TWI818416B - Wafer - Google Patents

Wafer Download PDF

Info

Publication number
TWI818416B
TWI818416B TW111102292A TW111102292A TWI818416B TW I818416 B TWI818416 B TW I818416B TW 111102292 A TW111102292 A TW 111102292A TW 111102292 A TW111102292 A TW 111102292A TW I818416 B TWI818416 B TW I818416B
Authority
TW
Taiwan
Prior art keywords
processed
annular
thickness
microns
wafer
Prior art date
Application number
TW111102292A
Other languages
Chinese (zh)
Other versions
TW202237336A (en
Inventor
温禪儒
張志暐
周素蓮
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Priority to US17/583,149 priority Critical patent/US11837632B2/en
Priority to CN202210103484.7A priority patent/CN115132566A/en
Priority to JP2022039925A priority patent/JP2022151725A/en
Priority to DE102022105976.6A priority patent/DE102022105976A1/en
Publication of TW202237336A publication Critical patent/TW202237336A/en
Application granted granted Critical
Publication of TWI818416B publication Critical patent/TWI818416B/en

Links

Images

Abstract

A wafer includes a ring part and a processed part. The processed part is connected to the ring part. The processed part has a top surface which has been grounded and a bottom surface opposite to the top surface. The processed part is surrounded by the ring part. An area where the top surface connects to the ring part is a curved surface facing upwards.

Description

晶圓wafer

本發明是有關於一種晶圓,且特別是有關於一種經加工的晶圓。The present invention relates to a wafer, and in particular to a processed wafer.

在半導體產業中,製造晶圓的方法包括先形成晶碇(Ingot),接著將晶碇切片以獲得晶圓。晶碇例如是在高溫的環境中製造。目前,晶碇的生長方法包括柴可拉斯基法(Czochralski process)、物理氣相傳輸法(Physical Vapor Transport, PVT)、高溫化學氣相沉積法 (High Temperature Chemical Vapor Deposition, HT-CVD)法以及液相磊晶法(Liquid Phase Epitaxy, LPE)等。In the semiconductor industry, the method of manufacturing a wafer includes first forming an ingot and then slicing the ingot to obtain a wafer. The crystal is produced in a high-temperature environment, for example. Currently, crystal growth methods include the Czochralski process, Physical Vapor Transport (PVT), and High Temperature Chemical Vapor Deposition (HT-CVD). And liquid phase epitaxy (Liquid Phase Epitaxy, LPE), etc.

在常見的晶碇製造方法中,晶種被置放於高溫爐中,晶種接觸氣態或液態的原料,並形成半導體材料於晶種的表面,直到獲得具有預期尺寸的晶碇為止。晶碇可以視製造方式與製造原料而有不同的結晶構造。In a common crystal ingot manufacturing method, a seed crystal is placed in a high-temperature furnace. The seed crystal contacts gaseous or liquid raw materials, and semiconductor material is formed on the surface of the seed crystal until a crystal ingot with the desired size is obtained. Crystals can have different crystal structures depending on the manufacturing method and raw materials.

在晶碇生長完成後,以爐冷或其他方式使晶碇降溫至室溫。在晶碇降溫之後,利用切割機把晶碇形狀較差的頭尾兩端移除,接著用磨輪將晶碇研磨到想要的尺寸(例如3英吋至12英吋)。在一些實例中,於晶碇的邊緣研磨出一道平邊或V型槽。此平邊或V型槽適用於作為晶碇的結晶方向的記號或適用於固定晶碇。After the growth of the crystal is completed, the temperature of the crystal is cooled to room temperature by furnace cooling or other means. After the crystal has cooled down, use a cutting machine to remove the head and tail ends of the crystal with poor shape, and then use a grinding wheel to grind the crystal to the desired size (for example, 3 inches to 12 inches). In some examples, a flat edge or V-shaped groove is ground on the edge of the crystal. This flat edge or V-shaped groove is suitable for marking the crystallization direction of the crystal or for fixing the crystal.

接著將晶碇切片,以獲得多個晶圓(Wafer)。舉例來說,將晶碇切片的方法包括以刀具或鋼線配合磨粒(例如鑽石顆粒)的方式進行切割。一般而言,晶碇在切片後,藉由研磨製程以調整晶圓的厚度,同時研磨製程也能使晶圓的表面變得相對平整,然而,晶圓在研磨的過程中,容易因為磨料或研磨產生的碎屑卡在晶圓的表面,導致晶圓的表面出現刮傷。Then the wafer is sliced to obtain multiple wafers. For example, a method of slicing crystals includes cutting with a knife or a steel wire and abrasive grains (such as diamond grains). Generally speaking, after the wafer is sliced, the thickness of the wafer is adjusted through a grinding process. At the same time, the grinding process can also make the surface of the wafer relatively flat. However, during the grinding process, the wafer is easily damaged due to abrasives or Debris generated by grinding gets stuck on the surface of the wafer, causing scratches on the surface of the wafer.

目前常見的晶圓研磨製程在將晶圓加工至較薄的厚度時,容易因為加工的強度太大而導致晶圓破裂。因此,延伸出一種應用於將晶圓的厚度減薄至200微米以下(甚至是50微米以下)的太鼓研磨(Taiko grinding)製程。在以太鼓研磨製程研磨晶圓的過程中,於晶圓的邊緣保留一定的厚度,藉此提升晶圓的結構強度。然而這樣的設計導致研磨或拋光晶圓時所產生的細屑會因晶圓邊緣較厚而不能良好的排除。容易導致加工過程中容易對晶圓造成不必要的刮傷及影響,嚴重破壞晶圓的加工品質及幾何形貌。因此,對於如何改善晶圓在研磨或拋光時的排屑能力,成為當今仍待解決的問題。When the current common wafer grinding process processes the wafer to a thinner thickness, it is easy to cause the wafer to break due to the high intensity of the processing. Therefore, a Taiko grinding process has been developed that is used to reduce the thickness of the wafer to less than 200 microns (or even less than 50 microns). During the wafer grinding process using the Taiko drum grinding process, a certain thickness is retained at the edge of the wafer to enhance the structural strength of the wafer. However, such a design results in the fine chips generated when grinding or polishing the wafer being unable to be well removed due to the thick edge of the wafer. It is easy to cause unnecessary scratches and impacts on the wafer during processing, seriously damaging the processing quality and geometric shape of the wafer. Therefore, how to improve the chip removal ability of wafers during grinding or polishing has become a problem that still needs to be solved today.

本發明提供一種晶圓,能改善加工部分邊緣出現刮傷的問題。The invention provides a wafer that can improve the problem of scratches on the edges of processed parts.

本發明的至少一實施例提供一種晶圓。晶圓包括環狀部分以及加工部分。加工部分連接環狀部分。加工部分具有經研磨的頂面以及相對於頂面的底面。加工部分被環狀部分所環繞。頂面連接環狀部分的區域為朝上彎曲的弧面,且弧面使加工部分在連接環狀部分的局部區域的厚度隨著接近環狀部分而增加。At least one embodiment of the present invention provides a wafer. The wafer includes a ring portion and a processing portion. The machined part connects the ring part. The machined portion has a ground top surface and a bottom surface opposite the top surface. The machined part is surrounded by an annular part. The area where the top surface connects to the annular part is an upwardly curved arc surface, and the arc surface causes the thickness of the processed part in the local area connecting the annular part to increase as it approaches the annular part.

圖1是依照本發明的一實施例的一種晶圓的研磨製程的上視示意圖。圖2是依照本發明的一實施例的一種晶圓的剖面示意圖。FIG. 1 is a schematic top view of a wafer grinding process according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a wafer according to an embodiment of the present invention.

請參考圖1與圖2,對晶圓100執行研磨製程。舉例來說,將晶圓100置於工作平台C上,接著以研磨頭P研磨晶圓100的頂面。在一些實施例中,工作平台C與研磨頭P一個沿著順時鐘方向旋轉,另一個沿著逆時鐘方向旋轉,但本發明不以此為限。在本實施例中,研磨製程為太鼓研磨(Taiko grinding)。在本實施例中,晶圓100的材料例如包括矽(Si)、砷化鎵(GaAs)、磷化銦(InP)、銻化銦(InSb)、氮化鎵(GaN)、碳化矽(SiC)、硒化鋅(ZnSe)或其他合適的半導體材料。Referring to FIGS. 1 and 2 , a grinding process is performed on the wafer 100 . For example, the wafer 100 is placed on the work platform C, and then the top surface of the wafer 100 is polished with the polishing head P. In some embodiments, one of the working platform C and the grinding head P rotates in the clockwise direction, and the other rotates in the counterclockwise direction, but the invention is not limited thereto. In this embodiment, the grinding process is Taiko grinding. In this embodiment, the material of the wafer 100 includes, for example, silicon (Si), gallium arsenide (GaAs), indium phosphide (InP), indium antimonide (InSb), gallium nitride (GaN), silicon carbide (SiC). ), zinc selenide (ZnSe) or other suitable semiconductor materials.

研磨後的晶圓100包括環狀部分110以及加工部分120。加工部分120連接環狀部分110。加工部分120具有經研磨的頂面T1以及相對於頂面T1的底面B1。加工部分120被環狀部分110所環繞。環狀部分110的厚度大於加工部分120的厚度,因此,環狀部分110可以增加晶圓100的強度並減少晶圓100的翹曲(Warp)。此外,由於晶圓100的環狀部分110較厚,使晶圓100的邊緣不容易在加工時出現裂痕或崩角。The polished wafer 100 includes an annular portion 110 and a processed portion 120 . The machined portion 120 connects the annular portion 110 . The processed portion 120 has a ground top surface T1 and a bottom surface B1 opposite the top surface T1. The machined portion 120 is surrounded by the annular portion 110 . The thickness of the annular portion 110 is greater than the thickness of the processing portion 120 . Therefore, the annular portion 110 can increase the strength of the wafer 100 and reduce warp of the wafer 100 . In addition, since the annular portion 110 of the wafer 100 is thicker, the edge of the wafer 100 is less likely to be cracked or chipped during processing.

在本實施例中,加工部分120的頂面T1連接環狀部分110的區域為朝上彎曲的弧面CS(即朝著靠近環狀部分110的頂面T2的方向彎曲),弧面CS使加工部分120在連接環狀部分110的局部區域的厚度隨著接近環狀部分110而增加。In this embodiment, the area where the top surface T1 of the processing part 120 connects to the annular part 110 is an upwardly curved arc surface CS (ie, curved in a direction close to the top surface T2 of the annular part 110). The arc surface CS makes The thickness of the machined portion 120 in the local area connected to the annular portion 110 increases as it approaches the annular portion 110 .

當加工部分120在連接環狀部分110的局部區域的厚度隨著接近環狀部分110而增加時,如圖8A所示,在弧面CS處,相對靠近環狀部分110處之加工部分120的厚度X1大於相對遠離環狀部分110處之加工部分120的厚度X2,藉此使晶圓在研磨製程中產生的細小顆粒Z容易沿著前述弧面CS排除(例如沿著方向D),避免前述細小顆粒Z卡在加工部分120與環狀部分110的交界處,以減少加工部分120的邊緣出現刮痕的問題。在一些實施例中,加工部分120的頂面T1的剖面形狀為W型或U型,本實施例並未限制整個加工部分120的厚度都隨著接近環狀部分110而增加。When the thickness of the processed part 120 in the local area connected to the annular part 110 increases as it approaches the annular part 110, as shown in FIG. 8A, at the arc surface CS, the thickness of the processed part 120 is relatively close to the annular part 110. Thickness The fine particles Z are stuck at the interface between the processed part 120 and the annular part 110 to reduce the problem of scratches on the edge of the processed part 120. In some embodiments, the cross-sectional shape of the top surface T1 of the processed portion 120 is W-shaped or U-shaped. This embodiment does not limit the thickness of the entire processed portion 120 to increase as it approaches the annular portion 110 .

若加工部分120的頂面T1連接環狀部分110的區域為朝下彎曲的弧面CS(即朝著遠離環狀部分110的頂面T2的方向彎曲)或為垂直環狀部分之側面的平面,則晶圓100在研磨製程中產生的細小顆粒Z容易卡在加工部分120與環狀部分110的交界處,並導致加工部分120的邊緣出現刮痕,這些刮痕有可能使後續沉積於晶圓100上之膜層(例如磊晶層、金屬層或絕緣層)出現良率不佳的問題。舉例來說,如圖8B所示,加工部分120的頂面T1連接環狀部分110的區域為朝下彎曲的弧面CS,在弧面CS處,相對靠近環狀部分110處之加工部分120的厚度X1小於相對遠離環狀部分110處之加工部分120的厚度X2,因此,晶圓在研磨製程中產生的細小顆粒Z容易卡在加工部分120與環狀部分110的交界處,導致加工部分120的邊緣出現刮痕。在一些實施例中,加工部分120的頂面T1連接環狀部分110的區域為朝下彎曲的弧面CS可能會使加工部分120的頂面T1的剖面形狀呈現M型或n型。If the area where the top surface T1 of the processed portion 120 connects to the annular portion 110 is a downwardly curved arc surface CS (that is, curved in a direction away from the top surface T2 of the annular portion 110) or a plane perpendicular to the side of the annular portion , then the fine particles Z generated during the grinding process of the wafer 100 are easily stuck at the interface between the processing part 120 and the annular part 110, and cause scratches on the edges of the processing part 120. These scratches may cause subsequent deposition on the wafer. The film layers above 100 (such as epitaxial layer, metal layer or insulating layer) have problems with poor yield. For example, as shown in FIG. 8B , the area where the top surface T1 of the processing part 120 connects to the annular part 110 is a downwardly curved arc surface CS. At the arc surface CS, the processing part 120 is relatively close to the annular part 110 The thickness 120 has scratches on the edges. In some embodiments, the area where the top surface T1 of the processing part 120 connects to the annular part 110 is a downwardly curved arc surface CS, which may cause the cross-sectional shape of the top surface T1 of the processing part 120 to be M-shaped or n-shaped.

回到圖1,在本實施例中,為了進一步避免晶圓100的加工部分120的邊緣出現刮痕,調整了加工部分120的頂面T1的結構。在本實施例中,環狀部分110的厚度為Rim H微米,Rim H為200微米至1500微米,且較佳為300微米至900微米,且最佳為400微米至800微米。在一些實施例中,使晶圓100的環狀部分110形成倒角,即環狀部分110的頂面T2與環狀部分110的底面B2為弧面或斜面,且環狀部分110的厚度Rim H定義為環狀部分110的最大厚度(即頂面T2至底面B2的最大厚度)。在本實施例中,研磨頭P沿著環狀部分110的側壁S2往下研磨,使環狀部分110的側壁S2的延伸方向實質上垂直工作平台C(或加工部分120的底面B1)。加工部分120的底面B1與環狀部分110的底面B2實質上齊平,也可以說底面B1與底面B2實質上為連續面。 Returning to FIG. 1 , in this embodiment, in order to further avoid scratches on the edge of the processing part 120 of the wafer 100 , the structure of the top surface T1 of the processing part 120 is adjusted. In this embodiment, the thickness of the annular portion 110 is Rim H microns, and Rim H ranges from 200 microns to 1500 microns, and preferably from 300 microns to 900 microns, and most preferably from 400 microns to 800 microns. In some embodiments, the annular portion 110 of the wafer 100 is chamfered, that is, the top surface T2 of the annular portion 110 and the bottom surface B2 of the annular portion 110 are arcs or bevels, and the thickness of the annular portion 110 Rim H is defined as the maximum thickness of the annular portion 110 (ie, the maximum thickness from the top surface T2 to the bottom surface B2). In this embodiment, the grinding head P grinds downward along the side wall S2 of the annular portion 110 so that the extending direction of the side wall S2 of the annular portion 110 is substantially perpendicular to the work platform C (or the bottom surface B1 of the processing part 120). The bottom surface B1 of the processed part 120 and the bottom surface B2 of the annular part 110 are substantially flush. It can also be said that the bottom surface B1 and the bottom surface B2 are substantially continuous surfaces.

加工部分120連接環狀部分110的位置的最大厚度為T E微米。換句話說,加工部分120連接環狀部分110的側壁S2的部分的最大厚度為T E微米。換句話說,環狀部分110的側壁S2連接至加工部分120的頂面T1的交界至環狀部分110的底面B2的距離為T E微米。弧面CS的設計是為了使加工過程中產生的碎屑易於排除,因此,厚度Rim H與厚度T E之間的差值越小越好。在一些實施例中,0.5 ≤ 厚度T E/厚度Rim H≤ 1,其中又以0.75 ≤ 厚度T E/厚度Rim H≤ 1較佳。 The maximum thickness at the location where the machined portion 120 connects to the annular portion 110 is TE microns. In other words, the maximum thickness of the portion of the processed portion 120 connecting the side wall S2 of the annular portion 110 is TE microns. In other words, the distance from the junction of the side wall S2 of the annular portion 110 to the top surface T1 of the processing portion 120 to the bottom surface B2 of the annular portion 110 is TE micrometers. The design of the curved surface CS is to make it easy to remove the debris generated during the machining process. Therefore, the smaller the difference between the thickness Rim H and the thickness T E , the better. In some embodiments, 0.5 ≤ thickness TE /thickness Rim H ≤ 1, and 0.75 ≤ thickness TE /thickness Rim H ≤ 1 is preferred.

加工部分120的寬度(或直徑)為L毫米,L為70毫米至300毫米。加工部分位在與環狀部分110距離0.15L以內的部分定義為邊緣區域R3,弧面CS位於邊緣區域R3中,且弧面CS使加工部分120在邊緣區域R3中的厚度隨著遠離環狀部分110而減少。在本實施例中,整個加工部分120的邊緣區域R3的上表面皆為弧面CS,亦即弧面CS的水平寬度X(或稱垂直投影的寬度)為0.15L,但本發明不以此為限。在一些實施例中,邊緣區域R3中之朝上彎曲的弧面CS的水平寬度為X,0.01L ≤ X ≤ 0.15L。在較佳的實施例中,0.02L ≤ X ≤ 0.14L。在更佳的實施例中,0.03L ≤ X ≤ 0.13L。The width (or diameter) of the processed portion 120 is L mm, and L is 70 mm to 300 mm. The part of the processed part located within 0.15L of the annular part 110 is defined as the edge area R3. The arc surface CS is located in the edge area R3, and the arc surface CS causes the thickness of the processed part 120 in the edge area R3 to increase away from the annular shape. Part 110 and reduced. In this embodiment, the upper surface of the entire edge region R3 of the processing part 120 is a curved surface CS, that is, the horizontal width is limited. In some embodiments, the horizontal width of the upwardly curved arc surface CS in the edge region R3 is X, and 0.01L ≤ X ≤ 0.15L. In a preferred embodiment, 0.02L ≤ X ≤ 0.14L. In a more preferred embodiment, 0.03L ≤ X ≤ 0.13L.

加工部分120位在與環狀部分110距離0.15L至0.3L的部分定義為第一區域R1,加工部分最薄的部分位於第一區域R1中,且加工部分R1最薄的部分的厚度為T L微米。在本實施例中,(T E-T L)大於或等於4微米,使研磨晶圓100產生的細小顆粒更容易沿著弧面CS而排除。在本實施例中,加工部分120的頂面T1至加工部分120的底面B1最薄的部分厚度為T L微米。 The part of the processed part 120 located at a distance of 0.15L to 0.3L from the annular part 110 is defined as the first region R1. The thinnest part of the processed part 120 is located in the first region R1, and the thickness of the thinnest part of the processed part R1 is T. L micron. In this embodiment, ( TE - T L ) is greater than or equal to 4 microns, so that the fine particles generated by grinding the wafer 100 are easier to be eliminated along the arc surface CS. In this embodiment, the thickness of the thinnest part from the top surface T1 of the processing part 120 to the bottom surface B1 of the processing part 120 is TL microns.

加工部分120位在與環狀部分110距離0.3L至0.5L的部分定義為第二區域R2,加工部分120位於第二區域R2中最厚的部分的厚度為T H微米,且T H為0.1Rim H至0.7Rim H。在本實施例中,加工部分120位於第二區域R2中的頂面T1至加工部分120位於第二區域R2中的底面B1最厚的部分的厚度為T H微米。在本實施例中,T E大於T H,且T H大於T L。在一些實施例中,弧面CS環繞第一區域R1以及第二區域R2。 The part of the processed part 120 located at a distance of 0.3L to 0.5L from the annular part 110 is defined as the second region R2. The thickness of the thickest part of the processed part 120 located in the second region R2 is TH micrometer, and TH is 0.1 Rim H to 0.7Rim H . In this embodiment, the thickness of the thickest part from the top surface T1 of the processed part 120 located in the second region R2 to the bottom surface B1 of the processed part 120 located in the second region R2 is TH micrometer. In this embodiment, TE is greater than TH , and TH is greater than TL . In some embodiments, the arc surface CS surrounds the first region R1 and the second region R2.

在本實施例中,加工部分120在第二區域R2的平均厚度大於加工部分120在第一區域R1的平均厚度,藉此避免加工部分120最薄的部分出現於第二區域R2中,減少第二區域R2中出現厚度小於T L的部分的機率,藉此避免加工產生的細屑停留在第二區域R2,並能增加細屑從邊緣區域R3排出的機率。 In this embodiment, the average thickness of the processed part 120 in the second region R2 is greater than the average thickness of the processed part 120 in the first region R1, thereby preventing the thinnest part of the processed part 120 from appearing in the second region R2, reducing the The probability of a portion having a thickness smaller than TL appearing in the second region R2 prevents the fine chips generated by processing from staying in the second region R2 and increases the probability of the fine chips being discharged from the edge region R3.

在本實施例中,加工部分120的頂面T1的剖面形狀類似於W型。In this embodiment, the cross-sectional shape of the top surface T1 of the processed portion 120 is similar to a W-shape.

基於上述,本實施例的晶圓100可以避免加工部分120的邊緣在研磨後出現刮傷的問題。Based on the above, the wafer 100 of this embodiment can avoid the problem of scratches on the edge of the processed part 120 after grinding.

圖3是依照本發明的一實施例的一種晶圓的剖面示意圖。FIG. 3 is a schematic cross-sectional view of a wafer according to an embodiment of the present invention.

在此必須說明的是,圖3的實施例沿用圖1和圖2的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。It must be noted here that the embodiment of Figure 3 follows the component numbers and part of the content of the embodiment of Figures 1 and 2, where the same or similar numbers are used to represent the same or similar elements, and references to the same technical content are omitted. instruction. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

請參考圖3,研磨後的晶圓100a包括環狀部分110以及加工部分120。加工部分120連接環狀部分110。加工部分120具有經研磨的頂面T1以及相對於頂面T1的底面B1。加工部分120被環狀部分110所環繞。環狀部分110的厚度大於加工部分120的厚度,因此,環狀部分110可以增加晶圓100a的強度並減少晶圓100a的翹曲(Warp)。此外,由於晶圓100的環狀部分110較加工部分120厚,使晶圓100a的邊緣不容易在加工時出現裂痕或崩角。Referring to FIG. 3 , the polished wafer 100 a includes an annular portion 110 and a processed portion 120 . The machined portion 120 connects the annular portion 110 . The processed portion 120 has a ground top surface T1 and a bottom surface B1 opposite the top surface T1. The machined portion 120 is surrounded by the annular portion 110 . The thickness of the annular portion 110 is greater than the thickness of the processing portion 120. Therefore, the annular portion 110 can increase the strength of the wafer 100a and reduce warp of the wafer 100a. In addition, since the annular portion 110 of the wafer 100 is thicker than the processed portion 120, the edge of the wafer 100a is less likely to be cracked or chipped during processing.

在本實施例中,加工部分120的頂面T1連接環狀部分110的區域為朝上彎曲的弧面CS(即朝著靠近環狀部分110的頂面T2的方向彎曲),藉此使晶圓100a在研磨製程中產生的細小顆粒容易沿著前述弧面CS排除,避免前述細小顆粒卡在加工部分120與環狀部分110的交界處,以減少加工部分120的邊緣出現刮痕的問題。In this embodiment, the area where the top surface T1 of the processing part 120 connects to the annular part 110 is an upwardly curved arc surface CS (that is, bent in a direction close to the top surface T2 of the annular part 110), thereby making the crystal The fine particles generated during the grinding process of the circle 100a are easily eliminated along the aforementioned arc surface CS, preventing the aforementioned fine particles from getting stuck at the interface between the processed part 120 and the annular part 110, thereby reducing the problem of scratches on the edge of the processed part 120.

在本實施例中,加工部分120位在與環狀部分110距離0.15L以內的部分定義為邊緣區域R3,且弧面CS使加工部分120在邊緣區域R3中的厚度隨著遠離環狀部分110而減少,且弧面CS位於邊緣區域R3中。在本實施例中,整個加工部分120的邊緣區域R3的上表面皆為弧面CS,亦即弧面CS的水平寬度X為0.15L,但本發明不以此為限。在一些實施例中,邊緣區域R3中之朝上彎曲的弧面CS的水平寬度為X,0.01L ≤ X ≤ 0.15L。在較佳的實施例中,0.02L ≤ X ≤ 0.14L。在更佳的實施例中,0.03L ≤ X ≤ 0.13L。In this embodiment, the part of the processed part 120 located within 0.15L of the annular part 110 is defined as the edge area R3, and the arc surface CS causes the thickness of the processed part 120 in the edge area R3 to increase away from the annular part 110 And decreases, and the arc surface CS is located in the edge region R3. In this embodiment, the upper surface of the entire edge region R3 of the processing part 120 is a curved surface CS, that is, the horizontal width X of the curved surface CS is 0.15L, but the invention is not limited thereto. In some embodiments, the horizontal width of the upwardly curved arc surface CS in the edge region R3 is X, and 0.01L ≤ X ≤ 0.15L. In a preferred embodiment, 0.02L ≤ X ≤ 0.14L. In a more preferred embodiment, 0.03L ≤ X ≤ 0.13L.

在本實施例中,加工部分120位在與該環狀部分距離0.15L至0.5L的部分定義為第一區域R1。加工部分120在第一區域R1中最薄的部分的厚度為T L微米。換句話說,加工部分120位於第一區域R1中的頂面T1至加工部分120位於第一區域R1中的底面B1最薄的部分厚度為T L微米。加工部分120在第一區域R1中最厚的部分的厚度為T H微米。換句話說,加工部分120位於第一區域R1中的頂面T1至加工部分120位於第一區域R1中的底面B1最厚的部分的厚度為T H微米。在一些實施例中,弧面CS環繞第一區域R1。 In this embodiment, the portion of the processed portion 120 located at a distance of 0.15L to 0.5L from the annular portion is defined as the first region R1. The thickness of the thinnest portion of the processed portion 120 in the first region R1 is TL microns. In other words, the thickness of the thinnest portion from the top surface T1 of the processed portion 120 located in the first region R1 to the bottom surface B1 of the processed portion 120 located in the first region R1 is TL microns. The thickness of the thickest portion of the processed portion 120 in the first region R1 is TH micrometer. In other words, the thickness of the thickest portion from the top surface T1 of the processed portion 120 located in the first region R1 to the bottom surface B1 of the processed portion 120 located in the first region R1 is TH micrometer. In some embodiments, the arcuate surface CS surrounds the first region R1.

在本實施例中,加工部分120在第一區域R1中最厚的部分出現在第一區域R1最靠近邊緣區域R3的位置,但本發明不以此為限。在其他實施例中,加工部分120在第一區域R1中最厚的部分出現在第一區域R1中的其他位置。In this embodiment, the thickest part of the processed part 120 in the first region R1 appears at the position closest to the edge region R3 of the first region R1, but the invention is not limited thereto. In other embodiments, the thickest portion of the machined portion 120 in the first region R1 occurs elsewhere in the first region R1.

在本實施例中,(T E-T L)大於或等於(T H-T L +1.5微米),其中T H為0.1Rim H至0.7Rim H。在一些實施例中,加工部分120的第一區域R1實質上為平面,即T H等於T L,因此,(T E-T L)大於或等於1.5微米。 In this embodiment, ( TE - TL ) is greater than or equal to ( TH - TL + 1.5 microns), where TH is 0.1Rim H to 0.7Rim H . In some embodiments, the first region R1 of the processed portion 120 is substantially planar, that is, TH equals TL , and therefore, ( TE - TL ) is greater than or equal to 1.5 microns.

在本實施例中,加工部分120的頂面T1的剖面形狀類似於U型。In this embodiment, the cross-sectional shape of the top surface T1 of the processing part 120 is similar to a U-shape.

基於上述,本實施例的晶圓100a可以避免加工部分120的邊緣在研磨後出現刮傷的問題。Based on the above, the wafer 100a of this embodiment can avoid the problem of scratches on the edge of the processed part 120 after grinding.

圖4是依照本發明的一實施例的一種晶圓的加工部分的剖面的厚度分佈的曲線圖。圖5是依照本發明的另一實施例的一種晶圓的加工部分的剖面的厚度分佈的曲線圖。4 is a graph showing a thickness distribution of a cross-section of a processed portion of a wafer according to an embodiment of the present invention. 5 is a graph showing a thickness distribution of a cross-section of a processed portion of a wafer according to another embodiment of the present invention.

在此必須說明的是,圖4的實施例以及圖5的實施例沿用圖1和圖2的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。It must be noted here that the embodiment of Figure 4 and the embodiment of Figure 5 follow the component numbers and part of the content of the embodiment of Figures 1 and 2, where the same or similar numbers are used to represent the same or similar elements, and Explanations of the same technical content are omitted. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

在圖4與圖5中,橫軸代表晶圓之加工部分的剖面的橫向位置,單位為毫米;縱軸代表晶圓之加工部分在不同位置的厚度,單位為微米。在圖4的實施例與圖5的實施例中,T E大於T H,且T H大於T L。(T E-T L)大於或等於4微米。 In Figures 4 and 5, the horizontal axis represents the lateral position of the cross section of the processed part of the wafer, in millimeters; the vertical axis represents the thickness of the processed part of the wafer at different positions, in microns. In the embodiment of FIG. 4 and the embodiment of FIG. 5, TE is greater than TH , and TH is greater than TL . (T E - T L ) is greater than or equal to 4 microns.

基於上述,晶圓可以避免加工部分的邊緣在研磨後出現刮傷的問題。Based on the above, the wafer can avoid the problem of scratches on the edges of the processed parts after grinding.

圖6是依照本發明的一實施例的又一種晶圓的加工部分的剖面的厚度分佈的曲線圖。圖7是依照本發明的再一實施例的一種晶圓的的加工部分的剖面的厚度分佈的曲線圖。FIG. 6 is a graph showing a thickness distribution of a cross-section of a processed part of another wafer according to an embodiment of the present invention. FIG. 7 is a graph showing a thickness distribution of a cross-section of a processed portion of a wafer according to yet another embodiment of the present invention.

在此必須說明的是,圖6的實施例以及圖7的實施例沿用圖3的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。It must be noted here that the embodiment of Figure 6 and the embodiment of Figure 7 follow the component numbers and part of the content of the embodiment of Figure 3, where the same or similar numbers are used to represent the same or similar elements, and the same or similar elements are omitted. Description of technical content. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

在圖6與圖7中,橫軸代表晶圓之加工部分的剖面的橫向位置,單位為毫米;縱軸代表晶圓之加工部分在不同位置的厚度,單位為微米。在圖6的實施例與圖7的實施例中,T E大於T H,且T H大於T L。(T E-T L)大於或等於(T H-T L +1.5微米)。 In Figures 6 and 7, the horizontal axis represents the lateral position of the cross section of the processed part of the wafer, in millimeters; the vertical axis represents the thickness of the processed part of the wafer at different positions, in microns. In the embodiment of FIG. 6 and the embodiment of FIG. 7, TE is greater than TH , and TH is greater than TL . (T E - T L ) is greater than or equal to ( TH - T L + 1.5 microns).

基於上述,晶圓可以避免加工部分的邊緣在研磨後出現刮傷的問題。Based on the above, the wafer can avoid the problem of scratches on the edges of the processed parts after grinding.

圖9是依照本發明的一實施例的一種晶圓的研磨製程的局部剖面示意圖。舉例來說,圖9是前述任一實施例中的晶圓的研磨製程的局部剖面示意圖。FIG. 9 is a partial cross-sectional schematic diagram of a wafer grinding process according to an embodiment of the present invention. For example, FIG. 9 is a partial cross-sectional schematic diagram of the wafer grinding process in any of the aforementioned embodiments.

請參考圖9,以研磨頭P研磨晶圓100。在本實施例中,研磨頭P包括磨石(grinding abrasives)P1以及研磨輪P2。多個磨石P1設置於研磨輪P2上。在本實施例中,加工部分120的頂面T1連接環狀部分110的區域為朝上彎曲的弧面CS(即朝著靠近環狀部分110的頂面T2的方向彎曲),弧面CS使加工部分120在連接環狀部分110的局部區域的厚度隨著接近環狀部分110而增加。在一些實施例中,以加工部分120的寬度(或直徑)為L毫米(請參考圖2或圖3),弧面CS的R角(Radius)的曲率半徑為CR,0.01L ≤ CR ≤ L。在較佳的實施例中,0.01L ≤ CR ≤ 0.5L。在更佳的實施例中,0.01L ≤ CR ≤ 0.25L。在一些實施例中,研磨頭P上之磨石P1的寬度W(或直徑)小於弧面CS的R角的曲率半徑,因此,研磨頭P才可以較佳的控制弧面CS的寬度與形狀,使0.01L<CR<L。Referring to FIG. 9 , the wafer 100 is polished with the polishing head P. In this embodiment, the grinding head P includes a grinding stone (grinding abrasives) P1 and a grinding wheel P2. A plurality of grindstones P1 are provided on the grinding wheel P2. In this embodiment, the area where the top surface T1 of the processing part 120 connects to the annular part 110 is an upwardly curved arc surface CS (ie, curved in a direction close to the top surface T2 of the annular part 110). The arc surface CS makes The thickness of the machined portion 120 in the local area connected to the annular portion 110 increases as it approaches the annular portion 110 . In some embodiments, assuming that the width (or diameter) of the processed part 120 is L mm (please refer to Figure 2 or Figure 3), the radius of curvature of the R angle (Radius) of the arc surface CS is CR, 0.01L ≤ CR ≤ L . In a preferred embodiment, 0.01L ≤ CR ≤ 0.5L. In a more preferred embodiment, 0.01L ≤ CR ≤ 0.25L. In some embodiments, the width W (or diameter) of the grindstone P1 on the grinding head P is smaller than the radius of curvature of the R angle of the arc surface CS. Therefore, the grinding head P can better control the width and shape of the arc surface CS. , so that 0.01L<CR<L.

100、100a:晶圓 110:環狀部分 120:加工部分 B1、B2:底面 C:工作平台 CR:曲率半徑 CS:弧面 D:方向 L:寬度 P:研磨頭 P1:磨石 P2:研磨輪 R1:第一區域 R2:第二區域 R3:邊緣區域 Rim H、T E、T L、T H、X1、X2:厚度 S2:側壁 T1、T2:頂面 W:寬度 Z:顆粒 100, 100a: Wafer 110: Ring part 120: Processing part B1, B2: Bottom surface C: Working platform CR: Curvature radius CS: Arc surface D: Direction L: Width P: Grinding head P1: Grinding stone P2: Grinding wheel R1: first area R2: second area R3: edge area Rim H , TE , TL , TH , X1, X2: thickness S2: side wall T1, T2: top surface W: width Z: particles

圖1是依照本發明的一實施例的一種晶圓的研磨製程的上視示意圖。 圖2是依照本發明的一實施例的一種晶圓的剖面示意圖。 圖3是依照本發明的一實施例的一種晶圓的剖面示意圖。 圖4是依照本發明的一實施例的一種晶圓的加工部分的剖面的厚度分佈的曲線圖。 圖5是依照本發明的一實施例的另一種晶圓的加工部分的剖面的厚度分佈的曲線圖。 圖6是依照本發明的一實施例的又一種晶圓的加工部分的剖面的厚度分佈的曲線圖。 圖7是依照本發明的一實施例的再一種晶圓的加工部分的剖面的厚度分佈的曲線圖。 圖8A是依照本發明的一實施例的一種晶圓的局部區域的剖面示意圖。 圖8B是依照本發明的一比較例的一種晶圓的局部區域的剖面示意圖。 圖9是依照本發明的一實施例的一種晶圓的研磨製程的剖面示意圖。 FIG. 1 is a schematic top view of a wafer grinding process according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a wafer according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of a wafer according to an embodiment of the present invention. 4 is a graph showing a thickness distribution of a cross-section of a processed portion of a wafer according to an embodiment of the present invention. 5 is a graph showing a thickness distribution of a cross-section of a processed portion of another wafer according to an embodiment of the present invention. FIG. 6 is a graph showing a thickness distribution of a cross-section of a processed part of another wafer according to an embodiment of the present invention. 7 is a graph showing a thickness distribution of a cross-section of a processed portion of yet another wafer according to an embodiment of the present invention. FIG. 8A is a schematic cross-sectional view of a partial area of a wafer according to an embodiment of the present invention. 8B is a schematic cross-sectional view of a partial area of a wafer according to a comparative example of the present invention. FIG. 9 is a schematic cross-sectional view of a wafer grinding process according to an embodiment of the present invention.

100:晶圓 100:wafer

110:環狀部分 110: Ring part

120:加工部分 120: Processing part

B1、B2:底面 B1, B2: bottom surface

CS:弧面 CS:Curved surface

L:寬度 L: Width

R1:第一區域 R1: first area

R2:第二區域 R2: Second area

R3:邊緣區域 R3: Edge area

RimH、TE、TL、TH:厚度 Rim H , TE , TL , TH : Thickness

S2:側壁 S2: side wall

T1、T2:頂面 T1, T2: top surface

Claims (10)

一種晶圓,包括:一環狀部分;以及一加工部分,連接該環狀部分,其中該加工部分具有一經研磨的頂面以及相對於該頂面的底面,且該加工部分被該環狀部分所環繞,其中該頂面連接該環狀部分的區域為朝上彎曲的弧面,且該弧面使該加工部分在連接該環狀部分的局部區域的厚度隨著接近該環狀部分而增加,其中該加工部分的寬度為L毫米,該加工部分位在與該環狀部分距離0.15L以內的部分定義為一邊緣區域,且該弧面使該加工部分在該邊緣區域中的厚度隨著遠離該環狀部分而減少,且該弧面位於該邊緣區域中,且其中該弧面的水平寬度為X,且0.01L
Figure 111102292-A0305-02-0016-1
X
Figure 111102292-A0305-02-0016-2
0.15L,且其中該弧面的R角的曲率半徑為CR,0.01L
Figure 111102292-A0305-02-0016-3
CR
Figure 111102292-A0305-02-0016-4
L。
A wafer includes: an annular portion; and a processing portion connected to the annular portion, wherein the processing portion has a ground top surface and a bottom surface relative to the top surface, and the processing portion is connected to the annular portion Surrounded by the area where the top surface connects to the annular part is an upwardly curved arc surface, and the arc surface causes the thickness of the processed part in the local area connected to the annular part to increase as it approaches the annular part , where the width of the processed part is L mm, the part of the processed part located within 0.15L of the annular part is defined as an edge area, and the arc surface causes the thickness of the processed part in the edge area to follow decreases away from the annular portion, and the arc surface is located in the edge area, and the horizontal width of the arc surface is X, and 0.01L
Figure 111102292-A0305-02-0016-1
X
Figure 111102292-A0305-02-0016-2
0.15L, and the radius of curvature of the R angle of the arc surface is CR, 0.01L
Figure 111102292-A0305-02-0016-3
CR
Figure 111102292-A0305-02-0016-4
L.
如請求項1所述的晶圓,其中該加工部分連接該環狀部分的位置的最大厚度為TE微米,該加工部分的寬度為L毫米,該加工部分位在與該環狀部分距離0.15L至0.3L的部分定義為一第一區域,該加工部分位在與該環狀部分距離0.3L至0.5L的部分定義為一第二區域,其中該加工部分最薄的部分位於該第一區域中,且該加工部分最薄的部分的厚度為TL微米,其中該加工部分位於該第二區域中最厚的部分的厚度為TH微米,其中(TE-TL)大於或等於4微米,其中該環狀部分的厚度為RimH微米,且TH為0.1RimH至0.7RimHThe wafer as described in claim 1, wherein the maximum thickness of the processed part connecting the annular part is TE microns, the width of the processed part is L mm, and the processed part is located at a distance of 0.15 from the annular part. The part from L to 0.3L is defined as a first region, and the part of the processed part located at a distance of 0.3L to 0.5L from the annular part is defined as a second region, in which the thinnest part of the processed part is located in the first region. region, and the thickness of the thinnest part of the processed part is TL microns , where the thickness of the thickest part of the processed part is located in the second region is TH microns, where ( TE - T L ) is greater than or equal to 4 microns, where the thickness of the annular portion is Rim H microns, and TH is 0.1RimH to 0.7RimH . 如請求項2所述的晶圓,其中TE大於TH,且TH大於TLThe wafer of claim 2, wherein TE is greater than TH , and TH is greater than TL . 如請求項2所述的晶圓,其中該加工部分在該第二區域的平均厚度大於該加工部分在該第一區域的平均厚度。 The wafer of claim 2, wherein the average thickness of the processed portion in the second region is greater than the average thickness of the processed portion in the first region. 如請求項2所述的晶圓,其中該環狀部分的內側的側壁的延伸方向垂直於該加工部分的該底面,且該環狀部分的該側壁連接至該加工部分的該頂面的交界至該環狀部分的底面的距離為TE微米,該加工部分的頂面至該加工部分的底面最薄的部分厚度為TL微米,該加工部分位於該第二區域中的頂面至該加工部分位於該第二區域中的底面最厚的部分的厚度為TH微米。 The wafer of claim 2, wherein the extending direction of the inner side wall of the annular portion is perpendicular to the bottom surface of the processing portion, and the side wall of the annular portion is connected to the junction of the top surface of the processing portion The distance to the bottom surface of the annular part is T E microns, the thickness of the thinnest part from the top surface of the processed part to the bottom surface of the processed part is TL microns, and the top surface of the processed part located in the second area to the The thickness of the thickest portion of the bottom surface of the processed portion located in the second region is TH microns. 如請求項1所述的晶圓,其中該加工部分連接該環狀部分的位置的最大厚度為TE微米,該加工部分的寬度為L毫米,該加工部分位在與該環狀部分距離0.15L至0.5L的部分定義為一第一區域,其中該加工部分在該第一區域中最薄的部分的厚度為TL微米,其中該加工部分在該第一區域中最厚的部分的厚度為TH微米,其中(TE-TL)大於或等於(TH-TL +1.5微米),其中該環狀部分的厚度為RimH微米,且TH為0.1RimH至0.7RimHThe wafer as described in claim 1, wherein the maximum thickness of the processed part connecting the annular part is TE microns, the width of the processed part is L mm, and the processed part is located at a distance of 0.15 from the annular part. The portion L to 0.5L is defined as a first region, wherein the thickness of the thinnest part of the processed part in the first region is TL microns, and wherein the thickness of the thickest part of the processed part in the first region is T H microns, where ( TE - T L ) is greater than or equal to (TH - T L + 1.5 microns), where the thickness of the annular portion is Rim H microns, and T H is 0.1Rim H to 0.7Rim H . 如請求項6所述的晶圓,其中TH等於TL,且(TE-TL)大於或等於1.5微米。 The wafer of claim 6, wherein TH equals TL and ( TE - TL ) is greater than or equal to 1.5 microns. 如請求項6所述的晶圓,其中該環狀部分的內側的側壁的延伸方向垂直於該加工部分的該底面,且該環狀部分的該側壁連接至該加工部分的該頂面的交界至該環狀部分的底面的距離為TE微米,該加工部分位於該第一區域中的頂面至該加工部分位 於該第一區域中的底面最薄的部分厚度為TL微米,該加工部分位於該第一區域中的頂面至該加工部分位於該第一區域中的底面最厚的部分的厚度為TH微米。 The wafer of claim 6, wherein the extension direction of the inner side wall of the annular portion is perpendicular to the bottom surface of the processing portion, and the side wall of the annular portion is connected to the interface of the top surface of the processing portion The distance from the bottom surface of the annular part is T E microns, and the thickness of the thinnest part from the top surface of the processed part located in the first area to the bottom surface of the processed part located in the first area is T L microns. The thickness of the thickest portion from the top surface where the portion is located in the first region to the bottom surface where the processed portion is located in the first region is TH microns. 如請求項1所述的晶圓,其中該加工部分的該底面與該環狀部分的底面實質上齊平。 The wafer as claimed in claim 1, wherein the bottom surface of the processed portion is substantially flush with the bottom surface of the annular portion. 如請求項1所述的晶圓,其中該加工部分連接該環狀部分的位置的最大厚度為TE微米,該環狀部分的厚度為RimH微米,且0.5
Figure 111102292-A0305-02-0018-5
TE/RimH
Figure 111102292-A0305-02-0018-6
1。
The wafer according to claim 1, wherein the maximum thickness of the position where the processed part is connected to the annular part is TE microns, the thickness of the annular part is RimH microns, and 0.5
Figure 111102292-A0305-02-0018-5
TE/RimH
Figure 111102292-A0305-02-0018-6
1.
TW111102292A 2021-03-24 2022-01-20 Wafer TWI818416B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/583,149 US11837632B2 (en) 2021-03-24 2022-01-24 Wafer
CN202210103484.7A CN115132566A (en) 2021-03-24 2022-01-27 Wafer with a plurality of chips
JP2022039925A JP2022151725A (en) 2021-03-24 2022-03-15 wafer
DE102022105976.6A DE102022105976A1 (en) 2021-03-24 2022-03-15 WAFERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110110536 2021-03-24
TW110110536 2021-03-24

Publications (2)

Publication Number Publication Date
TW202237336A TW202237336A (en) 2022-10-01
TWI818416B true TWI818416B (en) 2023-10-11

Family

ID=85460206

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111102292A TWI818416B (en) 2021-03-24 2022-01-20 Wafer

Country Status (1)

Country Link
TW (1) TWI818416B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201301376A (en) * 2011-06-30 2013-01-01 Toshiba Kk Processing method and processing device of semiconductor wafer, and semiconductor wafer
US20160064230A1 (en) * 2014-08-26 2016-03-03 Disco Corporation Wafer processing method
TW201742103A (en) * 2015-11-26 2017-12-01 Toyo Tanso Co Ltd Method for manufacturing thin SiC wafer and thin SiC wafer
JP6246533B2 (en) * 2013-09-06 2017-12-13 株式会社ディスコ Grinding equipment
TW201813768A (en) * 2016-10-03 2018-04-16 日商迪思科股份有限公司 Wafer processing method capable of polishing a concave portion of a wafer having an annular reinforcing portion on its back surface so as to enhance productivity and processibility
JP6576801B2 (en) * 2015-11-19 2019-09-18 株式会社ディスコ Grinding equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201301376A (en) * 2011-06-30 2013-01-01 Toshiba Kk Processing method and processing device of semiconductor wafer, and semiconductor wafer
JP6246533B2 (en) * 2013-09-06 2017-12-13 株式会社ディスコ Grinding equipment
US20160064230A1 (en) * 2014-08-26 2016-03-03 Disco Corporation Wafer processing method
JP6576801B2 (en) * 2015-11-19 2019-09-18 株式会社ディスコ Grinding equipment
TW201742103A (en) * 2015-11-26 2017-12-01 Toyo Tanso Co Ltd Method for manufacturing thin SiC wafer and thin SiC wafer
TW201813768A (en) * 2016-10-03 2018-04-16 日商迪思科股份有限公司 Wafer processing method capable of polishing a concave portion of a wafer having an annular reinforcing portion on its back surface so as to enhance productivity and processibility

Also Published As

Publication number Publication date
TW202237336A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
US8482032B2 (en) Chamfered freestanding nitride semiconductor wafer and method of chamfering nitride semiconductor wafer
EP2912681B1 (en) Method of fabricating flat sic semiconductor substrate
US8796820B2 (en) Semiconductor wafer and semiconductor device wafer
US6284658B1 (en) Manufacturing process for semiconductor wafer
CN110468446A (en) The method of the silicon carbide substrates and chamfering of chamfering
US20210313434A1 (en) Semiconductor substrate and method for manufacturing same
TWI818416B (en) Wafer
JP2006203071A (en) Group iii-v compound semiconductor single crystal substrate
JP2019125731A (en) Manufacturing method of bonded wafer
US11837632B2 (en) Wafer
WO2022137727A1 (en) Indium phosphide substrate, method for manufacturing indium phosphide substrate, and semiconductor epitaxial wafer
TWI771208B (en) Indium phosphide substrate, manufacturing method of indium phosphide substrate, and semiconductor epitaxial wafer
JP2010040549A (en) Semiconductor wafer and manufacturing method thereof
JP2008036771A (en) Grinding wheel for hard fragile substrate
US20230082020A1 (en) Indium phosphide substrate
CN115579377A (en) Semiconductor substrate and method for manufacturing semiconductor device
JP2006315136A (en) Cup-type grindstone for grinding sapphire
KR20170009258A (en) Apparatus for grinding a notch of wafer