形凹部15の外周部Cの厚みが大きくなった状態を示している。図5DにおけるウエーハWは、図5Eの基準となるウエーハWと比べて、円形凹部15の外周部Cの厚み値は大きくなり、ウエーハWの中心付近の極大値は小さくなり、ウエーハWの中心Oの厚み値は小さくなる。この場合、可動軸33a及び可動軸33bをそれぞれ1ステップ(1μm)下降させる。これにより、研削ホイール49の半円状の研削領域の他端P2が、ウエーハWの円形凹部15の外周部Cに強く当たり、外周部Cが研削されてウエーハWの厚みを均一にすることができる。   FIG. 5D shows a state where the thickness of the outer peripheral portion C of the circular concave portion 15 of the wafer W is increased. In the wafer W in FIG. 5D, the thickness value of the outer peripheral portion C of the circular recess 15 is larger, the local maximum value near the center of the wafer W is smaller than the reference wafer W in FIG. The thickness value of becomes smaller. In this case, each of the movable shaft 33a and the movable shaft 33b is lowered by one step (1 μm). Accordingly, the other end P2 of the semicircular grinding region of the grinding wheel 49 strongly hits the outer peripheral portion C of the circular concave portion 15 of the wafer W, and the outer peripheral portion C is ground to make the thickness of the wafer W uniform. it can.

次に本実施の形態に係るウエーハWの研削動作について説明する。図6は、本実施の形態に係るウエーハの研削動作の遷移図である。   Next, the grinding operation of the wafer W according to the present embodiment will be described. FIG. 6 is a transition diagram of the grinding operation of the wafer according to the present embodiment.

図6Aに示すように、研削ホイール49で保持テーブル22上のウエーハWの中央を研削している最中に、円形凹部15の厚みが予め設定した仕上げ厚みに達する前に研削送りが一時停止される。このとき、保持テーブル22及び研削ホイール49は回転が維持され、研削ホイール49がウエーハWから上昇される。また、厚み測定器71はウエーハWの外周の真上に位置している。   As shown in FIG. 6A, during grinding of the center of the wafer W on the holding table 22 with the grinding wheel 49, the grinding feed is temporarily stopped before the thickness of the circular recess 15 reaches the preset finish thickness. The At this time, rotation of the holding table 22 and the grinding wheel 49 is maintained, and the grinding wheel 49 is lifted from the wafer W. Further, the thickness measuring device 71 is located immediately above the outer periphery of the wafer W.

図6Bに示すように、研削ホイール49がウエーハWから上昇すると、走査手段73が厚み測定器71をウエーハWの径方向に走査させてウエーハWの厚みを測定する。このとき、ウエーハWの中心の厚み値と、走査手段73で厚み測定器71を走査させ測定した厚み値とウエーハWの中心の厚み値とを比較し差が最も大きくなる厚み値と、円形凹部15の外周部の厚み値の少なくとも3箇所の厚み値が、記憶部86(図1参照)に選択的に記憶される。また、記憶部86におけるウエーハWの少なくとも3箇所の厚み値の差が小さくなるようにテーブル回転軸35に対する研削ホイール回転軸45の傾きが算出部87で算出される。   As shown in FIG. 6B, when the grinding wheel 49 rises from the wafer W, the scanning unit 73 scans the thickness measuring device 71 in the radial direction of the wafer W and measures the thickness of the wafer W. At this time, the thickness value at the center of the wafer W is compared with the thickness value measured by scanning the thickness measuring device 71 with the scanning means 73 and the thickness value at the center of the wafer W, and the circular concave portion. The thickness values of at least three of the 15 outer peripheral thickness values are selectively stored in the storage unit 86 (see FIG. 1). In addition, the inclination of the grinding wheel rotation shaft 45 with respect to the table rotation shaft 35 is calculated by the calculation unit 87 so that the difference between the thickness values of the wafer W in the storage unit 86 is reduced.

図6Cに示すように、テーブル回転軸35に対する研削ホイール回転軸45の傾きが算出部87(図1参照)で算出されると、厚み測定器71は再びウエーハの外側に移動される。このとき、算出部87で算出されたテーブル回転軸35、研削ホイール回転軸45の傾きに基づき、傾き調節手段31によってテーブル回転軸35の傾きが調節される。テーブル回転軸35の傾きが調節されると、研削ホイール49がウエーハWに下降して接触し、再びウエーハWの研削が開始される。ウエーハWの円形凹部15の厚みが所定の厚みになるまでウエーハWが研削される。   As shown in FIG. 6C, when the inclination of the grinding wheel rotation shaft 45 with respect to the table rotation shaft 35 is calculated by the calculation unit 87 (see FIG. 1), the thickness measuring instrument 71 is moved again to the outside of the wafer. At this time, the inclination of the table rotating shaft 35 is adjusted by the inclination adjusting means 31 based on the inclination of the table rotating shaft 35 and the grinding wheel rotating shaft 45 calculated by the calculating unit 87. When the inclination of the table rotation shaft 35 is adjusted, the grinding wheel 49 descends and contacts the wafer W, and the grinding of the wafer W is started again. The wafer W is ground until the thickness of the circular recess 15 of the wafer W reaches a predetermined thickness.

以上のように、本実施の形態に係る研削装置1では、厚み測定部71が走査手段73により走査されることで、ウエーハWの中心Oの厚み値と、ウエーハWの中心Oから外周に向かって測定した厚み値が極大となる位置の厚み値と、円形凹部15の外周部Cの厚み値との少なくとも3箇所の厚み値を測定する。これら3つの厚み値の差が最も小さくなるように、傾き調節手段31によりテーブル回転軸35と研削ホイール回転軸45とが相対的に傾き調節される。よって、ウエーハWの円形凹部15に面内厚みバラツキが生じる場合であっても、面内厚みバラツキを修正して円形凹部15におけるウエーハWの厚みを均一にすることができる。   As described above, in the grinding apparatus 1 according to the present embodiment, the thickness measuring unit 71 is scanned by the scanning unit 73, so that the thickness value of the center O of the wafer W and the center O of the wafer W toward the outer periphery. The thickness value at the position where the measured thickness value is maximum and the thickness value of the outer peripheral portion C of the circular recess 15 are measured at least at three locations. The tilt adjusting means 31 relatively adjusts the tilt of the table rotating shaft 35 and the grinding wheel rotating shaft 45 so that the difference between these three thickness values is minimized. Therefore, even when the in-plane thickness variation occurs in the circular recess 15 of the wafer W, the in-plane thickness variation can be corrected to make the thickness of the wafer W in the circular recess 15 uniform.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can change and implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

例えば、上記した実施の形態においては、研削前の保持テーブル22の保持面22aの整形に、ウエーハWの円形凹部15の研削に使用する研削ホイール49とは異なる径の研削ホイールを使用する構成について説明したが、この構成に限定されない。研削前の保持テーブル22の保持面22aの整形に、ウエーハWの円形凹部15の研削に使用する研削ホイール49と同じ径の研削ホイールを使用することも可能である。この場合、保持面22aを研削ホイールで凹状の湾曲面となるように深めに研削した後に、外周部分を平坦に研削するようにする(例えば、特開2015−072971号公報参照)。同径の研削ホイールを使用することで、理論的には面内厚み差をゼロにすることが可能であるが、このような場合であっても、面内厚みバラツキが生じた場合には、本実施の形態に係る保持テーブル22の調整方法を使用することができる。なお、厚み値としては、ウエーハWの円形凹部15の中心O、円形凹部15の外周部C、円形凹部15の半径1/2の3箇所を測定することで面内厚みバラツキを求めることができる。   For example, in the above-described embodiment, a configuration in which a grinding wheel having a diameter different from that of the grinding wheel 49 used for grinding the circular recess 15 of the wafer W is used to shape the holding surface 22a of the holding table 22 before grinding. Although described, it is not limited to this configuration. For shaping the holding surface 22a of the holding table 22 before grinding, a grinding wheel having the same diameter as the grinding wheel 49 used for grinding the circular recess 15 of the wafer W can be used. In this case, the holding surface 22a is ground deeply so as to be a concave curved surface with a grinding wheel, and then the outer peripheral portion is ground flat (see, for example, JP-A-2015-072971). By using a grinding wheel of the same diameter, it is theoretically possible to make the in-plane thickness difference zero, but even in such a case, when in-plane thickness variation occurs, The adjustment method of the holding table 22 according to the present embodiment can be used. In addition, as thickness values, in-plane thickness variation can be obtained by measuring three locations of the center O of the circular concave portion 15 of the wafer W, the outer peripheral portion C of the circular concave portion 15, and the radius ½ of the circular concave portion 15. .

また例えば、研削手段46を保持テーブル22に対して研削送り方向(Z軸方向)に移動させる構成としたが、この構成に限定されない。保持テーブル22と研削手段46とを研削送り方向(Z軸方向)に相対的に接近および離間する方向に移動させる構成としてもよく、例えば、研削手段46に対して保持テーブル22を研削送り方向に移動させてもよい。   For example, although the grinding means 46 is configured to move in the grinding feed direction (Z-axis direction) with respect to the holding table 22, it is not limited to this configuration. For example, the holding table 22 and the grinding means 46 may be moved in a direction relatively approaching and separating from the grinding feed direction (Z-axis direction). For example, the holding table 22 is moved in the grinding feed direction with respect to the grinding means 46. It may be moved.

また例えば、テーブル回転軸35の傾きを傾き調節手段31により調節する構成としたが、この構成に限定されない。傾き調整手段31は、テーブル回転軸35と研削ホイール回転軸45とを相対的に傾き調節する構成としてもよく、例えば研削ホイール回転軸45の傾きを調節する構成としてもよい。   Further, for example, the inclination of the table rotation shaft 35 is adjusted by the inclination adjusting means 31, but the invention is not limited to this structure. The tilt adjusting means 31 may be configured to relatively adjust the tilt of the table rotating shaft 35 and the grinding wheel rotating shaft 45. For example, the tilt adjusting means 31 may be configured to adjust the tilt of the grinding wheel rotating shaft 45.

また例えば、可動軸33a、33bが傾き調節手段31に2つ備えられている構成としたが、この構成に限定されない。可動軸が傾き調節手段31に3つ以上備えられる構成としてもよい。   In addition, for example, the movable shafts 33a and 33b are provided in the tilt adjusting means 31, but the present invention is not limited to this configuration. A configuration in which three or more movable shafts are provided in the tilt adjusting means 31 may be adopted.

以上説明したように、本発明は、ウエーハの中央に円形凹部を形成する際に、円形凹部におけるウエーハの厚みを均一にすることができるという効果を有し、特に、保持テーブルに保持されたウエーハを研削ホイールで研削する研削装置に有用である。   As described above, the present invention has the effect that the thickness of the wafer in the circular recess can be made uniform when forming the circular recess in the center of the wafer, and in particular, the wafer held on the holding table. It is useful for a grinding apparatus that grinds with a grinding wheel.

1 研削装置
15 円形凹部
16 環状凸部
22 保持テーブル
31 傾き調節手段
35 テーブル回転軸
45 研削ホイール回転軸
46 研削手段
48 研削砥石
49 研削ホイール
61 研削送り手段
71 厚み測定器
73 走査手段
86 記憶部
87 算出部
O ウエーハの中心
P0 厚み測定器を走査させ測定した厚み値とウエーハの中心の厚み値との差が最も大きくなる箇所
C 円形凹部の外周部
W ウエーハ
DESCRIPTION OF SYMBOLS 1 Grinding device 15 Circular recessed part 16 Annular convex part 22 Holding table 31 Inclination adjusting means 35 Table rotating shaft 45 Grinding wheel rotating shaft 46 Grinding means 48 Grinding wheel 49 Grinding wheel 61 Grinding feed means 71 Thickness measuring device 73 Scanning means 86 Storage part 87 Calculation part O Wafer center P0 Location where the difference between the thickness value measured by scanning the thickness measuring instrument and the thickness value at the center of the wafer is the largest C The outer peripheral part of the circular recess W Wafer

Claims (1)

砥石でウエーハの中央を研削し、中央に円形凹部を形成すると共に外周部に環状凸部を形成し、該円形凹部の厚みを予め設定した仕上げ厚みまで研削する研削装置であって、
ウエーハを保持する保持テーブルと、該保持テーブルを回転させるテーブル回転軸と、ウエーハの半径より小さい直径で環状に該砥石を配設する研削ホイールと、該研削ホイールを取付け回転させる研削ホイール回転軸を備える研削手段と、該保持テーブルと該研削手段とを相対的に接近および離間させる方向に移動させる研削送り手段と、該テーブル回転軸と該研削ホイール回転軸とを相対的に傾き調節する傾き調節手段と、該保持テーブルに保持されるウエーハを研削し形成される該円形凹部のウエーハ厚みを測定する厚み測定器と、該厚み測定器をウエーハの径方向に走査させる走査手段と、該厚み測定器を該走査手段で走査させウエーハの厚みを測定した該円形凹部の少なくとも3箇所の厚み値を記憶する記憶部と、該記憶部に記憶された厚み値から該研削ホイール回転軸に対する該テーブル回転軸の傾きを算出する算出部と、を備え、
該少なくとも3箇所の厚み値を測定する測定動作は、該円形凹部の厚みが予め設定した該仕上げ厚みに達する前に該研削送りを一時停止させて行い、
該少なくとも3箇所の厚み値は、
ウエーハの中心の厚み値と、
該走査手段で該厚み測定器をウエーハの中心から外周に向かって走査させ測定した厚み値の極大値と、
該円形凹部の外周部の厚み値と、からなり、
該少なくとも3箇所の厚み値の差が最も小さくなるときの該研削ホイール回転軸に対する該テーブル回転軸の傾きを該算出部で算出し、
該算出部が算出した該傾きに該傾き調節手段で該テーブル回転軸と該研削ホイール回転軸とを相対的に傾き調節したのち、該円形凹部の厚みが該仕上げ厚みになるまで研削する研削装置。
A grinding device that grinds the center of a wafer with a grindstone, forms a circular concave portion at the center and an annular convex portion on an outer peripheral portion, and grinds the thickness of the circular concave portion to a preset finish thickness,
A holding table for holding a wafer, a table rotating shaft for rotating the holding table, a grinding wheel for arranging the grindstone in an annular shape with a diameter smaller than the radius of the wafer, and a grinding wheel rotating shaft for attaching and rotating the grinding wheel Grinding means provided, grinding feed means for moving the holding table and the grinding means in a relatively approaching and separating direction, and tilt adjustment for relatively tilting the table rotating shaft and the grinding wheel rotating shaft. Means, a thickness measuring device for measuring the wafer thickness of the circular recess formed by grinding the wafer held on the holding table, scanning means for scanning the thickness measuring device in the radial direction of the wafer, and the thickness measurement A storage unit for storing thickness values of at least three portions of the circular recesses obtained by scanning the wafer with the scanning unit and measuring the thickness of the wafer; and storing the storage unit in the storage unit And a calculation unit for calculating an inclination of the table rotating shaft with respect to the grinding wheel rotation axis from the thickness values,
The measuring operation for measuring the thickness value of at least three places is performed by temporarily stopping the grinding feed before the thickness of the circular recess reaches the preset finish thickness,
The thickness values of the at least three locations are
The thickness value at the center of the wafer,
A maximum value of the thickness value measured by scanning the thickness measuring device from the center of the wafer toward the outer periphery with the scanning means;
A thickness value of the outer periphery of the circular recess, and
Calculating the inclination of the table rotation axis with respect to the grinding wheel rotation axis when the difference between the thickness values of the at least three locations is minimized, by the calculation unit;
A grinding apparatus for performing grinding until the thickness of the circular recess becomes the finished thickness after the tilt adjusting means relatively adjusts the tilt of the table rotating shaft and the grinding wheel rotating shaft to the tilt calculated by the calculating unit. .
JP2015227037A 2015-11-19 2015-11-19 Grinding equipment Active JP6576801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015227037A JP6576801B2 (en) 2015-11-19 2015-11-19 Grinding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015227037A JP6576801B2 (en) 2015-11-19 2015-11-19 Grinding equipment

