JP3714471B2 - Medical covering material - Google Patents

Medical covering material Download PDF

Info

Publication number
JP3714471B2
JP3714471B2 JP2002122237A JP2002122237A JP3714471B2 JP 3714471 B2 JP3714471 B2 JP 3714471B2 JP 2002122237 A JP2002122237 A JP 2002122237A JP 2002122237 A JP2002122237 A JP 2002122237A JP 3714471 B2 JP3714471 B2 JP 3714471B2
Authority
JP
Japan
Prior art keywords
fluorine
adhesion
medical
diamond
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002122237A
Other languages
Japanese (ja)
Other versions
JP2003310744A (en
Inventor
哲也 鈴木
厚 島田
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2002122237A priority Critical patent/JP3714471B2/en
Publication of JP2003310744A publication Critical patent/JP2003310744A/en
Application granted granted Critical
Publication of JP3714471B2 publication Critical patent/JP3714471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐付着性や耐擬着性を有し、さらに基材のへ強固な密着性及び高い耐摩耗性を併せ持つ医療用部材に関する。
また、本発明は、カテーテル、ガイドワイヤー、ステント、ペースメーカーリードなどの体内留置用器材や注射針、メス、(傷口保持部品)などの人体組識,血液等と直接的に接触する各種医療用部材に関する。
【0002】
【従来の技術】
従来は、医療機器にDLCを被覆し、被膜全体に弗素を含有することが開示されており、以下に記載する発明が知られている。
例えば、特開平11−313884号公報には、ステント基材と、ステント基材の少なくとも表面の一部に注入された炭素イオン注入層と、該炭素イオン注入層の上に成膜されたダイヤモンドライクカーボン膜とを具備したことを特徴とする生体留置用ステントさらにダイヤモンドライクカーボン膜が積層されている生体留置用ステントが、特開2001−29447公報には、医療器本体の表面の少なくとも一部を、原子比(F/F+C+H)が60%以上であるフッ素含有ダイヤモンドライクカーボン膜で被覆したことを特徴とする体内埋込み医療器が、特開2001−238962号公報には芯線体とその表面に形成されたDLC被膜とを有することを特徴とする医療用挿通線体がそれぞれ開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、これら従来の技術は、弗素添加は、抗血栓性についての特性は向上するものの、基材の使用時の変形で剥離しやすくなることや、機械的な耐摩耗性が低下するという問題があった。
そのため、血液、組織液や血管、生体組織などの人体組識はおろか使用される医薬品に対する耐付着性や耐擬着性を有し、さらに基材のへ強固な密着性及び高い耐摩耗性を併せ持つ医療用部材が求められていた。
【0004】
【問題を解決するための手段】
上記状況に鑑み、弗素を含有したダイヤモンド様炭素膜を被覆し、被膜表面から深さ0.1μm以内の弗素濃度が10〜40at%とした医療用被覆部材とすることによって、上記課題を解決した。
本発明の上記医療用被覆部材においては、被膜表面からの深さが、0.1μmより深い領域において、弗素濃度がない方が機械的な耐摩耗性や基材との密着性が優れるが、10at%未満の低濃度であれば存在しても良く、基材に対して連続的に濃度が漸減しても良い。
【0005】
また、弗素と同じ領域に存在する被膜表面から深さ0.1μm以内の水素濃度を2〜30at%に制御することによって、血液、組織液や血管、生体組織などの人体組識はおろか使用される医薬品に対する耐付着性や耐擬着性を維持しつつ、機械的な特性の低減を抑制できるため好ましい。水素濃度が2at%未満では被膜内の圧縮残留応力が増大するために剥離しやすくなり、30at%より多くては機械的な特性(硬さ、結晶性)が低下する。そのため、被膜表面から深さ0.1μm以内の水素濃度を2〜30at%と定めた。水素濃度は、5〜15at%がより好ましい。
【0006】
さらに、該ダイヤモンド様炭素膜が、SP2結合とSP3結合を有し、かつ、被膜と部材の界面から0.1μm以内にSP3/SP2比が高い領域を有することによって、基材である医療用部材との密着性が向上するため好ましい。
前記ダイヤモンド様炭素膜の膜厚が0.2〜2μm以下に制御することによって所望の性能がより発揮されるため好ましい。
【0007】
【発明の実施の態様】
本発明の医療用被覆材では、部材のダイヤモンド様炭素膜表面側に弗素付加領域を有し、基材側の弗素含有量を低く制限することによって、血液、組織液、血管や生体組織などの人体組識はおろか使用される医薬品に対しても優れた耐付着性や耐擬着性を有し、さらに基材のへ強固な密着性及び高い耐摩耗性を併せ持つ医療用被覆材が得られたものである。
【0008】
本発明における医療用被覆材としては、カテーテル、ガイドワイヤー、ステント、ペースメーカーリードなどの体内留置用器材や注射針、メス、(傷口保持部品)などの直接人体に接触する部材の外に、治療時の排出容器、バット等の容器などが挙げられるが、直接人体に接触する部材において特に効果が顕著である。本発明の医療用被覆材に用いる材質は、ステンレス鋼、プラチナ合金、金合金、タンタル合金などの金属や、ポリエチレン、ポロプロピレン、ポリエチレンテレフタレートなどの樹脂、さらにアルミナ等のセラミック及びガラスなどが挙げられるが、これら実例に拘泥されるわけではない。これら基材は、多孔質であっては被膜の密着性が劣るため、緻密質であることが好ましい。
【0009】
本発明の医療用被覆材におけるダイヤモンド様炭素膜の被覆は、物理蒸着法や化学蒸着法によって実現できるが、複雑形状に均一に被覆できることや、弗素の部分添加が容易であるという観点からはプラズマCVD法が好ましい。
【0010】
また、ダイヤモンド様炭素膜は、水素などのキャリアガスと炭素源となるメタン、エタン、プロパン、ベンゼンなどを被覆する部材と共に真空装置内に装入し、導入したガスをイオン化させることによって、部材表面に形成するものである。弗素の部分付加は、弗素を含むガス、例えば、C2F6 、CF4 などを前記キャリアガス、炭素源ガスと同時に装置内に導入すうることによって弗素が付加された領域を有するダイヤモンド様炭素膜が得られる。被膜内の弗素濃度は導入する弗素含有ガスの分圧、装置内真空度によって制御し、付加領域は、弗素含有ガスを導入するタイミングにより制御する。
【0011】
本発明では、血液や筋肉、血管などの人体組識はおろか使用される医薬品に対しての耐付着性や耐擬着性は、表面から0.1μm以内の弗素濃度を10〜40at%に制御することで所望の効果が得られることが明らかになった。さらに、表面から0.1μm以内の弗素付加領域内の水素濃度を2〜30at%に制御することによって、血液や筋肉、血管などの人体組識はおろか使用される医薬品に対する耐付着性や耐擬着性を維持しつつ、機械的な特性の低減を抑制するものである。具体的には、導入ガス中の水素分圧を下げることによって得られる。
【0012】
また、基材との密着性は、被膜と部材の界面から0.1μm以内にSP3/SP2比が高い領域を有することによって向上することが明らかとなった。炭素被膜のとり得る結晶構造としては種々あるが、本発明は、SP3結合(ダイヤモンド結合)とSP2結合(グラファイト結合)を含み、部材との界面付近のSP2量を多くすることによって、被膜の密着性を向上させるものである。SP3結合(ダイヤモンド結合)は、最も強固な結合であるため、機械的な特性は優れるものの、SP2結合がSP3結合より多い場合は耐摩耗性が低下するものの、応力を分散する効果が発揮されるため、部材との密着性が向上するものである。特にSP3/SP2比が0.01〜10では、高い密着性と優れた耐摩耗性を発揮するため好ましい。
【0013】
以上の効果は、生体内埋め込み医療器など直接人体に接触する機器において特に効果が顕著であるが、冠動脈ステントを例に挙げてより詳細に説明する。
冠動脈ステントは冠動脈内に留置され、狭くなった血管病変部で膨らむように設計されている。このときに、血液や血管組識と接触するとそこに血栓が形成されてしまう。そこで、表面にダイヤモンド様炭素膜であって、なおかつ弗素を付加することによってこの問題は解消するが、ステント拡張時に、当然被覆材も基材にあわせて変形するのであるから、剥離し易くなってしまう。
【0014】
さらに、ステントを挿入するときには、カテーテルやガイドワイヤーなどの医療器具等と合せて使用されることから、摩滅や傷が入ることによって確実な手技操作が望めない。そこで、本発明のようにダイヤモンド様炭素膜を被覆した部材であって、ごく表面のみに特定濃度の弗素付加領域を設けることによって、優れた抗血栓性や生体適合性を有し、かつ、強固な密着性及び高い耐摩耗性を併せ持つステントが得られる。
【0015】
特にステントにおいては、時間の推移によるステントの変形が起り得るが、これはステントと血管組識による応力の集中や応力の不均一な負荷によるものである。本発明品によっては、優れた耐凝着性を有することから応力がステント全体に均一に負荷されるため変形を抑制し、なおかつ弗素負荷領域より深部では耐変形性に優れるSP3結合、SP2結合を有する構造であるため、時間の経過による劣化も防止されるという効果を発揮する。
以下に具体的に実施例を挙げて説明する。
【0016】
【実施例1】
試験用の基板として、30×30×5mm形状でSUS316製を用いた。
基材は、表1に示す種々の被覆を行い評価に用いた。
成膜はプラズマCVD装置を用いた。基材を洗浄後、成膜装置内に装入し、アルゴンイオンボンバードによりイオン洗浄した。
DLCの成膜は、水素95%、ベンゼン5%の混合ガスを真空度1×10−3まで導入し、弗素附加領域では、真空度が一定になるように制御しつつC2F6 を2%の割合で混入させた。
装置内では、プラズマを発生させるさせるために13.56MHz、電力1kWの高周波電力を投入し、成膜した。SP2結合とSP3結合の比は、投入電力を200WでSP2結合の多い領域を形成し、連続的に1kWまで電力を上昇させた。
比較としてTiNを被覆形成するものは、HCD(ホローカソード)型PVD装置でアルゴン−窒素の混合プラズマ中でTiを蒸着することによりTiNを成膜した。膜厚は1.1μmとした。
【0017】
【表1】

Figure 0003714471
【0018】
得られた試料は、3種の試験により評価を行なった。
(1)試験1:血液を3cc滴下して固着させた後、粘着テープで引き剥がし試験 を行なった。
試料に残留している硬化血液付着量を比較した。
(2)試験2:ダイヤモンド圧子で0〜10Nまで連続的に荷重を増加させながら 皮膜上から引掻いた時に被膜が剥離するまでの臨界荷重を比較した。
5N以下で剥離:▲、6〜10Nで剥離:○、剥離なし(微少欠損):◎
(3)試験3:リング状(30Φ)の炭素鋼(S20C)を0.2m/sで回転させつつ、100g の荷重で試料被覆面を血液中で摺動させ、10min後の摩耗量を摩耗幅で比較した。
5mm以上:×、3〜5mm:△、1〜3mm:○、1mm以下:◎
【0019】
【表2】
Figure 0003714471
【0020】
【実施例2】
試験用の基板を15φ×0.3mm形状とした、発明品1、2、比較品3、4をラット皮下に埋植し、以下の試験により評価した。
試験4:ラット皮下に埋植後、1週間後の急性期炎症反応を血液学的に評価するために、血液中の成分、IL−1β、TNF−α、C3aを表3に比較評価した。
試験5:ラット皮下に埋植後、12週間後の慢性期組識反応を病理組識学的に評価するために、好中球、リンパ球を表4に比較評価した。
試験6:ラット皮下に埋植時に、二つ折りにし、12週間後の被膜剥離及び生体反応状態について表5に比較評価した。
【0021】
【表3】
Figure 0003714471
【0022】
【表4】
Figure 0003714471
【0023】
【表5】
Figure 0003714471
【0024】
表3、4から明らかなように、生体適合性は優れていることがわかった。さらに、被膜の密着性及び生体の付着性を評価した結果、表5から明らかなように比較品では被膜の剥離、もしくは生体の付着(癒着)が発生していたものの、本発明品は被膜の密着性及び生体付着状態についても優れた性能を示した。
【0025】
【発明の効果】
本発明では、DLC被膜の含有フッ素濃度、水素濃度、SP2/SP3比及び膜厚を適切に調整することによって医療用部材の表面にDLC被膜を形成するものであり、このようにして得られた表面にDLCを被覆した医療用被覆部材は、耐付着性が優れ、耐凝着性とともに、機械的な耐摩耗性及び密着性を併せ持っている。また、血液や筋肉、血管などの人体組織あるいは医薬品に対する耐付着性や耐擬着性を維持しつつ、機械的な特性を抑制できる。されに、本発明の医療用DLC被覆部材は、耐摩耗性が向上し、基材に対するDLC被膜の密着性が改善され、さらに得られた医療用器材は実用的な、かつ、安定性が著しく優れた部材であることがわかった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medical member having adhesion resistance and anti-fouling resistance, and further having strong adhesion to a substrate and high wear resistance.
In addition, the present invention relates to various medical members that come into direct contact with body tissues such as catheters, guide wires, stents, pacemaker leads, human tissues such as injection needles, scalpels, and (wound holding parts), blood, and the like. About.
[0002]
[Prior art]
Conventionally, it has been disclosed that a medical device is coated with DLC and the entire coating contains fluorine, and the inventions described below are known.
For example, Japanese Patent Laid-Open No. 11-313848 discloses a stent base material, a carbon ion implanted layer implanted into at least a part of the surface of the stent substrate, and a diamond-like film formed on the carbon ion implanted layer. An indwelling stent comprising a carbon film and a living indwelling stent in which a diamond-like carbon film is laminated, Japanese Patent Application Laid-Open No. 2001-29447 discloses at least a part of the surface of a medical device body. An implantable medical device characterized by being coated with a fluorine-containing diamond-like carbon film having an atomic ratio (F / F + C + H) of 60% or more is disclosed in Japanese Patent Application Laid-Open No. 2001-238972, which is formed on a core wire body and its surface. Each of the medical insertion lines is characterized by having a DLC film formed.
[0003]
[Problems to be solved by the invention]
However, although these conventional techniques improve the antithrombogenic properties, the addition of fluorine has a problem that it becomes easy to peel due to deformation during use of the base material, and mechanical wear resistance decreases. there were.
Therefore, it has adhesion resistance and anti-fouling resistance to drugs used as well as human tissues such as blood, tissue fluid, blood vessels, and biological tissues, and also has strong adhesion to the substrate and high wear resistance. There was a need for medical members.
[0004]
[Means for solving problems]
In view of the above situation, the above problem was solved by coating a diamond-like carbon film containing fluorine and forming a medical covering member having a fluorine concentration within a depth of 0.1 μm from the coating surface to 10 to 40 at%.
In the medical covering member of the present invention, in the region where the depth from the coating surface is deeper than 0.1 μm, the mechanical wear resistance and the adhesion to the base material are better when there is no fluorine concentration. It may be present as long as it has a low concentration of less than%, and the concentration may gradually decrease with respect to the substrate.
[0005]
In addition, by controlling the hydrogen concentration within a depth of 0.1μm from the surface of the coating existing in the same area as fluorine to 2 to 30at%, it is used not only for human tissues such as blood, tissue fluid, blood vessels, and biological tissues It is preferable because the mechanical properties can be prevented from being reduced while maintaining adhesion resistance and pseudo-adhesion resistance. When the hydrogen concentration is less than 2 at%, the compressive residual stress in the coating increases, and therefore, peeling easily occurs. When the hydrogen concentration exceeds 30 at%, mechanical properties (hardness and crystallinity) are deteriorated. For this reason, the hydrogen concentration within a depth of 0.1 μm from the coating surface was determined to be 2 to 30 at%. The hydrogen concentration is more preferably 5 to 15 at%.
[0006]
Further, the diamond-like carbon film has SP2 bonds and SP3 bonds, and has a region having a high SP3 / SP2 ratio within 0.1 μm from the interface between the coating and the member, thereby providing a medical member as a base material. This is preferable because of improving the adhesion.
The diamond-like carbon film is preferable because the desired performance is more exhibited by controlling the film thickness to 0.2 to 2 μm or less.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The medical coating material of the present invention has a fluorine-added region on the surface of the diamond-like carbon film of the member, and limits the fluorine content on the base material side to reduce the human body such as blood, tissue fluid, blood vessels, and biological tissues. In addition to the organization, the medical coating material has excellent adhesion resistance and pseudo-adhesion resistance for pharmaceuticals used, and also has strong adhesion to the substrate and high wear resistance. Is.
[0008]
The medical covering material in the present invention includes indwelling devices such as catheters, guidewires, stents, pacemaker leads, injection needles, scalpels, and members that directly contact the human body, such as (wound holding parts). The discharge container, the container such as a bat, and the like are mentioned, but the effect is particularly remarkable in a member that directly contacts the human body. Examples of the material used for the medical coating material of the present invention include metals such as stainless steel, platinum alloys, gold alloys, and tantalum alloys, resins such as polyethylene, polypropylene, and polyethylene terephthalate, and ceramics and glass such as alumina. However, they are not bound by these examples. These substrates are preferably dense because they are porous and have poor film adhesion.
[0009]
The coating of the diamond-like carbon film in the medical coating material of the present invention can be realized by physical vapor deposition or chemical vapor deposition, but from the viewpoint that it can be uniformly coated in a complex shape and that partial addition of fluorine is easy. The CVD method is preferred.
[0010]
The diamond-like carbon film is placed in a vacuum device together with a member that covers a carrier gas such as hydrogen and a carbon source such as methane, ethane, propane, and benzene, and the introduced gas is ionized to ionize the surface of the member. Is formed. The partial addition of fluorine is a diamond-like carbon having a region to which fluorine is added by introducing a gas containing fluorine, for example, C 2 F 6 , CF 4, etc. into the apparatus simultaneously with the carrier gas and the carbon source gas. A membrane is obtained. The fluorine concentration in the film is controlled by the partial pressure of the fluorine-containing gas to be introduced and the degree of vacuum in the apparatus, and the additional region is controlled by the timing at which the fluorine-containing gas is introduced.
