JP2017085047A - Method of manufacturing epitaxial wafer, epitaxial wafer, method of manufacturing semiconductor device and semiconductor device - Google Patents

Method of manufacturing epitaxial wafer, epitaxial wafer, method of manufacturing semiconductor device and semiconductor device Download PDF

Info

Publication number
JP2017085047A
JP2017085047A JP2015214758A JP2015214758A JP2017085047A JP 2017085047 A JP2017085047 A JP 2017085047A JP 2015214758 A JP2015214758 A JP 2015214758A JP 2015214758 A JP2015214758 A JP 2015214758A JP 2017085047 A JP2017085047 A JP 2017085047A
Authority
JP
Japan
Prior art keywords
layer
breakdown voltage
substrate
dopant
voltage maintaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015214758A
Other languages
Japanese (ja)
Other versions
JP6706786B2 (en
Inventor
秀一 土田
Shuichi Tsuchida
秀一 土田
哲哉 宮澤
Tetsuya Miyazawa
哲哉 宮澤
米澤 喜幸
Yoshiyuki Yonezawa
喜幸 米澤
智久 加藤
Tomohisa Kato
智久 加藤
児島 一聡
Kazusato Kojima
一聡 児島
俵 武志
Takeshi Tawara
武志 俵
大月 章弘
Akihiro Otsuki
章弘 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Central Research Institute of Electric Power Industry
Priority to JP2015214758A priority Critical patent/JP6706786B2/en
Priority to PCT/JP2016/082115 priority patent/WO2017073749A1/en
Priority to CN201680019145.3A priority patent/CN107430993B/en
Priority to DE112016001052.4T priority patent/DE112016001052T5/en
Publication of JP2017085047A publication Critical patent/JP2017085047A/en
Priority to US15/712,644 priority patent/US10354867B2/en
Application granted granted Critical
Publication of JP6706786B2 publication Critical patent/JP6706786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PROBLEM TO BE SOLVED: To provide an epitaxial wafer in which occurrence of a strip-like stacking fault, expanding from the interface of an epitaxial growth layer on a substrate and the substrate, is suppressed effectively, even if bipolar operation is carried out with a large current, while suppressing the thickness of the epitaxial growth layer.SOLUTION: A method of manufacturing an epitaxial wafer includes of steps (S1-S5) of epitaxially growing a buffer layer mainly composed of silicon carbide, having a lower resistance than a voltage sustaining layer, and promoting capture and extinction of minority carriers flowing from the voltage sustaining layer in the direction of the substrate, by adding main dopant determining the conductivity type on a silicon carbide substrate, and adding a sub-dopant for capturing the minority carriers a doping concentration lower than that of the main dopant, and a step of epitaxially growing the voltage sustaining layer on the buffer layer.SELECTED DRAWING: Figure 1

Description

本発明は、エピタキシャルウェハの製造方法、エピタキシャルウェハ、半導体装置の製造方法及び半導体装置に関し、特に炭化珪素半導体を用いたエピタキシャルウェハを製造する技術に関する。   The present invention relates to an epitaxial wafer manufacturing method, an epitaxial wafer, a semiconductor device manufacturing method, and a semiconductor device, and more particularly to a technique for manufacturing an epitaxial wafer using a silicon carbide semiconductor.

基板上に炭化珪素(SiC)をエピタキシャル成長させたエピタキシャルウェハには、多くの結晶欠陥・転位が存在しており、これらがSiC半導体装置の特性に悪影響を与えていると考えられている。特にエピタキシャル成長層中の基底面転位(BPD)は、半導体装置をバイポーラ動作させた際に積層欠陥に拡張し、電流を流れにくくすることにより半導体装置のオン電圧を上昇させ「バイポーラ劣化」の発生につながる。   An epitaxial wafer obtained by epitaxially growing silicon carbide (SiC) on a substrate has many crystal defects and dislocations, which are considered to have an adverse effect on the characteristics of the SiC semiconductor device. In particular, basal plane dislocations (BPD) in the epitaxial growth layer are expanded to stacking faults when the semiconductor device is operated in a bipolar manner, and the on-voltage of the semiconductor device is increased by making the current difficult to flow, resulting in the occurrence of “bipolar degradation”. Connected.

BPDは基板に数百〜数千個/cmの密度で存在する。その多くはエピタキシャル成長中に貫通刃状転位(TED)に変換されるが、残ったBPDは表面まで貫通し、三角形状の積層欠陥に拡張して問題となる。この問題は、エピタキシャル成長条件の工夫等により変換の効率が上昇し、ほぼ全てのBPDが変換されるようになることで改善が進んでいる。しかしながら、近年、積層欠陥が帯状に広がることが報告されており、バイポーラ動作をするSiC半導体装置の実用化に向けた新たな問題となっている(非特許文献1参照。)。 BPD is present at a density of several hundred to several thousand pieces / cm 2 on the substrate. Most of them are converted to threading edge dislocations (TED) during epitaxial growth, but the remaining BPD penetrates to the surface and expands into a triangular stacking fault, which becomes a problem. This problem has been improved by improving the conversion efficiency by improving the epitaxial growth conditions, etc., and almost all BPDs are converted. However, in recent years, it has been reported that stacking faults spread in a band shape, which is a new problem for practical application of SiC semiconductor devices that perform bipolar operation (see Non-Patent Document 1).

非特許文献1には、帯状積層欠陥が広がる原因として、半導体基板中での電子―ホールの再結合が挙げられており、この再結合を抑制するため、半導体装置の半導体基板の上にエピタキシャル成長したバッファ層を厚くすることにより、半導体基板への過剰なホール注入を防ぐ対策が開示されている。しかしながら厚いバッファ層の成膜は、エピ成長のスループット低下によるコスト増大、欠陥密度増化による歩留まり低下及びエピタキシャルウェハの抵抗増大につながるため望ましくない。よって最小限のバッファ層の厚みで、帯状積層欠陥を防ぐ対策が必要とされていた。   Non-Patent Document 1 mentions that electron-hole recombination in a semiconductor substrate is a cause of spreading of band-like stacking faults. In order to suppress this recombination, epitaxial growth was performed on the semiconductor substrate of the semiconductor device. A countermeasure for preventing excessive hole injection into the semiconductor substrate by increasing the thickness of the buffer layer is disclosed. However, the formation of a thick buffer layer is undesirable because it leads to an increase in cost due to a decrease in the throughput of epi growth, a decrease in yield due to an increase in defect density, and an increase in resistance of the epitaxial wafer. Therefore, measures to prevent strip-like stacking faults have been required with the minimum buffer layer thickness.

J.J.スマーケリス(Sumakeris)他、「バイポーラ型SiC半導体装置の順方向電圧安定化へのアプローチ(Approaches to Stabilizing the Forward Voltage of Bipolar SiC Devices)」、(米国)、マテリアルサイエンスフォーラム(Materials Science Forum)、オンライン 第457−460巻、2004年、p.1113−1116JJ Sumakeris et al., “Approaches to Stabilizing the Forward Voltage of Bipolar SiC Devices” (USA), Materials Science Forum ), Online 457-460, 2004, pp. 1113-1116.

本発明は上記した問題に着目して為されたものであって、エピタキシャル成長層の厚みを抑制しつつ、大電流でバイポーラ動作させても、基板上のエピタキシャル成長層と基板との界面から拡張する帯状積層欠陥の発生を効果的に抑制するエピタキシャルウェハの製造方法、エピタキシャルウェハ、半導体装置の製造方法及び半導体装置を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problem, and is a strip-like shape that extends from the interface between the epitaxial growth layer on the substrate and the substrate even when the bipolar operation is performed with a large current while suppressing the thickness of the epitaxial growth layer. An object of the present invention is to provide an epitaxial wafer manufacturing method, an epitaxial wafer, a semiconductor device manufacturing method, and a semiconductor device that effectively suppress the occurrence of stacking faults.

上記課題を解決するために、本発明に係るエピタキシャルウェハの製造方法のある態様は、炭化珪素の基板と耐圧維持層とを備えるエピタキシャルウェハの製造方法において、基板の上に、導電型を決める主ドーパントを添加すると共に少数キャリアを捕獲する副ドーパントを主ドーパントのドーピング濃度より低いドーピング濃度で添加して、耐圧維持層から基板の方向に流れる少数キャリアの捕獲及び消滅を促進する、耐圧維持層より低抵抗の、炭化珪素を主成分とするバッファ層をエピタキシャル成長するステップと、バッファ層の上に耐圧維持層をエピタキシャル成長するステップと、を含むことを要旨とする。   In order to solve the above-described problems, an aspect of the epitaxial wafer manufacturing method according to the present invention is an epitaxial wafer manufacturing method including a silicon carbide substrate and a breakdown voltage maintaining layer. More than the breakdown voltage maintaining layer, which adds a dopant and adds a sub-dopant that captures minority carriers at a doping concentration lower than the doping concentration of the main dopant to promote the capture and annihilation of minority carriers flowing from the breakdown voltage maintaining layer toward the substrate. The present invention includes a step of epitaxially growing a low-resistance buffer layer mainly composed of silicon carbide and a step of epitaxially growing a breakdown voltage maintaining layer on the buffer layer.

また本発明に係るエピタキシャルウェハの製造方法の他の態様は、炭化珪素の基板と耐圧維持層とを備えるエピタキシャルウェハの製造方法において、基板の上に、導電型を決める主ドーパントを添加しながら炭化珪素を主成分とする単結晶層をエピタキシャル成長するステップと、単結晶層に、少数キャリアを捕獲する副ドーパントのイオンを主ドーパントのドーピング濃度より低いドーピング濃度となるドーズ量でイオン注入するステップと、イオンを活性化して、耐圧維持層から基板の方向に流れる少数キャリアの捕獲及び消滅を促進する、耐圧維持層より低抵抗の、バッファ層を単結晶層によって形成するステップと、バッファ層の上に耐圧維持層をエピタキシャル成長するステップと、を含むことを要旨とする。   Another aspect of the epitaxial wafer manufacturing method according to the present invention is an epitaxial wafer manufacturing method comprising a silicon carbide substrate and a breakdown voltage maintaining layer, and carbonizing while adding a main dopant that determines the conductivity type on the substrate. A step of epitaxially growing a single crystal layer mainly composed of silicon, and a step of ion-implanting ions of a subdopant that captures minority carriers into the single crystal layer with a dose amount that is lower than a doping concentration of the main dopant; Activating ions to promote the capture and annihilation of minority carriers flowing from the breakdown voltage maintaining layer toward the substrate, forming a buffer layer with a single crystal layer having a lower resistance than the breakdown voltage maintaining layer; and on the buffer layer And a step of epitaxially growing the breakdown voltage maintaining layer.

また本発明に係る本発明に係るエピタキシャルウェハのある態様は、炭化珪素の基板と耐圧維持層とを備えるエピタキシャルウェハにおいて、基板と耐圧維持層の間に設けられた、導電型を決める主ドーパントと、少数キャリアを捕獲し主ドーパントのドーピング濃度より低いドーピング濃度の副ドーパントとが添加された、耐圧維持層から基板の方向に流れる少数キャリアの捕獲及び消滅を促進する、耐圧維持層より低抵抗の、炭化珪素を主成分とするバッファ層を備えることを要旨とする。   An aspect of the epitaxial wafer according to the present invention according to the present invention is an epitaxial wafer including a silicon carbide substrate and a breakdown voltage maintaining layer, and a main dopant for determining a conductivity type provided between the substrate and the breakdown voltage maintaining layer. The trapping of minority carriers and the addition of a sub-dopant with a doping concentration lower than the doping concentration of the main dopant promote the capture and annihilation of minority carriers flowing from the breakdown voltage maintaining layer toward the substrate. The gist is to provide a buffer layer mainly composed of silicon carbide.

また本発明に係る半導体装置の製造方法のある態様は、炭化珪素の基板と耐圧維持層とを備える半導体装置の製造方法において、基板の上に、導電型を決める主ドーパントを添加すると共に少数キャリアを捕獲する副ドーパントを主ドーパントのドーピング濃度より低いドーピング濃度で添加して、耐圧維持層から基板の方向に流れる少数キャリアの捕獲及び消滅を促進する、耐圧維持層より低抵抗の、炭化珪素を主成分とするバッファ層をエピタキシャル成長する工程と、バッファ層の上に第1導電型の耐圧維持層をエピタキシャル成長する工程と、耐圧維持層の上部の一部に第2導電型の半導体領域を形成する工程と、を含むことを要旨とする。   According to another aspect of the method for manufacturing a semiconductor device according to the present invention, there is provided a method for manufacturing a semiconductor device comprising a silicon carbide substrate and a breakdown voltage maintaining layer, wherein a main dopant for determining a conductivity type is added to the substrate and a minority carrier is added. A silicon carbide having a lower resistance than that of the breakdown voltage maintaining layer is added by adding a sub-dopant for trapping at a doping concentration lower than the doping concentration of the main dopant to promote capture and annihilation of minority carriers flowing from the breakdown voltage maintaining layer toward the substrate. A step of epitaxially growing a buffer layer as a main component; a step of epitaxially growing a first conductivity type breakdown voltage maintaining layer on the buffer layer; and forming a second conductivity type semiconductor region on a part of the upper portion of the breakdown voltage maintaining layer. And a process.

また本発明に係る半導体装置の製造方法の他の態様は、炭化珪素の基板と耐圧維持層とを備える半導体装置の製造方法において、基板の上に、導電型を決める主ドーパントを添加しながら炭化珪素を主成分とする単結晶層をエピタキシャル成長する工程と、単結晶層に、少数キャリアを捕獲する副ドーパントのイオンを主ドーパントのドーピング濃度より低いドーピング濃度となるドーズ量でイオン注入する工程と、イオンを活性化して、耐圧維持層から基板の方向に流れる少数キャリアの捕獲及び消滅を促進する、耐圧維持層より低抵抗の、バッファ層を単結晶層によって形成する工程と、バッファ層の上に第1導電型の耐圧維持層をエピタキシャル成長する工程と、耐圧維持層の上部の一部に第2導電型の半導体領域を形成する工程と、を含むことを要旨とする。   Another aspect of the method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device comprising a silicon carbide substrate and a breakdown voltage maintaining layer, while carbonizing while adding a main dopant that determines the conductivity type on the substrate. A step of epitaxially growing a single crystal layer containing silicon as a main component; a step of ion-implanting ions of a sub-dopant that captures minority carriers into the single crystal layer at a dose amount that is lower than a doping concentration of the main dopant; A step of forming a buffer layer with a single crystal layer having a lower resistance than the withstand voltage maintaining layer, which activates ions and promotes the capture and annihilation of minority carriers flowing from the withstand voltage maintaining layer toward the substrate; and on the buffer layer A step of epitaxially growing a first conductivity type breakdown voltage maintaining layer; a step of forming a second conductivity type semiconductor region in a part of the upper portion of the breakdown voltage maintenance layer; And summary to include.

また本発明に係る半導体装置のある態様は、炭化珪素の基板と耐圧維持層とを備える半導体装置において、基板と耐圧維持層の間に設けられた、導電型を決める主ドーパントと、少数キャリアを捕獲し主ドーパントのドーピング濃度より低いドーピング濃度の副ドーパントとが添加された、耐圧維持層から基板の方向に流れる少数キャリアの捕獲及び消滅を促進する、耐圧維持層より低抵抗の、炭化珪素を主成分とするバッファ層と、第1導電型の耐圧維持層の上部の一部に設けられた第2導電型の半導体領域と、を備えることを要旨とする。   According to another aspect of the semiconductor device of the present invention, in a semiconductor device including a silicon carbide substrate and a breakdown voltage maintaining layer, a main dopant for determining a conductivity type provided between the substrate and the breakdown voltage maintaining layer and a minority carrier are provided. A silicon carbide having a lower resistance than the breakdown voltage maintaining layer, which has been added with a sub-dopant having a doping concentration lower than the doping concentration of the main dopant, promotes the capture and annihilation of minority carriers flowing from the breakdown voltage maintaining layer toward the substrate. The gist is to include a buffer layer as a main component and a second conductivity type semiconductor region provided in a part of the upper portion of the first conductivity type withstand voltage maintaining layer.

従って本発明に係るエピタキシャルウェハの製造方法、エピタキシャルウェハ、半導体装置の製造方法及び半導体装置によれば、エピタキシャル成長層の厚みを抑制しつつ、大電流でバイポーラ動作させても、基板上のエピタキシャル成長層と基板との界面から拡張する帯状積層欠陥の発生を効果的に抑制することができる。   Therefore, according to the epitaxial wafer manufacturing method, the epitaxial wafer, the semiconductor device manufacturing method, and the semiconductor device according to the present invention, the epitaxial growth layer on the substrate can be controlled even if a bipolar operation is performed with a large current while suppressing the thickness of the epitaxial growth layer. Generation | occurrence | production of the strip | belt-shaped lamination | stacking defect extended from the interface with a board | substrate can be suppressed effectively.

第1の実施の形態に係るエピタキシャルウェハの製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the epitaxial wafer which concerns on 1st Embodiment. 図2(a)は、主ドーパント及び副ドーパントの設定に用いる不純物元素の組み合わせパターンの一例であり、図2(b)は、主ドーパント及び副ドーパントの設定に用いる不純物元素の組み合わせパターンの他の例である。FIG. 2A is an example of a combination pattern of impurity elements used for setting the main dopant and the sub-dopant, and FIG. 2B shows another combination pattern of impurity elements used for setting the main dopant and the sub-dopant. It is an example. 主ドーパントのドーピング濃度と少数キャリア寿命との関係を示すグラフ図である。It is a graph which shows the relationship between the doping concentration of a main dopant, and a minority carrier lifetime. バッファ層の厚みと帯状積層欠陥の発生頻度との関係を示すグラフ図である。It is a graph which shows the relationship between the thickness of a buffer layer, and the occurrence frequency of a strip-like stacking fault. 少数キャリア寿命と帯状積層欠陥の発生頻度との関係を示すグラフ図である。It is a graph which shows the relationship between the minority carrier lifetime and the occurrence frequency of strip-like stacking faults. 少数キャリア寿命の温度依存性を示すグラフ図である。It is a graph which shows the temperature dependence of minority carrier lifetime. 第1の実施の形態に係る半導体装置の製造方法を説明する工程断面図である(その1)。It is process sectional drawing explaining the manufacturing method of the semiconductor device which concerns on 1st Embodiment (the 1). 第1の実施の形態に係る半導体装置の製造方法を説明する工程断面図である(その2)。It is process sectional drawing explaining the manufacturing method of the semiconductor device which concerns on 1st Embodiment (the 2). 第1の実施の形態に係る半導体装置の製造方法を説明する工程断面図である(その3)。It is process sectional drawing explaining the manufacturing method of the semiconductor device which concerns on 1st Embodiment (the 3). 比較例に係るエピタキシャルウェハに発生した積層欠陥のフォトルミネッセンス発光を撮影した上面図である。It is the top view which image | photographed the photoluminescence light emission of the stacking fault which generate | occur | produced in the epitaxial wafer which concerns on a comparative example. 第2の実施の形態に係るエピタキシャルウェハの製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the epitaxial wafer which concerns on 2nd Embodiment.

以下に本発明の第1及び第2の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   The first and second embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and it should be noted that the relationship between the thickness and the planar dimensions, the ratio of the thickness of each device and each member, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。また本明細書及び添付図面においては、n又はpを冠した領域や層では、それぞれ電子又は正孔が多数キャリアであることを意味する。またnやpに付す+や−は、+及び−が付記されていない半導体領域に比して、それぞれ相対的に不純物濃度が高い又は低い半導体領域であることを意味する。   Further, the directions of “left and right” and “up and down” in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present invention. Thus, for example, if the paper is rotated 90 degrees, “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course. In the present specification and the accompanying drawings, it means that electrons or holes are majority carriers in the region or layer bearing n or p, respectively. Further, + or − attached to n or p means a semiconductor region having a relatively high or low impurity concentration as compared with a semiconductor region not including + and −.

<第1の実施の形態>
(エピタキシャルウェハの製造方法)
第1の実施の形態に係るエピタキシャルウェハの製造方法を、図1のフローチャートを参照して説明する。
まずSiCからなる基板を用意し、エピタキシャル成長炉内に搬送する(ステップS1)。次に炉内に水素(H)ガスを導入し、1300〜40000Pa程度の圧力を調整した後、1600〜1700℃に昇温する(ステップS2)。その後、SiC原料ガスの導入(ステップS3)、導電型を決める主ドーパントを含む主ドーパントガスの導入(ステップS4)、少数キャリアを捕獲する副ドーパントを含む副ドーパントガスの導入(ステップS5)を行う。ステップS3〜S5は同時でも、或いは例えばステップS5をS4より僅かに遅らせて行う等タイミングをずらしても構わない。ここまでで基板の上に、耐圧維持層から基板の方向に流れる少数キャリアの捕獲及び消滅を促進する、SiCを主成分とするバッファ層が形成される。
<First Embodiment>
(Epitaxial wafer manufacturing method)
An epitaxial wafer manufacturing method according to the first embodiment will be described with reference to the flowchart of FIG.
First, a substrate made of SiC is prepared and transferred into an epitaxial growth furnace (step S1). Next, hydrogen (H 2 ) gas is introduced into the furnace, and after adjusting the pressure of about 1300 to 40000 Pa, the temperature is raised to 1600 to 1700 ° C. (step S2). Thereafter, introduction of a SiC source gas (step S3), introduction of a main dopant gas containing a main dopant that determines the conductivity type (step S4), and introduction of a subdopant gas containing a subdopant that captures minority carriers (step S5) are performed. . Steps S3 to S5 may be performed at the same time, or the timing may be shifted, for example, step S5 may be slightly delayed from S4. Up to this point, a buffer layer mainly composed of SiC that promotes the capture and annihilation of minority carriers flowing from the breakdown voltage maintaining layer toward the substrate is formed on the substrate.

続いて副ドーパントガスの供給を停止し、SiC原料ガス、主ドーパントガスの流量を、耐圧維持層を形成するように調整する(ステップS6)。これによりバッファ層より高抵抗の耐圧維持層がバッファ層の上に形成される。すなわちバッファ層が耐圧維持層より低抵抗であるように、バッファ層及び耐圧維持層は構成されている。その後、降温、不活性ガス置換(ステップS7)を行った後に、ウェハ(基板)を炉外に搬出する(ステップS8)。上記はバッファ層と耐圧維持層を連続して形成する場合であるが、別々に形成する場合もあり得る。その際は、ステップS1〜S5の後にステップS7〜S8を行いバッファ層を形成した後に、ステップS1〜S4、S7〜S8とそれぞれ等価な処理を行い耐圧維持層を形成する処理を行う。以上のようにして第1の実施の形態に関わるエピタキシャルウェハが製造される。   Subsequently, the supply of the sub-dopant gas is stopped, and the flow rates of the SiC source gas and the main dopant gas are adjusted so as to form the pressure-resistant maintenance layer (step S6). As a result, a breakdown voltage maintaining layer having a higher resistance than the buffer layer is formed on the buffer layer. That is, the buffer layer and the withstand voltage maintaining layer are configured such that the buffer layer has a lower resistance than the withstand voltage maintaining layer. Thereafter, after the temperature is lowered and the inert gas is replaced (step S7), the wafer (substrate) is carried out of the furnace (step S8). The above is the case where the buffer layer and the breakdown voltage maintaining layer are formed continuously, but may be formed separately. In this case, after steps S1 to S5, steps S7 to S8 are performed to form a buffer layer, and then a process equivalent to steps S1 to S4 and S7 to S8 is performed to form a breakdown voltage maintaining layer. As described above, the epitaxial wafer according to the first embodiment is manufactured.

第1の実施の形態における主ドーパントと副ドーパントの組み合わせパターンとしては、例えば図2(a)に示すように、主ドーパントとしてドナーレベルを形成する不純物元素の窒素(N)を選択した場合には、副ドーパントとなる不純物元素としては、アルミニウム(Al)、ボロン(B)、バナジウム(V)、チタン(Ti)、鉄(Fe)及びクロム(Cr)等のうち、少なくとも1種類以上が選択可能である。
また図2(b)に示すように、主ドーパントとしてアクセプタレベルを形成する不純物元素のAlを選択した場合には、副ドーパントとなる不純物元素としては、N、B、V、Ti、Fe及びCr等のうち少なくとも1種類以上が選択可能である。
As a combination pattern of the main dopant and the sub-dopant in the first embodiment, for example, as shown in FIG. 2A, when the impurity element nitrogen (N) forming the donor level is selected as the main dopant. As an impurity element to be a sub-dopant, at least one or more of aluminum (Al), boron (B), vanadium (V), titanium (Ti), iron (Fe), and chromium (Cr) can be selected. It is.
In addition, as shown in FIG. 2B, when Al as an impurity element that forms an acceptor level is selected as a main dopant, N, B, V, Ti, Fe, and Cr are used as impurity elements as sub-dopants. Etc., at least one of them can be selected.

副ドーパントのドーピング濃度は、主ドーパントより低濃度、かつ、1×1014cm−3程度以上、5×1018cm−3程度未満であることが望ましい。副ドーパントのドーピング濃度が1×1014cm−3程度未満の場合、少数キャリアの捕獲が不十分であり、帯状積層欠陥の発生を有効に防止することができない。一方、副ドーパントのドーピング濃度が、主ドーパントのドーピング濃度以下であっても5×1018cm−3程度以上の場合、ドーピング濃度が高くなりすぎ、エピ層における抵抗の増加や絶縁破壊電界の低下等の問題が大きくなる。 The doping concentration of the sub-dopant is preferably lower than that of the main dopant and about 1 × 10 14 cm −3 or more and less than about 5 × 10 18 cm −3 . When the doping concentration of the sub-dopant is less than about 1 × 10 14 cm −3 , minority carriers are not sufficiently trapped, and the occurrence of strip stacking faults cannot be effectively prevented. On the other hand, if the doping concentration of the sub-dopant is not more than about 5 × 10 18 cm −3 even if it is lower than the doping concentration of the main dopant, the doping concentration becomes too high, increasing the resistance in the epi layer and decreasing the breakdown electric field. The problem such as becomes larger.

また図3のグラフ図に示すように、主ドーパントのドーピング濃度が高くなるほど、少数キャリアの寿命は短くなる。特に、ドーピング濃度が1×1017cm−3オーダレベルの領域における少数キャリアの寿命が700ns程度や1000ns程度であるのに対し、ドーピング濃度が1×1018cm−3程度以上の高濃度領域では、少数キャリアの寿命は約300ns程度以下と、非常に短くなることがわかる。これはオージェ再結合メカニズムによるものと推測される。
一方、主ドーパントのドーピング濃度が、1×1019cm−3程度以上であると、ダブルショックレー(Double Shockley)型の積層欠陥が発生し易くなる。そのため主ドーパントのドーピング濃度は、1×1018cm−3程度以上、1×1019cm−3程度未満であることが望ましい。
Also, as shown in the graph of FIG. 3, the lifetime of minority carriers decreases as the doping concentration of the main dopant increases. In particular, the lifetime of minority carriers in a region where the doping concentration is on the order of 1 × 10 17 cm −3 is about 700 ns or 1000 ns, whereas in a high concentration region where the doping concentration is about 1 × 10 18 cm −3 or more. It can be seen that the lifetime of minority carriers is as short as about 300 ns or less. This is presumably due to the Auger recombination mechanism.
On the other hand, when the doping concentration of the main dopant is about 1 × 10 19 cm −3 or more, a Double Shockley type stacking fault is likely to occur. Therefore, the doping concentration of the main dopant is preferably about 1 × 10 18 cm −3 or more and less than about 1 × 10 19 cm −3 .

図4で採用したpinダイオードのバッファ層では、約250℃における少数キャリア寿命が120ns程度であるように、主ドーパントのドーピング濃度を高めて、n型のバッファ層の厚みを変化させている。
またpinダイオードのバッファ層の上には、半導体装置の耐圧を維持するためのn型の耐圧維持層を積層し、高抵抗のエピ層として成膜している。耐圧維持層の厚みは約10μm、不純物元素のドーピング濃度は約1×1016cm−3程度である。
In the buffer layer of the pin diode employed in FIG. 4, the doping concentration of the main dopant is increased and the thickness of the n-type buffer layer is changed so that the minority carrier lifetime at about 250 ° C. is about 120 ns.
An n type breakdown voltage maintaining layer for maintaining the breakdown voltage of the semiconductor device is stacked on the buffer layer of the pin diode, and is formed as a high resistance epi layer. The thickness of the breakdown voltage maintaining layer is about 10 μm, and the doping concentration of the impurity element is about 1 × 10 16 cm −3 .

また耐圧維持層の上部の一部には、Alを不純物元素としてイオン注入して、p型のアノード領域を形成している。アノード領域の厚みは約0.3μm、Alのドーピング濃度は約1×1020cm−3程度のボックスプロファイルに設定している。またアノード領域の上面にはアノード電極を成膜して設けると共に、裏面側でn型のカソード領域をなす基板の下面には、カソード電極を成膜して設けている。またpinダイオードの端部の耐圧を向上させるために、耐圧維持層の上部のアノード領域の周囲にAlをイオン注入して、アノード領域より低濃度のp型の半導体領域をさらに形成し、接合終端(JTE)構造を具備させている。 A p-type anode region is formed on a part of the upper portion of the breakdown voltage maintaining layer by ion implantation of Al as an impurity element. The anode region has a thickness of about 0.3 μm, and the Al doping concentration is set to a box profile of about 1 × 10 20 cm −3 . An anode electrode is formed on the upper surface of the anode region, and a cathode electrode is formed on the lower surface of the substrate forming the n-type cathode region on the back side. In order to improve the breakdown voltage at the end of the pin diode, Al is ion-implanted around the anode region above the breakdown voltage maintaining layer to further form a p-type semiconductor region having a lower concentration than the anode region, thereby terminating the junction. (JTE) structure.

図4に示すように、エピタキシャルウェハのバッファ層の厚みが厚くなるほど、帯状積層欠陥の発生頻度は低下していることがわかる。図4の結果より、少数キャリア寿命が120ns程度である場合、帯状積層欠陥の発生を零(ゼロ)にするには、バッファ層の厚みは少なくとも10μm以上、より確実性を高めるためには15μm以上であることが望ましい。   As shown in FIG. 4, it can be seen that as the buffer layer of the epitaxial wafer becomes thicker, the occurrence frequency of strip-like stacking faults decreases. From the results shown in FIG. 4, when the minority carrier lifetime is about 120 ns, the thickness of the buffer layer is at least 10 μm or more in order to reduce the occurrence of strip stacking faults to zero, and 15 μm or more to increase the reliability. It is desirable that

しかしバッファ層の厚みを厚くすると、エピタキシャル成長時の成膜プロセスのコストが増大する。そこで本発明者らは、研究の結果、少数キャリア寿命を更に短くすることを試み、帯状積層欠陥の発生頻度が零となる変化点をなすバッファ層の厚みを小さくするように試みた。そして、例えば厚みを5μm程度以下に抑えてバッファ層を成膜した場合であっても、帯状積層欠陥の発生頻度を著しく低下させることができるという知見を得た。この知見に基づいて行われた実験結果の一例を図5のグラフ図に示す。   However, increasing the thickness of the buffer layer increases the cost of the film formation process during epitaxial growth. Accordingly, as a result of research, the present inventors have attempted to further shorten the minority carrier lifetime, and have attempted to reduce the thickness of the buffer layer forming the changing point at which the occurrence frequency of the band-like stacking fault becomes zero. Further, for example, even when the buffer layer is formed with the thickness being suppressed to about 5 μm or less, it has been found that the occurrence frequency of the band-like stacking fault can be remarkably reduced. An example of the results of experiments conducted based on this finding is shown in the graph of FIG.

図5中には、エピタキシャルウェハに、厚みを約5μmとし、少数キャリア寿命を変化させて成膜したバッファ層を設け、このエピタキシャルウェハを半導体ウェハとして用いたpinダイオードに、600A/cmで1時間程度の通電を行い、少数キャリア寿命と帯状積層欠陥の発生頻度との相関を調べた結果が示されている。 In FIG. 5, a buffer layer is formed on an epitaxial wafer with a thickness of about 5 μm and a minority carrier lifetime being changed, and a pin diode using this epitaxial wafer as a semiconductor wafer is provided with 1 at 600 A / cm 2 . The figure shows the result of conducting the energization for about an hour and investigating the correlation between the minority carrier lifetime and the occurrence frequency of the band-like stacking fault.

図5に示したように、少数キャリア寿命を短くするほど、帯状積層欠陥の発生頻度が低下する。特に、少数キャリア寿命が100ns以下である場合、帯状積層欠陥の発生頻度が零となることがわかる。少数キャリア寿命を短くする方法としては、主ドーパントの濃度を高める方法が挙げられるが、先に述べたダブルショックレー(Double Shockley)型積層欠陥の発生の懸念があるために少数キャリア寿命を十分に小さくすることが困難である。そこで筆者らは深い準位を形成する副ドーパントの濃度を高めることにより、100ns以下の短い少数キャリア寿命を得ることができた。このようにして筆者らは5μm程度の実用的な膜厚のバッファ層で帯状積層欠陥の発生を防止することができた。原理的には少数キャリア寿命が短くなるほど、バッファ層膜厚を薄くすることができるが、0.1μm以下に薄くなると膜厚の制御が難しくなる。バッファ層膜厚としては0.1μm以上5μm以下程度が望ましい。   As shown in FIG. 5, as the minority carrier lifetime is shortened, the frequency of occurrence of strip-like stacking faults decreases. In particular, it can be seen that when the minority carrier lifetime is 100 ns or less, the occurrence frequency of the strip-like stacking fault becomes zero. As a method of shortening the minority carrier lifetime, there is a method of increasing the concentration of the main dopant. However, since there is a concern of occurrence of the Double Shockley type stacking fault described above, the minority carrier lifetime is sufficiently increased. It is difficult to make it smaller. Therefore, the authors were able to obtain a short minority carrier lifetime of 100 ns or less by increasing the concentration of the subdopant that forms a deep level. In this way, the authors were able to prevent the occurrence of strip stacking faults with a buffer layer having a practical thickness of about 5 μm. In principle, the shorter the minority carrier lifetime, the thinner the buffer layer thickness. However, when the thickness becomes 0.1 μm or less, it becomes difficult to control the film thickness. The buffer layer thickness is preferably about 0.1 μm or more and 5 μm or less.

特許第4364945号公報では少数キャリア寿命を短くするために、エピタキシャル成長時に再結合中心を形成する不純物を導入することが示されている。しかしながら、発明者らが検討した結果、従来の再結合中心による少数キャリア寿命の低減は、150℃程度以上の高温にすると効果が薄れ、長寿命になってしまうことが判明した。例えば図6のグラフ図中の○印のデータ点で例示するように、主ドーパントであるNの濃度を5×1017cm−3程度としたときエピタキシャルウェハの場合、少数キャリア寿命は、温度が150℃では40nsを超え、更に温度が250℃では170ns以上に到達する。 Japanese Patent No. 4364945 discloses introducing impurities that form recombination centers during epitaxial growth in order to shorten the minority carrier lifetime. However, as a result of investigations by the inventors, it has been found that the reduction of the minority carrier lifetime due to the conventional recombination center is less effective at a high temperature of about 150 ° C. or more, resulting in a long lifetime. For example, as exemplified by the data points marked with a circle in the graph of FIG. 6, when the concentration of N as the main dopant is about 5 × 10 17 cm −3 , the minority carrier lifetime is At 150 ° C., it exceeds 40 ns, and when the temperature is 250 ° C., it reaches 170 ns or more.

一方で、発明者らが提案する主ドーパントの濃度を1×1018cm−3程度以上に高める方法では、図6中の菱形のデータ点で示すように、150℃程度以上の高温においても短い少数キャリア寿命を保てることが判明した。菱形のデータ点で示したエピタキシャルウェハは、主ドーパントであるNの濃度を5×1018cm−3程度とした。また少数キャリア寿命は、温度が150℃であっても20ns程度に留まると共に、更に温度が250℃に上昇しても、60ns未満に抑えることができた。これは再結合中心による再結合メカニズムは高温では有効に働かなくなる一方、発明者らの提案する手法はオージェ再結合メカニズムを利用しており温度依存性が小さいためと考えられる。 On the other hand, the method proposed by the inventors to increase the concentration of the main dopant to about 1 × 10 18 cm −3 or more is short even at a high temperature of about 150 ° C. or more as shown by the diamond data points in FIG. It has been found that the minority carrier life can be maintained. In the epitaxial wafer indicated by the diamond data points, the concentration of N as the main dopant was set to about 5 × 10 18 cm −3 . Further, the minority carrier lifetime remained at about 20 ns even when the temperature was 150 ° C., and even when the temperature further increased to 250 ° C., it could be suppressed to less than 60 ns. This is thought to be because the recombination mechanism due to the recombination centers does not work effectively at high temperatures, whereas the method proposed by the inventors uses the Auger recombination mechanism and is less temperature dependent.

(半導体装置の製造方法)
次に、第1の実施の形態に係る半導体装置の製造方法を、pinダイオードを製造する場合を例として、図7〜図9を参照して説明する。
まず、図7の断面図で示したようなエピタキシャルウェハを半導体ウェハとして用意する。図7中には、カソード領域となるn型のSiCからなる基板21、この基板21の上に設けられた高濃度のn型のバッファ層22及びこのバッファ層22の上に設けられた低濃度のn型の耐圧維持層23の3層構造を有するエピタキシャルウェハが例示されている。耐圧維持層23は、pinダイオードの真性半導体層(i層)として機能する。
(Method for manufacturing semiconductor device)
Next, the manufacturing method of the semiconductor device according to the first embodiment will be described with reference to FIGS. 7 to 9 by taking as an example the case of manufacturing a pin diode.
First, an epitaxial wafer as shown in the sectional view of FIG. 7 is prepared as a semiconductor wafer. In FIG. 7, a substrate 21 made of n + type SiC serving as a cathode region, a high concentration n + type buffer layer 22 provided on the substrate 21, and a buffer layer 22 provided on the buffer layer 22. An epitaxial wafer having a three-layer structure of a low concentration n -type breakdown voltage maintaining layer 23 is illustrated. The breakdown voltage maintaining layer 23 functions as an intrinsic semiconductor layer (i layer) of the pin diode.

次に図8の断面図に示すように、p型を呈するAlイオンを耐圧維持層23のバッファ層22と反対側の表面に、例えばイオン注入法により注入すると共に、注入後に所定の活性化処理を施して、耐圧維持層23の上部の一部に高濃度のp型のアノード領域24を形成する。アノード領域24は、本発明の「第2導電型の半導体領域」に相当する。尚、図8中には、アノード領域24の周囲の耐圧維持層23の上部にJTE構造をなすために、更にAlイオンを注入して、アノード領域24より低濃度のp型の半導体領域25,25が形成された場合のpinダイオードが例示されている。 Next, as shown in the cross-sectional view of FIG. 8, p-type Al ions are implanted into the surface of the breakdown voltage maintaining layer 23 opposite to the buffer layer 22 by, for example, ion implantation, and a predetermined activation process is performed after the implantation. As a result, a high-concentration p + -type anode region 24 is formed in part of the upper portion of the breakdown voltage maintaining layer 23. The anode region 24 corresponds to the “second conductivity type semiconductor region” of the present invention. In FIG. 8, in order to form a JTE structure above the breakdown voltage maintaining layer 23 around the anode region 24, Al ions are further implanted to form p-type semiconductor regions 25, having a lower concentration than the anode region 24. A pin diode when 25 is formed is illustrated.

次に図9の断面図に示すように、ニッケル(Ni)等で、アノード領域24の上面にアノード電極27を成膜すると共に、裏面側をなす基板21をカソード領域として、カソード領域の下面にカソード電極26を成膜する。図7〜図9を参照して説明した一連の工程により、バッファ層22をカソード側に有するpinダイオードが、半導体装置として製造できる。   Next, as shown in the cross-sectional view of FIG. 9, an anode electrode 27 is formed on the upper surface of the anode region 24 with nickel (Ni) or the like, and the substrate 21 on the back surface side is used as the cathode region and is formed on the lower surface of the cathode region. A cathode electrode 26 is formed. Through the series of steps described with reference to FIGS. 7 to 9, a pin diode having the buffer layer 22 on the cathode side can be manufactured as a semiconductor device.

第1の実施の形態に係る半導体装置の製造方法によれば、エピタキシャルウェハのバッファ層22によって少数キャリアの捕獲を積極的に促進させることにより、バッファ層22の厚みを抑制しつつ、大電流でバイポーラ動作させた際にバッファ層22と基板21との界面から拡張する帯状積層欠陥の発生を効果的に抑制できる半導体装置を製造することができる。   According to the manufacturing method of the semiconductor device according to the first embodiment, the buffer layer 22 of the epitaxial wafer is actively promoted to capture minority carriers, thereby suppressing the thickness of the buffer layer 22 and increasing the current. A semiconductor device that can effectively suppress the occurrence of strip-like stacking faults extending from the interface between the buffer layer 22 and the substrate 21 when the bipolar operation is performed can be manufactured.

次に、第1の実施の形態に係る半導体装置の製造方法を用いた実施例1を説明する。まず<11−20>方向に4°オフしたn型の4H−SiCからなる基板21のSi面を、化学的機械研磨(CMP)した径(φ)3インチのSiC基板からなる基板21を、エピタキシャル成長装置の中に入れた。そして温度約1680℃で圧力10.3kPa程度の雰囲気中に、原料ガスとしてHを流量約1.69×10Pa・m/s(約100slm)、モノシラン(SiH)を流量約143.65×10−3Pa・m/s(約85sccm)、プロパン(C)を流量約38.87×10−3Pa・m/s(約23sccm)、窒素(N)を流量約84.5×10−3Pa・m/s(約50sccm)及びトリエチルボロン(C15B)を流量約16.9×10−3Pa・m/s(約10sccm)でそれぞれ導入して、30分間程度、SiCの単結晶層のエピタキシャル成長を行った。Nは主ドーパントであり、Bは副ドーパントである。 Next, Example 1 using the method for manufacturing a semiconductor device according to the first embodiment will be described. First, a substrate 21 made of an SiC substrate having a diameter (φ) of 3 inches obtained by chemically and mechanically polishing (CMP) the Si surface of the substrate 21 made of n + -type 4H—SiC that is turned off by 4 ° in the <11-20> direction. In an epitaxial growth apparatus. Then, in an atmosphere at a temperature of about 1680 ° C. and a pressure of about 10.3 kPa, H 2 as a raw material gas has a flow rate of about 1.69 × 10 2 Pa · m 3 / s (about 100 slm), and monosilane (SiH 4 ) has a flow rate of about 143. .65 × 10 −3 Pa · m 3 / s (about 85 sccm), propane (C 3 H 8 ) at a flow rate of about 38.87 × 10 −3 Pa · m 3 / s (about 23 sccm), nitrogen (N 2 ) The flow rate is about 84.5 × 10 −3 Pa · m 3 / s (about 50 sccm) and the triethyl boron (C 6 H 15 B) is about 16.9 × 10 −3 Pa · m 3 / s (about 10 sccm). Then, the SiC single crystal layer was epitaxially grown for about 30 minutes. N is a main dopant and B is a subdopant.

そして基板21のSi面側に、エピタキシャル成長層を厚さ約5μm成膜し、Nをドーピング濃度5×1018cm−3程度、Bをドーピング濃度1×1015cm−3程度でそれぞれ添加したバッファ層22を形成した。すなわち実施例1では、エピタキシャル成長装置の内側で、N及びBを並行して同時に、かつ、それぞれのドーピング濃度を制御してSiCの単結晶層に添加し、バッファ層22をエピタキシャル成長した。 Then, an epitaxial growth layer having a thickness of about 5 μm is formed on the Si surface side of the substrate 21, and N is added at a doping concentration of about 5 × 10 18 cm −3 and B is added at a doping concentration of about 1 × 10 15 cm −3. Layer 22 was formed. That is, in Example 1, the buffer layer 22 was epitaxially grown inside the epitaxial growth apparatus by simultaneously adding N and B to the SiC single crystal layer simultaneously while controlling the respective doping concentrations.

次に、バッファ層22のエピタキシャル成長条件のうち、SiHを流量約312.65×10−3Pa・m/s(約185sccm)、Cを流量約116.61×10−3Pa・m/s(約69sccm)及びNを流量約8.45×10−3Pa・m/s(約5sccm)にそれぞれ変更すると共に、他の原料ガスの導入条件は同じ条件で、7時間程度、SiCの単結晶層のエピタキシャル成長を行った。そしてバッファ層22の上に、Nをドーピング濃度1×1014cm−3程度で添加した耐圧維持層23を厚さ約120μmでエピタキシャル成長した。 Next, among the epitaxial growth conditions of the buffer layer 22, SiH 4 has a flow rate of about 312.65 × 10 −3 Pa · m 3 / s (about 185 sccm), and C 3 H 8 has a flow rate of about 116.61 × 10 −3 Pa.・ M 3 / s (about 69 sccm) and N 2 were respectively changed to a flow rate of about 8.45 × 10 −3 Pa · m 3 / s (about 5 sccm), and the other source gas introduction conditions were the same, The SiC single crystal layer was epitaxially grown for about 7 hours. On the buffer layer 22, a breakdown voltage maintaining layer 23 to which N was added at a doping concentration of about 1 × 10 14 cm −3 was epitaxially grown to a thickness of about 120 μm.

そして耐圧維持層23の上部の一部に、Alを不純物元素としてイオン注入して、厚みを約0.3μm、ドーピング濃度を約1×1020cm−3程度のボックスプロファイルに設定したアノード領域24を形成した。またアノード領域24の上面にアノード電極27を成膜すると共に、基板21の下面にカソード電極26を成膜した。また半導体装置の端部の耐圧を向上させるために、耐圧維持層23の上部のアノード領域24の周囲にAlをイオン注入して、アノード領域24より低濃度のp型の半導体領域25,25をさらに形成し、JTE構造を備えるpinダイオードを複数個製造した。 Then, an anode region 24 having a box profile with a thickness of about 0.3 μm and a doping concentration of about 1 × 10 20 cm −3 is implanted into a part of the upper portion of the breakdown voltage maintaining layer 23 by ion implantation of Al as an impurity element. Formed. An anode electrode 27 was formed on the upper surface of the anode region 24, and a cathode electrode 26 was formed on the lower surface of the substrate 21. In order to improve the breakdown voltage of the end portion of the semiconductor device, Al ions are implanted around the anode region 24 above the breakdown voltage maintaining layer 23 to form p-type semiconductor regions 25 and 25 having a lower concentration than the anode region 24. Further, a plurality of pin diodes having a JTE structure were formed.

尚、バッファ層22の250℃における少数キャリア寿命は、主ドーパント及び副ドーパントのドーピング濃度の調節により50nsに制御して設定した。そして、それぞれのpinダイオードに600A/cmで1時間程度の通電実験を行い、帯状積層欠陥の発生頻度を調べた。
通電実験の結果、実施例1に係るpinダイオードには、バッファ層22が5μm程度の厚みであっても、帯状積層欠陥は一切発生せず、バッファ層22の厚みの抑制と、製品としてのpinダイオードの品質の向上とを好適に両立できることがわかった。
The minority carrier lifetime at 250 ° C. of the buffer layer 22 was set to 50 ns by adjusting the doping concentrations of the main dopant and the sub-dopant. Then, each pin diode was subjected to an energization experiment at 600 A / cm 2 for about 1 hour, and the occurrence frequency of strip-like stacking faults was examined.
As a result of the energization experiment, even when the buffer layer 22 has a thickness of about 5 μm, no strip-like stacking fault occurs in the pin diode according to Example 1, and the thickness of the buffer layer 22 is suppressed and the pin as a product is produced. It has been found that the improvement in the quality of the diode can be suitably achieved.

(比較例)
一方、主ドーパント、副ドーパントのドーピング濃度の調節による少数キャリア寿命の制御を行わなかったpinダイオードを比較例として用意した。そして比較例に係るpinダイオードを、実施例1の場合と同様の通電実験を行ってバイポーラ動作させた後、アノード電極を剥離し、室温で420nm近傍のバンドパスフィルターを用いて、エピタキシャルウェハに対してフォトルミネッセンス発光の測定を行った。その結果、比較例に係るpinダイオードには、図10の上面図中に白みがかった略台形状の領域で示すように、バッファ層22と基板21との界面から拡がる帯状積層欠陥SFbが観察された。図10中には、エピタキシャルウェハの上下の両端に亘って長く延びた帯状積層欠陥SFbが、三角形状積層欠陥SFt,SFtと共に発光した状態が示されている。
(Comparative example)
On the other hand, a pin diode in which the minority carrier lifetime was not controlled by adjusting the doping concentrations of the main dopant and the sub-dopant was prepared as a comparative example. The pin diode according to the comparative example was subjected to a bipolar operation by conducting the same energization experiment as in Example 1. Then, the anode electrode was peeled off, and a band-pass filter near 420 nm at room temperature was used for the epitaxial wafer. The photoluminescence emission was measured. As a result, in the pin diode according to the comparative example, as shown by the substantially trapezoidal region that is whitened in the top view of FIG. 10, the band-like stacking fault SFb extending from the interface between the buffer layer 22 and the substrate 21 is observed. It was done. FIG. 10 shows a state in which the strip-like stacking fault SFb extending long across the upper and lower ends of the epitaxial wafer emits light together with the triangular stacking faults SFt 1 and SFt 2 .

<第2の実施の形態>
第2の実施の形態における主ドーパントと副ドーパントの組み合わせパターン及びそれぞれの濃度は、第1の実施の形態の場合と同じである。
(エピタキシャルウェハの製造方法)
次に第2の実施形態に関わるエピタキシャルウェハの製造方法を図11をもとに説明する。
<Second Embodiment>
The combination pattern and the concentration of the main dopant and the sub-dopant in the second embodiment are the same as those in the first embodiment.
(Epitaxial wafer manufacturing method)
Next, an epitaxial wafer manufacturing method according to the second embodiment will be described with reference to FIG.

まず図1のステップS1〜S4、S7〜S8を行い(ステップSa)、基板21上に主ドーパントのみをドープしたバッファ層22を形成したウェハ(下地基板)を作製する。その後、当該ウェハに対し、イオン注入装置を用いて副ドーパントのイオン注入を実施する(ステップS9〜S11)。続いて活性化熱処理装置を用いて当該ウェハの熱処理を行い、注入したイオンを活性化する(ステップS12〜S14)その後、図1のステップS1〜S4、S7〜S8を行い、耐圧維持層23を形成する(ステップSb)。上記はイオン注入の後に引き続いて活性化熱処理を実施する場合であるが、活性化熱処理を耐圧維持層23形成後に実施してもよい。その際は、S12〜S14をステップSbの後に実施する。以上のようにして第2の実施形態に関わるエピタキシャルウェハを製造する。   First, steps S1 to S4 and S7 to S8 of FIG. 1 are performed (step Sa), and a wafer (underlying substrate) in which the buffer layer 22 doped only with the main dopant is formed on the substrate 21 is manufactured. Thereafter, ion implantation of a sub-dopant is performed on the wafer using an ion implantation apparatus (steps S9 to S11). Subsequently, the wafer is heat-treated using an activation heat treatment apparatus to activate the implanted ions (steps S12 to S14). Thereafter, steps S1 to S4 and S7 to S8 in FIG. Form (step Sb). The above is a case where the activation heat treatment is performed subsequently after the ion implantation. However, the activation heat treatment may be performed after the breakdown voltage maintaining layer 23 is formed. In that case, S12-S14 are implemented after step Sb. As described above, the epitaxial wafer according to the second embodiment is manufactured.

(半導体装置の製造方法)
第2の実施の形態に係る半導体装置の製造方法については、図7〜図9を参照して説明した第1の実施の形態に係る半導体装置の製造方法と同様であるため、重複説明を省略する。第2の実施の形態に係る半導体装置の製造方法によれば、第1の実施の形態に係る半導体装置の製造方法と同様に、バッファ層22の厚みを抑制しつつ、大電流でバイポーラ動作させた際にバッファ層22と基板21との界面から拡張する帯状積層欠陥の発生を効果的に抑制できる半導体装置を製造することができる。
(Method for manufacturing semiconductor device)
The method for manufacturing the semiconductor device according to the second embodiment is the same as the method for manufacturing the semiconductor device according to the first embodiment described with reference to FIGS. To do. According to the method for manufacturing a semiconductor device according to the second embodiment, as in the method for manufacturing a semiconductor device according to the first embodiment, a bipolar operation is performed with a large current while suppressing the thickness of the buffer layer 22. In this case, it is possible to manufacture a semiconductor device that can effectively suppress the occurrence of strip-like stacking faults extending from the interface between the buffer layer 22 and the substrate 21.

次に、第2の実施の形態に係る半導体装置の製造方法を用いた実施例2を説明する。<11−20>方向に4°オフしたn型の4H−SiCからなる基板21のSi面を、化学的機械研磨(CMP)した径(φ)3インチのSiC基板からなる基板21を、エピタキシャル成長装置の中に入れた。そして温度約1680℃で圧力10.3kPa程度の雰囲気中に、原料ガスとしてHを流量約1.69×10Pa・m/s(約100slm)、SiHを流量約143.65×10−3Pa・m/s(85sccm)、Cを流量約38.87×10−3Pa・m/s(約23sccm)及びNを流量約84.5×10−3Pa・m/s(約50sccm)でそれぞれ導入して、30分間程度、SiCの単結晶層のエピタキシャル成長を行って、単結晶層を厚さ約5μm成膜した。Nは主ドーパントである。 Next, Example 2 using the semiconductor device manufacturing method according to the second embodiment will be described. A substrate 21 made of a SiC substrate having a diameter (φ) of 3 inches obtained by chemically and mechanically polishing (CMP) the Si surface of the substrate 21 made of n + -type 4H—SiC, which is turned off by 4 ° in the <11-20> direction, Placed in an epitaxial growth apparatus. Then, in an atmosphere at a temperature of about 1680 ° C. and a pressure of about 10.3 kPa, H 2 as a source gas has a flow rate of about 1.69 × 10 2 Pa · m 3 / s (about 100 slm), and SiH 4 has a flow rate of about 143.65 ×. 10 −3 Pa · m 3 / s (85 sccm), C 3 H 8 with a flow rate of about 38.87 × 10 −3 Pa · m 3 / s (about 23 sccm), and N 2 with a flow rate of about 84.5 × 10 −3. Each was introduced at Pa · m 3 / s (about 50 sccm), and the SiC single crystal layer was epitaxially grown for about 30 minutes to form a single crystal layer having a thickness of about 5 μm. N is the main dopant.

次に、SiCの単結晶層が成膜された基板21をイオン注入装置50に搬送し、注入室57の内部に固定して、単結晶層にVイオンを、7×1011cm−2程度のドーズ量で注入した。Vは副ドーパントである。その後、基板21に活性化のための熱処理を施し、Vが主ドーパントのドーピング濃度より低く、1×1014cm−3程度以上、5×1018cm−3程度未満の範囲内で添加されたバッファ層22を形成した。 Next, the substrate 21 on which the single crystal layer of SiC is formed is transported to the ion implantation apparatus 50 and fixed inside the implantation chamber 57, and V ions are about 7 × 10 11 cm −2 in the single crystal layer. The dose was injected at a dose of. V is a minor dopant. Thereafter, the substrate 21 was heat-treated for activation, and V was lower than the doping concentration of the main dopant, and was added within a range of about 1 × 10 14 cm −3 or more and less than about 5 × 10 18 cm −3 . A buffer layer 22 was formed.

次に実施例1の場合と同様に、バッファ層22のエピタキシャル成長条件のうち、SiHを流量約312.65×10−3Pa・m/s(約185sccm)、Cを流量約116.61×10−3Pa・m/s(約69sccm)及びNを流量約8.45×10−3Pa・m/s(約5sccm)にそれぞれ変更すると共に、他の原料ガスの導入条件は同じ条件で、7時間程度、SiCの単結晶層のエピタキシャル成長を行った。そしてバッファ層22の上に、Nをドーピング濃度1×1014cm−3程度で添加した耐圧維持層23を、厚さ約120μmでエピタキシャル成長した。 Next, in the same manner as in Example 1, among the epitaxial growth conditions of the buffer layer 22, SiH 4 has a flow rate of about 312.65 × 10 −3 Pa · m 3 / s (about 185 sccm), and C 3 H 8 has a flow rate of about 116.61 × 10 −3 Pa · m 3 / s (about 69 sccm) and N 2 are respectively changed to a flow rate of about 8.45 × 10 −3 Pa · m 3 / s (about 5 sccm), and other source gases The same conditions were used for epitaxial growth of the SiC single crystal layer for about 7 hours. On the buffer layer 22, a breakdown voltage maintaining layer 23 to which N was added at a doping concentration of about 1 × 10 14 cm −3 was epitaxially grown to a thickness of about 120 μm.

そして耐圧維持層23の上部の一部に、Alを不純物元素としてイオン注入して、厚みを約0.3μm、ドーピング濃度を約1×1020cm−3程度のボックスプロファイルに設定したp型のアノード領域24を形成した。またアノード領域24の上面にアノード電極27を成膜すると共に、基板21の下面にカソード電極26を成膜した。また半導体装置の端部の耐圧を向上させるために、耐圧維持層23の上部のアノード領域24の周囲にAlをイオン注入して、アノード領域24より低濃度のp型の半導体領域25をさらに形成し、JTE構造を備えるpinダイオードを複数個製造した。 Then, a part of the upper portion of the breakdown voltage maintaining layer 23 is ion-implanted with Al as an impurity element. The p + type has a box profile of about 0.3 μm in thickness and about 1 × 10 20 cm −3 in doping concentration. The anode region 24 was formed. An anode electrode 27 was formed on the upper surface of the anode region 24, and a cathode electrode 26 was formed on the lower surface of the substrate 21. Further, in order to improve the breakdown voltage of the end portion of the semiconductor device, Al is ion-implanted around the anode region 24 above the breakdown voltage maintaining layer 23 to further form a p-type semiconductor region 25 having a lower concentration than the anode region 24. A plurality of pin diodes having a JTE structure were manufactured.

尚、バッファ層22の250℃における少数キャリア寿命は、主ドーパントおよび副ドーパントのドーピング濃度の調節により80nsに制御して設定した。そして、それぞれのpinダイオードに600A/cmで1時間程度の通電実験を行い、帯状積層欠陥の発生頻度を調べた。
通電実験の結果、イオン注入を用いてバッファ層22を形成した実施例2に係るpinダイオードは、バッファ層22が5μm程度の厚みであっても、帯状積層欠陥は一切発生せず、実施例1の場合と同様に、バッファ層22の厚みの抑制と、製品としてのpinダイオードの品質の向上とを好適に両立できることがわかった。
The minority carrier lifetime at 250 ° C. of the buffer layer 22 was set by controlling it to 80 ns by adjusting the doping concentrations of the main dopant and the sub-dopant. Then, each pin diode was subjected to an energization experiment at 600 A / cm 2 for about 1 hour, and the occurrence frequency of strip-like stacking faults was examined.
As a result of the energization experiment, the pin diode according to Example 2 in which the buffer layer 22 was formed by ion implantation did not cause any strip-like stacking fault even when the buffer layer 22 had a thickness of about 5 μm. As in the case of, it has been found that the suppression of the thickness of the buffer layer 22 and the improvement of the quality of the pin diode as a product can be suitably achieved.

また第1及び第2の実施の形態に係る半導体装置の製造方法では、pinダイオードを例として説明したが、半導体装置としてはpinダイオードに限定されるものではない。例えば、i層若しくはi層に近似できる程度の低濃度の半導体層をpn接合の間に挟まない「pnダイオード」、又は、ツェナーダイオードやトンネルダイオードのような「pダイオード」等でも構わない。 In the semiconductor device manufacturing methods according to the first and second embodiments, the pin diode has been described as an example. However, the semiconductor device is not limited to the pin diode. For example, an “pn diode” in which an i layer or a semiconductor layer having a low concentration that can be approximated to an i layer is not sandwiched between pn junctions, or a “p + n + diode” such as a Zener diode or a tunnel diode may be used. Absent.

更に本発明は、バイポーラトランジスタ、IGBT、サイリスタ等、各種のバイポーラ動作を行う半導体装置や、これらをモノシリックに集積化した半導体集積回路等に適用できる。図7〜図9ではn型の基板21の上にn型のバッファ層22及びn型の耐圧維持層23を備えた半導体装置を例示したが、これに限定されず、例えばp型の基板の上にp型のバッファ層及びn型の耐圧維持層が設けられた構成であってもよい。 Further, the present invention can be applied to semiconductor devices that perform various bipolar operations such as bipolar transistors, IGBTs, thyristors, and semiconductor integrated circuits in which these are monolithically integrated. Buffer layer 22 and n of the n + -type on the 7-9 in the n + -type substrate 21 - exemplifying a semiconductor device having the type of breakdown voltage sustaining layer 23, but not limited to, for example, p + A configuration in which a p + type buffer layer and an n type breakdown voltage maintaining layer are provided on a type substrate may be employed.

またSiCと、SiCとは禁制帯幅の異なる半導体材料とのヘテロ接合をエミッタ・ベース間等に用いたヘテロ接合バイポーラトランジスタ(HBT)等にも適用できる。更にMOSFETのようなユニポーラデバイスに適用した場合であっても、スイッチング時にMOSFETのボディダイオードに順方向電流が流れるため、本発明を適用すれば、帯状積層欠陥の発生の抑制に効果的である。   The present invention can also be applied to a heterojunction bipolar transistor (HBT) or the like using a heterojunction of SiC and a semiconductor material having a different forbidden band width between an emitter and a base. Further, even when the present invention is applied to a unipolar device such as a MOSFET, a forward current flows through the body diode of the MOSFET at the time of switching. Therefore, the application of the present invention is effective in suppressing the occurrence of strip-like stacking faults.

また図10中には帯状積層欠陥として、上面から見て上底及び下底が直線状の形態が例示されているが、本発明は他の形態を有する帯状積層欠陥の発生防止についても有効である。例えば矩形状の帯状積層欠陥、或いは矩形状であって矩形の長辺が鋸歯状であるような帯状積層欠陥、或いは台形の高さや矩形の短辺に相当する帯の幅が一定でない帯状積層欠陥等、各種の形態の帯状積層欠陥の発生を防止可能である。
以上のとおり本発明は、上記に記載していない様々な実施の形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
Further, in FIG. 10, as the strip-like stacking fault, a form in which the upper base and the lower base are linear when viewed from above is illustrated, but the present invention is also effective in preventing the occurrence of strip-like stacking faults having other forms. is there. For example, a rectangular belt-like stacking fault, or a strip-like stacking fault that has a rectangular shape with a long side of a rectangular sawtooth, or a strip-like stacking fault that has a trapezoidal height or a width corresponding to the short side of the rectangle is not constant. Thus, it is possible to prevent the occurrence of strip-like stacking faults in various forms.
As described above, the present invention includes various embodiments and the like not described above, and the technical scope of the present invention is defined only by the invention specifying matters according to the appropriate claims from the above description. Is.

21 基板(カソード領域)
22 バッファ層
23 耐圧維持層
24 アノード領域(半導体領域)
25 p型の半導体領域
26 カソード電極
27 アノード電極
SFb 帯状積層欠陥
SFt,SFt 三角形状積層欠陥
21 Substrate (cathode region)
22 Buffer layer 23 Withstand voltage maintaining layer 24 Anode region (semiconductor region)
25 p-type semiconductor region 26 cathode electrode 27 anode electrode SFb strip-like stacking fault SFt 1 , SFt 2 triangular stacking fault

Claims (13)

炭化珪素の基板と耐圧維持層とを備えるエピタキシャルウェハの製造方法において、
前記基板の上に、導電型を決める主ドーパントを添加すると共に少数キャリアを捕獲する副ドーパントを前記主ドーパントのドーピング濃度より低いドーピング濃度で添加して、前記耐圧維持層から前記基板の方向に流れる前記少数キャリアの捕獲及び消滅を促進する、前記耐圧維持層より低抵抗の、炭化珪素を主成分とするバッファ層をエピタキシャル成長するステップと、
前記バッファ層の上に前記耐圧維持層をエピタキシャル成長するステップと、
を含むことを特徴とするエピタキシャルウェハの製造方法。
In a method for manufacturing an epitaxial wafer comprising a silicon carbide substrate and a pressure-resistant maintenance layer,
A main dopant that determines the conductivity type is added on the substrate, and a sub-dopant that captures minority carriers is added at a doping concentration lower than the doping concentration of the main dopant, and flows from the breakdown voltage maintaining layer toward the substrate. Epitaxially growing a buffer layer mainly composed of silicon carbide having a lower resistance than the breakdown voltage maintaining layer, which promotes the capture and annihilation of the minority carriers;
Epitaxially growing the breakdown voltage maintaining layer on the buffer layer;
The manufacturing method of the epitaxial wafer characterized by including this.
前記主ドーパントを、1.0×1018cm−3以上1.0×1019cm−3未満のドーピング濃度で添加することを特徴とする請求項1に記載のエピタキシャルウェハの製造方法。 2. The method for producing an epitaxial wafer according to claim 1, wherein the main dopant is added at a doping concentration of 1.0 × 10 18 cm −3 or more and less than 1.0 × 10 19 cm −3 . 前記バッファ層を、0.1μm以上5μm以下の厚みで形成することを特徴とする請求項2に記載のエピタキシャルウェハの製造方法。   The method for producing an epitaxial wafer according to claim 2, wherein the buffer layer is formed with a thickness of 0.1 μm to 5 μm. 前記副ドーパントを、前記主ドーパントのドーピング濃度より低濃度となる、1.0×1014cm−3以上5.0×1018cm−3未満の範囲内のドーピング濃度で添加することを特徴とする請求項3に記載のエピタキシャルウェハの製造方法。 The sub-dopant is added at a doping concentration in the range of 1.0 × 10 14 cm −3 or more and less than 5.0 × 10 18 cm −3 , which is lower than the doping concentration of the main dopant. The method for manufacturing an epitaxial wafer according to claim 3. 前記主ドーパントの添加と前記副ドーパントの添加を同時に行うことを特徴とする請求項4に記載のエピタキシャルウェハの製造方法。   The method for producing an epitaxial wafer according to claim 4, wherein the addition of the main dopant and the addition of the sub-dopant are performed simultaneously. 前記主ドーパントの添加を行った後、前記副ドーパントを添加することを特徴とする請求項4に記載のエピタキシャルウェハの製造方法。   The method for producing an epitaxial wafer according to claim 4, wherein the sub-dopant is added after the addition of the main dopant. 前記主ドーパントは、窒素であり、
前記副ドーパントは、アルミニウム、ボロン、バナジウム、チタン、鉄、クロムのうち少なくとも1種類を含むことを特徴とする請求項5又は6に記載のエピタキシャルウェハの製造方法。
The main dopant is nitrogen;
The epitaxial wafer manufacturing method according to claim 5, wherein the sub-dopant includes at least one of aluminum, boron, vanadium, titanium, iron, and chromium.
前記主ドーパントは、アルミニウムであり、
前記副ドーパントは、窒素、ボロン、バナジウム、チタン、鉄、クロムのうち少なくとも1種類を含むことを特徴とする請求項5又は6に記載のエピタキシャルウェハの製造方法。
The main dopant is aluminum;
The epitaxial wafer manufacturing method according to claim 5, wherein the sub-dopant includes at least one of nitrogen, boron, vanadium, titanium, iron, and chromium.
炭化珪素の基板と耐圧維持層とを備えるエピタキシャルウェハの製造方法において、
前記基板の上に、導電型を決める主ドーパントを添加しながら炭化珪素を主成分とする単結晶層をエピタキシャル成長するステップと、
前記単結晶層に、少数キャリアを捕獲する副ドーパントのイオンを前記主ドーパントのドーピング濃度より低いドーピング濃度となるドーズ量でイオン注入するステップと、
前記イオンを活性化して、前記耐圧維持層から前記基板の方向に流れる前記少数キャリアの捕獲及び消滅を促進する、前記耐圧維持層より低抵抗の、バッファ層を前記単結晶層によって形成するステップと、
前記バッファ層の上に前記耐圧維持層をエピタキシャル成長するステップと、
を含むことを特徴とするエピタキシャルウェハの製造方法。
In a method for manufacturing an epitaxial wafer comprising a silicon carbide substrate and a pressure-resistant maintenance layer,
Epitaxially growing a single crystal layer mainly composed of silicon carbide on the substrate while adding a main dopant that determines a conductivity type;
Ion-implanting ions of a subdopant that captures minority carriers into the single crystal layer at a dose that provides a doping concentration lower than the doping concentration of the main dopant;
Activating the ions to promote capture and annihilation of the minority carriers flowing from the breakdown voltage maintaining layer toward the substrate, and forming a buffer layer having a lower resistance than the breakdown voltage maintaining layer by the single crystal layer; ,
Epitaxially growing the breakdown voltage maintaining layer on the buffer layer;
The manufacturing method of the epitaxial wafer characterized by including this.
炭化珪素の基板と耐圧維持層とを備えるエピタキシャルウェハにおいて、
前記基板と前記耐圧維持層の間に設けられた、導電型を決める主ドーパントと、少数キャリアを捕獲し前記主ドーパントのドーピング濃度より低いドーピング濃度の副ドーパントとが添加された、前記耐圧維持層から前記基板の方向に流れる前記少数キャリアの捕獲及び消滅を促進する、前記耐圧維持層より低抵抗の、炭化珪素を主成分とするバッファ層を備えることを特徴とするエピタキシャルウェハ。
In an epitaxial wafer comprising a silicon carbide substrate and a pressure-resistant maintenance layer,
The breakdown voltage maintaining layer provided between the substrate and the breakdown voltage maintaining layer, to which a main dopant that determines a conductivity type and a sub-dopant that captures minority carriers and has a doping concentration lower than the doping concentration of the main dopant is added. An epitaxial wafer comprising a buffer layer mainly composed of silicon carbide having a lower resistance than the breakdown voltage maintaining layer, which promotes the capture and annihilation of the minority carriers flowing in the direction from the substrate to the substrate.
炭化珪素の基板と耐圧維持層とを備える半導体装置の製造方法において、
前記基板の上に、導電型を決める主ドーパントを添加すると共に少数キャリアを捕獲する副ドーパントを前記主ドーパントのドーピング濃度より低いドーピング濃度で添加して、前記耐圧維持層から前記基板の方向に流れる前記少数キャリアの捕獲及び消滅を促進する、前記耐圧維持層より低抵抗の、炭化珪素を主成分とするバッファ層をエピタキシャル成長する工程と、
前記バッファ層の上に第1導電型の前記耐圧維持層をエピタキシャル成長する工程と、
前記耐圧維持層の上部の一部に第2導電型の半導体領域を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device comprising a silicon carbide substrate and a pressure-resistant maintenance layer,
A main dopant that determines the conductivity type is added on the substrate, and a sub-dopant that captures minority carriers is added at a doping concentration lower than the doping concentration of the main dopant, and flows from the breakdown voltage maintaining layer toward the substrate. A step of epitaxially growing a buffer layer mainly composed of silicon carbide having a lower resistance than the breakdown voltage maintaining layer, which promotes the capture and annihilation of the minority carriers;
Epitaxially growing the breakdown voltage maintaining layer of the first conductivity type on the buffer layer;
Forming a second conductivity type semiconductor region in a part of the upper portion of the breakdown voltage maintaining layer;
A method for manufacturing a semiconductor device, comprising:
炭化珪素の基板と耐圧維持層とを備える半導体装置の製造方法において、
前記基板の上に、導電型を決める主ドーパントを添加しながら炭化珪素を主成分とする単結晶層をエピタキシャル成長する工程と、
前記単結晶層に、少数キャリアを捕獲する副ドーパントのイオンを前記主ドーパントのドーピング濃度より低いドーピング濃度となるドーズ量でイオン注入する工程と、
前記イオンを活性化して、前記耐圧維持層から前記基板の方向に流れる前記少数キャリアの捕獲及び消滅を促進する、前記耐圧維持層より低抵抗の、バッファ層を前記単結晶層によって形成する工程と、
前記バッファ層の上に第1導電型の前記耐圧維持層をエピタキシャル成長する工程と、
前記耐圧維持層の上部の一部に第2導電型の半導体領域を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device comprising a silicon carbide substrate and a pressure-resistant maintenance layer,
Epitaxially growing a single crystal layer mainly composed of silicon carbide while adding a main dopant that determines a conductivity type on the substrate;
A step of ion-implanting ions of a sub-dopant that captures minority carriers into the single crystal layer at a dose that provides a doping concentration lower than the doping concentration of the main dopant;
Activating the ions to promote capture and annihilation of the minority carriers flowing from the breakdown voltage maintaining layer toward the substrate, and forming a buffer layer having a lower resistance than the breakdown voltage maintaining layer by the single crystal layer; ,
Epitaxially growing the breakdown voltage maintaining layer of the first conductivity type on the buffer layer;
Forming a second conductivity type semiconductor region in a part of the upper portion of the breakdown voltage maintaining layer;
A method for manufacturing a semiconductor device, comprising:
炭化珪素の基板と耐圧維持層とを備える半導体装置において、
前記基板と前記耐圧維持層の間に設けられた、導電型を決める主ドーパントと、少数キャリアを捕獲し前記主ドーパントのドーピング濃度より低いドーピング濃度の副ドーパントとが添加された、前記耐圧維持層から前記基板の方向に流れる前記少数キャリアの捕獲及び消滅を促進する、前記耐圧維持層より低抵抗の、炭化珪素を主成分とするバッファ層と、
第1導電型の前記耐圧維持層の上部の一部に設けられた第2導電型の半導体領域と、
を備えることを特徴とする半導体装置。
In a semiconductor device comprising a silicon carbide substrate and a breakdown voltage maintaining layer,
The breakdown voltage maintaining layer provided between the substrate and the breakdown voltage maintaining layer, to which a main dopant that determines a conductivity type and a sub-dopant that captures minority carriers and has a doping concentration lower than the doping concentration of the main dopant is added. A buffer layer mainly composed of silicon carbide having a lower resistance than the breakdown voltage maintaining layer, which promotes the capture and annihilation of the minority carriers flowing in the direction of the substrate from
A semiconductor region of a second conductivity type provided in a part of the upper portion of the breakdown voltage maintaining layer of the first conductivity type;
A semiconductor device comprising:
JP2015214758A 2015-10-30 2015-10-30 Epitaxial wafer manufacturing method, epitaxial wafer, semiconductor device manufacturing method, and semiconductor device Active JP6706786B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015214758A JP6706786B2 (en) 2015-10-30 2015-10-30 Epitaxial wafer manufacturing method, epitaxial wafer, semiconductor device manufacturing method, and semiconductor device
PCT/JP2016/082115 WO2017073749A1 (en) 2015-10-30 2016-10-28 Method for manufacturing epitaxial wafer, epitaxial wafer, method for manufacturing semiconductor device, and semiconductor device
CN201680019145.3A CN107430993B (en) 2015-10-30 2016-10-28 Method for manufacturing epitaxial wafer, method for manufacturing semiconductor device, and semiconductor device
DE112016001052.4T DE112016001052T5 (en) 2015-10-30 2016-10-28 METHOD FOR PRODUCING AN EPITAXIAL WAFERS, EPITAXIAL WAFER, METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE
US15/712,644 US10354867B2 (en) 2015-10-30 2017-09-22 Epitaxial wafer manufacturing method, epitaxial wafer, semiconductor device manufacturing method, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015214758A JP6706786B2 (en) 2015-10-30 2015-10-30 Epitaxial wafer manufacturing method, epitaxial wafer, semiconductor device manufacturing method, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2017085047A true JP2017085047A (en) 2017-05-18
JP6706786B2 JP6706786B2 (en) 2020-06-10

Family

ID=58631569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015214758A Active JP6706786B2 (en) 2015-10-30 2015-10-30 Epitaxial wafer manufacturing method, epitaxial wafer, semiconductor device manufacturing method, and semiconductor device

Country Status (5)

Country Link
US (1) US10354867B2 (en)
JP (1) JP6706786B2 (en)
CN (1) CN107430993B (en)
DE (1) DE112016001052T5 (en)
WO (1) WO2017073749A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107166A (en) * 2016-12-22 2018-07-05 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device and silicon carbide semiconductor device evaluation method
JP2018190772A (en) * 2017-04-28 2018-11-29 富士電機株式会社 Silicon carbide epitaxial wafer, silicon carbide insulated gate type bipolar transistor, and manufacturing methods thereof
JP2019134046A (en) * 2018-01-30 2019-08-08 富士電機株式会社 Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device
CN110137241A (en) * 2018-02-09 2019-08-16 株式会社电装 Manufacturing silicon carbide semiconductor substrate and manufacturing silicon carbide semiconductor device
JP2020077720A (en) * 2018-11-06 2020-05-21 富士電機株式会社 Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US10748764B2 (en) 2018-02-07 2020-08-18 Fuji Electric Co., Ltd. Method for manufacturing silicon carbide epitaxial substrate and method for manufacturing semiconductor device
JP2020161735A (en) * 2019-03-27 2020-10-01 富士電機株式会社 Silicon carbide epitaxial substrate and manufacturing method therefor, silicon carbide semiconductor device and manufacturing method therefor
US11424357B2 (en) 2020-03-03 2022-08-23 Fuji Electric Co., Ltd. Semiconductor device
JP7415831B2 (en) 2020-07-08 2024-01-17 株式会社プロテリアル Method for manufacturing silicon carbide semiconductor epitaxial substrate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762484B2 (en) * 2017-01-10 2020-09-30 昭和電工株式会社 SiC epitaxial wafer and its manufacturing method
JP7024622B2 (en) * 2018-06-19 2022-02-24 株式会社デンソー Silicon carbide single crystal and its manufacturing method
JP6585799B1 (en) 2018-10-15 2019-10-02 昭和電工株式会社 Method for evaluating SiC substrate and method for producing SiC epitaxial wafer
CN110164959A (en) * 2019-05-15 2019-08-23 中国电子科技集团公司第十三研究所 A kind of substrate and epitaxial wafer
CN112447498A (en) * 2019-08-29 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 SiC epitaxial layer growth method and structure for reducing forward conduction SFs expansion of bipolar device and growth method gas supply pipeline
JP7183358B1 (en) * 2021-08-04 2022-12-05 昭和電工株式会社 SiC epitaxial wafer and method for producing SiC epitaxial wafer
GB2613871A (en) * 2021-12-17 2023-06-21 Anvil Semiconductors Ltd Reducing electrical activity of defects in silicon carbide grown on silicon
CN114783873B (en) * 2022-06-22 2022-10-14 泰科天润半导体科技(北京)有限公司 Manufacturing method of silicon carbide groove MOS grid-controlled thyristor with two layers of epitaxy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028016A (en) * 2004-07-19 2006-02-02 Norstel Ab Homoepitaxial growth of sic on low off-axis sic wafer
JP2009065082A (en) * 2007-09-10 2009-03-26 Covalent Materials Corp Compound semiconductor substrate
JP2014187113A (en) * 2013-03-22 2014-10-02 Toshiba Corp Vapor deposition apparatus and vapor deposition method
JP2015149346A (en) * 2014-02-05 2015-08-20 三菱電機株式会社 Method of manufacturing semiconductor device, and semiconductor device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579815A (en) * 1969-08-20 1971-05-25 Gen Electric Process for wafer fabrication of high blocking voltage silicon elements
FR2638892B1 (en) * 1988-11-09 1992-12-24 Sgs Thomson Microelectronics METHOD FOR MODULATING THE QUANTITY OF GOLD DIFFUSED IN A SILICON SUBSTRATE AND RAPID DIODE OBTAINED BY THIS PROCESS
IT1247293B (en) * 1990-05-09 1994-12-12 Int Rectifier Corp POWER TRANSISTOR DEVICE PRESENTING AN ULTRA-DEEP REGION, AT A GREATER CONCENTRATION
US5455442A (en) * 1993-11-17 1995-10-03 Harris Corporation COMFET switch and method
US6008092A (en) * 1996-02-12 1999-12-28 International Rectifier Corporation Short channel IGBT with improved forward voltage drop and improved switching power loss
SE9603738D0 (en) 1996-10-14 1996-10-14 Abb Research Ltd A method for producing a bipolar semiconductor device and a bipolar semiconductor device
EP0931336B1 (en) 1996-10-14 2009-07-29 Cree, Inc. A method for producing a silicon carbide bipolar device and a silicon carbide bipolar device
US6849874B2 (en) * 2001-10-26 2005-02-01 Cree, Inc. Minimizing degradation of SiC bipolar semiconductor devices
SE520968C2 (en) * 2001-10-29 2003-09-16 Okmetic Oyj High-resistance monocrystalline silicon carbide and its method of preparation
US20060006394A1 (en) * 2004-05-28 2006-01-12 Caracal, Inc. Silicon carbide Schottky diodes and fabrication method
US7391058B2 (en) * 2005-06-27 2008-06-24 General Electric Company Semiconductor devices and methods of making same
US8710510B2 (en) * 2006-08-17 2014-04-29 Cree, Inc. High power insulated gate bipolar transistors
JP2011109018A (en) * 2009-11-20 2011-06-02 Kansai Electric Power Co Inc:The Bipolar semiconductor element
JP2012004318A (en) * 2010-06-16 2012-01-05 Kansai Electric Power Co Inc:The Bipolar semiconductor device
JP5839315B2 (en) * 2010-07-30 2016-01-06 株式会社デンソー Silicon carbide single crystal and method for producing the same
US9515211B2 (en) * 2013-07-26 2016-12-06 University Of South Carolina Schottky barrier detection devices having a 4H-SiC n-type epitaxial layer
JP6152981B2 (en) * 2013-08-02 2017-06-28 株式会社デンソー Silicon carbide single crystal
JP2015061001A (en) * 2013-09-20 2015-03-30 株式会社東芝 Semiconductor device manufacturing method
DE102015208097B4 (en) * 2015-04-30 2022-03-31 Infineon Technologies Ag Manufacturing a semiconductor device by epitaxy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028016A (en) * 2004-07-19 2006-02-02 Norstel Ab Homoepitaxial growth of sic on low off-axis sic wafer
JP2009065082A (en) * 2007-09-10 2009-03-26 Covalent Materials Corp Compound semiconductor substrate
JP2014187113A (en) * 2013-03-22 2014-10-02 Toshiba Corp Vapor deposition apparatus and vapor deposition method
JP2015149346A (en) * 2014-02-05 2015-08-20 三菱電機株式会社 Method of manufacturing semiconductor device, and semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107166A (en) * 2016-12-22 2018-07-05 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device and silicon carbide semiconductor device evaluation method
JP2018190772A (en) * 2017-04-28 2018-11-29 富士電機株式会社 Silicon carbide epitaxial wafer, silicon carbide insulated gate type bipolar transistor, and manufacturing methods thereof
JP2019134046A (en) * 2018-01-30 2019-08-08 富士電機株式会社 Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device
US10665681B2 (en) 2018-01-30 2020-05-26 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP7004586B2 (en) 2018-01-30 2022-01-21 富士電機株式会社 Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
US10748764B2 (en) 2018-02-07 2020-08-18 Fuji Electric Co., Ltd. Method for manufacturing silicon carbide epitaxial substrate and method for manufacturing semiconductor device
JP7106881B2 (en) 2018-02-09 2022-07-27 株式会社デンソー Silicon carbide substrate and silicon carbide semiconductor device
CN110137241A (en) * 2018-02-09 2019-08-16 株式会社电装 Manufacturing silicon carbide semiconductor substrate and manufacturing silicon carbide semiconductor device
JP2019140242A (en) * 2018-02-09 2019-08-22 株式会社デンソー Silicon carbide substrate and silicon carbide semiconductor device
CN110137241B (en) * 2018-02-09 2023-11-28 株式会社电装 Silicon carbide semiconductor substrate and silicon carbide semiconductor device
JP7263740B2 (en) 2018-11-06 2023-04-25 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP2020077720A (en) * 2018-11-06 2020-05-21 富士電機株式会社 Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2020161735A (en) * 2019-03-27 2020-10-01 富士電機株式会社 Silicon carbide epitaxial substrate and manufacturing method therefor, silicon carbide semiconductor device and manufacturing method therefor
JP7443669B2 (en) 2019-03-27 2024-03-06 富士電機株式会社 Silicon carbide epitaxial substrate, method for manufacturing a silicon carbide epitaxial substrate, silicon carbide semiconductor device, and method for manufacturing a silicon carbide semiconductor device
US11424357B2 (en) 2020-03-03 2022-08-23 Fuji Electric Co., Ltd. Semiconductor device
JP7415831B2 (en) 2020-07-08 2024-01-17 株式会社プロテリアル Method for manufacturing silicon carbide semiconductor epitaxial substrate

Also Published As

Publication number Publication date
US10354867B2 (en) 2019-07-16
US20180012758A1 (en) 2018-01-11
CN107430993B (en) 2021-02-05
CN107430993A (en) 2017-12-01
WO2017073749A1 (en) 2017-05-04
JP6706786B2 (en) 2020-06-10
DE112016001052T5 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2017073749A1 (en) Method for manufacturing epitaxial wafer, epitaxial wafer, method for manufacturing semiconductor device, and semiconductor device
JP6904774B2 (en) Silicon Carbide Epitaxial Wafer, Silicon Carbide Insulated Gate Bipolar Transistor and Their Manufacturing Method
TWI229421B (en) Minimizing degradation of SiC bipolar semiconductor devices
US8497552B2 (en) Semiconductor devices with current shifting regions and related methods
JP2022065153A (en) Schottky barrier diode and pn junction
JP5172916B2 (en) Semiconductor rectifier
JP5011493B2 (en) Method for manufacturing silicon carbide semiconductor element
JP5411422B2 (en) Bipolar semiconductor device, method for manufacturing the same, and method for controlling zener voltage
JP6271356B2 (en) Manufacturing method of semiconductor device
US20190237558A1 (en) Sic semiconductor device having pn junction interface and method for manufacturing the sic semiconductor device
JP6271309B2 (en) Semiconductor substrate manufacturing method, semiconductor substrate, and semiconductor device
JP7263740B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
WO2018021575A1 (en) Silicon carbide semiconductor substrate, production method for silicon carbide semiconductor substrate, semiconductor device, and production method for semiconductor device
JP2016063190A (en) Method for manufacturing silicon carbide epitaxial substrate, silicon carbide epitaxial substrate and silicon carbide semiconductor device
JP2013030725A (en) Semiconductor device
WO2016092887A1 (en) Silicon carbide epitaxial substrate and silicon carbide semiconductor device
JP6911453B2 (en) Semiconductor devices and their manufacturing methods
JP2019067982A (en) Silicon carbide semiconductor device
Stahbush et al. Defects affecting SiC power device reliability
JP2023105019A (en) Multilayer structure, method for manufacturing the same and method for manufacturing semiconductor device
JP5872327B2 (en) Semiconductor rectifier
JP2007027630A (en) Bipolar semiconductor device and its manufacturing method
JP2016092121A (en) Semiconductor device manufacturing method
JP7331590B2 (en) Silicon carbide semiconductor device
JP2018029104A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6706786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250