Publications (2)

Publication Number Publication Date
JP2017094418A true JP2017094418A (en) 2017-06-01
JP6576801B2 JP6576801B2 (en) 2019-09-18

Family

ID=58804292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015227037A Active JP6576801B2 (en) 2015-11-19 2015-11-19 Grinding equipment

Country Status (1)

Country Link
JP (1) JP6576801B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109822424A (en) * 2019-03-15 2019-05-31 中山市旌旭光学有限公司 Automatic refiner thickness on-line measurement device
CN110539232A (en) * 2019-09-11 2019-12-06 安徽科信矿山机械制造有限公司 Grinding device for ore processing
WO2021095586A1 (en) * 2019-11-15 2021-05-20 東京エレクトロン株式会社 Substrate processing method and substrate processing device
JPWO2021095588A1 (en) * 2019-11-15 2021-05-20
CN113001262A (en) * 2019-12-20 2021-06-22 株式会社迪思科 Method for grinding workpiece
CN115042031A (en) * 2022-07-07 2022-09-13 河南华辰智控技术有限公司 Automatic regulating device for circuit silicon wafer manufacturing
CN116810528A (en) * 2023-08-31 2023-09-29 江苏京创先进电子科技有限公司 Wafer grinding method and wafer grinding machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837632B2 (en) 2021-03-24 2023-12-05 Globalwafers Co., Ltd. Wafer
TWI818416B (en) * 2021-03-24 2023-10-11 環球晶圓股份有限公司 Wafer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104545A (en) * 1989-09-19 1991-05-01 Fujitsu Ltd Surface grinding device
JP2008006536A (en) * 2006-06-29 2008-01-17 Disco Abrasive Syst Ltd Grinding method for wafer
JP2008060470A (en) * 2006-09-01 2008-03-13 Disco Abrasive Syst Ltd Working method for wafer
JP2008238341A (en) * 2007-03-27 2008-10-09 Disco Abrasive Syst Ltd Machining device
JP2010199336A (en) * 2009-02-25 2010-09-09 Disco Abrasive Syst Ltd Workpiece machining method and workpiece machining device
JP2013004726A (en) * 2011-06-16 2013-01-07 Disco Abrasive Syst Ltd Processing method of plate-like object
JP2013119123A (en) * 2011-12-06 2013-06-17 Disco Corp Grinding device
JP2014127618A (en) * 2012-12-27 2014-07-07 Disco Abrasive Syst Ltd Processing method of plate-like object
JP2015072971A (en) * 2013-10-02 2015-04-16 株式会社ディスコ Table shaping method
US20170095902A1 (en) * 2015-10-06 2017-04-06 Disco Corporation Grinding method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104545A (en) * 1989-09-19 1991-05-01 Fujitsu Ltd Surface grinding device
JP2008006536A (en) * 2006-06-29 2008-01-17 Disco Abrasive Syst Ltd Grinding method for wafer
JP2008060470A (en) * 2006-09-01 2008-03-13 Disco Abrasive Syst Ltd Working method for wafer
JP2008238341A (en) * 2007-03-27 2008-10-09 Disco Abrasive Syst Ltd Machining device
JP2010199336A (en) * 2009-02-25 2010-09-09 Disco Abrasive Syst Ltd Workpiece machining method and workpiece machining device
JP2013004726A (en) * 2011-06-16 2013-01-07 Disco Abrasive Syst Ltd Processing method of plate-like object
JP2013119123A (en) * 2011-12-06 2013-06-17 Disco Corp Grinding device
JP2014127618A (en) * 2012-12-27 2014-07-07 Disco Abrasive Syst Ltd Processing method of plate-like object
JP2015072971A (en) * 2013-10-02 2015-04-16 株式会社ディスコ Table shaping method
US20170095902A1 (en) * 2015-10-06 2017-04-06 Disco Corporation Grinding method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109822424A (en) * 2019-03-15 2019-05-31 中山市旌旭光学有限公司 Automatic refiner thickness on-line measurement device
CN110539232A (en) * 2019-09-11 2019-12-06 安徽科信矿山机械制造有限公司 Grinding device for ore processing
CN114641369B (en) * 2019-11-15 2023-06-30 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus
JPWO2021095586A1 (en) * 2019-11-15 2021-05-20
JPWO2021095588A1 (en) * 2019-11-15 2021-05-20
WO2021095588A1 (en) * 2019-11-15 2021-05-20 東京エレクトロン株式会社 Substrate processing method and substrate processing device
CN114641369A (en) * 2019-11-15 2022-06-17 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus
WO2021095586A1 (en) * 2019-11-15 2021-05-20 東京エレクトロン株式会社 Substrate processing method and substrate processing device
JP7434352B2 (en) 2019-11-15 2024-02-20 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
JP7434351B2 (en) 2019-11-15 2024-02-20 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
CN113001262A (en) * 2019-12-20 2021-06-22 株式会社迪思科 Method for grinding workpiece
CN113001262B (en) * 2019-12-20 2024-02-23 株式会社迪思科 Method for grinding workpiece
CN115042031A (en) * 2022-07-07 2022-09-13 河南华辰智控技术有限公司 Automatic regulating device for circuit silicon wafer manufacturing
CN115042031B (en) * 2022-07-07 2024-04-09 河南华辰智控技术有限公司 Automatic regulating device for manufacturing circuit silicon wafer
CN116810528A (en) * 2023-08-31 2023-09-29 江苏京创先进电子科技有限公司 Wafer grinding method and wafer grinding machine

