JP4740741B2 - Medical guide wire coated with carbon film - Google Patents

Medical guide wire coated with carbon film Download PDF

Info

Publication number
JP4740741B2
JP4740741B2 JP2005516474A JP2005516474A JP4740741B2 JP 4740741 B2 JP4740741 B2 JP 4740741B2 JP 2005516474 A JP2005516474 A JP 2005516474A JP 2005516474 A JP2005516474 A JP 2005516474A JP 4740741 B2 JP4740741 B2 JP 4740741B2
Authority
JP
Japan
Prior art keywords
guide wire
medical guide
wire
coating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005516474A
Other languages
Japanese (ja)
Other versions
JPWO2005061021A1 (en
Inventor
哲也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2005516474A priority Critical patent/JP4740741B2/en
Publication of JPWO2005061021A1 publication Critical patent/JPWO2005061021A1/en
Application granted granted Critical
Publication of JP4740741B2 publication Critical patent/JP4740741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/084Carbon; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Description

本発明は、医療用挿通線体(医療用ガイドワイヤー)に関する。
さらに、本発明は、潤滑性が高くて、カテーテル内及び例えば血管、消化管等の管状組織等の生体組織内を安定して円滑に進行可能であり、適度の剛性があって、操作が容易な医療用ガイドワイヤーに関する。
The present invention relates to a medical insertion wire (medical guide wire).
Furthermore, the present invention has high lubricity, can be stably and smoothly advanced in the catheter and in living tissue such as a tubular tissue such as a blood vessel and a digestive tract, and has an appropriate rigidity and is easy to operate. Related to a medical guide wire.

医療用ガイドワイヤーは、例えば治療具等を体内の患部へと案内するための治療用具として、あるいは、管状組織等の生体組織内を挿通して先端部を患部にまで到達させ、先端部で患部の治療を行う治療用具として使用される。   The medical guide wire is used as, for example, a treatment tool for guiding a treatment tool or the like to an affected part in the body, or is inserted through a living tissue such as a tubular tissue so that the distal end reaches the affected part. It is used as a treatment tool for performing the treatment.

例えば、冠状動脈梗塞を治療するための医療用ガイドワイヤーは、芯線の先端に形成された螺旋線体被装着部とその螺旋体被装着部に装着された螺旋線体とを有している。この螺旋線体被装着部は、通常、テーパ状に形成されており、螺旋線体は、線体すなわち、ワイヤーをコイル状に形成してなるものでガイドワイヤーと称している。   For example, a medical guide wire for treating coronary artery infarction has a spiral wire attached portion formed at the tip of a core wire and a spiral wire attached to the spiral attached portion. The helical wire attached portion is usually formed in a tapered shape, and the helical wire is formed by forming a wire, that is, a wire in a coil shape, and is called a guide wire.

図1に従来のガイドワイヤーの基本構造を示す。   FIG. 1 shows the basic structure of a conventional guide wire.

例えば、冠状動脈梗塞の治療に使用されるガイドワイヤーは、装着された部分を先頭にして、人体の所定の部位から血管中に挿入されたカテーテル中に挿入される。このカテーテルは、その先端開口部が人体内の患部近傍に位置するように、人体内に挿入されている。カテーテル内に医療用ガイドワイヤーを繰り込んでいき、カテーテルの先端開口部から、さらにこの医療用ガイドワイヤーの先端は患部にまで到達させる。このとき、医療用ガイドワイヤーの先端は患部に至る一方、医療用ガイドワイヤーの末端は、人体の外に出ている。   For example, a guide wire used for the treatment of coronary artery infarction is inserted into a catheter inserted into a blood vessel from a predetermined part of the human body with the attached portion at the top. This catheter is inserted into the human body so that the distal end opening is located in the vicinity of the affected part in the human body. The medical guide wire is retracted into the catheter, and the distal end of the medical guide wire further reaches the affected area from the distal end opening of the catheter. At this time, the distal end of the medical guide wire reaches the affected area, while the distal end of the medical guide wire is out of the human body.

次いで、この医療用ガイドワイヤーの末端を治療具に挿通し、この医療用層通線体に沿って治療具をカテーテル内に沿って進行させ、患部に至らしめる。患部に至った治療具を操作する事により、しかるべき治療をその治療具で行う。   Next, the distal end of the medical guide wire is inserted into the treatment tool, and the treatment tool is advanced along the catheter through the medical layer through line to reach the affected part. By operating the treatment tool that reaches the affected area, appropriate treatment is performed with the treatment tool.

この医療用ガイドワイヤーは、人体へのカテーテル挿入部位から患部近傍までを、湾曲したカテーテル中を、カテーテル内面と接触しながら進行することになる。したがって、医療用ガイドワイヤーとカテーテルとの滑りが悪いと、医療用ガイドワイヤーがカテーテル中を円滑に進行することができない。   The medical guide wire travels from the catheter insertion site to the vicinity of the affected part in the human body through the curved catheter while being in contact with the inner surface of the catheter. Therefore, if the sliding between the medical guide wire and the catheter is poor, the medical guide wire cannot smoothly travel through the catheter.

そこで、従来では、通常、医療用ガイドワイヤーは外周面をポリテトラフルオロエチレン(PTFE)コーティング膜とすることにより、医療用ガイドワイヤーの外周面とカテーテル内面との摩擦抵抗を小さくして、医療用ガイドワイヤーがカテーテル中を円滑に進行するように図られている。   Therefore, conventionally, a medical guide wire is usually made of a polytetrafluoroethylene (PTFE) coating film on the outer peripheral surface, thereby reducing the frictional resistance between the outer peripheral surface of the medical guide wire and the inner surface of the catheter. The guide wire is designed to travel smoothly through the catheter.

また、医療用ガイドワイヤーは、その直径が大きいと、カテーテル内における空間的余裕が小さくなって、カテーテル中を進行し難くなる。したがって、医療用ガイドワイヤーの直径は一定の大きさ以下にしなければならない。このため、PTFEコーティング被膜を施す場合には、PTFEコーティング被膜の厚みの分だけ、PTFEコーティングを施す医療用ガイドワイヤーの芯線を予め細めに設計し、その芯線上にPTFEコーティング被膜を形成させて、医療用ガイドワイヤーの直径が大きくなり過ぎないようにしている。   Further, if the diameter of the medical guide wire is large, the spatial margin in the catheter becomes small and it becomes difficult to advance in the catheter. Therefore, the diameter of the medical guide wire must be a certain size or less. For this reason, when applying the PTFE coating film, the core wire of the medical guide wire to be coated with PTFE is designed to be thin in advance by the thickness of the PTFE coating film, and the PTFE coating film is formed on the core wire, The diameter of the medical guide wire is kept from becoming too large.

一方、医療用ガイドワイヤーの芯線を細くすると、医療用ガイドワイヤーの剛性が小さくなり、腰が弱くなるので、カテーテル内に送り込む際に思い通りに進行させることができなかったり、また、医療用ガイドワイヤーに加えた力がその先端部まで十分に伝わらず、患部治療行為を効果的に行う事ができない等の不都合が生じる。したがって、PTFEコーティング被膜の厚みを可能な限り薄くして芯線の直径を可能な限り太くすることが望ましい。   On the other hand, if the core wire of the medical guide wire is made thin, the rigidity of the medical guide wire will be reduced and the waist will be weakened. The force applied to is not sufficiently transmitted to the tip portion, and the inconvenience such as inability to effectively treat the affected area occurs. Therefore, it is desirable to make the thickness of the PTFE coating film as thin as possible and make the diameter of the core wire as thick as possible.

しかし、PTFEコーティング被膜は、摩耗性が大きく、初期においては厚めに形成させておかざるを得ず、また、その厚みを薄くすることは技術的にも困難である。したがって、PTFEコーティング被膜を施した医療用ガイドワイヤーの芯線の直径は必然的に小さくなり、前記に示した不都合を回避するのに十分な医療用ガイドワイヤーの腰の強さを確保することは困難である。   However, the PTFE coating film is highly wearable and must be formed thick at the initial stage, and it is technically difficult to reduce the thickness. Therefore, the diameter of the core wire of the medical guide wire to which the PTFE coating film is applied is inevitably small, and it is difficult to secure the waist strength of the medical guide wire sufficient to avoid the above-described disadvantages. It is.

また、医療用ガイドワイヤーの先端部が、カテーテルの先端開口部からカテーテルの外部に出た後は、医療用ガイドワイヤーの先端部が、血管の内壁面に接触しながら血液中を患部に向かって進行する。したがって、医療用ガイドワイヤーの先端部は、カテーテルの外部に出た後においては、血管の内壁との潤滑性、及び血液との親和性が要求される。   In addition, after the distal end portion of the medical guide wire comes out of the catheter from the distal end opening portion of the catheter, the distal end portion of the medical guide wire is in contact with the inner wall surface of the blood vessel toward the affected area through the blood. proceed. Accordingly, the distal end portion of the medical guide wire is required to have lubricity with the inner wall of the blood vessel and affinity with blood after coming out of the catheter.

一方、DLC被膜を備えてなる医療用ガイドワイヤーは、DLC被膜の摩耗性がPTFE被膜に比べて小さいこと、DLC被膜の潤滑性がPTFE被膜と同等かそれ以上であること、及び、薄いDLC被膜を形成することが技術的に可能であること等の理由から、DLC被膜の厚みをPTFE被膜よりも薄くすることができるので、その分、芯線体の直径を大きくすることができ、医療用ガイドワイヤーの腰の強さを大きくすることが可能である。   On the other hand, a medical guide wire provided with a DLC film has a DLC film whose wear resistance is smaller than that of a PTFE film, the lubricity of the DLC film is equal to or higher than that of a PTFE film, and a thin DLC film. The thickness of the DLC film can be made thinner than that of the PTFE film because it is technically possible to form the wire, and accordingly, the diameter of the core wire can be increased, and the medical guide It is possible to increase the strength of the waist of the wire.

ここで、DLCとは、ダイヤモンド様炭素(Diamond Like Carbon)の略であり、炭素原子を主体として微量の水素原子を含んで構成される物質であり、炭素原子から構成されるダイヤモンドはダイヤモンド構造(SP3)により構成され、同じく炭素原子で構成される物質であるグラファイトはグラファイト構造(SP2)により構成されるのに対し、DLCはSP3とSP2との両方を含んで、また一部水素との結合を含んで構成されるアモルファス構造を有する。   Here, DLC is an abbreviation for Diamond Like Carbon, which is a substance composed mainly of carbon atoms and containing a small amount of hydrogen atoms. Diamonds composed of carbon atoms have a diamond structure ( Graphite, which is composed of SP3) and is also composed of carbon atoms, is composed of a graphite structure (SP2), whereas DLC includes both SP3 and SP2 and partly bonds with hydrogen. Having an amorphous structure.

しかしながら、被膜形成されたDLC膜は、血液や血管の内壁面などの人体組織に対しての耐溶着性が十分でないことから医療用機器への適用については研究例が多い。前記したように医療用ガイドワイヤーにおけるDLC被膜には、フッ素を含有することができ、DLC被膜にフッ素を含有させると、カテーテル及び生体に対する潤滑性を更に向上させることができるという利点があるが、一般に、抗血栓性に優れるフッ素を含有するDLCは、部材との密着性が劣るために部材とフッ素を含有するDLC被膜との間にシリコン、シリコンカーバイド、酸化チタン、及び窒化チタンなどからなる中間層を設けDLC被膜の付着向上をはかったり、フッ素を含まないDLC被膜を介してフッ素を含むDLC膜を被覆している。
このようにDLC被膜は薄層で高い硬度と耐摩耗性を有するが、その被覆膜内にSP2に対してSP3結合が多く含まれると、被覆内での凝集力が強いため応力を受けた場合に基材との界面で破壊する、いわゆる、界面破壊により被膜が剥離する傾向がある。
However, since the coated DLC film does not have sufficient resistance to welding to human tissues such as blood and the inner wall surface of blood vessels, there are many research examples regarding application to medical devices. As described above, the DLC film in the medical guide wire can contain fluorine, and if the DLC film contains fluorine, there is an advantage that the lubricity to the catheter and the living body can be further improved. In general, DLC containing fluorine having excellent antithrombogenicity is inferior in adhesion to a member, and therefore, an intermediate composed of silicon, silicon carbide, titanium oxide, titanium nitride, etc. between the member and the DLC film containing fluorine. A layer is provided to improve adhesion of the DLC film, or a DLC film containing fluorine is covered through a DLC film not containing fluorine.
As described above, the DLC film is a thin layer and has high hardness and wear resistance. However, when the coating film contains many SP3 bonds with respect to SP2, it receives stress due to strong cohesion in the coating. In some cases, the coating tends to peel off due to so-called interfacial fracture that breaks at the interface with the substrate.

従来、カテーテル用ガイドワイヤー表面をDLC被膜に被覆することは公知(特許文献1)であり、特許文献2では、医療用ワイヤー等の基体を陽極として炭化水素ベースの気体を含む雰囲気中で無線周波数源によるプラズマ利用により基体上にDLC膜を設けることも知られている。
さらに、特許文献3では、芯線体とその表面に形成されたDLC被膜とを有することを特徴とする医療用ガイドワイヤーであり、この医療用ガイドワイヤーは、芯線体の先端より所定の部位までが螺旋線体被装着部であり、その螺旋線体被装着部に螺旋線体が装着されており、前記線芯体は、その先端から所定の部位までの表面に、親水性物質が官能基に結合して存在する親水性被膜を有している。また、前記芯線体と表面に形成されたDLC被膜との間にシリコン被膜が形成されており、DLC被膜は、フッ素を含有し、厚さが0.3〜7μmである医療用ガイドワイヤーである。
Conventionally, it is publicly known (Patent Document 1) to coat a catheter guide wire surface with a DLC coating. In Patent Document 2, a radio frequency is used in an atmosphere containing a hydrocarbon-based gas with a substrate such as a medical wire as an anode. It is also known to provide a DLC film on a substrate by using plasma from a source.
Furthermore, in patent document 3, it is a medical guide wire characterized by having a core wire body and the DLC film formed in the surface, and this medical guide wire extends from the front-end | tip of a core wire body to a predetermined site | part. A spiral wire body attached portion, and a spiral wire body is attached to the spiral wire body attached portion, and the wire core has a hydrophilic substance as a functional group on a surface from a tip thereof to a predetermined portion. It has a hydrophilic coating that exists in combination. In addition, a silicon coating is formed between the core wire and the DLC coating formed on the surface, and the DLC coating is a medical guide wire containing fluorine and having a thickness of 0.3 to 7 μm. .

;WO99/53988WO99 / 53988 ;特開2000−64047号公報; JP 2000-64047 A ;特開2001−238962公報; JP 2001-238932 A

従来の単一組成被覆型のガイドワイヤーに関しては、硬さ・弾性及び摺動性の兼ね合いに問題があった。ガイドワイヤーの先端部及び中間部が、SP3成分を多く含んでいると、先端部は硬く、弾性があり、曲率半径の小さい血管部を破壊する危険性が多かった。さらに先端部が硬く、弾性がある点から剥離する可能性も高かった。一方、先端部及び中間部がSP2成分を多く含んでいると、使用時にガイドワイヤー全体の摺動性が悪くなり、ひずみが一部に集中し、ワイヤー全体が目的とするような経路を選択することができず、制御という点で問題が多かった。
また、フッ素を含有するDLC被膜は、フッ素を含有しない該炭素膜の場合と比べて血液や筋肉、血管などの人体組織等に対する耐溶着性の向上することは明らかになっている。そのためDLC被膜の接する基材との間に両者に親和性のある中間層を設けるなど種々の方策が講じられているのが現状である。しかし、用途面から極めて薄い被膜が求められている中で、種々の原材料を用いた多層構造を設けることは、実用的に難しく、かつ、それを達成するには高コストになりやすい。一方、フッ素原子を多く含むDLC被膜は、血液や筋肉、血管などの人体組織等に対する耐溶着性は改善されるものの、フッ素を含有する炭素被膜の凝集力のために基材との接着性において界面破壊を起こして被膜が剥離しやすいばかりかダイヤモンド様炭素膜の硬度が低下するため耐摩耗性に劣るという難点がある。
The conventional single-composition-coated guidewire has a problem in balance between hardness, elasticity, and slidability. When the distal end portion and the intermediate portion of the guide wire contained a large amount of SP3 component, the distal end portion was hard and elastic, and there was a high risk of destroying a blood vessel portion having a small curvature radius. Furthermore, the tip was hard and the possibility of peeling from the point of elasticity was high. On the other hand, if the tip part and the intermediate part contain a large amount of SP2 component, the slidability of the entire guide wire deteriorates during use, strain is concentrated on a part, and a route is selected so that the entire wire is intended. There were many problems in terms of control.
Further, it has been clarified that the DLC film containing fluorine improves the welding resistance to human tissues such as blood, muscles, blood vessels and the like as compared with the case of the carbon film not containing fluorine. For this reason, various measures have been taken such as providing an intermediate layer having an affinity for both of the substrates in contact with the DLC film. However, it is practically difficult to provide a multi-layer structure using various raw materials, and an extremely thin film is required from the viewpoint of applications, and it is likely to be expensive to achieve this. On the other hand, the DLC film containing a large amount of fluorine atoms improves the adhesion resistance to human tissues such as blood, muscles, blood vessels, etc., but the adhesion to the substrate due to the cohesive force of the carbon film containing fluorine. Not only is the coating easily peeled off due to interfacial fracture, but the hardness of the diamond-like carbon film is reduced, so that the wear resistance is inferior.

本発明は、上述するような医療用ガイドワイヤーが有する欠点を解消すること、すなわち、芯線体の先端より所定の部位までの芯線体の表面にシリコン被膜を形成し、その上面にフッ素を含むDLC被膜を形成した医療用挿痛線体よりも潤滑性が高く、カテーテル内及び血管等の管状組織内を円滑に進行可能であり、また、適度の剛性があり、操作が容易な、即ち、摺動特性の優れる医療用ガイドワイヤーを提供することを目的とする。 The present invention eliminates the drawbacks of the medical guide wire as described above, that is, forms a silicon film on the surface of the core wire body from the tip of the core wire body to a predetermined site, and includes DLC containing fluorine on the upper surface thereof. film lubrication is higher than medical挿痛line member formed with a smoothly can proceed within the tubular tissue in the catheter and blood vessel or the like, also has moderate rigidity, the operation is easy, namely, sliding An object of the present invention is to provide a medical guide wire having excellent dynamic characteristics .

本発明は、以下の構成を有することで上記課題を解決したものであり、以下の通りのものである。本発明の請求項1に係る医療用ガイドワイヤーは、ダイヤモンド様炭素膜を被覆した医療用ガイドワイヤーであって、前記ダイヤモンド様炭素膜の被覆が、前記医療用ガイドワイヤーの先端から5〜30ミリの範囲であるワイヤー先端部において、上記被膜のSP3/SP2比が、0.01以上0.2以下であり、上記先端から100〜3000ミリの範囲であるワイヤー中間部において、上記被膜のSP3/SP2比が、0.2以上であることを特徴とする。This invention solves the said subject by having the following structures, and is as follows. The medical guide wire according to claim 1 of the present invention is a medical guide wire coated with a diamond-like carbon film, and the coating of the diamond-like carbon film is 5 to 30 mm from the tip of the medical guide wire. SP3 / SP2 ratio of the coating film is 0.01 or more and 0.2 or less in the wire tip portion that is in the range of 100 to 3000 mm from the tip portion, and SP3 / SP2 of the coating film is in the range of 100 to 3000 mm from the tip. The SP2 ratio is 0.2 or more.
請求項2に係る医療用ガイドワイヤーは、前記ダイヤモンド様炭素膜の膜厚が、0.02ミクロン以上2ミクロン以下であることを特徴とする。The medical guide wire according to claim 2 is characterized in that the diamond-like carbon film has a thickness of 0.02 to 2 microns.

本発明の医療用ガイドワイヤーMedical guide wire of the present invention ガイドワイヤー摺動特性評価試験機の人工血管の形状Shape of artificial blood vessel of guide wire sliding property evaluation test machine A実験における本発明の医療用ガイドワイヤー摺動特性の比較(有意差検定)Comparison of sliding characteristics of medical guide wire of the present invention in experiment A (significant difference test) 本発明のDLC被覆したガイドワイヤー摺動特性比較Comparison of sliding characteristics of guide wire coated with DLC of the present invention B実験における本発明の医療用ガイドワイヤー摺動特性の比較(有意差検定)Comparison of sliding characteristics of medical guide wire of the present invention in B experiment (significant difference test)

本発明の医療用ガイドワイヤーは、ワイヤー先端部と中間部にダイヤモンド様炭素膜の組成、微細構造、特にSP3/SP2比の異なったDLC被膜を被覆し、ガイドワイヤーの本体部にPTFEを被覆したものであり、芯材と被覆した炭素膜との間にはSP
3/SP2比の小さい領域を有しており、潤滑性が高く、カテーテル内、及び例えば血管消化管等の管状組織等の生体組織内を安定して円滑に進行可能であり、適度の剛性があって、操作が容易な医療用ガイドワイヤーとなっている。
In the medical guide wire of the present invention, the tip and middle portions of the wire are coated with a diamond-like carbon film composition, fine structure, particularly a DLC film having a different SP3 / SP2 ratio, and the guide wire body is coated with PTFE. SP between the core material and the coated carbon film
It has an area with a small 3 / SP2 ratio, has high lubricity, can stably and smoothly advance in a catheter and in a living tissue such as a tubular tissue such as a vascular digestive tract, and has an appropriate rigidity. Therefore, the medical guide wire is easy to operate.

さらに、本発明の医療用ガイドワイヤーは、DLC被膜を被覆し、被膜表面から深さ0.1ミクロン以内のSP3/SP2比が0.01以上10以下であることを特徴とする。
本発明の医療用被覆部材においては、被膜表面からの深さが0.1ミクロンより深い領域においては、SP3/SP2比の低い方が機械的な耐摩耗性や基材との密着性が優れるが、10以下の低濃度であれば、耐摩耗性や基材との密着性に影響せず、基材に対して連続的にSP3/SP2比が漸減してもよい。
Furthermore, the medical guide wire of the present invention is characterized in that the DLC coating is coated, and the SP3 / SP2 ratio within a depth of 0.1 microns from the coating surface is 0.01 or more and 10 or less.
In the medical covering member of the present invention, in a region where the depth from the coating surface is deeper than 0.1 micron, the lower the SP3 / SP2 ratio, the better the mechanical wear resistance and the adhesion to the substrate. However, if it is a low concentration of 10 or less, the SP3 / SP2 ratio may be gradually decreased with respect to the base material without affecting the wear resistance and the adhesion to the base material.

また、ガイドワイヤーのDLC被膜表面から膜の深さ0.1ミクロン以内のSP3/SP2比を0.01以上10以下に制御することによって、血液や筋肉、血管などの人体組織はいうに及ばず使用される医薬品に対する耐溶着性を維持しつつ、機械的な特性を抑制できるため好ましい。SP3/SP2比が10以上では、被膜内の圧縮残留応力が増大するために剥離しにくくなり耐溶着性を容易に維持できるが、0.01以下になると、硬度、結晶性などの機械的な特性が低下する。そのため、被膜表面から深さ0.1ミクロン以内のSP3/SP2比が0.01〜10の範囲が適切である。   In addition, by controlling the SP3 / SP2 ratio within a depth of 0.1 micron from the DLC coating surface of the guide wire to 0.01 or more and 10 or less, it goes without saying for human tissues such as blood, muscles and blood vessels. This is preferable because the mechanical properties can be suppressed while maintaining the welding resistance to the pharmaceutical used. When the SP3 / SP2 ratio is 10 or more, the compressive residual stress in the coating increases, so that it is difficult to peel off and the welding resistance can be easily maintained. Characteristics are degraded. Therefore, an SP3 / SP2 ratio in the range of 0.01 to 10 within a depth of 0.1 microns from the coating surface is appropriate.

上記のようにDLC被膜を施した医療用ガイドワイヤーにおける炭素膜と基材との密着性は、膜と芯材の界面から0.1ミクロン以内にSP3/SP2比が、被膜表面より低い領域を有することによって向上することが明らかになった。炭素被膜のとり得る結晶構造としては種々あるが、本発明は、SP3結合(ダイヤモンド結合)とSP2結合(グラファイト結合)を含み、基材との界面付近のSP2結合の割合を高くすることによって、被膜の密着性を向上させるものである。SP3結合(ダイヤモンド結合)は、最も強固な結合であるため、機械的な特性は優れるものの、SP2結合がSP3結合より多い場合は耐摩耗性が低下するものの、グラファイト結合においては六角形の環を形成している炭素原子が連なって層状構造をとり、原子の層間には弱いファンデルワールス力が作用している構造をしているので、応力を分散する効果が発揮されるため、部材との相間密着性が向上するものである。   The adhesion between the carbon film and the base material in the medical guide wire with the DLC coating as described above is such that the SP3 / SP2 ratio is lower than the coating surface within 0.1 micron from the interface between the membrane and the core material. It became clear that it improves by having. Although there are various crystal structures that the carbon film can take, the present invention includes SP3 bonds (diamond bonds) and SP2 bonds (graphite bonds), and by increasing the proportion of SP2 bonds near the interface with the substrate, It improves the adhesion of the coating. Since SP3 bond (diamond bond) is the strongest bond, mechanical properties are excellent. However, when SP2 bond is more than SP3 bond, wear resistance is lowered, but in graphite bond, a hexagonal ring is formed. Since the carbon atoms that are formed take a layered structure and have a structure in which a weak van der Waals force acts between the layers of atoms, the effect of dispersing stress is exhibited, Interphase adhesion is improved.

とりわけ、ガイドワイヤーの先端部xでは、潤滑性が高く、カテーテル及び血管等の管状組織内を円滑に進行するためにSP3/SP2を低くし、0.01以上0.2以下とし、先端部xよりも腰の強い芯線が求められるワイヤー中間部yにはSP3/SP2比を0.2以上の大きいDLC被膜で、芯線の剛性を大きくしている。
しかし、該ダイヤモンド様炭素膜の膜厚が厚くなって、層状構造の破壊、すなわち、凝集破壊が顕著になると界面破壊は起こらなくても被膜の剥離が進む。このためSP3/SP2比を10以下に制御するとともにDLC被膜の膜厚を0.02ミクロン以上2ミクロン以下にすることによって所望の性能がより発揮されるため好ましい。
In particular, the tip portion x of the guide wire has high lubricity, and SP3 / SP2 is made low in order to smoothly advance in the tubular tissue such as a catheter and a blood vessel, and is set to 0.01 or more and 0.2 or less. In the middle wire portion y where a more firm core wire is required, the rigidity of the core wire is increased by a large DLC film having a SP3 / SP2 ratio of 0.2 or more.
However, when the diamond-like carbon film becomes thick and the destruction of the layered structure, that is, the cohesive failure becomes remarkable, the peeling of the coating proceeds even if the interface failure does not occur. For this reason, it is preferable to control the SP3 / SP2 ratio to 10 or less and to make the DLC film thickness 0.02 microns or more and 2 microns or less, since the desired performance is exhibited more.

これら医療用部材へのダイヤモンド様炭素膜の被覆は、物理蒸着法や化学蒸着法によって実現できるが、複雑形状に均一に被覆できることや、被膜厚み方向のSP3/SP2比の調整が容易であるという観点からは平行平板型高周波プラズマ化学蒸着(CVD)法が好ましい。
一般にダイヤモンド様炭素膜は、被覆する部材と共に真空装置内に挿入し、水素などのキャリアガスと炭素源となるメタン、エタン、プロパン、ブタンなどのパラフィン系の他、エチレン、アセチレン、ベンゼンなどを導入したガスをイオン化させることによって、部材表面に形成するものである。
Coating of these medical members with a diamond-like carbon film can be realized by physical vapor deposition or chemical vapor deposition, but it can be uniformly coated in a complex shape and it is easy to adjust the SP3 / SP2 ratio in the film thickness direction. From the viewpoint, a parallel plate type high frequency plasma chemical vapor deposition (CVD) method is preferable.
Generally, a diamond-like carbon film is inserted into a vacuum apparatus together with a member to be coated, and a carrier gas such as hydrogen and a paraffin such as methane, ethane, propane, and butane as a carbon source, as well as ethylene, acetylene, and benzene are introduced. The formed gas is ionized to form on the member surface.

本発明においては、ガイドワイヤー上へのDLC膜の形成法として、CVD法を用いた。装置は、電極に円盤型でチャンバー内に平行に設置されて高周波放電によりプラズマを発生させる平行平板型高周波プラズマCVD装置である。また、チャンバー内部のインピーダンスによって高周波電力が消費される効率が大きく変化するため、装置外部にマッチングボックス(インピーダンス整合器)が設置されており、それを調節する事により効率を上げるよう計っている。原料ガスであるアセチレンガスは、フロート式流量計によって流量の制御が可能となっている。排気系は、ロータリーポンプ及びメカニカルブースターポンプから構成されており、チャンバー内をロータリーポンプ及びメカニカルブースターポンプを用いて1.7 x 10-3 Torr の真空にした。DLC膜の成膜には、原料ガスとしてアセチレンをチャンバー内に流し込み、圧力を 0.1 Torr に調整した。高周波放電によりプラズマを発生させ、電極上に設置されたガイドワイヤーへのDLC膜の堆積を10秒間行った。   In the present invention, the CVD method is used as a method for forming the DLC film on the guide wire. The apparatus is a parallel plate type high-frequency plasma CVD apparatus in which plasma is generated by high-frequency discharge that is installed in parallel in a chamber in a disk shape on an electrode. In addition, since the efficiency with which high-frequency power is consumed varies greatly depending on the impedance inside the chamber, a matching box (impedance matching unit) is installed outside the apparatus, and the efficiency is improved by adjusting it. The flow rate of acetylene gas, which is a raw material gas, can be controlled by a float type flow meter. The exhaust system was composed of a rotary pump and a mechanical booster pump, and the inside of the chamber was evacuated to 1.7 × 10 −3 Torr using the rotary pump and the mechanical booster pump. In forming the DLC film, acetylene was flowed into the chamber as a source gas, and the pressure was adjusted to 0.1 Torr. Plasma was generated by high frequency discharge, and a DLC film was deposited on a guide wire placed on the electrode for 10 seconds.

以下に実施例に基づき、本発明の実施の態様を説明するが、本発明はこれらに限定されるものではない。   Embodiments of the present invention will be described below based on examples, but the present invention is not limited thereto.

<ガイドワイヤー摺動特性評価試験法>
ガイドワイヤーの摺動特性を評価するために摺動実験機を製作し、図2にガイドワイヤー摺動特性評価試験機の人工血管の形状を示す。
<Guide wire sliding characteristics evaluation test method>
In order to evaluate the sliding characteristics of the guide wire, a sliding experimental machine was manufactured, and FIG. 2 shows the shape of the artificial blood vessel of the guide wire sliding characteristics evaluation test machine.

この試験機は本研究のために製作されたものであり、主な部位として試験機本体とアクリル環境槽とで構成されている。試験機本体には電動モーターが取り付けられており、シャフトを介することによりアーム部が上下に一定の速さで運動することができる。アーム部には荷重測定検出器としてロードセルが取り付けられており、そこがガイドワイヤーを固定する部位である。次に、アクリル環境槽には人工血管が任意の形状で固定することが可能であり、その固定された人工血管の中にガイドワイヤーを挿入・挿出することで、荷重測定検出器が人工血管壁に対するガイドワイヤーの抵抗荷重を検出する仕組みとなっている。   This testing machine was made for this research, and consists of the main body of the testing machine and an acrylic environment tank as the main parts. An electric motor is attached to the main body of the testing machine, and the arm portion can move up and down at a constant speed through the shaft. A load cell is attached to the arm portion as a load measurement detector, which is a portion for fixing the guide wire. Next, an artificial blood vessel can be fixed to the acrylic environmental tank in any shape, and a load measurement detector can be inserted into and inserted into the fixed artificial blood vessel. It is a mechanism to detect the resistance load of the guide wire against the wall.

<評価試験実験手順>
(1) ガイドワイヤーを3本用意し、1本目にはDLC膜を2本目にはF−DLC膜を被覆し、そして3本目には何も処理を加えなかった。
(2) アクリル環境槽に固定する人工血管の形状を図2に示すように2タイプ設定した。
(3) 各々の場合でガイドワイヤーを挿入しきった時点を初期値点とし、0点調整を行うとともにレンジを調整した。
(4) アーム部昇降の速度を10mm/秒に設定し、ガイドワイヤーを抜き取っていった。(アーム部を上昇させた)。
(5) ガイドワイヤーを抜き取っていった際、荷重検出器が読み取ったロード値のピーク値を修道特性データとした。
(6) データのバラツキを考慮して、以上の動作を30回繰り返した。
以上の動作を3種類のガイドワイヤーそれぞれで行った。なお、アクリル環境槽に固定した人工血管の形状が図2の左に示すタイプのものにして行ったガイドワイヤー摺動特性評価実験をA実験、そして、図2の右に示すタイプのものにして行った実験をB実験と呼ぶことにする。
<Evaluation test procedure>
(1) Three guide wires were prepared, a DLC film was coated on the first, an F-DLC film was coated on the second, and no treatment was applied on the third.
(2) Two types of artificial blood vessels to be fixed to the acrylic environment tank were set as shown in FIG.
(3) In each case, the point when the guide wire was completely inserted was set as the initial value point, and the zero point adjustment and the range were adjusted.
(4) The arm raising / lowering speed was set to 10 mm / second, and the guide wire was pulled out. (The arm was raised).
(5) The peak value of the load value read by the load detector when the guide wire was pulled out was used as monastic characteristic data.
(6) The above operation was repeated 30 times in consideration of data variation.
The above operation was performed for each of the three types of guide wires. The guide wire sliding characteristic evaluation experiment conducted with the shape of the artificial blood vessel fixed to the acrylic environmental tank having the type shown on the left in FIG. 2 was set to the experiment A, and the type shown on the right of FIG. The experiment conducted will be referred to as the B experiment.

図3に示すのは、A実験におけるガイドワイヤー摺動特性のデータ比較である。グラフは横軸にガイドワイヤーの種類を、縦軸には比率をとっている。比率はA実験において、未処理のガイドワイヤーのロード値を基準値1とし、DLC膜を被覆したガイドワイヤー及びフッ素を含むDLC膜(F−DLC膜)を被覆したガイドワイヤーのロード値を割合として換算して30回の測定値をまとめたものである。この結果からは、それぞれのデータのプロットはほぼ基準値と重なっており、摺動特性の差は認められないことである。   FIG. 3 shows a data comparison of the guide wire sliding characteristics in the A experiment. In the graph, the horizontal axis represents the type of guide wire, and the vertical axis represents the ratio. In the experiment A, the load value of the untreated guide wire is set as the reference value 1, and the load value of the guide wire coated with the DLC film and the guide wire coated with fluorine (F-DLC film) is set as a ratio. It is a summary of 30 measured values in terms of conversion. From this result, the plot of each data almost overlaps with the reference value, and no difference in sliding characteristics is recognized.

図4に示すのは、本発明のDLC被覆したガイドワイヤー摺動特性比較データである。グラフは横軸に試験回数を、縦軸にB実験において、未処理のガイドワイヤーのロード値を基準値1とした時のDLC膜を被覆したガイドワイヤー及びF−DLC膜を被覆したガイドワイヤーのロード値をそれぞれ割合として換算した比率をとっている。この結果からは、DLC膜を被覆したガイドワイヤー及びF−DLC膜を被覆したガイドワイヤーのプロット群は基準値よりもそれぞれ約30%値が減少したラインにほぼバラツキのない状態でのっていることが判断できる。また、DLC膜を被覆したガイドワイヤーのプロット群とF−DLC膜を被覆したガイドワイヤーのプロット群とを比較すると、若干ではあるがDLC膜を被覆したガイドワイヤーのプロット群の方が縦軸の比率の割合において減少したラインにのっていることが判断できる。平均値(mean)±標準偏差(SD)で表示した形で比較すると、DLC膜を被覆したガイドワイヤーのプロット群は0.60±0.02、それに対してF−DLC膜を被覆したガイドワイヤーのプロット群は0.71±0.01であり、両者は拮抗しているが若干DLC膜の方がF−DLC膜よりもガイドワイヤーの摺動特性向上に繋がっていると考えられる。つまり、DLC膜及びF−DLC膜を被覆することにより、ガイドワイヤーの摺動特性は約30%向上し、DLC膜を被覆したガイドワイヤーのそれは、若干向上率が上回っていると仮定できる。 FIG. 4 shows the DLC-coated guidewire sliding characteristics comparison data of the present invention. The graph shows the number of tests on the horizontal axis and the guide wire coated with the DLC film and the guide wire coated with the F-DLC film when the load value of the untreated guide wire is set to the reference value 1 in the B experiment on the vertical axis. The ratio obtained by converting the load value as a ratio is taken. From this result, the plot group of the guide wire coated with the DLC film and the guide wire coated with the F-DLC film is in a state in which there is almost no variation in the line where the value is reduced by about 30% from the reference value. Can be judged. Moreover, when comparing the plot group of the guide wire coated with the DLC film and the plot group of the guide wire coated with the F-DLC film, the plot group of the guide wire coated with the DLC film is slightly more vertical. It can be determined that the line is reduced in proportion. When compared in the form expressed by mean value ± standard deviation (SD), the plot group of the guide wire coated with the DLC film is 0.60 ± 0.02, whereas the guide wire coated with the F-DLC film is This plot group is 0.71 ± 0.01, and both are antagonistic, but it is considered that the DLC film is slightly improved in sliding characteristics of the guide wire than the F-DLC film. That is, by coating the DLC film and the F-DLC film, the sliding characteristics of the guide wire are improved by about 30%, and it can be assumed that the improvement rate of the guide wire coated with the DLC film is slightly higher.

そこでこの仮説に正当性があるかどうか、有意差検定という統計学的解析を行うことで検証した結果が、図5である。   Therefore, FIG. 5 shows the result of verifying whether or not this hypothesis is valid by performing a statistical analysis called a significant difference test.

<実施例2〜4及び比較例1〜4>
本発明による実施例2〜4と比較例1〜4の試料調整条件を表1にまとめて示す。
<Examples 2 to 4 and Comparative Examples 1 to 4>
Table 1 shows the sample preparation conditions of Examples 2 to 4 and Comparative Examples 1 to 4 according to the present invention.

Figure 0004740741
Figure 0004740741

得られた試料は、3種の試験により評価を行った。
○試験1:血液を3ml滴下して固着させた後、粘着テープで引き剥がし試験を行った。試料に残留している硬化血液付着量を比較した。
○試験2:ダイヤモンド圧子で0〜10Nまで連続的に荷重を増加させながら皮膜上から引っ掻いたときに被膜が剥離するまでの臨界荷重を比較した。
5N以下で剥離:▲、
6〜10Nで剥離:○、
剥離なし(微少欠損):◎
○試験3:リング状(30φ)の炭素鋼(S20C)を0.2m/sで回転させつつ、100gの荷重で試料被膜面を血液中で摺動させ、10分後の摩擦量を摩耗幅で比較した。
5mm以上:X、
3〜5mm:△、
1〜3mm:○、
1mm以下:◎以下
The obtained sample was evaluated by three types of tests.
Test 1: After 3 ml of blood was dropped and fixed, the test was peeled off with an adhesive tape. The amount of adhered cured blood remaining in the sample was compared.
○ Test 2: The critical load was compared until the coating peeled when scratched from the coating while increasing the load continuously from 0 to 10 N with a diamond indenter.
Stripping below 5N: ▲,
Peel at 6-10N: ○,
No peeling (minor defect): ◎
○ Test 3: While rotating a ring-shaped (30φ) carbon steel (S20C) at 0.2 m / s, the sample coating surface was slid in the blood with a load of 100 g, and the friction amount after 10 minutes was determined as the wear width. Compared.
5 mm or more: X,
3 to 5 mm: Δ,
1-3 mm: ○,
1mm or less: ◎ or less

表1に示す各試料について試験1、試験2及び試験3の結果を表2にまとめて示した。   The results of Test 1, Test 2 and Test 3 for each sample shown in Table 1 are summarized in Table 2.

Figure 0004740741
Figure 0004740741

従来、医療用ガイドワイヤーにフッ素を含有したDLC被膜を施すことは、医療用部材の抗血栓性についての特性は向上するものの、部材の使用時の変形で被膜が剥離しやすくなることや、機械的な耐摩耗性が低下するためフッ素を含むDLC被膜を厚くしなければならないという問題があったが、本発明では、ダイヤモンド様炭素被膜の処理を医療用ガイドワイヤーの先端から5〜30ミリの範囲であるワイヤー先端部において、上記被膜のSP3/SP2比が、0.01以上0.2以下であり、上記先端から100〜3000ミリの範囲であるワイヤー中間部において、上記被膜のSP3/SP2比が、0.2以上である領域を有して、摺動特性が約30%向上により潤滑性が高く、カテーテル及び血管や消化管等の管状組織内を円滑に進行し、適度な腰の強さをもつ、操作の容易な医療用ガイドワイヤーが可能となった。その結果、血液や筋肉、血管などの人体組織はおろか使用される医薬品に対する耐溶着性を有し、さらに部材への強固な密着性並びに高い耐摩耗性を併せ持つ薄膜の医療用被覆部材が得られる。 Conventionally, applying a DLC coating containing fluorine to a medical guide wire improves the antithrombogenic properties of the medical member, but the coating tends to peel off due to deformation during use of the member, However, in the present invention, the treatment of the diamond-like carbon coating is performed 5 to 30 mm from the distal end of the medical guide wire . The SP3 / SP2 ratio of the coating is 0.01 or more and 0.2 or less at the wire tip that is in the range, and the SP3 / SP2 of the coating is at the wire intermediate portion that is in the range of 100 to 3000 mm from the tip. ratio, has an area of 0.2 or more, lubricity is high by the sliding characteristics improved by about 30%, smooth catheters and vascular and digestive tract and the like in the tubular tissue of And rows, with the strength of moderate waist has enabled easy medical guide wire operation. As a result, it is possible to obtain a thin-film medical covering member that has resistance to adhesion to pharmaceuticals used in addition to human tissues such as blood, muscle, and blood vessels, and also has strong adhesion to the member and high wear resistance. .

Claims (2)

ダイヤモンド様炭素膜を被覆した医療用ガイドワイヤーであって、
前記ダイヤモンド様炭素膜の被覆が、前記医療用ガイドワイヤーの先端から5〜30ミリの範囲であるワイヤー先端部において、上記被膜のSP3/SP2比が、0.01以上0.2以下であり、上記先端から100〜3000ミリの範囲であるワイヤー中間部において、上記被膜のSP3/SP2比が、0.2以上であることを特徴とするダイヤモンド様炭素膜を被覆した医療用ガイドワイヤー。
A medical guide wire coated with a diamond-like carbon film,
In the wire tip where the coating of the diamond-like carbon film is in the range of 5 to 30 mm from the tip of the medical guide wire, the SP3 / SP2 ratio of the coating is 0.01 or more and 0.2 or less, A medical guide wire coated with a diamond-like carbon film, wherein an SP3 / SP2 ratio of the coating is 0.2 or more at a wire intermediate portion in a range of 100 to 3000 mm from the tip .
前記ダイヤモンド様炭素膜の膜厚が、0.02ミクロン以上2ミクロン以下であることを特徴とする請求項1に記載の医療用ガイドワイヤー。The medical guide wire according to claim 1, wherein the diamond-like carbon film has a thickness of 0.02 to 2 microns.
JP2005516474A 2003-12-19 2004-12-16 Medical guide wire coated with carbon film Expired - Fee Related JP4740741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516474A JP4740741B2 (en) 2003-12-19 2004-12-16 Medical guide wire coated with carbon film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003422814 2003-12-19
JP2003422814 2003-12-19
PCT/JP2004/018845 WO2005061021A1 (en) 2003-12-19 2004-12-16 Medical guide wire coated with carbon film
JP2005516474A JP4740741B2 (en) 2003-12-19 2004-12-16 Medical guide wire coated with carbon film

Publications (2)

Publication Number Publication Date
JPWO2005061021A1 JPWO2005061021A1 (en) 2007-12-13
JP4740741B2 true JP4740741B2 (en) 2011-08-03

Family

ID=34708742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005516474A Expired - Fee Related JP4740741B2 (en) 2003-12-19 2004-12-16 Medical guide wire coated with carbon film

Country Status (2)

Country Link
JP (1) JP4740741B2 (en)
WO (1) WO2005061021A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948231B2 (en) * 2007-03-30 2012-06-06 トーヨーエイテック株式会社 Balloon catheter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11404A (en) * 1997-06-10 1999-01-06 Daimetsuku Kk Guide wire for catheter
JP2001145699A (en) * 1999-11-22 2001-05-29 Nissho Corp Guide wire
JP2001238962A (en) * 2000-02-29 2001-09-04 Japan Lifeline Co Ltd Medical insertion wire
JP2003265616A (en) * 2002-03-13 2003-09-24 Terumo Corp Guide wire
JP2003275323A (en) * 2002-03-25 2003-09-30 Terumo Corp Medical long length body
JP2003310744A (en) * 2002-04-24 2003-11-05 Keio Gijuku Coating member for medical use
JP2003314560A (en) * 2002-04-17 2003-11-06 Nsk Ltd Rolling equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265432A (en) * 1994-03-29 1995-10-17 Hanako Medical Kk Work hardening type non-shape memory alloy catheter
WO1999053988A1 (en) * 1998-04-20 1999-10-28 Getz Bros. Co., Ltd. Guide wire for catheters
JP2001190681A (en) * 2000-01-12 2001-07-17 Terumo Corp Catheter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11404A (en) * 1997-06-10 1999-01-06 Daimetsuku Kk Guide wire for catheter
JP2001145699A (en) * 1999-11-22 2001-05-29 Nissho Corp Guide wire
JP2001238962A (en) * 2000-02-29 2001-09-04 Japan Lifeline Co Ltd Medical insertion wire
JP2003265616A (en) * 2002-03-13 2003-09-24 Terumo Corp Guide wire
JP2003275323A (en) * 2002-03-25 2003-09-30 Terumo Corp Medical long length body
JP2003314560A (en) * 2002-04-17 2003-11-06 Nsk Ltd Rolling equipment
JP2003310744A (en) * 2002-04-24 2003-11-05 Keio Gijuku Coating member for medical use

Also Published As

Publication number Publication date
WO2005061021A1 (en) 2005-07-07
JPWO2005061021A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP3714471B2 (en) Medical covering material
JP4066440B2 (en) MEDICAL DEVICE WITH DIAMOND-LIKE THIN FILM AND MANUFACTURING METHOD THEREOF
CN101883530B (en) Ultrasonic surgical blades
US20070224242A1 (en) Tetrahedral Amorphous Carbon Coated Medical Devices
US20100211180A1 (en) Tetrahedral Amorphous Carbon Coated Medical Devices
JP2000064047A (en) Device and method for coating substrate with diamond- like carbon(dlc) or other vacuum deposition film
US20160201191A1 (en) Voltage-resistant, electrically insulating coatings
Park et al. Instability of diamond-like carbon (DLC) films during sliding in aqueous environment
JP4740741B2 (en) Medical guide wire coated with carbon film
JP2006000521A (en) Medical instrument and method of forming hard coating film on medical instrument
JPWO2006129702A1 (en) MEDICAL DEVICE HAVING POLYIMIDE FILM AND METHOD FOR PRODUCING THE SAME
JP2009120885A (en) Carbonaceous thin film and production method therefor
EP4241799A1 (en) Metal material for medical device, manufacturing method for metal material for medical device, and medical device
RU2809018C1 (en) Metal material for medical device, method of producing metal material for medical device, and medical device
JP5543435B2 (en) Biological tissue-artificial bonding device, stent
JP2002186624A (en) Forceps
JPH07185010A (en) Medical guide wire
JP4948231B2 (en) Balloon catheter
Nakagawa et al. Segment-structured diamond-like carbon coatings on polymer catheter
KR20190012654A (en) Stent for medical use and method of manufacturing thereof
KR20190113722A (en) Stent for medical use and method of manufacturing thereof
Kovaleva et al. Tribological characteristics of nanosized carbon coatings obtained by the pulsed vacuum-arc method on the modified TiNi surface

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees