JP2017094333A - Tundish for continuous casting - Google Patents

Tundish for continuous casting Download PDF

Info

Publication number
JP2017094333A
JP2017094333A JP2015225311A JP2015225311A JP2017094333A JP 2017094333 A JP2017094333 A JP 2017094333A JP 2015225311 A JP2015225311 A JP 2015225311A JP 2015225311 A JP2015225311 A JP 2015225311A JP 2017094333 A JP2017094333 A JP 2017094333A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
distribution chamber
molten
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015225311A
Other languages
Japanese (ja)
Inventor
博典 村瀬
Hironori Murase
博典 村瀬
優一 井上
Yuichi Inoue
優一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2015225311A priority Critical patent/JP2017094333A/en
Publication of JP2017094333A publication Critical patent/JP2017094333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tundish for continuous casting for maintaining a molten steel temperature of an injection port as much as possible just after starting molten steel supply from a ladle, and reducing a molten steel temperature difference between a plurality of injection ports (strands) as much as possible.SOLUTION: In a tundish 10 for continuous casting, a molten steel distribution chamber 12 is formed with molten steel passage parts 26a, 26b for guiding to injection ports 21a, 21c of at least the most outside (the tail end part) among a plurality of injection ports 21a-21c and molten steel reservoir parts 28a, 28c for surrounding the injection ports 21a, 21c of the tail end part, and first of all, molten steel of flowing in from a molten steel receiving chamber 11 is preferentially made to flow to the injection ports 21a, 21c on the outside of the molten steel distribution chamber 12, and afterwards, the molten steel is flowed at a stretch toward the injection port 21b of a central part, to thereby restrain a variation in a molten steel temperature difference between the injection ports 21a-21c and reduction in a molten steel temperature of the injection ports 21a, 21c of the tail end part.SELECTED DRAWING: Figure 5

Description

本発明は複数の鋳片を同時に鋳造可能な連続鋳造装置に用いられるタンディッシュであって、特に各注入口に流れる溶鋼温度をより均一化するのに適した新規な連続鋳造用タンディッシュに関する。   The present invention relates to a tundish used in a continuous casting apparatus capable of casting a plurality of slabs simultaneously, and more particularly to a novel tundish for continuous casting suitable for making the temperature of molten steel flowing through each inlet more uniform.

従来から、鋼の連続鋳造において、転炉や電気炉等から取鍋に出鋼し、取鍋内で成分と温度が調整された溶鋼を、注入ノズルを介して中間容器であるタンディッシュに供給し、このタンディッシュで一時的に滞留した状態にしてから浸漬ノズルを介して鋳型内に供給する鋼の連続鋳造が広く一般に知られている。   Conventionally, in continuous casting of steel, steel is discharged from a converter or electric furnace to a ladle, and molten steel whose ingredients and temperature are adjusted in the ladle is supplied to the tundish, which is an intermediate container, through an injection nozzle. The continuous casting of steel that is temporarily retained in the tundish and then fed into the mold through an immersion nozzle is widely known.

上記のタンディッシュの構造において、一般的に、取鍋から溶鋼が上方から供給される溶鋼受湯室と、この溶鋼受湯室に供給された溶鋼を下方の鋳型に供給する溶鋼分配室と、この溶鋼分配室と溶鋼受湯室との間を仕切って溶鋼を一時的に堰き止めてから溶鋼分配室に流す仕切部等から構成されている。   In the above tundish structure, generally, a molten steel receiving chamber in which molten steel is supplied from above from a ladle, a molten steel distribution chamber for supplying molten steel supplied to the molten steel receiving chamber to a lower mold, The molten steel distribution chamber and the molten steel receiving chamber are partitioned to partition the molten steel temporarily and then flow into the molten steel distribution chamber.

上記のタンディッシュは、取鍋からの溶鋼を鋳型に供給する機能を備えている以外に、タンディッシュ内に所定量の溶鋼を一時的に滞留させることで、鋼の精錬時に不可避的に混入した酸化物であるスラグや脱酸の為に添加されたアルミから生成されるアルミナ等の非金属介在物を浮上分離する機能も備えている。   In addition to having the function of supplying the molten steel from the ladle to the mold, the tundish is inevitably mixed during steel refining by temporarily retaining a predetermined amount of molten steel in the tundish. It also has the function of floating and separating non-metallic inclusions such as alumina produced from slag, which is an oxide, or aluminum added for deoxidation.

ところで、上記のタンディッシュの構造が、複数の鋳片を一度に鋳造する多ストランドに対応した構造である場合、溶鋼分配室には、複数の鋳型に連なる複数の注入口が形成されている。このうち、例えば、図9に示すような、ストランド数が3等の複数の場合、注入口は溶鋼分配室の仕切部に近い中心部と溶鋼分配室の長手方向の両端部に設けられることとなる。この場合において、取鍋からの溶鋼供給開始直後の溶鋼の流動に着目すると、溶鋼受湯室に供給された溶鋼は、先ずは、溶鋼分配室の仕切部に近い中心部の注入口近傍に流れ込み、この中心部の注入口を充填した後、溶鋼は溶鋼分配室の長手方向の両端部(末端部)に位置する注入口近傍に向かって徐々に流れることとなる。従来のタンディッシュは、このような溶鋼の流動が発生する構造のものが多い。   By the way, when the structure of the tundish is a structure corresponding to multiple strands in which a plurality of cast pieces are cast at a time, a plurality of inlets connected to a plurality of molds are formed in the molten steel distribution chamber. Among these, for example, as shown in FIG. 9, in the case where the number of strands is a plurality of 3 or the like, the injection ports are provided at the central portion near the partition portion of the molten steel distribution chamber and at both ends in the longitudinal direction of the molten steel distribution chamber. Become. In this case, paying attention to the flow of the molten steel immediately after the start of the molten steel supply from the ladle, first, the molten steel supplied to the molten steel receiving chamber flows into the vicinity of the central inlet near the partition portion of the molten steel distribution chamber. After filling this central portion of the inlet, the molten steel gradually flows toward the vicinity of the inlet located at both ends (terminal portions) in the longitudinal direction of the molten steel distribution chamber. Many conventional tundishes have a structure in which such a flow of molten steel occurs.

しかし、タンディッシュに供給された溶鋼は、タンディッシュ内を流れる間に放熱及び耐火物への熱伝達によって時間と共に徐々に温度が低下するため、注入口(ストランド)間で大きな溶鋼温度差が生じる場合がある。特に、上述したような、溶鋼を溶鋼分配室の中心部に位置する注入口と、溶鋼分配室の両端部に位置する注入口の両方に流し込む構造の場合、前者の注入口と後者の注入口では、注入口に到達する迄の時間に差異があるため、中心部の注入口に比べて両端部の注入口に流れる溶鋼の温度が著しく低下してしまい、鋳造初期にノズル閉塞が発生するという問題がある。   However, since the temperature of the molten steel supplied to the tundish gradually decreases with time due to heat dissipation and heat transfer to the refractory while flowing in the tundish, a large molten steel temperature difference occurs between the inlets (strands). There is a case. In particular, in the case of the structure in which molten steel is poured into both the inlet located at the center of the molten steel distribution chamber and the inlets located at both ends of the molten steel distribution chamber as described above, the former inlet and the latter inlet Then, because there is a difference in the time to reach the injection port, the temperature of the molten steel flowing to the injection ports at both ends is significantly lower than the injection port at the center, and nozzle clogging occurs at the beginning of casting. There's a problem.

そこで、上記の問題を解決する為に、従来から、溶鋼分配室へ流れ込む際に溶鋼の流れ向きを変えることで、注入口間の溶鋼温度のばらつきを抑制する技術が知られている。例えば、特許文献1のタンディッシュでは、溶鋼受湯室と溶鋼分配室間の仕切堰に湯穴を形成し、この湯穴の向きを溶鋼分配室の中心部の注入口とそれに隣接する注入口の間に向くように設定し、湯穴から流入した溶鋼を隣接する注入口間で分岐させるように流すことで、注入口間の溶鋼温度差のばらつきを極力抑制した構造が開示されている。また、特許文献1には、溶鋼分配室の長手方向の両側部分を外側に行く程幅狭にすることで、末端部の注入口へ向かう溶鋼の流速を高めた構造も開示されている。   Therefore, in order to solve the above-described problem, conventionally, there is known a technique for suppressing variations in molten steel temperature between the inlets by changing the flow direction of molten steel when flowing into the molten steel distribution chamber. For example, in the tundish of Patent Document 1, a hot water hole is formed in a partition weir between a molten steel hot water receiving chamber and a molten steel distribution chamber, and the direction of the hot water hole is an inlet at the center of the molten steel distribution chamber and an inlet adjacent thereto. A structure is disclosed in which variations in molten steel temperature between the inlets are suppressed as much as possible by flowing the molten steel flowing from the molten metal hole so as to branch between adjacent inlets. Patent Document 1 also discloses a structure in which the flow rate of the molten steel toward the injection port at the end portion is increased by narrowing the both side portions in the longitudinal direction of the molten steel distribution chamber toward the outside.

特開2014−113634号公報JP 2014-113634 A

しかし、特許文献1のタンディッシュの構造は、溶鋼分配室の中心部に位置する注入口と、それに隣接する注入口との間へ向かって溶鋼を流す構造であるが、溶鋼で充填される注入口(ストランド)の順番は特段制御していない。溶鋼を流す注入口の順番を制御しない場合、最初に溶鋼が到達する注入口と最後に溶鋼が到達する注入口との間には、鋳型に溶鋼を供給する段階の鋳造開始時に大きな溶鋼温度差が生じている虞がある。   However, the tundish structure of Patent Document 1 is a structure in which molten steel flows between an inlet located in the center of the molten steel distribution chamber and an inlet adjacent thereto, but is filled with molten steel. The order of the entrances (strands) is not particularly controlled. When the order of the inlets through which the molten steel flows is not controlled, there is a large difference in molten steel temperature between the inlet where the molten steel reaches first and the inlet where the molten steel finally arrives at the start of casting when the molten steel is supplied to the mold. May have occurred.

即ち、特許文献1のタンディッシュを含む従来の構造では、取鍋からの溶鋼供給開始直後に湯穴から流出する溶鋼は、溶鋼分配室の底面を末広がり状に流れるので、溶鋼と耐火物との接触面積が高くなる上、溶鋼の流速も低下する、故に、溶鋼が注入口に至る間に放熱及び耐火物への熱伝達によって温度低下が大きくなるという問題がある。   That is, in the conventional structure including the tundish of Patent Document 1, the molten steel flowing out of the molten metal immediately after the start of the molten steel supply from the ladle flows in a divergent form on the bottom surface of the molten steel distribution chamber. In addition to the increased contact area, the flow rate of the molten steel also decreases, so that there is a problem that the temperature decrease increases due to heat dissipation and heat transfer to the refractory while the molten steel reaches the inlet.

特に、末端部の注入口は湯穴からの流通経路も長くなるので、溶鋼供給開始直後に上述したような隣接する注入口間に向けて溶鋼を流しても、末端部の注入口へ到達する迄時間がかかり、中心部に位置する注入口の溶鋼温度と末端部に位置する注入口の溶鋼温度との差が大きくなり、ノズル閉塞が発生するという問題は依然として残る。また、溶鋼供給開始直後のタンディッシュは低温状態であるので、全ての注入口が溶鋼で充填される迄に、最初に充填された注入口の溶鋼温度が低下してしまうという問題もある。   In particular, since the inlet of the end portion also has a longer flow path from the molten metal hole, even if the molten steel flows between adjacent inlets as described above immediately after the start of supplying molten steel, it reaches the inlet of the end portion. It takes time until the difference between the molten steel temperature at the inlet located at the center and the molten steel temperature at the inlet located at the end increases, and the problem of nozzle clogging still remains. Further, since the tundish immediately after the start of the molten steel supply is in a low temperature state, there is also a problem that the molten steel temperature of the inlet filled first is lowered before all the inlets are filled with molten steel.

本発明は、かかる背景に鑑みてなされたもので、取鍋からの溶鋼供給開始直後における注入口の溶鋼温度を極力維持すると共に複数の注入口(ストランド)間の溶鋼温度差を極力低減した連続鋳造用タンディッシュを提供しようとするものである。   The present invention has been made in view of such a background, and maintains the molten steel temperature at the inlet immediately after the start of feeding molten steel from the ladle as much as possible and continuously reduces the molten steel temperature difference between the plurality of inlets (strands). It is intended to provide a tundish for casting.

本発明者らは、前記課題を解決するために、注入口を溶鋼で充填する順番を制御し、溶鋼を外側(末端部)の注入口に優先的に流した後に中心部の注入口に一気に流すという技術的思想に着眼した。そして、さらに研究開発を重ねた結果、溶鋼分配室に、複数の注入口のうち最も外側(末端部)の注入口へ誘導する溶鋼通路部と、この溶鋼通路部に連通し且つ末端部の注入口を囲む溶鋼溜り部とを形成することで、注入口間の溶鋼温度差のばらつき及び末端部の注入口の溶鋼温度の低減を抑制させることによる本発明に到達した。   In order to solve the above problems, the inventors of the present invention controlled the order of filling the inlet with molten steel, and after flowing the molten steel preferentially to the outer (terminal) inlet, immediately into the central inlet. Focused on the technical idea of flowing. As a result of further research and development, the molten steel distribution chamber is connected to a molten steel passage portion that leads to the outermost (terminal) inlet of the plurality of inlets, and the molten steel passage portion is connected to the molten steel passage portion. By forming the molten steel pool surrounding the inlet, the present invention has been achieved by suppressing variations in the molten steel temperature difference between the inlets and reducing the molten steel temperature at the inlet at the end.

以上の検討の結果得られた本発明(請求項1に記載の第1発明)の連続鋳造用タンディッシュは、取鍋から溶鋼が供給される溶鋼受湯室と、この溶鋼受湯室に供給された溶鋼を複数の鋳型に供給する溶鋼分配室と、この溶鋼分配室と前記溶鋼受湯室との間を仕切る仕切部とを備えた連続鋳造用タンディッシュにおいて、前記溶鋼分配室は、長手方向に所定の間隔をあけて複数の注入口が形成されており、前記仕切部に設けられ且つ前記溶鋼受湯室から前記溶鋼分配室へ溶鋼の一部を流通可能とする溶鋼流通部と、この溶鋼流通部の近傍から前記複数の注入口からなる配置列より前記溶鋼受湯室側を前記溶鋼分配室の長手方向の外側に向かって延びる溶鋼通路部と、この溶鋼通路部に連なり且つ前記複数の注入口のうち少なくとも外側の注入口について、注入口を囲む凹状の溶鋼溜り部とを備えたことを特徴としている。   The continuous casting tundish of the present invention (first invention according to claim 1) obtained as a result of the above examination is supplied to a molten steel receiving chamber to which molten steel is supplied from a ladle and to this molten steel receiving chamber. In a tundish for continuous casting comprising a molten steel distribution chamber for supplying the molten steel to a plurality of molds, and a partition portion for partitioning between the molten steel distribution chamber and the molten steel receiving chamber, the molten steel distribution chamber has a longitudinal length. A plurality of inlets are formed at predetermined intervals in the direction, and a molten steel flow part that is provided in the partition part and allows a part of the molten steel to flow from the molten steel receiving chamber to the molten steel distribution chamber, A molten steel passage section extending from the vicinity of the molten steel circulation section toward the outer side in the longitudinal direction of the molten steel distribution chamber from the arrangement row comprising the plurality of inlets, and connected to the molten steel passage section, and At least the outer inlet of the plurality of inlets For, is characterized in that a concave molten steel reservoir surrounding the inlet.

本発明(請求項2に記載の第2発明)の連続鋳造用タンディッシュは、第1又は第2発明において、前記溶鋼通路部の注入口側の壁部には、タンディッシュの底壁部から上方に向かって延びる堰状部が通路方向の全長に亙って形成されたことを特徴としている。   The tundish for continuous casting according to the present invention (the second invention according to claim 2) is the first or second invention, wherein the wall portion on the inlet side of the molten steel passage portion is formed from the bottom wall portion of the tundish. The dam-like portion extending upward is formed over the entire length in the passage direction.

本発明(請求項3に記載の第3発明)の連続鋳造用タンディッシュは、第1発明において、前記仕切部は、タンディッシュの底壁部から上方に向かって延びる下堰部を備え、前記溶鋼流通部は、少なくとも前記タンディッシュの底壁部近傍において前記下堰部の厚み方向に貫通状に形成された湯穴であって前記溶鋼通路部の上流端に連なる湯穴からなることを特徴としている。   The tundish for continuous casting of the present invention (the third invention according to claim 3) is the first invention, wherein the partition portion includes a lower weir portion extending upward from a bottom wall portion of the tundish, The molten steel circulation part is a molten metal hole formed in a penetrating manner in the thickness direction of the lower weir part at least in the vicinity of the bottom wall of the tundish, and comprises a molten metal hole connected to the upstream end of the molten steel passage part. It is said.

第1発明によれば、溶鋼流通部の近傍から前記複数の注入口からなる配置列より前記溶鋼受湯室側を前記溶鋼分配室の長手方向の外側に向かって延びる溶鋼通路部と、この溶鋼通路部に連なり且つ前記複数の注入口のうち少なくとも外側の注入口について、注入口を囲む凹状の溶鋼溜り部とを備えたので、溶鋼流通部から溶鋼分配室に流入した溶鋼を、溶鋼通路部を介して、溶鋼分配室の末端部の注入口に優先的且つ集中的に流すことができ、このとき、溶鋼溜り部に溶鋼を一時的に滞留させることができる。   According to 1st invention, the molten steel channel | path part extended toward the outer side of the longitudinal direction of the said molten steel distribution chamber from the arrangement | sequence row | line | column which consists of these inlets from the vicinity of a molten steel distribution | circulation part, and this molten steel Since it has a concave molten steel pool portion that surrounds the injection port with respect to at least the outer injection port of the plurality of injection ports, the molten steel flowing into the molten steel distribution chamber from the molten steel distribution portion The molten steel can be preferentially and intensively flowed to the inlet at the end of the molten steel distribution chamber, and at this time, the molten steel can be temporarily retained in the molten steel pool.

従って、溶鋼を溶鋼通路部に流すことによって、溶鋼分配室の底面を末広がり状に流れる場合と比較して、溶鋼と耐火物との接触面積を低減することができる上、溶鋼の流速を高めることができ、故に、末端部の注入口へ流れる溶鋼の温度低下を極力抑制することができる。また、溶鋼溜り部に一定量の溶鋼を滞留させることによって、注入口近傍の溶鋼温度の低下を防ぎ、溶鋼温度を維持することができる。その後、溶鋼は溶鋼溜り部から溢れ出て、末端部から中心部に向かって一気に流れ込むため、末端部の注入口の溶鋼温度と中心部の注入口の溶鋼温度の差を極力小さくすることができる。   Therefore, by flowing the molten steel through the molten steel passage portion, the contact area between the molten steel and the refractory can be reduced and the flow velocity of the molten steel can be increased as compared with the case where the bottom surface of the molten steel distribution chamber flows in a divergent shape. Therefore, the temperature drop of the molten steel flowing to the inlet at the end can be suppressed as much as possible. Further, by retaining a certain amount of molten steel in the molten steel reservoir, it is possible to prevent the molten steel temperature from decreasing near the inlet and maintain the molten steel temperature. Thereafter, the molten steel overflows from the molten steel pool and flows from the end portion toward the central portion at a stretch, so that the difference between the molten steel temperature at the end portion inlet and the molten steel temperature at the center portion inlet can be minimized. .

第2発明によれば、前記溶鋼通路部の注入口側の壁部には、タンディッシュの底壁部から上方に向かって延びる堰状部が通路方向の全長に亙って形成されたので、溶鋼通路部の深さを確保しつつ、溶鋼をタンディッシュへ供給してから所定時間経過し、溶鋼分配室内に溶鋼がある程度満たされた後は、溶鋼は堰状部を超えて流れ、溶鋼分配室内に溶鋼をスムーズに供給することができる。   According to the second invention, the wall portion on the inlet side of the molten steel passage portion is formed with a weir-like portion extending upward from the bottom wall portion of the tundish over the entire length in the passage direction. After a certain amount of time has passed since the molten steel was supplied to the tundish while ensuring the depth of the molten steel passage, and after the molten steel has been filled to some extent in the molten steel distribution chamber, the molten steel flows over the weir-shaped portion, and the molten steel is distributed. Molten steel can be supplied smoothly into the room.

第3発明によれば、溶鋼流通部は、少なくとも前記タンディッシュの底壁部近傍において前記下堰部の厚み方向に貫通状に形成された湯穴であって前記溶鋼通路部の上流端に連なる湯穴からなるので、溶鋼供給開始直後において、溶鋼分配室へ流れ込む溶鋼の流量を絞ることで、溶鋼を溶鋼通路部に確実に流すことができる。   According to the third invention, the molten steel circulation part is a molten metal hole formed in a penetrating shape in the thickness direction of the lower weir part at least in the vicinity of the bottom wall part of the tundish, and continues to the upstream end of the molten steel passage part. Since it consists of a molten metal hole, immediately after the molten steel supply is started, the molten steel can be surely flowed into the molten steel passage portion by restricting the flow rate of the molten steel flowing into the molten steel distribution chamber.

本発明の連続鋳造用タンディッシュを備えた連続鋳造装置の概念図である。It is a conceptual diagram of the continuous casting apparatus provided with the tundish for continuous casting of this invention. 連続鋳造用タンディッシュの平面図である。It is a top view of the tundish for continuous casting. 図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図3のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 連続鋳造用タンディッシュの部分斜視図である。It is a fragmentary perspective view of the tundish for continuous casting. 溶鋼分配室の中心部に位置する注入口と末端部に位置する注入口の溶鋼温度特性を示す線図である。It is a diagram which shows the molten steel temperature characteristic of the inlet located in the center part of a molten steel distribution chamber, and the inlet located in a terminal part. 従来例における溶鋼分配室の中心部に位置する注入口と末端部に位置する注入口の溶鋼温度特性を示す線図である。It is a diagram which shows the molten steel temperature characteristic of the inlet located in the center part of the molten steel distribution chamber in a prior art example, and the inlet located in a terminal part. 別変更形態に係る連続鋳造用タンディッシュの部分斜視図である。It is a fragmentary perspective view of the tundish for continuous casting concerning another modification form. 従来例の連続鋳造用タンディッシュの平面図である。It is a top view of the tundish for continuous casting of a prior art example.

以下、適宜図面を参照しつつ、本発明の実施形態に係る連続鋳造用タンディッシュ10について説明するが、先ず、本発明の連続鋳造用タンディッシュ10を備えた鋼の連続鋳造装置1の全体構造について簡単に説明する。   Hereinafter, the continuous casting tundish 10 according to the embodiment of the present invention will be described with reference to the drawings as appropriate. First, the overall structure of the continuous casting apparatus 1 for steel including the continuous casting tundish 10 of the present invention. A brief explanation will be given.

図1に示すように、連続鋳造装置1は、電気炉等から出鋼された溶鋼2を搬送する取鍋3と、溶鋼2を一時的に貯留する中間容器である連続鋳造用タンディッシュ10(以下、タンディッシュ10という)と、溶鋼2を鋳造して鋳片7とする鋳型6と、この鋳型6から出た鋳片7を冷却する冷却帯8及び鋳片7を支持しながら移送する複数のサポートロール9等を備えている。   As shown in FIG. 1, a continuous casting apparatus 1 includes a ladle 3 that conveys molten steel 2 that has been produced from an electric furnace or the like, and a tundish 10 for continuous casting that is an intermediate container that temporarily stores the molten steel 2 ( Hereinafter referred to as a tundish 10), a mold 6 that casts the molten steel 2 to form a slab 7, a cooling zone 8 that cools the slab 7 that has come out of the mold 6, and a plurality of slabs that are transported while being supported. The support roll 9 is provided.

この連続鋳造装置1では、取鍋3によって搬送されてきた溶鋼2が、注入ノズル4等を介してタンディッシュ10に供給され、この供給された溶鋼2はタンディッシュ10に一時的に貯留された後に、浸漬ノズル5を介して複数の鋳型6に夫々供給される。各鋳型6においては、注入された溶鋼2は徐々に冷却され、溶鋼2の表面部が凝固した状態の鋳片7となって鋳型6から下方に引き抜かれる。鋳型6の下部から引き抜かれた鋳片7は、冷却帯8で冷却され、複数のサポートロール9に支持されながら下流側に向かって搬送される。   In the continuous casting apparatus 1, the molten steel 2 conveyed by the ladle 3 is supplied to the tundish 10 through the injection nozzle 4 and the like, and the supplied molten steel 2 is temporarily stored in the tundish 10. Later, the plurality of molds 6 are supplied through the immersion nozzle 5. In each mold 6, the injected molten steel 2 is gradually cooled and becomes a slab 7 in which the surface portion of the molten steel 2 is solidified, and is drawn downward from the mold 6. The slab 7 drawn out from the lower part of the mold 6 is cooled in the cooling zone 8 and conveyed toward the downstream side while being supported by a plurality of support rolls 9.

次に、本発明のタンディッシュ10の構造について詳細に説明するが、便宜上、以下の説明では、図2に示す平面視のタンディッシュ10において、上側を後側、下側を前側、左側を左側、右側を右側として説明する。   Next, the structure of the tundish 10 of the present invention will be described in detail. For convenience, in the following description, in the tundish 10 in plan view shown in FIG. 2, the upper side is the rear side, the lower side is the front side, and the left side is the left side. The right side will be described as the right side.

図2〜図5に示すように、本発明に関連するタンディッシュ10の基本的な構造は、取鍋3から溶鋼が供給される溶鋼受湯室11と、この溶鋼受湯室11に連なり且つ溶鋼受湯室11に供給された溶鋼を鋳型6に供給する溶鋼分配室12と、この溶鋼分配室12と溶鋼受湯室11との間を部分的に仕切る仕切部13とを備え、有底状に且つ平面視にてT形形状に構成されている。   As shown in FIGS. 2 to 5, the basic structure of the tundish 10 related to the present invention is connected to the molten steel receiving chamber 11 to which the molten steel is supplied from the ladle 3, and the molten steel receiving chamber 11. A molten steel distribution chamber 12 that supplies molten steel supplied to the molten steel receiving chamber 11 to the mold 6 and a partition 13 that partially partitions the molten steel distribution chamber 12 and the molten steel receiving chamber 11 are provided. And is configured in a T shape in plan view.