Also Published As

Publication number Publication date
JP6576801B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6576801B2 (en) Grinding equipment
JP6129551B2 (en) Processing method of plate
KR102067434B1 (en) Substrate processing apparatus and substrate processing method
US5816895A (en) Surface grinding method and apparatus
JP5788304B2 (en) Grinding equipment
JP6523991B2 (en) Substrate processing apparatus and substrate processing method
CN106563980B (en) Grinding method
JP3166146B2 (en) Surface grinding method and apparatus
JP7046573B2 (en) Processing method of work piece
TWI712082B (en) Wafer grinding method
US11400563B2 (en) Processing method for disk-shaped workpiece
KR20200123002A (en) Method of forming holding surface
JP6676284B2 (en) Work processing equipment
JP6348856B2 (en) Grinding equipment
KR20160122647A (en) Substrate processing apparatus and substrate processing method
US10507561B2 (en) Grinding apparatus
JP6082682B2 (en) How to format a table
JP7388893B2 (en) Wafer grinding method
JP6358881B2 (en) Wafer grinding method
JP2022187701A (en) Correction factor calculation method
JP2023008492A (en) Grinding device
JP2017163018A (en) Wafer processing apparatus and wafer processing method
JP7068849B2 (en) Grinding device
JP7331198B2 (en) Grinding equipment
JP6093680B2 (en) How to format a table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190821

R150 Certificate of patent or registration of utility model

Ref document number: 6576801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250