JP2017084847A - 垂直共振器型発光素子及びその製造方法 - Google Patents

垂直共振器型発光素子及びその製造方法 Download PDF

Info

Publication number
JP2017084847A
JP2017084847A JP2015208361A JP2015208361A JP2017084847A JP 2017084847 A JP2017084847 A JP 2017084847A JP 2015208361 A JP2015208361 A JP 2015208361A JP 2015208361 A JP2015208361 A JP 2015208361A JP 2017084847 A JP2017084847 A JP 2017084847A
Authority
JP
Japan
Prior art keywords
layer
reflecting mirror
opening
semiconductor layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015208361A
Other languages
English (en)
Other versions
JP6723723B2 (ja
Inventor
圭祐 中田
Keisuke Nakata
圭祐 中田
勝 滝沢
Masaru Takizawa
勝 滝沢
岩山 章
Akira Iwayama
章 岩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2015208361A priority Critical patent/JP6723723B2/ja
Publication of JP2017084847A publication Critical patent/JP2017084847A/ja
Application granted granted Critical
Publication of JP6723723B2 publication Critical patent/JP6723723B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】高効率での電流注入が可能であり、高い放熱性を有する垂直共振器型発光素子及びその製造方法を提供する。【解決手段】第1の反射鏡12と、第1の反射鏡上に形成され、第1の導電型を有する第1の半導体層13Aと、第1の半導体層上に形成された活性層13Bと、活性層上に形成され、第1の導電型とは反対の第2の導電型を有する第2の半導体層13Cと、第2の半導体層の表面に形成され、開口部15Aを有する絶縁層15と、開口部から露出した第2の半導体層の表面上に形成された透光性電極PEと、透光性電極上において第1の反射鏡に対向しかつ開口部にアライメントされて配され、開口部の開口形状に対応した形状の側面を有する第2の反射鏡14と、第2の反射鏡の側面を覆うように形成された放熱部17と、を有する。【選択図】図1

Description

本発明は、垂直共振器型面発光レーザ(VCSEL:vertical cavity surface emitting laser)などの垂直共振器型発光素子及びその製造方法に関する。
垂直共振器型面発光レーザ(以下、単に面発光レーザと称する)は、基板面に対して垂直に光を共振させ、当該基板面に垂直な方向に光を出射させる構造を有する半導体レーザである。例えば、特許文献1には、窒化物半導体層の少なくとも一方の表面に、開口部を有する絶縁層と、当該開口部を被覆するように当該絶縁層上に設けられた透光性電極と、当該透光性電極を介して当該開口部上に設けられた反射鏡と、を有する垂直共振器型面発光レーザが開示されている。また、特許文献1には、絶縁層と透光性電極との間に導電性材料が挿入されることが開示されている。
特開2011-29607号公報
例えば、面発光レーザなどの垂直共振器型発光素子は、発光層を挟んで互いに対向する反射鏡を有し、この互いに対向する反射鏡によって共振器が構成されている。面発光レーザにおいては、反射鏡は、例えば、屈折率が異なる2つの薄膜を交互に複数回積層することで形成することができる。
面発光レーザの発振閾値(動作電圧)を下げるためには、反射鏡が高い反射特性を有することが好ましい。また、レーザ素子に印加された電流が損失なく発光層に注入されることが好ましい。また、面発光レーザの信頼性を高めるためには、例えば半導体層などで発生した熱が効率よく外部に放熱されることが好ましい。
本発明は上記した点に鑑みてなされたものであり、高効率での電流注入が可能であり、高い放熱性を有する垂直共振器型発光素子及びその製造方法を提供することを目的としている。
本発明による垂直共振器型発光素子は、第1の反射鏡と、第1の反射鏡上に形成され、第1の導電型を有する第1の半導体層と、第1の半導体層上に形成された活性層と、活性層上に形成され、第1の導電型とは反対の第2の導電型を有する第2の半導体層と、第2の半導体層の表面に形成され、開口部を有する絶縁層と、開口部から露出した第2の半導体層の表面上に形成された透光性電極と、透光性電極上において第1の反射鏡に対向しかつ開口部にアライメントされて配され、開口部の開口形状に対応した形状の側面を有する第2の反射鏡と、第2の反射鏡の側面を覆うように形成された放熱部と、を有することを特徴としている。
また、本発明による垂直共振器型発光素子の製造方法は、第1の導電型を有する第1の半導体層、活性層及び第1の導電型とは反対の第2の導電型を有する第2の半導体層を積層する工程と、第1の半導体層上に第1の反射鏡を形成する工程と、第2の半導体層の表面に開口部を有する絶縁層を形成する工程と、絶縁層の開口部にアライメントされた開口部を有する導電層を形成する工程と、絶縁層の開口部及び導電層の開口部から露出した第2の半導体層の表面に透光性電極を形成する工程と、透光性電極上において第1の反射鏡に対向した位置に第2の反射鏡を形成する工程と、第2の反射膜の側面を覆うように放熱部を形成する工程と、を含み、第2の反射鏡を形成する工程は、透光性電極上に誘電体多層膜を形成する工程と、誘電体多層膜上にマスクを形成する工程と、導電層を遮光層として第1の半導体層側からマスクに露光を行い、マスクのパターニングを行う工程と、を含むことを特徴としている。
(a)及び(b)は、実施例1に係る半導体レーザの断面図である。 (a)は、実施例1の半導体レーザの上面図であり、(b)は、実施例1に係る半導体レーザの部分拡大断面図である。 (a)〜(c)は、実施例1に係る半導体レーザの製造過程を示す断面図である。 (d)及び(e)は、実施例1に係る半導体レーザの製造過程を示す断面図である。 (f)及び(g)は、実施例1に係る半導体レーザの製造過程を示す断面図である。 実施例2に係る半導体レーザの断面図である。 (a)〜(c)は、実施例2に係る半導体レーザの製造過程を示す断面図である。
以下、本発明の実施例について詳細に説明する。なお、以下の実施例においては、面発光レーザ(半導体レーザ)について説明する。しかし、本発明は、面発光レーザのみならず、垂直共振器型発光素子に適用することができる。
図1(a)及び(b)は、実施例1に係る半導体レーザ10の断面図である。本実施例においては、半導体レーザ10は、垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)である。半導体レーザ10は、活性層13Bを含む半導体構造層13を介して互いに対向して配置された第1及び第2の反射鏡12及び14を有する。なお、図1(b)は、第2の反射鏡14の詳細構造を示す断面図である。
図1(a)に示すように、半導体レーザ10は、基板11上に第1の反射鏡12、半導体構造層13及び第2の反射鏡14が積層された構造を有している。具体的には、基板11上に第1の反射鏡12が形成されている。また、第1の反射鏡12上には半導体構造層13が、半導体構造層13上には第2の反射鏡14が形成されている。本実施例においては、基板11はGaN基板である。
次に、図1(a)及び(b)を用いて半導体レーザ10の構造について説明する。まず、図1(a)に示すように、本実施例においては、第1の反射鏡12は、低屈折率半導体層L1及び高屈折率半導体層H1が交互に複数回積層された多層膜反射鏡である。本実施例においては、第1の反射鏡12は、半導体材料からなる分布ブラッグ反射器(DBR:Distributed Bragg Reflector)である。
次に、図1(a)に示すように、半導体構造層13は、n型半導体層(第1の導電型を有する第1の半導体層)13Aと、活性層13Bと、p型半導体層(第1の導電型とは反対の第2の導電型を有する第2の半導体層)13Cとが積層された構造を有する。本実施例においては、n型半導体層13Aは、第1の反射鏡12上に形成されている。また、p型半導体層13C上には第2の反射鏡14が形成されている。
本実施例においては、第1の反射鏡12及び半導体構造層13は、AlxInyGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)の組成を有する。例えば、第1の反射鏡12は、AlInNの組成を有する低屈折率半導体層L1及びGaNの組成を有する高屈折率半導体層H1が交互に複数回積層された構造を有する。また、本実施例においては、n型半導体層13Aは、GaNの組成を有し、n型不純物としてSiを含む。活性層13Bは、InGaNの組成を有する井戸層(図示せず)及びGaNの組成を有する障壁層(図示せず)が交互に積層された量子井戸構造を有する。また、p型半導体層13Cは、GaNの組成を有し、p型不純物としてMgを含む。
なお、本実施例においては、基板11と第1の反射鏡12との間にバッファ層(図示せず)が形成されている。また、第1の反射鏡12及び半導体構造層13は、基板11を成長用基板とし、有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)を用いて形成した。
また、半導体レーザ10は、p型半導体層13Cの表面に形成され、開口部15Aを有する絶縁層15を有する。絶縁層15の開口部15Aからは、p型半導体層13Cの表面が露出している。本実施例においては、絶縁層15は、p型半導体層13Cの表面を部分的に絶縁化することによって形成した。本実施例においては、p型半導体層13Cの表面には、絶縁化された領域(絶縁層15)と絶縁化されていない領域(開口部15Aから露出した部分)とが形成されている。
半導体レーザ10は、絶縁層15上に設けられた導電層16を有する。本実施例においては、導電層16は、絶縁層15の開口部15Aと同様の形状及びサイズの開口部を有する。導電層16は、例えば、Ptからなる。
半導体レーザ10は、n型半導体層13Aに接続されたn電極(第1の電極)NEと、p型半導体層13Cに接続されたp電極(第2の電極)PEと、を有する。n電極NEは、n型半導体層13A上に形成されている。また、p電極PEは、p型半導体層13C上に形成されている。
本実施例においては、n電極NEは、n型半導体層14A上に形成されている。また、n電極NEは、Ti層、Al層、Ti層、Pt層、Au層及びTi層が積層された構造を有する。p電極PEは、p型半導体層13C上に形成されている。より具体的には、絶縁層15の開口部15Aから露出したp型半導体層13Cの表面上に形成されている。本実施例においては、p電極PEは、開口部15Aを被覆して導電層16上に形成されている。p電極PEは、例えばITOやIZOなど、活性層13Bからの放出光に対して透光性を有する材料からなる透光性電極である。
第2の反射鏡14は、p電極PE上に形成され、第1の反射鏡12に対向して配置されている。第2の反射鏡14は、高屈折率誘電体層H2及び低屈折率誘電体層L2が交互に複数回積層された多層膜反射鏡である。本実施例においては、第2の反射鏡14は、Nb25層(高屈折率誘電体層H2)及びSiO2層(低屈折率誘電体層L2)が交互に複数回積層された構造を有する。すなわち、本実施例においては、第2の反射鏡14は、誘電体材料からなる分布ブラッグ反射器である。
第2の反射鏡14は、p電極PE上において第1の反射鏡12に対向して配置されている。また、第2の反射鏡14は、絶縁層15の開口部15Aにアライメントされて配され、開口部15Aの開口形状に対応した(ほぼ一致した)形状の側面14Sを有する。また、第2の反射鏡14は、導電層16の開口部とも同じ形状及びサイズを有する。本実施例においては、第2の反射鏡14の側面14Sは、絶縁層15の開口部15Aと同一の形状を有する。また、第2の反射鏡14の中心軸は、絶縁層15の開口部15Aの中心軸に対してアライメントされている。
半導体レーザ10は、第2の反射鏡14の側面14Sを覆うように形成された放熱部17を有する。放熱部17は、半導体構造層13及び第2の反射鏡14よりも高い熱伝導性を有する。放熱部17は、例えば、Ti層、Pt層及びAu層がp電極PE上に積層された構造を有する。本実施例においては、放熱部17は、p電極PEの上面及び第2の反射鏡14の側面14Sに接触している。放熱部17は、半導体構造層13、特に開口部15Aの直下の半導体構造層13の領域に生じた熱を外部に放熱する。また、本実施例においては、放熱部17は、p電極PEに接続され、外部に接続されるパッド電極として機能する。
活性層13B、p型半導体層13C、絶縁層15、導電層16及びp電極PEの側面上には、絶縁膜ISが形成されている。n電極NEは、絶縁膜ISによって、p型半導体層13C、p電極PE、導電層16及び放熱部17から絶縁されている。
次に、図1(a)を参照し、半導体レーザ10の発光動作について説明する。まず、半導体レーザ10においては、互いに対向する第1及び第2の反射鏡12及び14が共振器を構成する。半導体構造層13(活性層13B)から放出された光は、第1及び第2の反射鏡12及び14間において反射を繰り返し、共振状態に至る(レーザ発振を行う)。そして、共振光は、その一部が第2の反射鏡14を透過し、外部に取出される。このようにして、半導体レーザ10は、基板11に垂直な方向に光を出射する。
また、絶縁層15は、半導体構造層13内の電流路を狭窄する電流狭窄層として機能する。p電極PEから半導体構造層13に注入される電流は、絶縁層15の開口部15Aの直下における半導体構造層13の領域に集中する(狭窄される)。
図2(a)は、半導体レーザ10の上面を模式的に示す図である。図2(a)においては、導電層16及び放熱部17の図示を省略している。なお、図1(a)及び(b)は、図2(a)におけるV−V線に沿った断面図である。
図2(a)に示すように、絶縁層15の開口部15Aは、絶縁層15に垂直な方向から見たとき、円形状を有する。従って、第2の反射鏡14の側面14Sは、基板11に垂直な方向から見たとき、円形状を有する。また、本実施例においては、第2の反射鏡14は、円柱形状を有する。第2の反射鏡14の側面14Sの位置は、基板11に垂直な方向から見たとき、絶縁層15の開口部15Aの内側面の位置に一致する。第2の反射鏡14の上面は、絶縁層15の開口部15Aの直径と同一の直径を有する。
また、活性層13B及びp型半導体層13Cは、基板11に垂直な方向から見たとき、円形状を有する。絶縁層15及び導電層16は、基板11に垂直な方向から見たとき、円形状の側面を有する。本実施例においては、絶縁層15の開口部15Aは、絶縁層15の中央に形成されている。また、絶縁膜ISは、活性層13B、p型半導体層13C、絶縁層15、導電層16及びp電極PEの側面を取り囲むように環状に形成されている。
図2(b)は、半導体レーザ10の一部を拡大して示す部分拡大断面図である。図2(b)は、図1(a)の破線で囲まれた部分を拡大して示す図である。なお、図2(b)においては、図の明確さのため、p電極PEへのハッチングを省略している。図2(b)を用いて、絶縁層15、導電層16及び第2の反射鏡14について説明する。
まず、第2の反射鏡14の側面14Sは、絶縁層15の開口部15Aにアライメントされている。また、本実施例においては、導電層16は、絶縁層15の開口部15Aにアライメントされた開口部16Aを有する。すなわち、第2の反射鏡14の側面14Sは、絶縁層15の開口部15A及び導電層16の開口部16Aを投影した(引き継いだ)形状を有する。また、導電層16の開口部16Aは、絶縁層15Aの開口部15Aの直径及び第2の反射鏡14の上面の直径と同一の直径を有する。
本実施例においては、放熱部17が第2の反射鏡14の側面14Sを覆うように形成されている。この放熱部17は、半導体構造層13における電流路、すなわち発熱源に近接して設けられている。半導体構造層13内において生じた熱は、p電極PE、導電層16及び放熱部17を介して効率的に外部に放出(排出)される。従って、高い放熱性が得られる。
一方、半導体構造層13内を流れる電流は、絶縁層15(電流狭窄層)によって開口部15Aの近傍に集中する。また、第2の反射鏡14は、絶縁層15の開口部15Aを覆うように形成されている。従って、開口部15Aの近傍の活性層13Bの領域において放出される大部分の光は、第2の反射鏡14によって確実に反射される。
本実施例においては、p型半導体層13Cの表面に開口部15Aを有する絶縁層15が設けられている。また、絶縁層15上には開口部15Aにアライメントされた形状の側面を有する第2の反射鏡14が形成されている。従って、高い放熱性能及び高い発振特性を有する半導体レーザ10(垂直共振器型発光素子)を提供することができる。また、絶縁層15の開口部15Aが円形状を有する場合、半導体構造層13から熱が均等に(放射状に)放熱される。従って、半導体構造層13内の熱を片寄りなく放出することができる。
[半導体レーザ10の製造方法]
図3(a)〜図3(g)は、半導体レーザ10の製造過程を示す図である。図3(a)〜図3(g)は、半導体レーザ10の各製造過程における断面図である。図3(a)〜図3(g)を参照して、半導体レーザ10の製造方法について説明する。なお、以下においては、製造途中の各段階における半導体レーザ10の構成要素の全体を素子E1と称する。
[第1の反射鏡12及び半導体構造層13の形成工程]
図3(a)は、基板11上に第1の反射鏡12及び半導体構造層13が形成された状態の素子E1を示す断面図である。まず、基板11としてGaN基板を準備し、基板11をクリーニングする。次に、基板11上にバッファ層(図示せず)としてGaN層を形成する。
次に、バッファ層上に、低屈折率半導体層L1及び高屈折率半導体層H1を交互に積層し、第1の反射鏡12を形成する。本実施例においては、AlInN層L1及びGaN層H1を交互に40層ずつ積層した。
次に、第1の反射鏡12上に、n型半導体層13A、活性層13B及びp型半導体層13Cを順次積層し、半導体構造層13を形成する。本実施例においては、n型半導体層13Aとしてn−GaN層を形成した。また、活性層13Bとして、InGaN層からなる井戸層及びGaN層からなる障壁層を複数回積層し、多重量子井戸構造の活性層を形成した。また、p型半導体層13Cとして、p−AlGaN層、p−GaN層、p−GaNコンタクト層を形成した。このようにして、基板11上に、第1の反射鏡12及び半導体構造層13を形成する。
[絶縁層15の形成工程]
図3(b)は、絶縁層15が形成された状態の素子E1を示す断面図である。半導体構造層13を形成した後、p型半導体層13Cの表面に、開口部15A(図2(b)参照)を有する絶縁層15を形成する。本実施例においては、開口部15Aとなるp型半導体層13Cの表面にレジストからなるマスク(第1のマスク)MS1を形成した。次に、マスクMS1をマスクとし、p型半導体層13Cの表面にプラズマ照射を行い、p型半導体層13Cの表面を絶縁化した。このようにして、p型半導体層13Cの表面に、開口部15Aを有する絶縁層15を形成した。
[導電層16、n電極NE及びp電極PEの形成工程]
図3(c)は、導電層16、n電極NE及びp電極PEが形成された状態の素子E1を示す断面図である。続いて、絶縁層15上に開口部16A(図2(b)参照)を有する導電層16を形成する。導電層16は、絶縁層15を形成したマスクMS1を用いて、絶縁層15上にPtを成膜し、マスクMS1を除去することで形成した。このように、p型半導体層13C上のマスクMS1を用いて絶縁層15及び導電層16の両方を形成することで、開口部15A及び16Aが互いにアライメントされる。また、絶縁材料からなる膜を成膜することなくp型半導体層13Cの表面に絶縁層15を形成することができる。
次に、n電極NE及びP電極PEを形成する。まず、マスクMS1を除去して露出したp型半導体層13Cの表面上及び導電層16上に、p電極PEを形成する。本実施例においては、p電極PEとしてITO層を成膜した。また、n型半導体層13A上にn電極NEを形成する。本実施例においては、p電極PEとp型半導体層13Cとのコンタクト部の外側においてp型半導体層13C及び活性層13Bを除去し、n型半導体層13Aを部分的に露出させた。続いて、露出したn型半導体層13Aの表面上におけるp型半導体層13C及び活性層13Bから離間した領域に、n電極NEを形成した。
[第2の反射鏡14及び絶縁膜ISの形成工程]
図3(d)は、高屈折率誘電体層H2及び低屈折率誘電体層L2が形成された状態の素子E1を示す断面図である。図3(e)は、マスクMS2が形成された状態の素子E1を示す断面図である。図3(f)は、第2の反射鏡14及び絶縁膜ISが形成された状態の素子E1を示す断面図である。
続いて、図3(d)〜(f)に示すように、p電極PE上に開口部15Aと同様の形状で高屈折率誘電体層H2及び低屈折率誘電体層L2を積層して誘電体多層膜を形成する。本実施例においては、まず、図3(d)に示すように、基板11の全面に高屈折率誘電体層H2及び低屈折率誘電体層L2を積層した。
次に、図3(e)に示すように、誘電体多層膜(高屈折率誘電体層H2及び低屈折率誘電体層L2)上にレジストからなるマスク(第2のマスク)MS2を形成する。まず、本実施例においては、基板11の全面にネガ型レジストを成膜した。
次に、半導体構造層13側、すなわちn型半導体層13A側からマスクMS2を露光する。本実施例においては、基板11側から半導体構造層13に向かって光(例えば紫外光)LBを照射した。ここで、導電層16及びn電極NEを遮光層として機能させることで、導電層16及びn電極NEが形成されていない領域、すなわち開口部16AにアライメントされたマスクMS2のパターニングを行うことができる。すなわち、本工程においては、導電層16及びn電極NEを遮光層として半導体構造層13側からネガ型レジストに対して露光することで、マスクMS2を形成する。
なお、本実施例においては、導電層16の開口部16Aは絶縁層15の開口部15Aにアライメントされているため、マスクMS2は絶縁層15の開口部15Aにアライメントされる。このように基板11の裏面から露光を行うことで、導電層16上のマスクMS2を除去し、開口部15A上のマスクMS2を正確に残すことができる。
続いて、マスクMS2をマスクとして、高屈折率誘電体層H2及び低屈折率誘電体層L2にドライエッチングを行う。これによって、図3(f)に示すように、導電層16及びn電極NE上の高屈折率誘電体層H2及び低屈折率誘電体層L2を除去し、絶縁層15の開口部15Aにアライメントされた第2の反射鏡14を形成する。
なお、本実施例においては、n電極NEが形成されていないn型半導体層13Aの表面部分にも高屈折率誘電体層H2及び低屈折率誘電体層L2を形成し、マスクMS2を形成した上で露光を行った。従って、n型半導体層13Aの表面部分にも高屈折率誘電体層H2及び低屈折率誘電体層L2が残存する。この残存した高屈折率誘電体層H2及び低屈折率誘電体層L2が絶縁膜ISとなる。このようにして、第2の反射鏡14及び絶縁膜ISを形成する。
[放熱部17の形成工程]
図3(g)は、放熱部17が形成された状態の素子E1を示す断面図である。図3(g)に示すように、第2の反射鏡14の側面を覆うようにp電極PE上に放熱部17を形成する。なお、図示していないが、放熱部17及びn電極NEを外部端子に接続し、基板11全体を封止した。このようにして、半導体レーザ10を作製した。
本実施例においては、第2の反射鏡14を形成するためのマスクMS2のパターニングを基板11の裏面からの露光によって行う。また、露光時に導電層16及びn電極NEを遮光層として使用する。従って、第2の反射鏡14を絶縁層15の開口部15Aにアライメントさせた形状で形成することができる。従って、放熱性能に優れた半導体レーザ10(垂直共振器型発光素子)を提供することができる。また、本実施例においては、第1の反射鏡12を半導体多層膜によって形成した。従って、高い反射率を有する半導体レーザ10(垂直共振器型発光素子)を提供することができる。従って、閾値電圧が低く、放熱性能に優れた半導体レーザ10(垂直共振器型発光素子)を提供することができる。
なお、本実施例においては、導電層16が形成される場合について説明したが、導電層16が形成される場合に限定されない。例えば、絶縁層15の開口部15Aにアライメントされた形状の側面14Sを有する第2の反射鏡14を形成することができれば、導電層16の代わりに遮光性の層が形成されてればよい。なお、これらの層は、金属材料など、熱伝導率が高い材料から構成されていることが好ましい。
なお、p電極PE内の電気抵抗を小さくし、損失なくp型半導体層13Cに電流を注入することを考慮すると、導電層16が絶縁層15及びp電極PEの間に形成されていることが好ましい。
図4は、実施例2に係る半導体レーザ20の構造を示す断面図である。半導体レーザ20は、第2の反射鏡14上に裏面電極22を有する放熱基板21が形成されていること、並びに第1の反射鏡23及びn電極NEの構成を除いては、半導体レーザ10と同様の構成を有している。
本実施例においては、第2の反射鏡14上に放熱基板21が形成されている。放熱基板21は、例えばSiなど、放熱性能の高い材料からなる。また、本実施例においては、放熱部17の上面及び第2の反射鏡14の上面は、同一平面をなしている。また、放熱基板21は、第2の反射鏡14及び放熱部17に接合されている。
また、本実施例においては、第1の反射鏡23は、高屈折率誘電体層H3及び低屈折率誘電体層L3が交互に複数回積層された構造を有する。本実施例においては、第1の反射鏡23は、Nb25層(高屈折率誘電体層H3)及びSiO2層(低屈折率誘電体層L3)が交互に複数回積層された構造を有する。本実施例においては、第1の反射鏡23は、すなわち、第1の反射鏡23は、誘電体多層膜からなる反射鏡である。
また、半導体構造層13は、基板11(成長用基板)から放熱基板21に貼りかえられており、基板11は除去されている。また、本実施例においては、第1の反射鏡23よりも第2の反射鏡14の方が高い反射率を有する。従って、本実施例においては、第1の反射鏡23側から光を出射させる。
また、本実施例においては、裏面電極22は、放熱基板21上に積層されたTi層、Pt層及びAu層からなる。
本実施例においては、第2の反射鏡14の表面及び側面は、電流路、すなわち発熱源に近い位置で放熱部17及び放熱基板21に覆われている。従って、半導体構造層13からの放熱経路が拡大され、半導体レーザ20の放熱性能は大幅に向上する。
[半導体レーザ20の製造方法]
図5(a)〜(c)は、半導体レーザ20の製造過程を示す断面図である。図5(a)〜(c)は、半導体レーザ20の各製造過程における断面図である。図5(a)〜(c)を参照して、半導体レーザ20の製造方法について説明する。なお、以下においては、製造途中の各段階における半導体レーザ20の構成要素の全体を素子E2と称する。
[半導体構造層13、絶縁層15、導電層16、p電極PE、第2の反射鏡14及び放熱部17の形成工程]
図5(a)は、半導体構造層13、絶縁層15、導電層16、p電極PE、第2の反射鏡14及び放熱部17が形成された状態の素子E2を示す断面図である。本実施例においては、成長用基板11上に、半導体構造層13、絶縁層15、導電層16、p電極PE、第2の反射鏡14及び放熱部17を形成する。本工程については半導体レーザ10の製造方法と同様であるため、説明を省略する。なお、本実施例においては、第1の反射鏡23を形成することなく、基板11上に半導体構造層13等を形成する。また、本実施例においては、基板11としてサファイア基板を用いた。
[放熱基板21の接合工程]
図5(b)は、放熱基板21が形成された状態の素子E2を示す断面図である。図5(b)に示すように、第2の反射鏡14及び放熱部17上に、裏面電極22が形成された放熱基板21を接合する。本実施例においては、放熱基板21の一方の主面上に裏面電極22を形成した。次に、放熱基板21の他方の主面を、接合層(図示せず)によって第2の反射鏡14及び放熱部17に接合した。
[基板11の除去工程、第1の反射鏡23の形成工程及びn電極NEの形成工程]
図5(c)は、第1の反射鏡23及びn電極NEが形成された状態の素子E2を示す断面図である。図5(c)に示すように、放熱基板21を接合した後、基板11を除去する。本実施例においては、レーザリフトオフ法を用いて基板11を除去し、n型半導体層13Aを露出させ、研磨処理などによって共振器長を調整した。
次に、n型半導体層13Aの表面における第2の反射鏡14に対向する位置に、第1の反射鏡23を形成する。本実施例においては、n型半導体層13A上に高屈折率誘電体層H3及び低屈折率誘電体層L3を交互に複数回積層した。次に、第2の反射鏡14に対向する位置の外側において高屈折率誘電体層H3及び低屈折率誘電体層L3を除去した。
次に、n型半導体層13A上にn電極NEを形成する。本実施例においては、高屈折率誘電体層H3及び低屈折率誘電体層L3を除去することによって露出したn型半導体層13Aの表面上にn電極NEを形成した。なお、その後、n電極NE及び裏面電極22を外部端子に接続し、放熱基板21の全体を封止して、半導体レーザ20を得た。
本実施例においては、第2の反射鏡14に接触するように放熱基板21が設けられている。従って、半導体構造層13内に生じた熱を効率よく外部に放出することが可能な半導体レーザ20(垂直共振器型発光素子)を提供することができる。
上記においては、第1の導電型がn型であり、第2の導電型がp型である場合について説明したが、第1の導電型がp型であり、第2の導電型がn型であってもよい。
また、第2の反射鏡14Sが絶縁層15の開口部15Aにアライメントされ、開口部15Aに対応する側面形状を有する場合について説明したが、第2の反射鏡14の側面14Sのみならず、第1の反射鏡12(23)の側面も絶縁層15の開口部15Aに対応する形状を有していてもよい。
上記したように、第2の半導体層13Cの表面には開口部15Aを有する絶縁層15(電流狭窄層)が形成されている。また、第2の反射鏡14は、絶縁層15の開口部15Aにアライメントされた側面14Sを有する。また、第2の反射鏡14を形成するためのマスクMS2のパターニングを裏面露光によって行う。従って、高効率での電流注入が可能であり、高い放熱性を有する半導体レーザ(垂直共振器型発光素子)及びその製造方法を提供することができる。
10、20 半導体レーザ
12、23 第1の反射鏡
13A 第1の半導体層
13B 活性層
13C 第2の半導体層
14 第2の反射鏡
14S 側面
15 絶縁層
15A 開口部
16 導電層
17 放熱部
21 放熱基板

Claims (8)

  1. 第1の反射鏡と、
    前記第1の反射鏡上に形成され、第1の導電型を有する第1の半導体層と、
    前記第1の半導体層上に形成された活性層と、
    前記活性層上に形成され、前記第1の導電型とは反対の第2の導電型を有する第2の半導体層と、
    前記第2の半導体層の表面に形成され、開口部を有する絶縁層と、
    前記開口部から露出した前記第2の半導体層の表面上に形成された透光性電極と、
    前記透光性電極上において前記第1の反射鏡に対向しかつ前記開口部にアライメントされて配され、前記開口部の開口形状に対応した形状の側面を有する第2の反射鏡と、
    前記第2の反射鏡の側面を覆うように形成された放熱部と、を有することを特徴とする垂直共振器型発光素子。
  2. 前記絶縁層上には、前記絶縁層の前記開口部にアライメントされた開口部を有する導電層が形成され、
    前記透光性電極は、前記導電層上に形成され、
    前記放熱部は、前記第2の反射鏡の側面を覆うように前記透光性電極上に形成されていることを特徴とする請求項1に記載の垂直共振器型発光素子。
  3. 前記絶縁層の前記開口部は、前記絶縁層に垂直な方向から見たときに円形状を有することを特徴とする請求項2に記載の垂直共振器型発光素子。
  4. 前記第2の反射鏡上には放熱基板が形成されていることを特徴とする請求項3に記載の垂直共振器型発光素子。
  5. 前記放熱部の上面及び前記第2の反射鏡の上面は同一平面をなし、
    前記放熱基板は、前記第2の反射鏡及び前記放熱部に接合されていることを特徴とする請求項4に記載の垂直共振器型発光素子。
  6. 第1の導電型を有する第1の半導体層、活性層及び前記第1の導電型とは反対の第2の導電型を有する第2の半導体層を積層する工程と、
    前記第1の半導体層上に第1の反射鏡を形成する工程と、
    前記第2の半導体層の表面に開口部を有する絶縁層を形成する工程と、
    前記絶縁層の前記開口部にアライメントされた開口部を有する導電層を形成する工程と、
    前記絶縁層の前記開口部及び前記導電層の前記開口部から露出した前記第2の半導体層の表面に透光性電極を形成する工程と、
    前記透光性電極上において前記第1の反射鏡に対向した位置に第2の反射鏡を形成する工程と、
    前記第2の反射膜の側面を覆うように放熱部を形成する工程と、を含み、
    前記第2の反射鏡を形成する工程は、
    前記透光性電極上に誘電体多層膜を形成する工程と、
    前記誘電体多層膜上にマスクを形成する工程と、
    前記導電層を遮光層として前記第1の半導体層側から前記マスクに露光を行い、前記マスクのパターニングを行う工程と、を含むことを特徴とする垂直共振器型発光素子の製造方法。
  7. 前記第2の反射鏡及び前記放熱部に放熱基板を接合する工程を含むことを特徴とする請求項7に記載の垂直共振器型発光素子の製造方法。
  8. 前記絶縁層を形成する工程は、前記第2の半導体層の表面にパターニングされたマスクを形成する工程と、前記第2の半導体層の表面にプラズマ照射を行い、前記第2の半導体層の表面を絶縁化する工程を含み、
    前記導電層を形成する工程において、前記導電層は、前記第2の半導体層上の前記マスクを用いて形成されることを特徴とする請求項6又は7に記載の垂直共振器型発光素子の製造方法。
JP2015208361A 2015-10-22 2015-10-22 垂直共振器型発光素子及びその製造方法 Active JP6723723B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015208361A JP6723723B2 (ja) 2015-10-22 2015-10-22 垂直共振器型発光素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015208361A JP6723723B2 (ja) 2015-10-22 2015-10-22 垂直共振器型発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2017084847A true JP2017084847A (ja) 2017-05-18
JP6723723B2 JP6723723B2 (ja) 2020-07-15

Family

ID=58711262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208361A Active JP6723723B2 (ja) 2015-10-22 2015-10-22 垂直共振器型発光素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP6723723B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102171925B1 (ko) * 2019-05-15 2020-10-30 주식회사 옵토웰 수직 캐비티 표면 방출 레이저의 제조 방법 및 이에 의해 제조된 수직 캐비티 표면 방출 레이저
JP2023029501A (ja) * 2018-05-24 2023-03-03 スタンレー電気株式会社 波長変換装置及び発光装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029607A (ja) * 2009-06-30 2011-02-10 Nichia Corp 垂直共振器型面発光レーザ
JP2011513954A (ja) * 2008-02-29 2011-04-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング オプトエレクトロニクス素子およびオプトエレクトロニクス素子の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513954A (ja) * 2008-02-29 2011-04-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング オプトエレクトロニクス素子およびオプトエレクトロニクス素子の製造方法
JP2011029607A (ja) * 2009-06-30 2011-02-10 Nichia Corp 垂直共振器型面発光レーザ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023029501A (ja) * 2018-05-24 2023-03-03 スタンレー電気株式会社 波長変換装置及び発光装置
JP7453489B2 (ja) 2018-05-24 2024-03-21 スタンレー電気株式会社 波長変換装置及び発光装置
KR102171925B1 (ko) * 2019-05-15 2020-10-30 주식회사 옵토웰 수직 캐비티 표면 방출 레이저의 제조 방법 및 이에 의해 제조된 수직 캐비티 표면 방출 레이저

Also Published As

Publication number Publication date
JP6723723B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
US9160138B2 (en) Light-emitting element array
JP6664688B2 (ja) 垂直共振器型発光素子
WO2018221042A1 (ja) 発光素子および発光素子の製造方法
JP6990499B2 (ja) 垂直共振器型発光素子及び垂直共振型発光素子の製造方法
JP2014216470A (ja) 半導体発光素子
JP4962743B2 (ja) 発光装置
JPWO2018190030A1 (ja) 発光素子および発光装置
US20180226771A1 (en) Vertical cavity light emitting element
JP7166871B2 (ja) 垂直共振器型発光素子
US10256609B2 (en) Surface light-emitting laser
JP6723723B2 (ja) 垂直共振器型発光素子及びその製造方法
US20230044637A1 (en) Vertical cavity light-emitting element
JP2018056284A (ja) 垂直共振器型発光素子モジュール
JP2017098347A (ja) 垂直共振器型発光素子
JP7453588B2 (ja) 垂直共振器面発光レーザ素子
JP2017204579A (ja) 垂直共振器型発光素子及び垂直共振器型発光素子の製造方法
JP6106522B2 (ja) 半導体発光素子アレイ
JP6627727B2 (ja) 発光素子の製造方法
US20220149595A1 (en) Vertical cavity surface emitting device
JP2022187063A (ja) 垂直共振器型発光素子及びその製造方法
JP7330805B2 (ja) 垂直共振器型発光素子
JP2022023686A (ja) 垂直共振器面発光レーザ素子
JP2017084899A (ja) 面発光レーザアレイ及び面発光レーザアレイの製造方法
JP7523258B2 (ja) 垂直共振器型発光素子
JP2009238844A (ja) 発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R150 Certificate of patent or registration of utility model

Ref document number: 6723723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250