具体的に、図2に示すように、タンディッシュ10は、平面視にてT形の底壁部14と、この底壁部14の前端部から垂直に延びる前端壁部15と、この前端壁部15の左右両端部から後方に延び且つ底壁部14の左右両端部から垂直に延びる左右1対の前側壁部16a,16bと、この左右1対の前側壁部16a,16bの後端部から左右方向内方に延び且つ底壁部14の前後方向中間部から垂直に延びる左右1対の中間壁部17a,17bと、この左右1対の中間壁部17a,17bの左右方向内端部から後方に延び且つ底壁部14の左右方向中間部から垂直に延びる左右1対の後側壁部18a,18bと、この左右1対の後側壁部18a,18bの後端部から左右方向内方に延び且つ底壁部14の後端部から垂直に延びる後端壁部19とから構成されている。尚、図示は省略するが、タンディッシュ10の内部を上方から覆う天板部を設けても良い。   Specifically, as shown in FIG. 2, the tundish 10 includes a T-shaped bottom wall portion 14 in a plan view, a front end wall portion 15 extending perpendicularly from the front end portion of the bottom wall portion 14, and the front end wall. A pair of left and right front side wall portions 16a and 16b extending rearward from both left and right end portions of the portion 15 and extending vertically from both left and right end portions of the bottom wall portion 14, and a rear end portion of the pair of left and right front side wall portions 16a and 16b A pair of left and right intermediate wall portions 17a and 17b extending inward in the left-right direction and extending perpendicularly from the front-rear direction middle portion of the bottom wall portion 14, and left and right inner ends of the pair of left and right intermediate wall portions 17a and 17b A pair of left and right rear side wall portions 18a and 18b extending rearward from the bottom wall portion 14 and extending vertically from a middle portion in the left and right direction of the bottom wall portion 14, and inward in the left and right direction from the rear end portions of the pair of left and right rear wall portions 18a and 18b And a rear end wall portion 19 extending vertically from the rear end portion of the bottom wall portion 14. It is constructed from. In addition, although illustration is abbreviate | omitted, you may provide the top-plate part which covers the inside of the tundish 10 from upper direction.

溶鋼受湯室11は、取鍋3から注入ノズル4等を介して溶鋼が上方から供給される受湯室であり、底壁部14の後側部分と、左右1対の後側壁部18a,18bと、後端壁部19と、後述する仕切部13とから平面視にて台形状に構成されている。即ち、左右1対の後側壁部18a,18bは、平面視にて後方ほど壁部間が徐々に接近するように構成されている。また、溶鋼受湯室11の底面(底壁部14の後側部分における底面)は、前方に向かって緩やかに傾斜した下り傾斜状に形成されている(図4参照)。   Molten steel hot water receiving chamber 11 is a hot water receiving chamber from which molten steel is supplied from above through ladle 3 through pouring nozzle 4 and the like, and includes a rear portion of bottom wall portion 14 and a pair of left and right rear wall portions 18a, 18b, the rear end wall part 19, and the partition part 13 mentioned later are comprised by the trapezoid shape by planar view. That is, the pair of left and right rear side wall portions 18a and 18b are configured such that the wall portions gradually approach toward the rear in plan view. Further, the bottom surface of the molten steel receiving chamber 11 (the bottom surface in the rear portion of the bottom wall portion 14) is formed in a downwardly inclined shape that is gently inclined forward (see FIG. 4).

溶鋼分配室12は、溶鋼を注入口21a〜21cの数に応じて分配して浸漬ノズル5等を介して下方の複数の鋳型6に供給する分配室であり、底壁部14の前側部分と、前端壁部15と、左右1対の前側壁部16a,16bと、左右1対の中間壁部17a,17bと、後述する仕切部13とから平面視にて左右に横長の矩形状に構成されている。溶鋼分配室12の底壁部14には、長手方向に所定の間隔(等間隔)をあけて複数(3つ)の注入口21a〜21cが形成されている。溶鋼分配室12の底面(底壁部14の前側部分における底面)は、左右方向に凹凸を繰り返す形状に形成され、詳細は後述するが、複数の注入口21a〜21cは凹部に単独で夫々形成されている。   The molten steel distribution chamber 12 is a distribution chamber that distributes molten steel according to the number of the injection ports 21a to 21c and supplies the molten steel to the plurality of molds 6 below through the immersion nozzle 5 and the like. The front end wall portion 15, the pair of left and right front side wall portions 16 a and 16 b, the pair of left and right intermediate wall portions 17 a and 17 b, and the partition portion 13 described later are configured in a horizontally long rectangular shape in plan view. Has been. A plurality of (three) injection ports 21 a to 21 c are formed in the bottom wall portion 14 of the molten steel distribution chamber 12 at predetermined intervals (equal intervals) in the longitudinal direction. The bottom surface of the molten steel distribution chamber 12 (the bottom surface of the front side portion of the bottom wall portion 14) is formed in a shape having unevenness in the left-right direction. The details will be described later, but a plurality of injection ports 21a to 21c are formed individually in the recesses. Has been.

複数の注入口21a〜21cは、左側から右側に向かって、第1注入口21a、第2注入口21b、第3注入口21cからなり、第1〜第3注入口21a〜21cの中心を結んだ中心線(複数の注入口21の配置列)は、左右方向に一直線状となっている。第1注入口21aは、前端壁部15と左側の前側壁部16aと左側の中間壁部17aから略同じ距離に位置し、第3注入口21cも同様に、前端壁部15と右側の前側壁部16bと右側の中間壁部17bから略同じ距離に位置している。第1注入口21aから鋳型6に注入された溶鋼は、第1ストランドの鋳片7となり、第2注入口21bから鋳型6に注入された溶鋼は、第2ストランドの鋳片7となり、第3注入口21cから鋳型6に注入された溶鋼は、第3ストランドの鋳片7となる。   The plurality of inlets 21a to 21c are composed of a first inlet 21a, a second inlet 21b, and a third inlet 21c from the left to the right, and connect the centers of the first to third inlets 21a to 21c. The center line (arrangement row of the plurality of inlets 21) is straight in the left-right direction. The first inlet 21a is located at substantially the same distance from the front end wall 15, the left front side wall 16a, and the left intermediate wall 17a, and the third inlet 21c is also in front of the front end wall 15 and the right front. It is located at substantially the same distance from the side wall 16b and the right intermediate wall 17b. The molten steel injected into the mold 6 from the first inlet 21a becomes the first strand slab 7, and the molten steel injected into the mold 6 from the second inlet 21b becomes the second strand slab 7, The molten steel poured into the mold 6 from the injection port 21 c becomes the third strand slab 7.

仕切部13は、溶鋼受湯室11から溶鋼分配室12へ流入する溶鋼を一時的に堰き止めて介在物を浮上させる機能を有し、底壁部14の中心部やや後ろ側から垂直に延びる支柱部22と、この支柱部22を挟んで左右に設けられた左右1対の上堰部23a,23b及び左右1対の下堰部24a,24bとを備えている。支柱部22は、正面視にて台形状に且つ上方ほど断面積が減少する角柱状に構成されている。支柱部22の高さは、左右1対の後側壁部18a,18bの高さと同じ程度に設定されている。   The partition portion 13 has a function of temporarily blocking the molten steel flowing into the molten steel distribution chamber 12 from the molten steel receiving chamber 11 and floating the inclusions, and extends vertically from the central portion of the bottom wall portion 14 slightly behind. The support section 22 includes a pair of left and right upper weir sections 23a and 23b and a pair of left and right lower weir sections 24a and 24b provided on the left and right sides of the support section 22. The support column 22 has a trapezoidal shape in a front view and a prismatic shape with a cross-sectional area decreasing toward the top. The height of the column portion 22 is set to be approximately the same as the height of the pair of left and right rear side wall portions 18a and 18b.

左右1対の上堰部23a,23bは、夫々、横長の平板状の形状であり、タンディッシュ10の上端部から下方に向かって延びるように、支柱部22と左右1対の後側壁部18a,18bとの間に縦向き姿勢にて設置されている。各上堰部23a,23bと底壁部14との間には、溶鋼受湯室11から溶鋼分配室12に向かう溶鋼の流通を許容する上流側開口が形成されている。左右1対の上堰部23a,23bの下流側に、左右1対の下堰部24a,24bが配置されている。   The left and right pair of upper weir portions 23a and 23b each have a horizontally long flat plate shape and extend downward from the upper end portion of the tundish 10 so as to extend downward from the column portion 22 and the left and right pair of rear side wall portions 18a. , 18b are installed in a vertical orientation. Between each upper dam part 23a, 23b and the bottom wall part 14, the upstream opening which accept | permits the distribution | circulation of the molten steel which goes to the molten steel distribution chamber 12 from the molten steel receiving chamber 11 is formed. A pair of left and right lower dam portions 24a and 24b are disposed downstream of the pair of left and right upper dam portions 23a and 23b.

左右1対の下堰部24a,24bは、夫々、横長の平板状の形状であり、タンディッシュ10の底壁部14から上方に向かって延びるように、支柱部22と左右1対の後側壁部18a,18bとの間に縦向き姿勢にて設置されている。各下堰部24a,24bの上方には、溶鋼受湯室11から上流側開口を通って溶鋼分配室12に向かう溶鋼の流通を許容する下流側開口が形成されている。   The pair of left and right lower weir portions 24a and 24b each have a horizontally long flat plate shape and extend upward from the bottom wall portion 14 of the tundish 10 so as to extend upward from the bottom wall portion 14 of the tundish 10. It is installed in a vertical orientation between the parts 18a and 18b. Downstream openings that allow the flow of molten steel from the molten steel receiving chamber 11 to the molten steel distribution chamber 12 through the upstream opening are formed above the lower weir portions 24a and 24b.

各下堰部24a,24bの底壁部14の近傍には、厚み方向に貫通状に正面視にて正方形状の湯穴25a,25bが形成されている。これら湯穴25a,25bは、上流側開口から流れてきて下堰部24a,24bに堰き止められた溶鋼の一部を溶鋼分配室12へ流通させる。各湯穴25a,25bの内周の下端は、溶鋼受湯室11の底面の下端と同一平面上に位置している。尚、これら湯穴25a,25bが、仕切部13に設けられ且つ溶鋼受湯室11から溶鋼分配室12への溶鋼の一部の流通を許容する溶鋼流通部に相当するものである。   In the vicinity of the bottom wall portion 14 of each of the lower weir portions 24a and 24b, square-shaped hot water holes 25a and 25b are formed in a penetrating manner in the thickness direction in a front view. The molten metal holes 25a and 25b flow from the upstream opening and allow a part of the molten steel blocked by the lower weir portions 24a and 24b to flow to the molten steel distribution chamber 12. The lower end of the inner periphery of each hot water hole 25a, 25b is located on the same plane as the lower end of the bottom surface of the molten steel hot water receiving chamber 11. The molten metal holes 25a and 25b correspond to a molten steel distribution section that is provided in the partition section 13 and allows a part of molten steel to flow from the molten steel receiving chamber 11 to the molten steel distribution chamber 12.

次に、本発明に関連する溶鋼通路部26a,26bについて説明する。
図2,図4,図5に示すように、溶鋼分配室12の底壁部14には、湯穴25a,25b(溶鋼流通部)の近傍から複数の注入口21a〜21cからなる配置列より溶鋼受湯室11側を溶鋼分配室12の長手方向の外側に向かって延びる左右1対の溶鋼通路部26a,26bが形成されている。左右1対の溶鋼通路部26a,26bは、溶鋼供給開始直後の溶鋼が中心部の第2注入口21bを回避して最も外側の末端部の第1,第3注入口21a,21cへ向かって流れるように、溶鋼分配室12の底壁部14に支柱部22を挟んで左右対称のハの字状に形成されている。
Next, the molten steel passage portions 26a and 26b related to the present invention will be described.
As shown in FIGS. 2, 4, and 5, the bottom wall portion 14 of the molten steel distribution chamber 12 has an arrangement row including a plurality of inlets 21 a to 21 c from the vicinity of the molten metal holes 25 a and 25 b (molten steel circulation portion). A pair of left and right molten steel passage portions 26a and 26b extending from the molten steel receiving chamber 11 side toward the outside in the longitudinal direction of the molten steel distribution chamber 12 are formed. The pair of left and right molten steel passages 26a and 26b is directed toward the first and third inlets 21a and 21c at the outermost end by avoiding the second inlet 21b at the center of the molten steel immediately after the start of molten steel supply. In order to flow, the molten steel distribution chamber 12 is formed in a symmetrical C-shape with the column portion 22 sandwiched between the bottom wall portion 14 of the molten steel distribution chamber 12.

各溶鋼通路部26a,26bは、浅い溝状に形成され、各溶鋼通路部26a,26bの底面は、湯穴25a,25bの内周の下端より低く設定されている。各溶鋼通路部26a,26bの上流端の通路幅は、上堰部23a,23b及び下堰部24a,24bの横幅と略同じ長さに設定されている。各溶鋼通路部26a,26bの上流側通路部は、前方に且つ下流側に向う程通路幅が狭くなり、各溶鋼通路部26a,26bの途中部分は、溶鋼の流れを外側へ約90度変換する屈曲状に形成され、各溶鋼通路部26a,26bの下流側通路部は、左右方向に直線状に延びるように形成されている。各溶鋼通路部26a,26bの下流端の通路幅は、上流側通路幅の約1/2以下の長さに設定されている。   Each molten steel passage portion 26a, 26b is formed in a shallow groove shape, and the bottom surface of each molten steel passage portion 26a, 26b is set lower than the lower end of the inner periphery of the molten metal holes 25a, 25b. The passage width at the upstream end of each molten steel passage portion 26a, 26b is set to be substantially the same as the lateral width of the upper dam portions 23a, 23b and the lower dam portions 24a, 24b. The passage width of the upstream passage portion of each molten steel passage portion 26a, 26b becomes narrower toward the front and downstream, and the middle portion of each molten steel passage portion 26a, 26b converts the flow of molten steel to the outside by about 90 degrees. The downstream passage portions of the molten steel passage portions 26a and 26b are formed to extend linearly in the left-right direction. The passage width at the downstream end of each of the molten steel passage portions 26a and 26b is set to a length that is about ½ or less of the upstream passage width.

各溶鋼通路部26a,26bの前側の通路壁部には、底壁部14から上方に向かって延び且つ溶鋼流れ方向の全長に亙って堰状部27a,27bが形成されている。各堰状部27a,27bは、平面視にてくの字状に形成され、その高さは湯穴25a,25bの内周の上端より低く設定されている。これら堰状部27a,27bを形成することによって、溶鋼通路部26a,26bの深さを確保することができる。各堰状部27a,27bの厚みは、上堰部23a,23b及び下堰部24a,24bの厚みと同程度である。   Weir-like portions 27a and 27b are formed in the passage wall portion on the front side of each molten steel passage portion 26a and 26b, extending upward from the bottom wall portion 14 and extending over the entire length in the molten steel flow direction. Each weir-like part 27a, 27b is formed in a dogleg shape in plan view, and its height is set lower than the upper end of the inner periphery of the hot water holes 25a, 25b. By forming these weir-shaped portions 27a and 27b, the depth of the molten steel passage portions 26a and 26b can be secured. The thickness of each dam-like part 27a, 27b is comparable to the thickness of the upper dam parts 23a, 23b and the lower dam parts 24a, 24b.

次に、本発明に関連する溶鋼溜り部28a〜28cについて説明する。
図2,図3,図5に示すように、溶鋼分配室12の底壁部14の前側部分であって溶鋼分配室12の底面には、複数の注入口21a〜21cの各々を囲むように浅い凹状の複数の溶鋼溜り部28a〜28cが形成されている。複数の溶鋼溜り部28a〜28cは、左側から右側に向かって、第1溶鋼溜り部28a、第2溶鋼溜り部28b、第3溶鋼溜り部28cからなる。溶鋼分配室12の中心側の第2溶鋼溜り部28bは、平面視にて前後縦長の矩形状に形成されている。第2溶鋼溜り部28bは、上方に厚みのある凸状底部29によって囲まれている。凸状底部29の上面は、溶鋼受湯室11の底面の下端と同一平面上に位置している。
Next, the molten steel pool parts 28a-28c relevant to this invention are demonstrated.
As shown in FIGS. 2, 3, and 5, the front portion of the bottom wall portion 14 of the molten steel distribution chamber 12 and the bottom surface of the molten steel distribution chamber 12 surround each of the plurality of inlets 21 a to 21 c. A plurality of shallow concave pools 28a to 28c are formed. The plurality of molten steel reservoirs 28a to 28c are composed of a first molten steel reservoir 28a, a second molten steel reservoir 28b, and a third molten steel reservoir 28c from the left to the right. The second molten steel reservoir 28b on the center side of the molten steel distribution chamber 12 is formed in a longitudinally long rectangular shape in plan view. The second molten steel pool portion 28b is surrounded by a convex bottom portion 29 having a thickness upward. The upper surface of the convex bottom portion 29 is located on the same plane as the lower end of the bottom surface of the molten steel receiving chamber 11.

溶鋼分配室12の両側の第1,第3溶鋼溜り部28a,28cは、平面視にて左右横長の矩形状に形成されている。即ち、両側の第1,第3溶鋼溜り部28a,28cは、溶鋼分配室12の底面の左右両側部分の略全域に亙って形成されている。複数の注入口21a〜21cのうち最も外側の注入口21a,21cを囲む第1,第3溶鋼溜り部28a,28cには、左右1対の溶鋼通路部26a,26bの下流端が夫々連通されている。第1,第3溶鋼溜り部28a,28cの底面は、溶鋼通路部26a,26bの底面と同一平面上に位置している。   The first and third molten steel pool portions 28a and 28c on both sides of the molten steel distribution chamber 12 are formed in a horizontally elongated rectangular shape in plan view. That is, the first and third molten steel reservoirs 28 a and 28 c on both sides are formed over substantially the entire left and right side portions of the bottom surface of the molten steel distribution chamber 12. The downstream ends of the pair of left and right molten steel passage portions 26a and 26b are communicated with the first and third molten steel reservoir portions 28a and 28c surrounding the outermost inlet ports 21a and 21c among the plurality of inlet ports 21a to 21c. ing. The bottom surfaces of the first and third molten steel pool portions 28a and 28c are located on the same plane as the bottom surfaces of the molten steel passage portions 26a and 26b.

次に、取鍋3からの溶鋼供給開始時における溶鋼の流動について説明する。
取鍋3から注入ノズル4を介して溶鋼受湯室11に注がれた溶鋼は、溶鋼受湯室11の下り傾斜状の底面を前方に向かって流れて仕切部13である下堰部24a,24bや支柱部22に衝突して一時的に堰き止められるが、その堰き止められた溶鋼の一部は、下堰部24a,24bに形成された湯穴25a,25bを通って溶鋼分配室12の溶鋼通路部26a,26bの上流端に流入する。
Next, the flow of molten steel at the start of molten steel supply from the ladle 3 will be described.
The molten steel poured into the molten steel receiving chamber 11 from the ladle 3 through the injection nozzle 4 flows forward on the downward inclined bottom surface of the molten steel receiving chamber 11 and is a lower weir portion 24a which is a partition portion 13. 24b and the strut portion 22 are temporarily dammed up, but a part of the dammed molten steel passes through the molten metal holes 25a and 25b formed in the lower dam portions 24a and 24b. 12 flows into the upstream ends of the molten steel passage portions 26a and 26b.

次に、溶鋼通路部26a,26bに流れ込んだ溶鋼は、溶鋼通路部26a,26bから溢れ出さずに下流端へ左右方向の外側へ向かって流れ、外側の第1,第3溶鋼溜り部28a,28cに集中的に流入し、第1,第3溶鋼溜り部28a,28cを充填する共に、第1,第3注入口21a,21cを充填する。   Next, the molten steel that has flowed into the molten steel passage portions 26a, 26b flows outward in the left-right direction to the downstream end without overflowing the molten steel passage portions 26a, 26b, and the outer first and third molten steel pool portions 28a, The gas flows into 28c intensively, fills the first and third molten steel reservoirs 28a and 28c, and fills the first and third inlets 21a and 21c.

そして、溶鋼の溶鋼受湯室11への供給開始から所定時間経過すると、第1,第3溶鋼溜り部28a,28cから溶鋼が溢れ出し、この溢れ出た溶鋼は、溶鋼分配室12の中心側に向かって凸状底部29の上面を一気に流れ、第2溶鋼溜り部28bに流れ込み、第2溶鋼溜り部28bを充填すると共に、第2注入口21bを充填する。   Then, when a predetermined time has elapsed from the start of supply of molten steel to the molten steel receiving chamber 11, the molten steel overflows from the first and third molten steel reservoirs 28 a, 28 c, and the overflowed molten steel is on the center side of the molten steel distribution chamber 12. The upper surface of the convex bottom portion 29 flows toward the top, flows into the second molten steel pool portion 28b, fills the second molten steel pool portion 28b, and fills the second inlet 21b.

第1,第3溶鋼溜り部28a,28cから溶鋼が溢れ出てから僅かな時間経過後又は略同時期に、湯穴25a,25bから流入した溶鋼や下堰部24a,24bを乗り越えた溶鋼が、溶鋼通路部26a,26bのみを流れず、溶鋼通路部26a,26bから堰状部27a,27bを乗り越えて溶鋼分配室12の中心側に向かって流れるようになるので、中心側の第2溶鋼溜り部28bには、第1,第3溶鋼溜り部28a,28cから溶鋼が溢れ出てから短期間の間に溶鋼が一気に流れ込むことになる。   The molten steel that has flowed in from the molten metal holes 25a, 25b and the molten steel that has passed over the lower weir portions 24a, 24b after a short period of time or substantially at the same time after the molten steel overflows from the first and third molten steel reservoirs 28a, 28c. The second molten steel on the center side does not flow only through the molten steel passage portions 26a and 26b, and flows from the molten steel passage portions 26a and 26b over the dam-like portions 27a and 27b toward the center side of the molten steel distribution chamber 12. The molten steel flows into the reservoir portion 28b in a short period of time after the molten steel overflows from the first and third molten steel reservoir portions 28a, 28c.

このように、溶鋼分配室12においては、外側の第1,第3溶鋼溜り部28a,28cに溶鋼が一定時間滞留されることで、第1,第3注入口21a,21c近傍の溶鋼温度を高温に維持し、その後、中心側の第2溶鋼溜り部28bに向かって溶鋼が一気に流れ込むことで、溶鋼が第1,第3注入口21a,21cから第2注入口21bへ流れる間の底壁部14による抜熱が極力防止され、第1,第3注入口21a,21cと第2注入口21bとの間の溶鋼温度のばらつきが極力低減される。   As described above, in the molten steel distribution chamber 12, the molten steel is retained in the outer first and third molten steel reservoirs 28a and 28c for a certain period of time, so that the molten steel temperature in the vicinity of the first and third inlets 21a and 21c is increased. The bottom wall during which the molten steel flows from the first and third inlets 21a and 21c to the second inlet 21b by maintaining the high temperature and then flowing the molten steel all at once toward the second molten steel pool portion 28b on the center side. Heat removal by the portion 14 is prevented as much as possible, and variations in molten steel temperature between the first and third inlets 21a, 21c and the second inlet 21b are reduced as much as possible.

以上説明した溶鋼の流動について、ストランド間の溶鋼温度分布に基づいて説明する。この溶鋼温度分布は、実機測温結果に基づくものである。尚、溶鋼の注入温度は、図6の結果の測定時は1597℃、図7の結果の測定時は1609℃であった。この溶鋼温度は、測温プローブによって第1注入口21a(第1ストランド(1st))、第2注入口21b(第2ストランド(2st))において測定したものである。ここで、図6は、以上説明した本発明のタンディッシュ10を用いて実験した結果を示したものであり、図7は比較のため、図9に示すような溶鋼通路部26a,26b、溶鋼溜り部28a,28cを備えていない従来のタンディッシュを用いて実験した結果を示したものである。   The flow of the molten steel described above will be described based on the molten steel temperature distribution between the strands. This molten steel temperature distribution is based on the actual temperature measurement results. The molten steel injection temperature was 1597 ° C. when the result of FIG. 6 was measured, and 1609 ° C. when the result of FIG. 7 was measured. The molten steel temperature was measured at the first inlet 21a (first strand (1st)) and the second inlet 21b (second strand (2st)) with a temperature measuring probe. Here, FIG. 6 shows the results of experiments using the tundish 10 of the present invention described above, and FIG. 7 shows, for comparison, molten steel passage portions 26a and 26b, molten steel as shown in FIG. The result of having experimented using the conventional tundish which is not provided with the reservoir parts 28a and 28c is shown.

そして、図6に示すように、本発明のタンディッシュ10では、溶鋼分配室12に流入した溶鋼は、溶鋼通路部26a,26bを通って、外側の第1,第3溶鋼溜り部28a,28cに優先的に流され、第1,第3注入口21a,21c(第1,第3ストランド)を充填した後、中心側の第2注入口21b(第2ストランド)に向かって一気に流れるので、溶鋼の移動期間中に溶鋼温度は殆ど低下せず、ストランド間の溶鋼温度差は10℃程度と非常に小さくなることが確認できた。   As shown in FIG. 6, in the tundish 10 of the present invention, the molten steel that has flowed into the molten steel distribution chamber 12 passes through the molten steel passage portions 26a and 26b, and the outer first and third molten steel pool portions 28a and 28c. After filling the first and third inlets 21a and 21c (first and third strands), it flows at once toward the second inlet 21b (second strand) on the center side. It was confirmed that the molten steel temperature hardly decreased during the movement of the molten steel, and the molten steel temperature difference between the strands was as small as about 10 ° C.

また、溶鋼通路部26a,26bを流れる溶鋼の流速は、通路幅が下流側に向う程狭くなるように構成されているので、溶鋼分配室12の底面を末広がり状に流れる場合と比較して高くなる。その結果、第1,第3溶鋼溜り部28a,28cに溶鋼が直ぐに溜り、その後、第2溶鋼溜り部28bに一気に流れ、また、溶鋼が湯穴25aを介して溶鋼分配室12に流入した段階で、空気を介して溶鋼の高熱が第2注入口21b近傍に伝播し、且つ殆ど時間が経過することなく、溶鋼が第2注入口21bに流れ込むため、図6に示す通り、溶鋼温度の立ち上がりは、注入口21a,21b間(ストランド間)で殆ど時間差が生じない。本実機側温度結果によると、溶鋼を外側に優先的に流しているにも関わらず、第2注入口21b近傍の溶鋼温度は、第1注入口21a近傍の溶鋼温度より立ち上がりが僅かに早くなっていた。   Moreover, since the flow velocity of the molten steel flowing through the molten steel passage portions 26a and 26b is configured so that the passage width becomes narrower toward the downstream side, the flow velocity is higher than that when the bottom surface of the molten steel distribution chamber 12 flows in a divergent shape. Become. As a result, the molten steel immediately accumulates in the first and third molten steel reservoirs 28a and 28c, and then flows into the second molten steel reservoir 28b all at once, and the molten steel flows into the molten steel distribution chamber 12 through the molten metal hole 25a. Then, since the high heat of the molten steel propagates through the air to the vicinity of the second inlet 21b, and the molten steel flows into the second inlet 21b with almost no passage of time, as shown in FIG. There is almost no time difference between the inlets 21a and 21b (between the strands). According to the actual machine-side temperature result, the molten steel temperature in the vicinity of the second inlet 21b is slightly faster than the molten steel in the vicinity of the first inlet 21a, although the molten steel is preferentially flowed to the outside. It was.

一方、従来のタンディッシュを用いた結果である図7では、溶鋼分配室12に流入した溶鋼は、第2注入口21b(第2ストランド)を充填した後、外側の第1,第3注入口21a,21c(第1,第3ストランド)に向かって溶鋼分配室12の底面を末広がり状に流れるので、底壁部14による抜熱によりストランド間の溶鋼温度差も25℃程度と大きくなることが確認できた。   On the other hand, in FIG. 7 which is a result of using a conventional tundish, the molten steel flowing into the molten steel distribution chamber 12 is filled with the second inlet 21b (second strand) and then the outer first and third inlets. Since the bottom surface of the molten steel distribution chamber 12 flows toward the ends 21a and 21c (first and third strands), the molten steel temperature difference between the strands may increase to about 25 ° C. due to heat removal by the bottom wall portion 14. It could be confirmed.

また、溶鋼を充填する注入口の順番を特段制御せず、溶鋼の流速も溶鋼分配室12の底面を末広がり状に流れるので低くなり、受鋼開始から溶鋼温度の立ち上がりに注入口21a,21b間(ストランド間)で15秒程度の時間差が生じてしまい、且つ注入口21a,21cを流れる溶鋼温度が注入口21bを流れる溶鋼温度に比べて低下する結果、ノズル閉塞が発生する虞が生じてしまう。   Further, the order of the inlets for filling the molten steel is not particularly controlled, and the flow rate of the molten steel is lowered because the bottom surface of the molten steel distribution chamber 12 flows in a divergent shape. A time difference of about 15 seconds occurs between the strands, and the temperature of the molten steel flowing through the injection ports 21a and 21c is lower than the temperature of the molten steel flowing through the injection port 21b. .

尚、上記の溶鋼温度分布の説明において、明示的に開示されていない事項、例えば、運転条件や操業条件、構成部品のサイズ、重量、体積、各種のパラメータなどは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。   In addition, in the explanation of the molten steel temperature distribution, matters not explicitly disclosed, for example, operating conditions and operating conditions, component size, weight, volume, various parameters, etc., are those normally practiced by those skilled in the art. In this case, matters that can be easily assumed by those skilled in the art are employed.

以上説明したように、本発明のタンディッシュ10において、溶鋼流通部(湯穴25a,25b)の近傍から複数の注入口21a〜21cからなる配置列より溶鋼受湯室11側を溶鋼分配室12の長手方向の外側に向かって延びる溶鋼通路部26a,26bと、この溶鋼通路部26a,26bに連なり且つ複数の注入口21a〜21cのうち外側の注入口21a,21cを囲む凹状の第1,第3溶鋼溜り部28a,28cとを備えたので、溶鋼流通部(湯穴25a,25b)から溶鋼分配室12に流入した溶鋼を、溶鋼通路部26a,26bを介して、溶鋼分配室12の末端部の注入口21a,21cに優先的に且つ集中的に流すことができ、このとき、第1,第3溶鋼溜り部28a,28cに溶鋼を一時的に滞留させることができる。   As described above, in the tundish 10 of the present invention, the molten steel receiving chamber 11 side is located closer to the molten steel distribution chamber 12 than the arrangement row including the plurality of inlets 21a to 21c from the vicinity of the molten steel circulation portion (the molten metal holes 25a and 25b). The molten steel passage portions 26a and 26b extending outward in the longitudinal direction of the first and second concave first and second portions that are continuous with the molten steel passage portions 26a and 26b and surround the outer injection ports 21a and 21c among the plurality of injection ports 21a to 21c. Since the third molten steel pool portions 28a and 28c are provided, the molten steel flowing into the molten steel distribution chamber 12 from the molten steel distribution portion (molten holes 25a and 25b) is supplied to the molten steel distribution chamber 12 via the molten steel passage portions 26a and 26b. It is possible to flow preferentially and intensively to the inlets 21a and 21c at the end, and at this time, the molten steel can be temporarily retained in the first and third molten steel pools 28a and 28c.

従って、溶鋼を溶鋼通路部26a,26bに流すことによって、溶鋼分配室12の底面を末広がり状に流れる場合と比較して、溶鋼と耐火物との接触面積を低減することができる上、溶鋼の流速を高めることができ、故に、末端部の注入口21a,21cへ流れる溶鋼の温度低下を極力抑制することができる。また、第1,第3溶鋼溜り部28a,28cに一定量の溶鋼を滞留させることによって、注入口21a,21c近傍の溶鋼温度の低下を防ぎ、溶鋼温度を維持することができる。その後、溶鋼は第1,第3溶鋼溜り部28a,28cから溢れ出て、末端部から中心部に向かって一気に流れ込むため、末端部の注入口21a,21cの溶鋼温度と中心部の注入口21bの溶鋼温度の差を極力小さくすることができる。   Therefore, by flowing the molten steel through the molten steel passage portions 26a and 26b, the contact area between the molten steel and the refractory can be reduced as compared with the case where the bottom surface of the molten steel distribution chamber 12 flows in a divergent shape. The flow rate can be increased, and therefore the temperature drop of the molten steel flowing to the inlets 21a and 21c at the end can be suppressed as much as possible. Further, by retaining a certain amount of molten steel in the first and third molten steel reservoirs 28a and 28c, it is possible to prevent the molten steel temperature from decreasing near the inlets 21a and 21c, and to maintain the molten steel temperature. Thereafter, the molten steel overflows from the first and third molten steel pools 28a and 28c and flows from the terminal part toward the central part at a stretch. Therefore, the molten steel temperature at the terminal inlets 21a and 21c and the central inlet 21b. The difference in molten steel temperature can be minimized.

また、溶鋼通路部26a,26bの注入口21a〜21c側の壁部には、タンディッシュ10の底壁部14から上方に向かって延びる堰状部27a,27bが通路方向の全長に亙って形成されたので、溶鋼通路部26a,26bの深さを確保しつつ、溶鋼をタンディッシュ10へ供給してから所定時間(例えば1〜2分程度)経過し、溶鋼分配室12内に溶鋼がある程度満たされた後は、溶鋼は堰状部27a,27bを超えて流れ、溶鋼分配室12内に溶鋼をスムーズに供給することができる。   In addition, weir-like portions 27a and 27b extending upward from the bottom wall portion 14 of the tundish 10 are provided on the wall portions of the molten steel passage portions 26a and 26b on the inlets 21a to 21c side over the entire length in the passage direction. Since the molten steel passage portions 26a and 26b are secured, the molten steel is supplied to the tundish 10 and a predetermined time (for example, about 1 to 2 minutes) elapses. After being filled to some extent, the molten steel flows over the weirs 27a and 27b, and the molten steel can be smoothly supplied into the molten steel distribution chamber 12.

さらに、溶鋼流通部は、タンディッシュ10の底壁部14近傍において下堰部24a,24bの厚み方向に貫通状に形成された湯穴25a,25bであって溶鋼通路部26a,26bの上流端に連なる湯穴25a,25bからなるので、溶鋼供給開始直後において、溶鋼分配室12へ流れ込む溶鋼の流量を絞ることで、溶鋼を溶鋼通路部26a,26bに確実に流すことができる。   Further, the molten steel circulation part is a hot water hole 25a, 25b formed in the thickness direction of the lower weir parts 24a, 24b in the vicinity of the bottom wall part 14 of the tundish 10, and is an upstream end of the molten steel passage parts 26a, 26b. Therefore, immediately after the molten steel supply is started, the molten steel can be surely flowed into the molten steel passage portions 26a and 26b by reducing the flow rate of the molten steel flowing into the molten steel distribution chamber 12.

次に、前記実施形態を部分的に変更した形態について説明する。
[1]前記実施形態のタンディッシュ10は、3ストランドに対応した構造のものであるが、特にこの数に限定する必要はなく、3以上のストランドに対応したものであっても良い。即ち、溶鋼分配室12に流入した溶鋼を、溶鋼通路部26a,26bを介して最も外側の注入口に優先的且つ集中的に流し、外側の溶鋼溜り部で溶鋼を一時的に滞留させた後、中心側の注入口に向って一気に流す構造上、内側のストランドの数を限定する必要はない。
Next, an embodiment in which the above embodiment is partially changed will be described.
[1] Although the tundish 10 of the above embodiment has a structure corresponding to three strands, it is not particularly limited to this number, and may correspond to three or more strands. That is, after the molten steel flowing into the molten steel distribution chamber 12 flows preferentially and intensively to the outermost injection port via the molten steel passage portions 26a and 26b, the molten steel is temporarily retained in the outer molten steel pool portion. It is not necessary to limit the number of inner strands because of the structure of flowing toward the injection port on the center side.

[2]前記実施形態の溶鋼通路部26a,26bの形状は、上述したような形状に特に限定する必要はなく、溶鋼供給開始直後に、溶鋼流通部(湯穴25a,25b)から流れ出た溶鋼を外側の第1,第3溶鋼溜り部28a,28cに優先的に流す形状であれば、溶鋼通路部26a,26bの形状は適宜変更可能である。 [2] The shape of the molten steel passage portions 26a and 26b of the above embodiment is not particularly limited to the shape as described above, and the molten steel that has flowed out of the molten steel distribution portion (the molten metal holes 25a and 25b) immediately after the molten steel supply is started. The shape of the molten steel passage portions 26a, 26b can be changed as appropriate as long as the shape of the molten steel passage portions 26a, 28c flows preferentially to the first and third molten steel pool portions 28a, 28c.

[3]前記実施形態の溶鋼流通部は、下堰部24a,24bに正面視にて正方形状に形成された湯穴25a,25bからなるが、特にこれに限定する必要はなく、図8に示すように、正面視にて半円形状に形成された湯穴25Aaからなっても良い。また、図示は省略するが、正面視にて円形形状の湯穴、縦長又は横長のスリット状に形成された開口部からなっても良く、溶鋼流通部の形状及び構造は適宜変更可能である。尚、図8に示す湯穴25Aaの内周の下端は、溶鋼通路部26aの底面の下端と同一平面上に位置しているが、特に限定する必要はない。 [3] The molten steel distribution part of the above embodiment is composed of the hot water holes 25a, 25b formed in the lower dam parts 24a, 24b in a square shape in front view, but is not particularly limited to this. As shown, it may consist of a molten metal hole 25Aa formed in a semicircular shape when viewed from the front. Moreover, although illustration is abbreviate | omitted, it may consist of a circular shaped hot water hole and the opening formed in the shape of a vertically long or horizontally long slit in front view, and the shape and structure of a molten steel distribution | circulation part can be changed suitably. In addition, although the lower end of the inner periphery of the molten metal hole 25Aa shown in FIG. 8 is located on the same plane as the lower end of the bottom surface of the molten steel passage portion 26a, there is no need to particularly limit it.

[4]前記実施例において、全ての注入口21a〜21cに溶鋼溜り部28a〜28cが形成されているが、本発明の溶鋼溜り部は、複数の注入口21a〜21cのうち少なくとも外側の注入口21a,21cを囲むように形成されていれば良く、中心部の第2溶鋼溜り部28bは、必ずしも必要ではなく省略して、凸状底部29に第2注入口21bを直接形成した構造であっても良い。 [4] In the above-described embodiment, the molten steel reservoir portions 28a to 28c are formed in all of the injection ports 21a to 21c, but the molten steel reservoir portion of the present invention is at least an outer side of the plurality of injection ports 21a to 21c. It suffices if it is formed so as to surround the inlets 21a and 21c, and the second molten steel reservoir 28b at the center is not necessarily required, and the second inlet 21b is directly formed in the convex bottom 29. There may be.

[5]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施形態に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 [5] In addition, those skilled in the art can implement the present invention by adding various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. It is.

10 連続鋳造用タンディッシュ
11 溶鋼受湯室
12 溶鋼分配室
13 仕切部
21a〜21c 注入口
24a,24b 下堰部
25a,25b 湯穴(溶鋼流通部)
26a,26b 溶鋼通路部
27a,27b 堰状部
28a〜28c 溶鋼溜り部
DESCRIPTION OF SYMBOLS 10 Tundish for continuous casting 11 Molten steel receiving chamber 12 Molten steel distribution chamber 13 Partition parts 21a-21c Inlet 24a, 24b Lower dam part 25a, 25b Molten hole (molten steel distribution | circulation part)
26a, 26b Molten steel passage part 27a, 27b Weir-shaped part 28a-28c Molten steel pool part

Claims (3)

取鍋から溶鋼が供給される溶鋼受湯室と、この溶鋼受湯室に供給された溶鋼を複数の鋳型に供給する溶鋼分配室と、この溶鋼分配室と前記溶鋼受湯室との間を仕切る仕切部とを備えた連続鋳造用タンディッシュにおいて、
前記溶鋼分配室は、長手方向に所定の間隔をあけて複数の注入口が形成されており、
前記仕切部に設けられ且つ前記溶鋼受湯室から前記溶鋼分配室へ溶鋼の一部を流通可能とする溶鋼流通部と、この溶鋼流通部の近傍から前記複数の注入口からなる配置列より前記溶鋼受湯室側を前記溶鋼分配室の長手方向の外側に向かって延びる溶鋼通路部と、この溶鋼通路部に連なり且つ前記複数の注入口のうち少なくとも外側の注入口について、注入口を囲む凹状の溶鋼溜り部とを備えたことを特徴とする連続鋳造用タンディッシュ。
A molten steel receiving chamber to which molten steel is supplied from a ladle, a molten steel distribution chamber for supplying molten steel supplied to the molten steel receiving chamber to a plurality of molds, and a space between the molten steel distributing chamber and the molten steel receiving chamber. In the continuous casting tundish provided with a partitioning part,
The molten steel distribution chamber has a plurality of inlets formed at predetermined intervals in the longitudinal direction,
The molten steel flow part provided in the partition part and capable of flowing a part of the molten steel from the molten steel receiving chamber to the molten steel distribution chamber, and the arrangement row comprising the plurality of inlets from the vicinity of the molten steel flow part A molten steel passage portion extending toward the outside in the longitudinal direction of the molten steel distribution chamber on the molten steel receiving chamber side, and a concave shape surrounding the injection port with respect to the molten steel passage portion and at least the outer injection port among the plurality of injection ports A continuous casting tundish characterized by comprising a molten steel reservoir.
前記溶鋼通路部の注入口側の壁部には、タンディッシュの底壁部から上方に向かって延びる堰状部が通路方向の全長に亙って形成されたことを特徴とする請求項1に記載の連続鋳造用タンディッシュ。   2. The wall portion on the inlet side of the molten steel passage portion is formed with a weir-like portion extending upward from the bottom wall portion of the tundish over the entire length in the passage direction. The tundish for continuous casting as described. 前記仕切部は、タンディッシュの底壁部から上方に向かって延びる下堰部を備え、
前記溶鋼流通部は、少なくとも前記タンディッシュの底壁部近傍において前記下堰部の厚み方向に貫通状に形成された湯穴であって前記溶鋼通路部の上流端に連なる湯穴からなることを特徴とする請求項1又は2に記載の連続鋳造用タンディッシュ。
The partition portion includes a lower weir portion extending upward from the bottom wall portion of the tundish,
The molten steel flow part is a molten metal hole formed in a penetrating shape in the thickness direction of the lower weir part at least in the vicinity of the bottom wall of the tundish, and comprises a molten metal hole connected to the upstream end of the molten steel passage part. The tundish for continuous casting according to claim 1 or 2, characterized by the above.
JP2015225311A 2015-11-18 2015-11-18 Tundish for continuous casting Pending JP2017094333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015225311A JP2017094333A (en) 2015-11-18 2015-11-18 Tundish for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015225311A JP2017094333A (en) 2015-11-18 2015-11-18 Tundish for continuous casting

Publications (1)

Publication Number Publication Date
JP2017094333A true JP2017094333A (en) 2017-06-01

Family

ID=58804308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225311A Pending JP2017094333A (en) 2015-11-18 2015-11-18 Tundish for continuous casting

Country Status (1)

Country Link
JP (1) JP2017094333A (en)

Similar Documents

Publication Publication Date Title
US9126262B2 (en) Casting delivery nozzle
US20130119094A1 (en) Casting thin strip and delivery nozzle therefor
US7926549B2 (en) Delivery nozzle with more uniform flow and method of continuous casting by use thereof
CN102274962A (en) Immersion-type downspout used for crystallizer for thick plate blanks and large square blanks
KR20110084628A (en) Immersion nozzle for casting and continuous casting apparatus including the same
JP6701517B2 (en) Tundish for continuous casting, and continuous casting method using the tundish
JP2012152796A (en) Tundish weir for casting single strand in continuous casting
JP2017094333A (en) Tundish for continuous casting
US8047264B2 (en) Casting delivery nozzle
JP6668567B2 (en) Tundish for continuous casting and continuous casting method using the tundish
JP6668568B2 (en) Tundish for continuous casting and continuous casting method using the tundish
KR100831350B1 (en) Apparatus for supplying flux
KR100887121B1 (en) A melt feeding nozzle for twin roll type strip caster
RU177995U1 (en) Ladle intermediate for continuous casting of metal
JP3336962B2 (en) Melt heating method and equipment
JP6672549B2 (en) Tundish for continuous casting and continuous casting method using the tundish
KR102033642B1 (en) Processing apparatus for molten material
JP2005103567A (en) Tundish for continuous casting, and method for continuous casting
KR100805043B1 (en) Submerged nozzle for continuous casting
RU84277U1 (en) INTERMEDIATE BUCKET FOR CONTINUOUS METAL CASTING
JPH04238658A (en) Immersion nozzle for continuous casting
JP6701516B2 (en) Tundish for continuous casting, and continuous casting method using the tundish
JP5009033B2 (en) Steel continuous casting method and continuous casting apparatus
KR20130034270A (en) Continuous casting mold
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting