JP2017086843A - Medical guide wire - Google Patents

Medical guide wire Download PDF

Info

Publication number
JP2017086843A
JP2017086843A JP2015236979A JP2015236979A JP2017086843A JP 2017086843 A JP2017086843 A JP 2017086843A JP 2015236979 A JP2015236979 A JP 2015236979A JP 2015236979 A JP2015236979 A JP 2015236979A JP 2017086843 A JP2017086843 A JP 2017086843A
Authority
JP
Japan
Prior art keywords
guide wire
carbon film
wire
medical guide
core wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015236979A
Other languages
Japanese (ja)
Inventor
達行 中谷
Tatsuyuki Nakatani
達行 中谷
橋本 輝夫
Teruo Hashimoto
輝夫 橋本
平井 広治
Koji Hirai
広治 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRS KK
Kake Educational Institution
Original Assignee
TRS KK
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRS KK, Kake Educational Institution filed Critical TRS KK
Priority to JP2015236979A priority Critical patent/JP2017086843A/en
Publication of JP2017086843A publication Critical patent/JP2017086843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a medical guide wire having a thin diameter, which is high in safety and excellent in operation ability.SOLUTION: The medical guide wire is configured so that a surface of the medical guide wire is coated with a specific hydrogenated amorphous carbon film containing hydrogen in a range of 8 atom% to 35 atom% (atom composition percentage) with a film thickness of 50 nm to 2 μm, and a flexure elastic modulus of the guide wire is set so as to be increased by 15% or more, for increasing vibration attenuation property.SELECTED DRAWING: None

Description

発明の詳細な説明Detailed Description of the Invention

本発明は低侵襲カテーテル治療に用いられる医療用ガイドワイヤに関する。治療用ガイドワイヤは細径化の方向にあるが、それに伴って、治療時における操作性(押し込み性、走行性、トルク伝達性、血管選択性、カテーテルサポート性など)の低下や、ガイドワイヤ先端部の跳ねる(Whipping)現象が問題となっている。本発明は、これらの相反する課題の解決を通して、血管内壁に損傷を与えない安全性の高い、操作性に優れた細径の治療用ガイドワイヤを提供するものである。また、これらの技術は、ガイドワイヤの生体適合性、抗血栓性など、表面の機能化においても有用な発明である。  The present invention relates to a medical guide wire used for minimally invasive catheter treatment. The guide wire for treatment is in the direction of reducing the diameter, and accordingly, the operability (push-in property, running property, torque transmission property, blood vessel selectivity, catheter support property, etc.) at the time of treatment is reduced and the guide wire tip The phenomenon of hopping of parts is a problem. The present invention provides a small-sized therapeutic guidewire with high safety and excellent operability that does not damage the inner wall of a blood vessel through the solution of these conflicting problems. These techniques are also useful inventions in the functionalization of surfaces such as the biocompatibility and antithrombogenicity of guidewires.

医療分野において、気管、消化管、尿管、血管、その他の体腔、又は、組織に挿入されるガイドワイヤなどの医療用具は、挿入時に目的部位にアクセスするための押し込み性、走行性、トルク伝達性、血管選択性などの「操作性の向上」、血管内壁や粘膜などへの組織損傷を無くするための「先端柔軟性の確保」、および基材表面への親水性化合物のコーティングによる「湿潤時における潤滑性の向上」、などに配慮した設計が重要である。  In the medical field, a medical device such as a trachea, gastrointestinal tract, ureter, blood vessel, other body cavity, or a guide wire inserted into a tissue has a pushability, traveling property, and torque transmission for accessing a target site at the time of insertion. ”Improvement of operability” such as vascularity and blood vessel selectivity, “Securing tip flexibility” to eliminate tissue damage to blood vessel inner wall and mucous membrane, etc., and “Wetting” by coating hydrophilic material on substrate surface It is important to design with consideration given to "improving lubricity at times".

近年、カテーテル治療に用いる治療用ガイドワイヤは、治療の高度化、低侵襲性、安全性などの観点から細径化、先端柔軟化の方向にあるが、一方で、細径化、先端柔軟化の要求性能とは相反する性能となる操作性(押し込み性、トルク伝達性、カテーテルサポート性)を確保することが強く求められている。
特に、ガイドワイヤの先端部については、柔軟性に優れ、かつ跳ねる(Whipping)現象が抑制された安全性の高い材料、構造および機能性の設計が重要な課題となっている。
このように、安全性と操作性に優れた細径の治療用ガイドワイヤに対する期待は大きい。
ガイドワイヤ用金属芯線の素材としては、剛性が高く、押し込み性に優れたステンレス鋼と抗キンク性、柔軟性に優れた超弾性ニッケル・チタン(Ni/Ti)合金が多く用いられている。
In recent years, therapeutic guidewires used for catheter treatment are becoming thinner and softer from the viewpoint of advanced treatment, minimally invasiveness, and safety. There is a strong demand for ensuring operability (pushability, torque transmission, and catheter support) that is contrary to the required performance.
In particular, with respect to the distal end portion of the guide wire, the design of a highly safe material, structure, and functionality that is excellent in flexibility and that suppresses the “whipping” phenomenon is an important issue.
Thus, there is great expectation for a guide wire for treatment with a small diameter that is excellent in safety and operability.
As a material for the metal core wire for the guide wire, stainless steel having high rigidity and excellent pushability and superelastic nickel / titanium (Ni / Ti) alloy having excellent anti-kink property and flexibility are often used.

このような観点から、ガイドワイヤの基端部は剛性の高いステンレス鋼製芯線を、また、先端部には柔軟性に優れたニッケル・チタン合金製芯線を採用し、それらをレーザーなどによって接合することで、ガイドワイヤの操作性と先端部の柔軟性、安全性に配慮した製品も見られる。  From this point of view, the guide wire has a rigid stainless steel core wire at the base end and a nickel / titanium alloy core wire with excellent flexibility at the tip end, which are joined by a laser or the like. Therefore, there are also products that take into consideration the operability of the guide wire, the flexibility of the tip, and safety.

最近、ガイドワイヤの芯材として、ステンレス鋼製芯線を採用し、先端テーパー部にはステンレス鋼製の螺旋巻きコイルを装着して、押し込み性、トルク伝達性と先端柔軟性を改良した治療用ガイドワイヤが主流となっている。さらに、前記ステンレス鋼製の螺旋巻きコイルの内部に、さらに、中空ワイヤーロープからなるコイルを装着して、柔軟性を損なうことなく、さらに、トルク伝達性を改良したガイドワイヤも製品化されている。  Recently, a stainless steel core wire has been adopted as the core material of the guide wire, and a spiral wound coil made of stainless steel is attached to the tip taper to improve pushability, torque transmission and tip flexibility. Wire has become mainstream. In addition, a guide wire with a further improved torque transmission without sacrificing flexibility by mounting a coil made of a hollow wire rope inside the stainless steel spiral coil has been commercialized. .

また、上記ガイドワイヤは操作性を向上するため、金属製芯線の表面に、摩擦係数の低いテフロン樹脂をコートし、潤滑性を付与することで、押し込み性、走行性、トルク伝達性を確保している。  In addition, in order to improve the operability of the above guidewire, the surface of the metal core wire is coated with a Teflon resin having a low friction coefficient to provide lubricity, thereby ensuring indentability, running performance, and torque transmission performance. ing.

一方、ガイドワイヤ芯線が細くなると、ガイドワイヤの剛性が小さくなり、腰が弱くなって、押し込み性、トルク伝達性が低下することから、潤滑性を付与するために使用しているテフロン樹脂被膜の厚さをできるだけ薄くすることで、芯線の直径を可能な限り太くする設計が重要となっている。しかし、テフロン樹脂被膜の厚さを薄くすることは、テフロンの剥離、脱落による血管閉塞など安全性の問題があり、限界がある。  On the other hand, when the guide wire core wire is thinned, the rigidity of the guide wire is reduced, the waist is weakened, the pushability and the torque transmission performance are lowered, and therefore the Teflon resin coating used to impart lubricity is reduced. It is important to make the core wire as thick as possible by making the thickness as thin as possible. However, reducing the thickness of the Teflon resin film has a limit due to safety problems such as vascular occlusion due to peeling or dropping of the Teflon.

このように、ガイドワイヤの細径化の流れに対して、トルク伝達性や腰の強さを確保し、先端部が跳ねないガイドワイヤを提供することは重要かつ難易度の高い課題となっている。  Thus, it is important and difficult to provide a guide wire that secures torque transmission and waist strength against the flow of reducing the guide wire diameter, and does not jump at the tip. Yes.

また、近年、ダイヤモンドライク炭素膜(DLC)は極めて高い硬度を有することから、その特徴を活かし、自動車部品、機械部品などの摩擦・摩耗特性の向上に大きな役割を担っている。さらに,DLCは不活性表面の特徴を利用して、ステント、ガイドワイヤ等の医療機器の生体適合性を改良するための表面改質方法として注目されている。このように、DLCコーティングに関しては、低摩擦係数、耐摩耗性、生体適合性、抗血栓性、潤滑性、親水化、耐付着性、耐凝着性、基材への密着性などの改良を目的とした出願が見られる(特許文献1〜4)。
再表99/53988 特開2000−64047 特許第4740741 特許第5092623
In recent years, since diamond-like carbon film (DLC) has extremely high hardness, it has played a major role in improving the friction and wear characteristics of automobile parts, machine parts, etc. by taking advantage of its characteristics. Furthermore, DLC has attracted attention as a surface modification method for improving the biocompatibility of medical devices such as stents and guide wires by utilizing the characteristics of inert surfaces. In this way, with regard to DLC coating, improvements such as low friction coefficient, wear resistance, biocompatibility, antithrombogenicity, lubricity, hydrophilization, adhesion resistance, adhesion resistance, adhesion to the substrate, etc. The intended application is seen (Patent Documents 1 to 4).
Table 99/53988 JP 2000-64047 A Japanese Patent No. 4740741 Patent No. 5092623

本発明は、上記の課題、問題点に鑑みてなされたものであり、ガイドワイヤの細径化に伴う剛性の低下を補うことができる新しい技術を開発することで、トルク伝達性、走行性、血管選択性、カテーテルサポート性など操作性を向上し、かつ、先端部の跳ねる(Whipping)現象を抑制し、安全性が高く、操作性に優れた細径の治療用ガイドワイヤを提供することを目的とする。特に、抗キンク性に優れたニッケル・チタン合金製治療用ガイドワイヤの剛性を増加することで、トルク伝達性、カテーテルサポート性などの操作性を向上することが可能になれば、その意義は非常に大きい。  The present invention has been made in view of the above-mentioned problems and problems, and by developing a new technology that can compensate for the decrease in rigidity accompanying the reduction in the diameter of the guide wire, torque transmission, running performance, To provide a small-diameter therapeutic guidewire that improves operability such as blood vessel selectivity and catheter support, suppresses a whip phenomenon at the tip, has high safety, and is excellent in operability. Objective. In particular, if the rigidity of a nickel-titanium alloy guide wire with superior anti-kink properties can be increased to improve operability such as torque transmission and catheter support, its significance is extremely high. Big.

しかしながら、全長がニッケル・チタン合金製のガイドワイヤや細径のガイドワイヤにおいては、従来技術では十分な改良効果が得られておらず、前記ニーズに対して、さらなる性能の改良が求められている。また、それらの製造方法も煩雑であることから、安全性、品質安定性、コスト高なども問題となっている。このような市場ニーズに鑑みて、本願発明は、安全、高品質、低コストで、かつ操作性に優れた細径の治療用ガイドワイヤの実現を目指したものである。  However, in a guide wire made of nickel / titanium alloy or a guide wire with a small diameter, a sufficient improvement effect has not been obtained in the prior art, and further improvement in performance is required for the needs. . In addition, since the manufacturing methods are complicated, there are problems such as safety, quality stability, and high cost. In view of such market needs, the present invention aims to realize a therapeutic guidewire with a small diameter that is safe, high quality, low cost, and excellent in operability.

本願発明は、医療用ガイドワイヤの表面に、特定の構造と膜厚さを有する水素化アモルファスカーボンをコーティングすることで、ガイドワイヤの高剛性化と振動減衰性の増大を図り、先端部の跳ねる現象を抑制し、また、トルク伝達性、カテーテルサポート性などの操作性を改良した細径の治療用ガイドワイヤを提供するものである。  In the present invention, the surface of the medical guide wire is coated with hydrogenated amorphous carbon having a specific structure and film thickness, so that the rigidity of the guide wire is increased and the vibration damping property is increased. It is an object of the present invention to provide a treatment guide wire having a small diameter that suppresses the phenomenon and has improved operability such as torque transmission and catheter support.

本発明者は鋭意検討した結果、上記目的は、下記(1)〜(5)により達成されることを見出し、本発明を完成するに至った。
(1)金属製芯線の表面に、ダイヤモンドライク炭素膜を被覆した医療用ガイドワイヤであって、前記炭素膜は水素を8at%〜35at%(原子組成百分率)含み、炭素膜の厚さが50nm〜2μであり、かつ、炭素膜をコートする前の金属製芯線の曲げ弾性率に対して、炭素膜をコートした金属製芯線の曲げ弾性率が15%以上増大していることを特徴とする医療用ガイドワイヤ。
(2)金属製芯線の表面に、ダイヤモンドライク炭素膜を被覆した医療用ガイドワイヤであって、前記炭素膜は水素を20at%〜30at%(原子組成百分率)含み、炭素膜の厚さが50nm〜1μであり、かつ、炭素膜をコートする前の金属製芯線の曲げ弾性率に対して、炭素膜をコートした金属製芯線の曲げ弾性率が15%以上増大していることを特徴とする医療用ガイドワイヤ。
(3)金属製芯線がニッケル・チタン合金からなることを特徴とする請求項1あるいは2に記載の医療用ガイドワイヤ。
(4)前記ダイヤモンドライク炭素膜が、医療用ガイドワイヤの先端から70cmまでの範囲で行われていることを特徴とする(1)から(3)に記載の医療用ガイドワイヤ。
(5)前記ダイヤモンドライク炭素膜の被覆が、医療用ガイドワイヤの先端テーパー部を除き、残りの基端部の全長に渡って行われていることを特徴とする(1)から(3)に記載の医療用ガイドワイヤ。
As a result of extensive studies, the present inventor has found that the above object is achieved by the following (1) to (5), and has completed the present invention.
(1) A medical guide wire in which a diamond-like carbon film is coated on the surface of a metal core wire, wherein the carbon film contains 8 at% to 35 at% (atomic composition percentage) of hydrogen, and the thickness of the carbon film is 50 nm. The bending elastic modulus of the metal core wire coated with the carbon film is increased by 15% or more with respect to the bending elastic modulus of the metal core wire before being coated with the carbon film. Medical guide wire.
(2) A medical guide wire in which a diamond-like carbon film is coated on the surface of a metal core wire, wherein the carbon film contains 20 at% to 30 at% (atomic composition percentage) of hydrogen, and the thickness of the carbon film is 50 nm. The bending elastic modulus of the metal core wire coated with the carbon film is increased by 15% or more with respect to the bending elastic modulus of the metal core wire before being coated with the carbon film. Medical guide wire.
(3) The medical guide wire according to claim 1 or 2, wherein the metal core wire is made of a nickel-titanium alloy.
(4) The medical guidewire according to any one of (1) to (3), wherein the diamond-like carbon film is formed in a range of 70 cm from the tip of the medical guidewire.
(5) From (1) to (3), the coating of the diamond-like carbon film is performed over the entire length of the remaining proximal end portion except for the tapered end portion of the medical guide wire. The medical guidewire as described.

本願発明は細径ガイドワイヤを構成する金属製芯線の表面に、水素が8at%〜35at%(原子組成百分率)の範囲で含まれる水素化アモルファス炭素膜(a−C:H)を50nm〜2μの薄膜状に被覆し、かつ、水素化アモルファス炭素膜をコート後の金属製芯線の曲げ弾性率が、コート前の金属製芯線の曲げ弾性率に対して15%以上増大するように被覆することで、ガイドワイヤの曲げ弾性率および振動減衰性が大きくなり、トルク伝達性、カテーテルサポート性の向上とともに、ガイドワイヤ先端部の跳ねる(Whipping)現象が抑制されることを見出したものである。  In the present invention, a hydrogenated amorphous carbon film (aC: H) containing hydrogen in the range of 8 at% to 35 at% (atomic composition percentage) on the surface of the metal core wire constituting the thin guide wire is 50 nm to 2 μm. And coating the hydrogenated amorphous carbon film so that the bending elastic modulus of the metal core wire after coating is increased by 15% or more relative to the bending elastic modulus of the metal core wire before coating. Thus, the present inventors have found that the bending elastic modulus and the vibration damping property of the guide wire are increased, the torque transmission property and the catheter support property are improved, and the phenomenon of the guide wire tipping (Whipping) is suppressed.

ダイヤモンドライク炭素膜は、スパッタ法、DCマグネトロンスパッタ法、RFマグネトロンスパッタ法、化学気相堆積法(CVD法)、プラズマCVD法、プラズマイオン注入法、重畳型RFプラズマイオン注入法、イオンプレーティング法、アークイオンプレーティング法、イオンビーム蒸着法又はレーザーアブレーション法等の公知の方法により、医療器具本体の表面に形成することができる。  Diamond-like carbon film is formed by sputtering, DC magnetron sputtering, RF magnetron sputtering, chemical vapor deposition (CVD), plasma CVD, plasma ion implantation, superimposed RF plasma ion implantation, ion plating. It can be formed on the surface of the medical device body by a known method such as arc ion plating, ion beam vapor deposition or laser ablation.

本発明においては、ガイドワイヤ用のニッケル・チタン合金製芯線、ステンレス鋼芯線などの金属製芯線を、チャンバ内にセットし、放電によって、ダイヤモンドライク炭素膜を薄膜状にコーティングする。水素を含まない(水素フリー)ダイヤモンドライク炭素膜(DLC)の領域にはSP3/SP2の比率で、ta−C(テトラヘドラルアモルファスカーボン)とa−C(アモルファスカーボン)があるが、より高硬度を求める場合には、ta−Cが適している。
一方、水素を含有するDLCの領域では、ta−C:H(水素化テトラヘドラルアモルファスカーボン)およびa−C:H(水素化アモルファスカーボン)がある。
In the present invention, a metal core wire such as a nickel / titanium alloy core wire or a stainless steel core wire for a guide wire is set in a chamber, and a diamond-like carbon film is coated in a thin film by discharge. The region of the diamond-like carbon film (DLC) that does not contain hydrogen (DLC) includes ta-C (tetrahedral amorphous carbon) and aC (amorphous carbon) at a ratio of SP3 / SP2, but higher When obtaining the hardness, ta-C is suitable.
On the other hand, in the region of DLC containing hydrogen, there are ta-C: H (hydrogenated tetrahedral amorphous carbon) and aC: H (hydrogenated amorphous carbon).

本発明においては、a−C:H膜に含まれる水素濃度が、8at%〜35at%(原子組成百分率)であり、該炭素膜の厚さが50nm〜2μである場合に、該炭素膜はガイドワイヤの表面に均一に付着し、金属基材との密着性が良好で、屈曲時にもひび割れが生じることはなく、かつ、コート後のガイドワイヤの曲げ弾性率がコート前の曲げ弾性率に対して、15%以上増大する条件を選定することで、トルク手伝達性が向上し、かつ振動減衰性が大きくなり、先端部の跳ねる現象が改善され、操作性が大きく向上することを見出した。  In the present invention, when the hydrogen concentration contained in the aC: H film is 8 at% to 35 at% (atomic composition percentage) and the thickness of the carbon film is 50 nm to 2 μm, the carbon film is It adheres uniformly to the surface of the guide wire, has good adhesion to the metal substrate, does not crack when bent, and the bending elastic modulus of the guide wire after coating becomes the bending elastic modulus before coating. On the other hand, it has been found that by selecting a condition that increases by 15% or more, torque hand transmission is improved, vibration damping is increased, the phenomenon of tip jumping is improved, and operability is greatly improved. .

本発明において、上記効果が発現するa−C:H膜中の水素濃度は8at%〜35at%(原子組成百分率)の範囲であるが、さらに好ましい水素濃度は20at%〜30at%の範囲である。また、a−C:H膜の厚さは、50nm〜2μの範囲であり、50nm〜1μの範囲がより好ましい。a−C:H膜の水素濃度を、上記範囲において、より高くした場合には、膜厚を上記範囲において、より厚くすることで、炭素膜の密着性、均一性、耐割れ性を確保しつつ、曲げ弾性率、減衰振動性が大きくすることが可能となる。逆に、a−C:H膜の水素濃度を、上記範囲において、より低くした場合には、膜厚を上記範囲において、より薄くすることで、炭素膜の密着性、均一性、耐割れ性を確保しつつ、曲げ弾性率、減衰振動性が大きくすることができる。さらに、このようなコーティング方法に従って、炭素膜をコートした金属製芯線の曲げ弾性率が、炭素膜をコートする前の金属製芯線の曲げ弾性率に対して、15%以上増大させた場合に、本発明の効果が大きくなり、さらに、19%以上増大した場合は、本発明の効果がより顕著となる。水素濃度が8at%よりも低い場合や、35at%よりも高い場合は、本発明の効果は得られず、また、これらの場合には、炭素膜をコートした金属製芯線の曲げ弾性率を、炭素膜をコートする前の金属製芯線の曲げ弾性率に対して、15%以上増大させた場合においても、本発明の効果は得られない。すなわち、本発明の効果は、水素化アモルファス炭素膜のコーティングに関して、該炭素膜の水素濃度、膜厚さ、金属芯線の曲げ弾性率の増加率のすべてを、本発明の範囲に入るように設定した時に得られるものである。  In the present invention, the hydrogen concentration in the aC: H film exhibiting the above effect is in the range of 8 at% to 35 at% (atomic composition percentage), but the more preferable hydrogen concentration is in the range of 20 at% to 30 at%. . Further, the thickness of the aC: H film is in the range of 50 nm to 2 μm, and more preferably in the range of 50 nm to 1 μm. When the hydrogen concentration of the aC: H film is increased in the above range, the film thickness is increased in the above range to ensure the adhesion, uniformity, and crack resistance of the carbon film. On the other hand, it is possible to increase the flexural modulus and the damping vibration. Conversely, when the hydrogen concentration of the aC: H film is lower in the above range, the film thickness is made thinner in the above range, so that the adhesion, uniformity and crack resistance of the carbon film are reduced. The bending elastic modulus and the damping vibration can be increased while securing the above. Furthermore, according to such a coating method, when the bending elastic modulus of the metal core wire coated with the carbon film is increased by 15% or more with respect to the bending elastic modulus of the metal core wire before coating the carbon film, When the effect of the present invention is increased and further increased by 19% or more, the effect of the present invention becomes more remarkable. When the hydrogen concentration is lower than 8 at% or higher than 35 at%, the effect of the present invention cannot be obtained. In these cases, the bending elastic modulus of the metal core wire coated with the carbon film is The effect of the present invention cannot be obtained even when the flexural modulus of the metal core wire before coating the carbon film is increased by 15% or more. That is, the effect of the present invention is that the hydrogen concentration of the carbon film, the film thickness, and the rate of increase in the bending elastic modulus of the metal core wire are all set to fall within the scope of the present invention regarding the coating of the hydrogenated amorphous carbon film. It is obtained when you do.

本発明の
また、金属製芯線などの先端部分に、テーパー加工を施し、先端部から70cmまでの範囲に渡るテーパー部分およびその近傍に、ダイヤモンドライク炭素膜をコートすることで、先端から70cmまでの曲げ弾性率が増大し、カテーテルサポート性、トルク伝達性の向上と、先端部の跳ねる現象が抑制された、操作性に優れた細径の治療用ガイドワイヤが提供できる。
In addition, according to the present invention, a tip portion such as a metal core wire is tapered, and a diamond-like carbon film is coated on the taper portion extending in the vicinity of the tip portion from the tip portion to 70 cm, and the vicinity thereof. It is possible to provide a therapeutic guide wire having a small diameter and excellent operability in which the bending elastic modulus is increased, the catheter support property and torque transmission property are improved, and the phenomenon that the tip portion is bounced is suppressed.

また、前記ダイヤモンドライク炭素膜の被覆が、抗キンク性に優れたニッケルチタン合金製ガイドワイヤの先端テーパー部を除き、残りの基端部の全長に渡って行われている場合は、基端部の曲げ弾性率が向上することで、ステンレス鋼芯線に近い押し込み性、トルク性能と、先端部の柔軟性を追求した治療用ガイドワイヤの製造が可能である。
これによって、ステンレス鋼芯線とニッケル・チタン合金製芯線をレーザー等で接続加工することなく、操作性と柔軟性に優れた細径の治療用ガイドワイヤを得ることができる。
In addition, when the coating of the diamond-like carbon film is performed over the entire length of the remaining base end portion except for the tip tapered portion of the nickel titanium alloy guide wire excellent in anti-kink property, the base end portion By improving the bending elastic modulus, it is possible to manufacture a guide wire for treatment pursuing pushability, torque performance close to that of a stainless steel core wire, and flexibility of the distal end portion.
This makes it possible to obtain a thin guide wire for treatment with excellent operability and flexibility without connecting the stainless steel core wire and the nickel / titanium alloy core wire with a laser or the like.

以下に本発明に係る具体的な実施例および比較例について、より詳しく説明するが、本発明は以下の例に限定されるものではない。  Specific examples and comparative examples according to the present invention will be described in more detail below, but the present invention is not limited to the following examples.

長さが180cm、太さが0.3mmΦで、先端部をテーパー加工したガイドワイヤ用ニッケル・チタン合金製芯線をイオン化蒸着装置のチャンバ内にセットし、チャンバにアルゴンガス(Ar)を圧力が10−1Pa〜10−3Pa(10−3Torr〜10−5Torr)となるように導入した後、放電を行うことによりArイオン発生させ、発生したArイオンをガイドワイヤ本体の表面に衝突させるボンバードクリーニングを行った。
続いて、チャンバにテトラメチルシラン(Si(CH)を導入し、硅素(Si)及び炭素(C)を主成分とするアモルファス状で中間層を形成した。中間層を形成した後、Cガスをチャンバ内に導入しながら放電を行うことによりa−C:H膜を形成した。この際に、チャンバ内の圧力は10−1Paとなるように調整した。また、基板電圧は1.5kV、基板電流は50mA、フィラメント電圧は14V、フィラメント電流は30A、アノード電圧は50V、アノード電流は0.6A、リフレクタ電圧は50V、リフレクタ電流は6mAとした。上記のイオン化蒸着によって得られたa−C:H膜は、膜厚さが、475nmで、水素は原子組成百分率で26at%含まれていた。また、四点曲げ試験によって測定したニッケル・チタン合金製ガイドワイヤの基端部の曲げ弾性率は25GPaで、a−C:H膜をコートする前の芯線の曲げ弾性率が21GPaであることから、曲げ弾性率は19%増大した。
A guide wire nickel / titanium alloy core wire having a length of 180 cm and a thickness of 0.3 mmΦ and having a tapered tip is set in a chamber of an ionization deposition apparatus, and argon gas (Ar) is applied to the chamber at a pressure of 10 -1 Pa to 10 -3 Pa (10 -3 Torr to 10 -5 Torr) and then discharge to generate Ar ions, and the generated Ar ions collide with the surface of the guide wire body. Bombard cleaning was performed.
Subsequently, tetramethylsilane (Si (CH 3 ) 4 ) was introduced into the chamber, and an amorphous intermediate layer mainly composed of silicon (Si) and carbon (C) was formed. After forming the intermediate layer, an aC: H film was formed by discharging while introducing C 6 H 6 gas into the chamber. At this time, the pressure in the chamber was adjusted to 10 −1 Pa. The substrate voltage was 1.5 kV, the substrate current was 50 mA, the filament voltage was 14 V, the filament current was 30 A, the anode voltage was 50 V, the anode current was 0.6 A, the reflector voltage was 50 V, and the reflector current was 6 mA. The aC: H film obtained by the above ionization deposition had a film thickness of 475 nm, and hydrogen was contained in an atomic composition percentage of 26 at%. In addition, the bending elastic modulus of the base end portion of the nickel-titanium alloy guide wire measured by the four-point bending test is 25 GPa, and the bending elastic modulus of the core wire before coating the aC: H film is 21 GPa. The flexural modulus increased by 19%.

上記のa−C:H膜がコートされたガイドワイヤの先端部をウレタンチューブで被覆後、さらに、ガイドワイヤの全長に対して親水性コーティング加工を行った。得られたガイドワイヤの曲げ弾性率、トルク伝達性、振動減衰性(減衰比の比較)、先端部の跳ね、カテーテルサポート性、応力負荷後の塑性変形性、表面割れ、真直性、などの評価を行った。  After the guide wire coated with the aC: H film was coated with a urethane tube, a hydrophilic coating process was performed on the entire length of the guide wire. Evaluation of bending elastic modulus, torque transmission, vibration damping (comparison of damping ratio), tip bounce, catheter support, plastic deformation after stress loading, surface cracking, straightness, etc. Went.

なお、炭素膜中の水素含有量は神戸製鋼社製の弾性反跳陽子検出法ERDA(high−resolution elastic detection analysis)および堀場製作所製の高周波グロー放電発光分光分析装置GD−OES(glow discharge optical emission spectroscopy)を用いて測定した。  In addition, the hydrogen content in the carbon film is measured by an elastic recoil proton detection method ERDA (high-resolution elastic detection analysis) manufactured by Kobe Steel and a high-frequency glow discharge optical emission spectrometer GD-OES (glow discharge optical emission) manufactured by HORIBA, Ltd. Measured using spectroscopy.

また、曲げ弾性率は島津製作所 EZ−Test 小型卓上試験機を用いて、四点曲げ試験法で、押し込み長は2mmとして測定した。また、曲げ試験後のガイドワイヤの塑性変形の大きさを、曲げ試験前の直線状ガイドワイヤが塑性変形した変形角度の測定によって評価した。さらに、曲げ試験前後のガイドワイヤの表面クラックの有無等を観察した。
振動減衰性(減衰比)は高速フーリェ変換を用いた音響・振動の波形の解析を行う測定機(FFTアナライザー)を用いた振動解析から、半値幅法による減衰比の算出により求めた。
減衰比ζ=Δf/2f、損失係数η=Δf/f、にて求めた(Δf:半値幅、共振付近で周波数を変化して描かれる共振曲線最大値の1/√2を示す周波数の幅、f:零変位おける力)。
The flexural modulus was measured using a Shimadzu EZ-Test small tabletop testing machine by a four-point bending test method with an indentation length of 2 mm. Further, the magnitude of plastic deformation of the guide wire after the bending test was evaluated by measuring the deformation angle at which the linear guide wire before the bending test was plastically deformed. Furthermore, the presence or absence of surface cracks of the guide wire before and after the bending test was observed.
The vibration damping property (damping ratio) was obtained by calculating the damping ratio by the half width method from the vibration analysis using a measuring instrument (FFT analyzer) that analyzes the sound / vibration waveform using high-speed Fourier transform.
The attenuation ratio ζ = Δf / 2f 0 and the loss coefficient η = Δf / f 0 (Δf: half-width, frequency indicating 1 / √2 of the maximum value of the resonance curve drawn by changing the frequency near the resonance) , F 0 : force at zero displacement).

トルク伝達性および先端部の跳ね特性の評価は、長さ1500cmのディスペンサー(ループ状の最大直径18cm)に、ガイドワイヤ通して、基体部の端を所定角度(駆動角 度)ねじったときの先端部の追従角度をロータリーエンコーダーで測定して求めた。先端部が基体部の端の回転に対応してスムーズに回転し、追従性がほぼ1:1である場合は◎、先端部の回転追従性に遅れがみられるが、先端部の跳ね現象がない場合は○、先端部の回転追従性に遅れがみられ、先端部の跳ね現象が少し認められる場合は△、先端部の回転追従性が悪く、突然、先端部が大きく跳ねて回転する場合は×で評価した。  Torque transmission and tip spring characteristics are evaluated by passing the guidewire through a 1500 cm long dispenser (maximum loop-shaped diameter of 18 cm) and twisting the end of the base portion by a predetermined angle (drive angle). The following angle of the part was determined by measuring with a rotary encoder. If the tip rotates smoothly in response to the rotation of the end of the base and the followability is approximately 1: 1, ◎, there is a delay in the rotation followability of the tip, but the tip bounce phenomenon ○ if there is no, there is a delay in the follow-up performance of the tip, △ if there is a slight jumping phenomenon at the tip, and if the tip follow-up is poor, suddenly the tip jumps greatly and rotates Was evaluated with x.

カテーテルのサポート性については、ガイドワイヤの曲げ弾性率と相関性が大きいことから、曲げ弾性率の数値により判定した。  The supportability of the catheter was determined by the value of the bending elastic modulus because it has a large correlation with the bending elastic modulus of the guide wire.

ガイドワイヤの真直性の評価方法としては、トルク伝達性試験において、360°回転を1回転とし、連続的に100回転させた後、180cmのガイドワイヤを垂下法により測定した。ガイドワイヤの長さ方向が床面に垂直となるように垂下させて、ガイドワイヤの先端の位置と、完全に垂直なワイヤの先端の位置との床面に平行な距離(mm)で評価した。  As a method for evaluating the straightness of the guide wire, in a torque transmission test, 360 ° rotation was set to 1 rotation, and after 100 rotations were continuously performed, a 180 cm guide wire was measured by a drooping method. The guide wire was suspended so that the length direction of the guide wire was perpendicular to the floor surface, and the distance between the position of the tip of the guide wire and the position of the tip of the wire completely perpendicular to the floor (mm) was evaluated. .

以上の結果を表1および表2に纏めた。実施例1では、水素が原子組成百分率で26at%含まれたa−C:H膜を475nmの厚さにコートすることで、芯線の曲げ弾性率が、19%増大し、表1に記載された物性を有する。この結果、本発明のガイドワイヤは表2に記載のような優れた性能を有しており、本発明の目的を達成することができた。  The above results are summarized in Tables 1 and 2. In Example 1, the bending elastic modulus of the core wire was increased by 19% by coating an aC: H film containing hydrogen at an atomic composition percentage of 26 at% to a thickness of 475 nm. Has physical properties. As a result, the guide wire of the present invention had excellent performance as shown in Table 2, and the object of the present invention could be achieved.

比較例1および比較例2Comparative Example 1 and Comparative Example 2

実施例と同様に、長さが150cm、太さが0.3mmΦで、先端部をテーパー加工したガイドワイヤ用ニッケル・チタン合金製芯線に、アークイオンプレーティング法で、ta−C膜,ta−C:H膜を成膜した。成膜条件としては、基板バイアス電圧は直流−50Vで,周波数10kHz、Duty比90%の負パルスバイアスを印加した。ガスはアルゴン(Ar)ガスを30ccmと固定し,メタン(CH)ガス流量が0の時にta−Cを成膜し,11ccmの時にta−C:Hを成膜した。カソード電流は30A,圧力は0.2Pa、時間は43minで成膜を行った。Similar to the examples, a nickel-titanium alloy core wire for guide wire having a length of 150 cm, a thickness of 0.3 mmΦ, and a tapered tip is applied to the ta-C film, ta-- by arc ion plating. A C: H film was formed. As film forming conditions, a substrate bias voltage was −50 V DC, a frequency of 10 kHz, and a negative pulse bias with a duty ratio of 90% was applied. As the gas, argon (Ar) gas was fixed at 30 ccm, and a ta-C film was formed when the methane (CH 4 ) gas flow rate was 0, and a ta-C: H film was formed when the gas flow was 11 ccm. Film formation was performed with a cathode current of 30 A, a pressure of 0.2 Pa, and a time of 43 min.

ガイドワイヤ芯線の表面に、上記アークイオンプレーティング法によって得られたta−C膜、ta−C:H膜の膜厚さはそれぞれ590nm、660nmで、水素は原子組成百分率で、それぞれ、6.1at%、7.7at%含まれていた。また、四点曲げ試験によって測定した曲げ弾性率は27GPaと28GPaで、各炭素膜をコートする前のニッケルチタン合金製芯線の曲げ弾性率が21GPaであることから、曲げ弾性率はそれぞれ29%、33%増大した。  The thicknesses of the ta-C film and the ta-C: H film obtained by the arc ion plating method on the surface of the guide wire core wire are 590 nm and 660 nm, respectively, and hydrogen is an atomic composition percentage. 1 at% and 7.7 at% were contained. Also, the flexural modulus measured by the four-point bending test is 27 GPa and 28 GPa, and the flexural modulus of the nickel titanium alloy core wire before coating each carbon film is 21 GPa. Increased by 33%.

上記の炭素膜がコートされたガイドワイヤの先端部を、実施例1と同様に、ウレタンチューブで被覆し、ガイドワイヤの全長に対して親水性コーティングを行った後、実施例1と同様の各種評価および分析を行った。その結果を表1および表2に纏めた。  The tip of the guide wire coated with the carbon film is covered with a urethane tube in the same manner as in Example 1, and after the hydrophilic coating is applied to the entire length of the guide wire, the same various as in Example 1 are performed. Evaluation and analysis were performed. The results are summarized in Tables 1 and 2.

比較例1および比較例2においては、炭素膜の水素量が本発明の範囲に無いことから、曲げ弾性率は大きく増加しているにもかかわらず、力学的負荷がかかった後は、真直性が低下し、トルク伝達が大きく低下した。また、曲げ試験後の表面クラック等の問題もある。  In Comparative Example 1 and Comparative Example 2, since the amount of hydrogen in the carbon film is not within the scope of the present invention, straightness is applied after a mechanical load is applied even though the flexural modulus is greatly increased. The torque transmission decreased significantly. There are also problems such as surface cracks after the bending test.

Figure 2017086843
Figure 2017086843
Figure 2017086843
Figure 2017086843

本発明は、特定構造の水素化アモルファス炭素膜を細径ガイドワイヤに薄膜状にコーティングし、曲げ弾性率および振動減衰性を増大することで、血管内壁の損傷がない安全性の高い、かつ操作性に優れた細径の治療用ガイドワイヤを提供するものである。また、本発明は、ガイドワイヤの生体適合性、抗血栓性など表面の機能化においても有用である。  In the present invention, a hydrogenated amorphous carbon film having a specific structure is coated on a thin guide wire in a thin film shape, and the bending elastic modulus and vibration damping are increased, so that there is no damage to the inner wall of the blood vessel and the operation is high. It is an object of the present invention to provide a therapeutic guide wire having a small diameter and excellent in properties. The present invention is also useful for functionalizing the surface of the guidewire such as biocompatibility and antithrombogenicity.

Claims (5)

金属製芯線の表面に、ダイヤモンドライク炭素膜を被覆した医療用ガイドワイヤであって、前記炭素膜は水素を8at%〜35at%(原子組成百分率)含み、炭素膜の厚さが50nm〜2μであり、かつ、炭素膜をコートする前の金属製芯線の曲げ弾性率に対して、炭素膜をコートした金属製芯線の曲げ弾性率が15%以上増大していることを特徴とする医療用ガイドワイヤ。  A medical guide wire in which a diamond-like carbon film is coated on the surface of a metal core wire, wherein the carbon film contains 8 at% to 35 at% (atomic composition percentage) of hydrogen, and the thickness of the carbon film is 50 nm to 2 μm The medical guide is characterized in that the bending elastic modulus of the metal core wire coated with the carbon film is increased by 15% or more with respect to the bending elastic modulus of the metal core wire before coating the carbon film. Wire. 金属製芯線の表面に、ダイヤモンドライク炭素膜を被覆した医療用ガイドワイヤであって、前記炭素膜は水素を20at%〜30at%(原子組成百分率)含み、炭素膜の厚さが50nm〜1μであり、かつ、炭素膜をコートする前の金属製芯線の曲げ弾性率に対して、炭素膜をコートした金属製芯線の曲げ弾性率が15%以上増大していることを特徴とする医療用ガイドワイヤ。  A medical guide wire in which a diamond-like carbon film is coated on the surface of a metal core wire, the carbon film containing hydrogen at 20 to 30 at% (atomic composition percentage), and the thickness of the carbon film is 50 nm to 1 μm The medical guide is characterized in that the bending elastic modulus of the metal core wire coated with the carbon film is increased by 15% or more with respect to the bending elastic modulus of the metal core wire before coating the carbon film. Wire. 金属製芯線がニッケル・チタン合金からなることを特徴とする請求項1あるいは2に記載の医療用ガイドワイヤ。  The medical guide wire according to claim 1 or 2, wherein the metal core wire is made of a nickel-titanium alloy. 前記ダイヤモンドライク炭素膜の被覆が、医療用ガイドワイヤの先端から70cmまでの範囲で行われていることを特徴とする請求項1から3に記載の医療用ガイドワイヤ。  4. The medical guide wire according to claim 1, wherein the coating of the diamond-like carbon film is performed in a range of 70 cm from the tip of the medical guide wire. 前記ダイヤモンドライク炭素膜の被覆が、医療用ガイドワイヤの先端テーパー部を除き、残りの基端部の全長に渡って行われていることを特徴とする請求項1から3に記載の医療用ガイドワイヤ。  4. The medical guide according to claim 1, wherein the coating of the diamond-like carbon film is performed over the entire length of the remaining proximal end portion except for the distal tapered portion of the medical guide wire. Wire.
JP2015236979A 2015-11-16 2015-11-16 Medical guide wire Pending JP2017086843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236979A JP2017086843A (en) 2015-11-16 2015-11-16 Medical guide wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236979A JP2017086843A (en) 2015-11-16 2015-11-16 Medical guide wire

Publications (1)

Publication Number Publication Date
JP2017086843A true JP2017086843A (en) 2017-05-25

Family

ID=58769659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236979A Pending JP2017086843A (en) 2015-11-16 2015-11-16 Medical guide wire

Country Status (1)

Country Link
JP (1) JP2017086843A (en)

Similar Documents

Publication Publication Date Title
JP4066440B2 (en) MEDICAL DEVICE WITH DIAMOND-LIKE THIN FILM AND MANUFACTURING METHOD THEREOF
JP3714471B2 (en) Medical covering material
US6203505B1 (en) Guidewires having a vapor deposited primer coat
US20030093011A1 (en) Performance enhancing coating on intraluminal devices
JPH0999092A (en) Superelastic compound type guide wire
JPWO2011021566A1 (en) Medical instruments and metal products
JP2017086843A (en) Medical guide wire
JP2002113092A (en) Manufacturing method for medical instrument and medical instrument
JP5290564B2 (en) Carbon thin film
CN201019805Y (en) Operating knife with nano diamond coating
JP5215653B2 (en) Antithrombogenic material and method for producing the same
US8900714B2 (en) Medical appliance having polyimide film and method for manufacture thereof
JP2006000521A (en) Medical instrument and method of forming hard coating film on medical instrument
CN106267356B (en) Implanted medical device prefabricated part, implanted medical device and preparation method thereof
JP4360752B2 (en) forceps
JP4740741B2 (en) Medical guide wire coated with carbon film
JP2002095755A (en) Medical guide wire
US20240009358A1 (en) Metal Material for Medical Device, Method of Manufacturing Metal Material for Medical Device, and Medical Device
RU2809018C1 (en) Metal material for medical device, method of producing metal material for medical device, and medical device
JPH07185010A (en) Medical guide wire
CN111991621A (en) Medical instrument and preparation method thereof
Kovaleva et al. Tribological characteristics of nanosized carbon coatings obtained by the pulsed vacuum-arc method on the modified TiNi surface
KR20190012654A (en) Stent for medical use and method of manufacturing thereof
JP2010279581A (en) Guide wire
KR20090107369A (en) Silicon incorporated diamond-like carbon film having a good hemocompatibility of biomedical material and the fabrication method thereof, and biomedical material using the same