[0011]
In the present invention, the anti-adhesion and anti-fouling properties for drugs used as well as human tissues such as blood, muscles, blood vessels, etc., control the fluorine concentration within 0.1 μm from the surface to 10-40 at%. It has become clear that the desired effect can be obtained. Furthermore, by controlling the hydrogen concentration in the fluorine-added region within 0.1 μm from the surface to 2 to 30 at%, adhesion resistance and anti-fouling against drugs used as well as human tissues such as blood, muscles and blood vessels are controlled. This suppresses the reduction of mechanical properties while maintaining the properties. Specifically, it can be obtained by lowering the hydrogen partial pressure in the introduced gas.
[0012]
Further, it has been clarified that the adhesion to the substrate is improved by having a region having a high SP3 / SP2 ratio within 0.1 μm from the interface between the coating and the member. There are various crystal structures that the carbon film can take, but the present invention includes SP3 bonds (diamond bonds) and SP2 bonds (graphite bonds). By increasing the amount of SP2 near the interface with the member, the adhesion of the film It improves the performance. Since SP3 bond (diamond bond) is the strongest bond, mechanical properties are excellent, but when SP2 bond is more than SP3 bond, wear resistance is reduced, but the effect of dispersing stress is exhibited. Therefore, the adhesiveness with the member is improved. In particular, an SP3 / SP2 ratio of 0.01 to 10 is preferable because it exhibits high adhesion and excellent wear resistance.
[0013]
The above effect is particularly remarkable in a device that directly contacts the human body, such as an in-vivo implantable medical device, but will be described in more detail by taking a coronary stent as an example.
Coronary stents are placed in the coronary arteries and are designed to swell at narrowed vascular lesions. At this time, if it comes into contact with blood or blood vessel tissue, a thrombus is formed there. Therefore, a diamond-like carbon film on the surface and addition of fluorine solves this problem. However, when the stent is expanded, the coating material naturally deforms in accordance with the base material, so that it is easy to peel off. End up.
[0014]
Furthermore, when inserting a stent, since it is used in combination with a medical instrument such as a catheter or a guide wire, it is not possible to expect a reliable manual operation due to wear or damage. Therefore, a member coated with a diamond-like carbon film as in the present invention, and having a specific concentration of a fluorine-added region only on the surface, has excellent antithrombogenicity and biocompatibility and is strong. A stent having both excellent adhesion and high wear resistance can be obtained.
[0015]
In particular, in the stent, the stent may be deformed with the passage of time, which is due to stress concentration and uneven stress due to the stent and blood vessel tissue. Depending on the product of the present invention, since it has excellent adhesion resistance, stress is uniformly applied to the entire stent, so that deformation is suppressed, and in the deeper part than the fluorine load region, SP3 bonding and SP2 bonding that are excellent in deformation resistance are provided. Since it has a structure, it has the effect of preventing deterioration over time.
Hereinafter, specific examples will be described.
[0016]
[Example 1]
As a test substrate, SUS316 made of 30 × 30 × 5 mm was used.
The substrate was subjected to various coatings shown in Table 1 and used for evaluation.
A plasma CVD apparatus was used for film formation. After the substrate was washed, it was charged into a film forming apparatus and ion-washed with an argon ion bombardment.
In the film formation of DLC, a mixed gas of 95% hydrogen and 5% benzene was introduced to a vacuum degree of 1 × 10-3, and in the fluorine addition region, C 2 F 6 was controlled while controlling the vacuum degree to be constant. Was mixed at a rate of 2%.
In the apparatus, in order to generate plasma, high-frequency power of 13.56 MHz and power of 1 kW was applied to form a film. As for the ratio of SP2 coupling and SP3 coupling, the input power was 200 W, a region with many SP2 couplings was formed, and the power was continuously increased to 1 kW.
For comparison, TiN was formed by depositing Ti in a mixed plasma of argon and nitrogen with an HCD (hollow cathode) PVD apparatus. The film thickness was 1.1 μm.
[0017]
[Table 1]
Figure 0003714471
[0018]
The obtained sample was evaluated by three types of tests.
(1) Test 1: 3 cc of blood was dropped and fixed, and then peeled off with an adhesive tape.
The amount of adhered cured blood remaining in the sample was compared.
(2) Test 2: While increasing the load continuously from 0 to 10 N with a diamond indenter, the critical load until the coating peeled when scratched from the coating was compared.
Peeling at 5N or less: ▲, Peeling at 6-10N: ○, No peeling (slight defect): ◎
(3) Test 3: Rotating a ring-shaped (30Φ) carbon steel (S20C) at 0.2 m / s, sliding the sample-coated surface in blood with a load of 100 g, and determining the amount of wear after 10 min as the wear width Compared.
5 mm or more: ×, 3-5 mm: Δ, 1-3 mm: ○, 1 mm or less: ◎
[0019]
[Table 2]
Figure 0003714471
[0020]
[Example 2]
Inventive products 1 and 2 and comparative products 3 and 4 having a test substrate having a shape of 15φ × 0.3 mm were implanted subcutaneously in rats and evaluated by the following tests.
Test 4: The components in blood, IL-1β, TNF-α, and C3a were compared and evaluated in Table 3 in order to hematologically evaluate the acute inflammatory reaction one week after implantation in the rat skin.
Test 5: Neutral cells and lymphocytes were compared and evaluated in Table 4 in order to evaluate the chronic tissue response after 12 weeks after implantation in rats subcutaneously.
Test 6: When the rats were implanted subcutaneously, they were folded in half, and the film peeling and biological reaction state after 12 weeks were compared and evaluated in Table 5.
[0021]
[Table 3]
Figure 0003714471
[0022]
[Table 4]
Figure 0003714471
[0023]
[Table 5]
Figure 0003714471
[0024]
As is apparent from Tables 3 and 4, it was found that the biocompatibility was excellent. Furthermore, as a result of evaluating the adhesion of the film and the adhesion of the living body, as is apparent from Table 5, the comparative product had peeling of the film or the adhesion (adhesion) of the living body. Excellent performance was also shown in terms of adhesion and bioadhesion.
[0025]
【The invention's effect】
In the present invention, the DLC film is formed on the surface of the medical member by appropriately adjusting the fluorine concentration, hydrogen concentration, SP2 / SP3 ratio and film thickness of the DLC film, and thus obtained. A medical covering member whose surface is coated with DLC has excellent adhesion resistance, and has both mechanical wear resistance and adhesion as well as adhesion resistance. In addition, mechanical characteristics can be suppressed while maintaining adhesion resistance and anti-fouling resistance to human tissues such as blood, muscles and blood vessels, or pharmaceuticals. In addition, the medical DLC coated member of the present invention has improved wear resistance, improved adhesion of the DLC film to the base material, and the obtained medical device is practical and extremely stable. It was found to be an excellent member.

Claims (4)

フッ素を含有したダイヤモンド様炭素膜を被覆し、被膜表面から深さ0.1μm以内のフッ素濃度 10 〜40 at% とし、0.1μmより深い領域のフッ素濃度を10 at %未満とすることを特徴とする医療用被覆部材。Fluorine coated with diamond-like carbon film containing the fluorine concentration within the depth 0.1μm from the coating surface and 10 to 40 at%, that the fluorine concentration of the deeper 0.1μm region to be less than 10 at% A medical covering member. 被膜表面から深さ0.1μm以内の水素濃度が、2〜30at%であることを特徴とする請求項1記載の医療用被覆部材。  The medical covering member according to claim 1, wherein the hydrogen concentration within a depth of 0.1 µm from the surface of the coating is 2 to 30 at%. 該ダイヤモンド様炭素膜が、0.2〜2μmであることを特徴とする請求項1又は2に記載の医療用被覆部材。  The medical covering member according to claim 1, wherein the diamond-like carbon film has a thickness of 0.2 to 2 μm. カテーテル、ガイドワイヤー、ステント、ペースメーカーリード、体内留置用器材、注射針、メス又は傷口保持部品に用いることを特徴とする請求項1〜3のいずれかに記載の医療用被覆部材。The medical covering member according to any one of claims 1 to 3, wherein the medical covering member is used for a catheter, a guide wire, a stent, a pacemaker lead, an indwelling device, an injection needle, a scalpel, or a wound holding part .
JP2002122237A 2002-04-24 2002-04-24 Medical covering material Expired - Fee Related JP3714471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122237A JP3714471B2 (en) 2002-04-24 2002-04-24 Medical covering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122237A JP3714471B2 (en) 2002-04-24 2002-04-24 Medical covering material

Publications (2)

Publication Number Publication Date
JP2003310744A JP2003310744A (en) 2003-11-05
JP3714471B2 true JP3714471B2 (en) 2005-11-09

Family

ID=29537907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122237A Expired - Fee Related JP3714471B2 (en) 2002-04-24 2002-04-24 Medical covering material

Country Status (1)

Country Link
JP (1) JP3714471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155078A1 (en) * 2015-04-03 2016-10-06 中奥汇成科技股份有限公司 Amorphous carbon composite coating, and manufacturing method and application thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740741B2 (en) * 2003-12-19 2011-08-03 学校法人慶應義塾 Medical guide wire coated with carbon film
US20060079863A1 (en) * 2004-10-08 2006-04-13 Scimed Life Systems, Inc. Medical devices coated with diamond-like carbon
US8071155B2 (en) * 2005-05-05 2011-12-06 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US9440003B2 (en) 2005-11-04 2016-09-13 Boston Scientific Scimed, Inc. Medical devices having particle-containing regions with diamond-like coatings
US9526814B2 (en) 2006-02-16 2016-12-27 Boston Scientific Scimed, Inc. Medical balloons and methods of making the same
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
JP4066440B2 (en) 2006-05-17 2008-03-26 トーヨーエイテック株式会社 MEDICAL DEVICE WITH DIAMOND-LIKE THIN FILM AND MANUFACTURING METHOD THEREOF
US8838244B2 (en) 2006-06-02 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Cardiac pacemaker device with circuits for monitoring residual capacity of battery
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
CA2655793A1 (en) 2006-06-29 2008-01-03 Boston Scientific Limited Medical devices with selective coating
JP5070582B2 (en) * 2006-10-20 2012-11-14 学校法人慶應義塾 Polyolefin component with improved adhesion by coating with DLC film
JP5172180B2 (en) * 2007-03-19 2013-03-27 トーヨーエイテック株式会社 DLC film modification method, medical material, and medical device manufacturing method
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
JP2010535541A (en) 2007-08-03 2010-11-25 ボストン サイエンティフィック リミテッド Coating for medical devices with large surface area
EP2271380B1 (en) 2008-04-22 2013-03-20 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
WO2009132176A2 (en) 2008-04-24 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
EP2303350A2 (en) 2008-06-18 2011-04-06 Boston Scientific Scimed, Inc. Endoprosthesis coating
WO2011021566A1 (en) * 2009-08-17 2011-02-24 川澄化学工業株式会社 Medical instrument and metal product
KR20130047697A (en) 2010-06-28 2013-05-08 신세스 게엠바하 Coated implant
JP6371611B2 (en) * 2014-07-04 2018-08-08 トーヨーエイテック株式会社 Implant and manufacturing method thereof
US10883601B2 (en) 2017-03-31 2021-01-05 Kabushiki Kaisha Riken Sliding member and piston ring
CN110462198B (en) 2017-03-31 2020-07-24 株式会社理研 Sliding member and piston ring
KR102094269B1 (en) * 2019-09-30 2020-03-30 (주)시지바이오 Stent for medical use and method of manufacturing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155078A1 (en) * 2015-04-03 2016-10-06 中奥汇成科技股份有限公司 Amorphous carbon composite coating, and manufacturing method and application thereof

Also Published As

Publication number Publication date
JP2003310744A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3714471B2 (en) Medical covering material
EP2018881B1 (en) Medical device having diamond-like thin film and method for manufacture thereof
US7942926B2 (en) Endoprosthesis coating
US6306176B1 (en) Bonding layers for medical device surface coatings
CN105343938B (en) Medical instrument
EP1795563A1 (en) Amphiphilic polymeric coating
US20090246243A1 (en) Carbonaceous Protective Multifunctional Coatings
WO2001043790A3 (en) Medical article with a diamond-like carbon coating
Jamesh et al. Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition
Hasebe et al. Lubrication performance of diamond-like carbon and fluorinated diamond-like carbon coatings for intravascular guidewires
Shim et al. Effects of a titanium dioxide thin film for improving the biocompatibility of diamond-like coated coronary stents
Harder et al. Coating of vascular stents with antithrombogenic amorphous silicon carbide
JP2006000521A (en) Medical instrument and method of forming hard coating film on medical instrument
JP4740741B2 (en) Medical guide wire coated with carbon film
JP2009153586A (en) Antithrombogenic material and its manufacture process
EP4241799A1 (en) Metal material for medical device, manufacturing method for metal material for medical device, and medical device
RU2809018C1 (en) Metal material for medical device, method of producing metal material for medical device, and medical device
EP3636294A1 (en) Method for treatment medical devices made from nickel - titanium (niti) alloys
KR20190117863A (en) Method for preparation of ePTFE-based artificial vessels with enhanced hemocompatibility via selective plasma etching
Nakatani et al. Electrochemical Polarization Characteristics of a DLC-Coated Magnesium Alloy Stent in a Saline Solution
Hotta et al. Diamond-like carbon coated on polymers for biomedical applications
EP4129351A1 (en) Method for production of nanostructured surfaces on stents for improved biocompatibility
KR20190012654A (en) Stent for medical use and method of manufacturing thereof
Nakagawa et al. Segment-structured diamond-like carbon coatings on polymer catheter
KR20190113722A (en) Stent for medical use and method of manufacturing thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050301

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R150 Certificate of patent or registration of utility model

Ref document number: 3714471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees