JP2017080700A - Air injection mechanism and parts feeder - Google Patents

Air injection mechanism and parts feeder Download PDF

Info

Publication number
JP2017080700A
JP2017080700A JP2015213373A JP2015213373A JP2017080700A JP 2017080700 A JP2017080700 A JP 2017080700A JP 2015213373 A JP2015213373 A JP 2015213373A JP 2015213373 A JP2015213373 A JP 2015213373A JP 2017080700 A JP2017080700 A JP 2017080700A
Authority
JP
Japan
Prior art keywords
port
compressed air
valve
workpiece
injection mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015213373A
Other languages
Japanese (ja)
Other versions
JP6782537B2 (en
Inventor
迎 邦暁
Kuniaki Mukai
邦暁 迎
進 入江
Susumu Irie
進 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2015213373A priority Critical patent/JP6782537B2/en
Priority to CN201680063695.5A priority patent/CN108349662B/en
Priority to PCT/JP2016/082085 priority patent/WO2017073735A1/en
Priority to TW105135096A priority patent/TWI689457B/en
Priority to KR1020187011694A priority patent/KR102605235B1/en
Publication of JP2017080700A publication Critical patent/JP2017080700A/en
Application granted granted Critical
Publication of JP6782537B2 publication Critical patent/JP6782537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Sorting Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air injection mechanism which can digitally manage the flow rate or the pressure of compressed air and prevent a decrease in working efficiency.SOLUTION: An air injection mechanism 1, which sequentially injects compressed air toward a plurality of workpieces W, comprises flow rate adjustment means 3A connected to a compressed air source 11 and having a two-way port valve 3 capable of continuously changing the opening/closing amount, a host controller 4 that outputs parameters suitable to kinds of the workpieces W, and a piezoelectric valve driver 5 that proportionally controls the opening/closing amount of the two-way port valve 3 on the basis of impressed voltages corresponding to parameters the host controller 4 outputs.SELECTED DRAWING: Figure 1

Description

本発明は、圧縮空気の流量や圧力をデジタル制御可能なエア噴射機構およびパーツフィーダに関する。   The present invention relates to an air injection mechanism and a parts feeder capable of digitally controlling the flow rate and pressure of compressed air.

従来より、搬送路上で電子部品等のワーク(チップ)の姿勢判別を行い、不適切な姿勢のワークを搬送路上から排除または搬送路上で反転させて姿勢矯正しつつ、それ以外の適正姿勢のワークを所定の供給先に搬送可能なパーツフィーダが知られている(例えば特許文献1)。   Conventionally, workpieces (chips) such as electronic components are identified on the conveyance path, and workpieces with other appropriate postures are corrected while removing the inappropriate workpiece from the conveyance path or reversing the posture on the conveyance path. There is known a parts feeder capable of transporting to a predetermined supply destination (for example, Patent Document 1).

この種のパーツフィーダでは、例えば、図7に示すように、圧縮空気源11に接続されるレギュレータ12と、レギュレータ12の下流に配置される3ポート弁700と、3ポート弁700の下流に配置されるチェック弁付きニードル弁(スピードコントローラ、以下「スピコン」とも記載する)50とを備えるエア噴射機構15を適用して、不適切な姿勢のワークW(不良ワークW´)の排除または姿勢矯正を行うことが通例である。   In this type of parts feeder, for example, as shown in FIG. 7, a regulator 12 connected to the compressed air source 11, a three-port valve 700 disposed downstream of the regulator 12, and a downstream of the three-port valve 700. An air injection mechanism 15 including a needle valve with a check valve (speed controller, hereinafter also referred to as “speaker”) 50 is applied to eliminate or correct a workpiece W having an inappropriate posture (defective workpiece W ′). It is customary to do this.

レギュレータ12は、圧縮空気源11から供給される圧縮空気の圧力を一定に調整(減圧)するものである。   The regulator 12 adjusts (depressurizes) the pressure of the compressed air supplied from the compressed air source 11 to be constant.

3ポート弁700は、レギュレータ12の出口に通ずる第1ポート107aと、チェック弁付きニードル弁50を介してパーツフィーダ2のエア給排路21に通ずる第2ポート107bと、大気域に通ずる第3ポート107cとを備える。3ポート弁700は、非通電時において、スプール170内の通路171を介して第2ポート107bと第3ポート107cとを連通させるとともに、第1ポート107aと第2ポート107bとを遮断し、レギュレータ12から供給される圧縮空気を第1ポート107a付近で閉止する。一方、通電時ではスプール170が変位し、スプール170内の通路173を介して第1ポート7aと第2ポート107bとを連通させて、レギュレータ12から供給される圧縮空気をチェック弁付きニードル弁(以下単に「ニードル弁」とも記載する)50に供給する。   The three-port valve 700 includes a first port 107a that communicates with the outlet of the regulator 12, a second port 107b that communicates with the air supply / discharge passage 21 of the parts feeder 2 via the needle valve 50 with a check valve, and a third port that communicates with the atmosphere. A port 107c. The three-port valve 700 allows the second port 107b and the third port 107c to communicate with each other via the passage 171 in the spool 170 and shuts off the first port 107a and the second port 107b when not energized. The compressed air supplied from 12 is closed in the vicinity of the first port 107a. On the other hand, when energized, the spool 170 is displaced, and the first port 7a and the second port 107b are communicated with each other via the passage 173 in the spool 170, so that the compressed air supplied from the regulator 12 is supplied with a needle valve with a check valve ( (Hereinafter also simply referred to as “needle valve”) 50.

チェック弁付きニードル弁50は、圧縮空気の流量を調整し、所定流量の圧縮空気をパーツフィーダ2のエア給排路21に供給する。また、チェック弁付きニードル弁50は、3ポート弁700への通電がOFFに切り替わり、圧縮空気の逆向きの流れが生じた場合に、チェック弁51側で自由流を生じさせ、3ポート弁700に向けて圧縮空気を流すことができる。   The needle valve 50 with a check valve adjusts the flow rate of the compressed air, and supplies the compressed air of a predetermined flow rate to the air supply / discharge passage 21 of the parts feeder 2. Further, the needle valve 50 with a check valve causes a free flow to be generated on the check valve 51 side when energization to the 3-port valve 700 is switched OFF and a reverse flow of compressed air occurs. Compressed air can flow toward

このようなエア噴射機構15を用いるパーツフィーダ2では、センサ65でワークWを検知するとともに、判定機能付きのセンサアンプ68から、不良ワークW´が所定の処理位置Pに到達するタイミングで信号が出力され、3ポート弁700の電磁ソレノイド172に電圧を印加して3ポート弁700を開閉(ON・OFF)させてエア給排路21から処理位置Pにある不良ワークW´に圧縮空気を噴射し、それにより不良ワークW´を搬送路20上から排除、あるいは搬送路20上で反転させることができる。   In the parts feeder 2 using such an air injection mechanism 15, the workpiece W is detected by the sensor 65, and a signal is sent from the sensor amplifier 68 with a determination function at the timing when the defective workpiece W ′ reaches the predetermined processing position P. The output is applied to the electromagnetic solenoid 172 of the three-port valve 700 to open and close (ON / OFF) the three-port valve 700 to inject compressed air from the air supply / discharge path 21 to the defective workpiece W ′ at the processing position P. Thus, the defective workpiece W ′ can be removed from the conveyance path 20 or reversed on the conveyance path 20.

特開2015−30566号公報Japanese Patent Laying-Open No. 2015-30566

ところで、パーツフィーダ2では、ワークWのサイズにより、反転または排除に最適な圧縮空気の流量や圧力が異なるので、対象となるワークWおよび3ポート弁700の開放時間にマッチした流量および圧力になるようニードル弁50を調整することが考えられる。   By the way, in the parts feeder 2, the flow rate and pressure of compressed air that are optimal for reversal or exclusion differ depending on the size of the workpiece W, so that the flow rate and pressure match the target workpiece W and the opening time of the 3-port valve 700. It is conceivable to adjust the needle valve 50.

このとき、ニードル弁50の調整では、ダイヤル式スピコンや、流量センサまたは圧力センサを使い、デジタル管理による再現可能なものとすることが望ましいが、微細な調整のため、ダイヤル式スピコンでは適切に調整しきれない。また、近年のワークWの微小化に伴って、最適な圧縮空気の流量や圧力も微小化(低下)しており、流量センサや圧力センサでは測定値が小さすぎて正確に検知できない(流量センサや圧力センサなどでのセンシングが難しい)。   At this time, in adjusting the needle valve 50, it is desirable to use a dial type speed controller, a flow rate sensor or a pressure sensor, and it should be reproducible by digital management. I can't finish it. In addition, along with the recent miniaturization of the workpiece W, the optimum flow rate and pressure of compressed air have also been miniaturized (decreased), and the measured value is too small to be accurately detected by the flow rate sensor or pressure sensor (flow rate sensor). Sensing with pressure sensors and pressure sensors is difficult).

そのため、対象となるワークWの動きによる現合合わせを行うためにニードル弁50を手動によって調整することが一般的であるが、手動で微調整を行うと、感覚で調整することになるので同一設定への再現性が低い。そのため、ワークWの品種毎にニードル弁50を再調整しても、もとの設定値には戻せず、圧縮空気の流量や圧力を正確に管理できないという問題がある。   For this reason, it is common to manually adjust the needle valve 50 in order to perform the current combination by the movement of the target workpiece W. However, if the fine adjustment is manually performed, the adjustment will be made with the sense. Low reproducibility to settings. For this reason, even if the needle valve 50 is readjusted for each type of workpiece W, there is a problem in that the flow rate and pressure of compressed air cannot be accurately managed without returning to the original set values.

さらに、複数種類(品種)のワークWを同一のパーツフィーダ2で流す多品種対応があるが、エア噴射機構15を適用する構成では、搬送するワークWの品種を変更する度に、予め品種ごとに調整したニードル弁50に交換するか、都度ニードル弁50を再調整する必要があり、作業効率が悪いという問題がある。   Furthermore, there are multi-product types that allow a plurality of types (product types) of workpieces W to flow through the same parts feeder 2. However, in the configuration in which the air injection mechanism 15 is applied, each time the product type of the workpiece W to be transferred is changed, the product type is previously It is necessary to replace the needle valve 50 that has been adjusted or to readjust the needle valve 50 each time, resulting in a problem of poor working efficiency.

本発明は、このような課題を有効に解決することを目的としており、圧縮空気の流量や圧力をデジタル管理可能で、かつ作業効率の低下を防止できるエア噴射機構およびパーツフィーダを提供することを目的としている。   An object of the present invention is to effectively solve such problems, and to provide an air injection mechanism and a parts feeder capable of digitally managing the flow rate and pressure of compressed air and preventing a reduction in work efficiency. It is aimed.

本発明は以上のような問題点を鑑み、次のような手段を講じたものである。   The present invention takes the following measures in view of the above problems.

すなわち、本発明のエア噴射機構は、複数の被噴射物に向けて順次圧縮空気を噴射するものであって、圧縮空気源に接続され、開閉量を連続的に変更可能な切替弁を有する流量調整手段と、被噴射物の種類に適したパラメータを出力するパラメータ出力手段と、前記パラメータに対応する印加電圧または印加電流に基づき、前記切替弁の開閉量を比例制御する比例制御手段と、を備えることを特徴とする。   That is, the air injection mechanism of the present invention sequentially injects compressed air toward a plurality of injection objects, and has a switching valve connected to a compressed air source and capable of continuously changing the opening / closing amount. Adjusting means; parameter output means for outputting a parameter suitable for the type of the object to be injected; and proportional control means for proportionally controlling the opening / closing amount of the switching valve based on an applied voltage or an applied current corresponding to the parameter. It is characterized by providing.

このような構成であると、パラメータ出力手段から出力されるパラメータに基づき、流量調整手段が有する切替弁への印加電圧または印加電流が設定され、その印加電圧または印加電流で比例制御手段により切替弁の開閉量を比例制御できるので、切替弁から出力される圧縮空気の流量や圧力を被噴射物の種類に適したものに設定できる。そのため、切替弁から出力される圧縮空気の流量を適切に微調整できるとともに、同一設定への再現性を有し、エア噴射機構から噴射される圧縮空気の流量や圧力を正確にデジタル管理できる。また、多品種対応の場合に、搬送させる被噴射物の種類を変更する毎に、異なる設定がなされた切替弁に付け替える必要がなく、作業効率の低下を防止できる。   With such a configuration, the applied voltage or applied current to the switching valve of the flow rate adjusting means is set based on the parameter output from the parameter output means, and the switching valve is set by the proportional control means with the applied voltage or applied current. Therefore, the flow rate and pressure of the compressed air output from the switching valve can be set to be suitable for the type of the injection target. Therefore, the flow rate of the compressed air output from the switching valve can be finely adjusted appropriately, and the reproducibility to the same setting can be achieved, and the flow rate and pressure of the compressed air injected from the air injection mechanism can be accurately digitally managed. Further, in the case of dealing with a variety of products, it is not necessary to replace the switching valve with a different setting every time the type of the ejected object to be conveyed is changed, and a reduction in work efficiency can be prevented.

とりわけ、圧縮空気の噴射の応答性を良好にするためには、前記切替弁が、圧電バルブであることが好適である。   In particular, in order to improve the responsiveness of compressed air injection, it is preferable that the switching valve is a piezoelectric valve.

特に、搬送路に沿って搬送されるワークのうち不良ワークに所定の処理位置で圧縮空気を噴射するパーツフィーダに適用される場合に、ワークの種類に適した流量や圧力の圧縮空気を適切なタイミングで不良ワークに噴射するためには、不良ワークが前記処理位置に到達するタイミングを求めるタイミング取得手段を備えるとともに、前記パラメータ出力手段が、搬送させるワークの種類に適したパラメータを出力するよう構成され、前記比例制御手段は、前記タイミング取得手段が求めたタイミングで、前記パラメータに対応する電圧を前記切替弁に印加するよう構成されることが好ましい。   In particular, when applied to a parts feeder that injects compressed air at a predetermined processing position to defective workpieces among workpieces conveyed along the conveyance path, compressed air having a flow rate and pressure suitable for the type of workpiece is appropriately used. In order to inject onto a defective workpiece at a timing, it is provided with timing acquisition means for obtaining the timing at which the defective workpiece reaches the processing position, and the parameter output means outputs a parameter suitable for the type of workpiece to be conveyed Preferably, the proportional control unit is configured to apply a voltage corresponding to the parameter to the switching valve at a timing obtained by the timing acquisition unit.

あるいは、不良ワークが前記処理位置に到達するタイミングを求めるタイミング取得手段を備えるとともに、前記パラメータ出力手段が、搬送させるワークの種類に関するデータを入力可能な入力部を有し、前記入力部に入力されたデータに基づいて前記パラメータを生成して出力するよう構成され、前記比例制御手段は、前記タイミング取得手段が求めたタイミングで、前記パラメータに対応する電圧を前記切替弁に印加するよう構成されることが好ましい。   Alternatively, the apparatus includes a timing acquisition unit that obtains a timing at which a defective workpiece arrives at the processing position, and the parameter output unit has an input unit that can input data regarding the type of workpiece to be conveyed, and is input to the input unit. The proportional control means is configured to apply a voltage corresponding to the parameter to the switching valve at a timing obtained by the timing acquisition means. It is preferable.

圧縮空気を噴射するためには、前記切替弁が、圧縮空気源に通ずる第1ポートと、前記搬送路に形成されるエア給排路に通ずる第2ポートとを少なくとも備え、前記第1ポートと前記第2ポートとを連通状態にする連通位置と、前記第1ポートと前記第2ポートとを非連通状態にする非連通位置との間で切替可能な2ポート以上の切替弁であることが必要である。特に、圧縮空気の立下がりを早めて圧縮空気の噴射の応答性を一層良好にするためには、前記切替弁が、大気域に通じる第3ポートをさらに備え、前記第1ポートと前記第2ポートとを連通させる連通位置と、前記第2ポートと前記第3ポートとを連通させる非連通位置としての大気開放位置との間で切替可能な3ポートの切替弁であることが好適である。   In order to inject compressed air, the switching valve includes at least a first port that communicates with a compressed air source and a second port that communicates with an air supply / exhaust path formed in the conveyance path, It is a switching valve of two or more ports that can be switched between a communication position that brings the second port into a communication state and a non-communication position that makes the first port and the second port non-communication. is necessary. In particular, in order to accelerate the fall of the compressed air and improve the responsiveness of the injection of the compressed air, the switching valve further includes a third port that communicates with the atmosphere, and the first port and the second port It is preferable that the switching valve is a three-port switching valve that can be switched between a communication position for communicating with a port and an atmosphere open position as a non-communication position for communicating the second port and the third port.

さらに、噴射される圧縮空気の流量や圧力を正確にデジタル管理できるとともに、多品種対応の場合に作業効率の低下を防止できるパーツフィーダを実現するためには、上記エア噴射機構を用いて、搬送路に沿って搬送される不良ワークに圧縮空気を噴射し、当該不良ワークを前記搬送路から排除あるいは前記搬送路上で反転させて姿勢変更するよう構成されることが好適である。   Furthermore, in order to realize a parts feeder that can accurately control the flow rate and pressure of the compressed air to be injected, and that can prevent a reduction in work efficiency when dealing with a variety of products, it can be transported using the air injection mechanism. It is preferable that compressed air is jetted onto a defective workpiece conveyed along the path, and the posture is changed by removing the defective workpiece from the conveying path or reversing on the conveying path.

以上、説明した本発明によれば、1つの切替弁で圧縮空気の流量や圧力を微調整できるとともに、同一設定への再現性を有し、噴射される圧縮空気の流量や圧力を正確にデジタル管理可能で、さらに多品種対応の場合に被搬送物の種類毎に異なる設定がなされた切替弁に交換する必要がなく、作業効率が低下することを防止できるエア噴射機構およびパーツフィーダを提供することが可能となる。   As described above, according to the present invention described above, the flow rate and pressure of compressed air can be finely adjusted with one switching valve, and the reproducibility to the same setting is achieved, and the flow rate and pressure of injected compressed air are accurately digitalized. Provided is an air injection mechanism and a parts feeder that can be managed and that do not need to be replaced with a switching valve that is set differently for each type of object to be conveyed, and that can prevent work efficiency from being lowered. It becomes possible.

本発明の一実施形態に係るエア噴射機構をパーツフィーダに適用した状態で示す模式図。The schematic diagram shown in the state which applied the air injection mechanism which concerns on one Embodiment of this invention to the parts feeder. 圧縮空気の噴射時のエア噴射機構を部分的に示す模式図。The schematic diagram which shows partially the air injection mechanism at the time of injection of compressed air. 本発明の変形例を示す図。The figure which shows the modification of this invention. 本発明の他の変形例を示す図。The figure which shows the other modification of this invention. 本発明のさらに他の変形例を示す図。The figure which shows the further another modification of this invention. 本発明のさらに他の変形例を示す図。The figure which shows the further another modification of this invention. 従来の構成を示す図。The figure which shows the conventional structure.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の一実施形態であるエア噴射機構1は、パーツフィーダ2に適用される。パーツフィーダ2は、搬送路20に沿って複数の被搬送物としてのワークWを搬送するものであり、搬送されるワークWを撮像するカメラ65により得られる画像データに基づいてワークWの姿勢等を判別して良否を判別し、不良と判別された不良ワークW´をカメラ65よりも搬送方向下流側に設定された処理位置Pで搬送路20上から排除または搬送路20上で反転させて姿勢矯正するものである。搬送路20にはエア給排路21が側壁20aを貫通して形成されており、エア噴射機構1は、エア給排路21を介して処理位置Pに向けて圧縮空気を噴射するが、このとき、本実施形態では、搬送させるワークWの種類、具体的にはワークWの品種に適した流量や圧力の圧縮空気で不良ワークW´を処理する。   As shown in FIG. 1, an air injection mechanism 1 according to an embodiment of the present invention is applied to a parts feeder 2. The parts feeder 2 conveys the workpieces W as a plurality of objects to be conveyed along the conveyance path 20, and the posture of the workpiece W based on image data obtained by the camera 65 that images the conveyed workpieces W. The defective work W ′ determined to be defective is excluded from the conveyance path 20 at the processing position P set downstream of the camera 65 in the conveyance direction or reversed on the conveyance path 20. Posture correction. An air supply / discharge path 21 is formed through the side wall 20a in the conveyance path 20, and the air injection mechanism 1 injects compressed air toward the processing position P through the air supply / discharge path 21, In this embodiment, the defective workpiece W ′ is processed with compressed air having a flow rate or pressure suitable for the type of workpiece W to be conveyed, specifically, the type of workpiece W.

エア噴射機構1は、エア回路10と、上位コントローラ4と、画像処理装置6と、圧電バルブドライバ5とを備える。   The air injection mechanism 1 includes an air circuit 10, a host controller 4, an image processing device 6, and a piezoelectric valve driver 5.

エア回路10は、圧縮空気源11(工場設備)に接続され、圧縮空気源11から供給された圧縮空気を一定値に減圧するレギュレータ12と、レギュレータ12の下流に配置され、レギュレータ12で減圧された圧縮空気の流量を調整する2ポート弁3とを備える。圧縮空気源11とレギュレータ12とは第1エア配管経路13aで接続され、レギュレータ12と2ポート弁3とは第2エア配管経路13bで接続され、2ポート弁3とエア給排路21とは第3エア配管経路13cで接続される。本実施形態では2ポート弁3が流量調整手段3Aを構成する。   The air circuit 10 is connected to a compressed air source 11 (factory equipment), is arranged downstream of the regulator 12 with a regulator 12 that depressurizes compressed air supplied from the compressed air source 11 to a constant value, and is depressurized by the regulator 12. And a two-port valve 3 for adjusting the flow rate of the compressed air. The compressed air source 11 and the regulator 12 are connected by a first air piping path 13a, the regulator 12 and the 2-port valve 3 are connected by a second air piping path 13b, and the 2-port valve 3 and the air supply / discharge path 21 are The third air piping path 13c is connected. In this embodiment, the 2-port valve 3 constitutes the flow rate adjusting means 3A.

切替弁としての2ポート弁3は、第2エア配管経路13bすなわちレギュレータ12の出口に通ずる第1ポート3aと、第3エア配管経路13cすなわちパーツフィーダ2のエア給排路21に通ずる第2ポート3bとを備える。2ポート弁3は、第1ポート3aおよび第2ポート3bをそれぞれ閉止させる図1に示す非連通位置としての閉塞位置Lと、作動部30の切替部33を介して第1ポート3aと第2ポート3bとを内部で連通させる図2に示す連通位置Rとの間で切替え可能に構成される。   The two-port valve 3 as a switching valve includes a first port 3a that communicates with the second air piping path 13b, that is, the outlet of the regulator 12, and a third port that communicates with the third air piping path 13c, that is, the air supply / discharge path 21 of the parts feeder 2. 3b. The two-port valve 3 includes a closed position L as a non-communication position shown in FIG. 1 for closing the first port 3a and the second port 3b, and a first port 3a and a second port via a switching unit 33 of the operating unit 30. The port 3b is configured to be switchable between a communication position R shown in FIG.

この切替えは、2ポート弁3に備わる電気的入力部32への通電(電圧印加)により、作動部30が変位することで行われ、電気的入力部32への非通電時には、図1に示す閉塞位置Lとなり、レギュレータ12から2ポート弁3に供給された圧縮空気が第1ポート3a付近で閉止される。一方、電気的入力部32への通電時には、作動部30が変位して図2に示す連通位置Rとなり、レギュレータ12から供給された圧縮空気を第1ポート3aから入力させて切替部33を介して第2ポート3bより出力させ、エア給排路21に給気する。これによりエア給排路21から処理位置Pに向けて圧縮空気が噴射される。そして、電気的入力部32への通電が停止されると、作動部30が元の位置に向けて変位して図1に示す閉塞位置Lに戻り、エア噴射回路10からの噴射が停止される。   This switching is performed by the operation unit 30 being displaced by energization (voltage application) to the electrical input unit 32 provided in the 2-port valve 3, and is shown in FIG. 1 when the electrical input unit 32 is not energized. The closed position L is reached, and the compressed air supplied from the regulator 12 to the 2-port valve 3 is closed near the first port 3a. On the other hand, when the electrical input unit 32 is energized, the operating unit 30 is displaced to reach the communication position R shown in FIG. 2, and the compressed air supplied from the regulator 12 is input from the first port 3a via the switching unit 33. Then, the air is supplied from the second port 3b and supplied to the air supply / discharge path 21. As a result, compressed air is jetted from the air supply / discharge path 21 toward the processing position P. When the energization to the electrical input unit 32 is stopped, the operating unit 30 is displaced toward the original position and returns to the closed position L shown in FIG. 1, and the injection from the air injection circuit 10 is stopped. .

また、作動部30の変位量すなわち2ポート弁3の開閉量(開放量)は、電気的入力部32に印加される電圧に応じて連続的に変更可能であり、印加電圧に対して開閉量が一義的に決まるので、エア給排路21から供給する圧縮空気の流量および圧力を微調整できる。また、2ポート弁3は駆動源にピエゾ素子を用いた弁である圧電バルブであり、例えば電磁弁や比例弁に比べて電圧が印加されてからの応答性が素早い(高速応答)。   Further, the displacement amount of the operating unit 30, that is, the opening / closing amount (opening amount) of the 2-port valve 3 can be continuously changed according to the voltage applied to the electrical input unit 32, and the opening / closing amount with respect to the applied voltage. Therefore, the flow rate and pressure of the compressed air supplied from the air supply / discharge passage 21 can be finely adjusted. The 2-port valve 3 is a piezoelectric valve that uses a piezo element as a driving source, and has a quick response (high-speed response) after a voltage is applied as compared with, for example, an electromagnetic valve or a proportional valve.

パラメータ出力手段としての上位コントローラ4は、ワークWの種類、具体的にはワークWの品種に適したドライバ設定の種々のパラメータを保持しており、搬送路20を搬送させるワークWの品種に最適なパラメータを画像処理装置6に出力する。   The host controller 4 as parameter output means holds various parameters of driver settings suitable for the type of workpiece W, specifically, the type of workpiece W, and is optimal for the type of workpiece W that is transported on the transport path 20. Various parameters are output to the image processing apparatus 6.

画像処理装置6は、上位コントローラ4から出力されたパラメータを圧電バルブドライバ5の通信入出力部51に送信するドライバ設定部64と、カメラ65を用いて得られた画像データを処理する画像処理部61と、画像処理部61で処理したデータに基づきワークWの姿勢等の良否を判別する画像判別部62と、画像判別部62が不良と判別したワークWである不良ワークW´が処理位置Pに到達するタイミングに係るデータ(タイミングデータ)を排除反転指令として圧電バルブドライバ5の指令入力部54に出力する指令部63とを備える。不良ワークW´が処理位置Pに到達するタイミングは、例えば前記画像データを用いて算出される不良ワークW´の搬送速度等から求められ、画像処理装置6は、不良ワークW´が処理位置Pに到達するタイミングを求めるタイミング取得手段としても機能する。   The image processing device 6 includes a driver setting unit 64 that transmits parameters output from the host controller 4 to the communication input / output unit 51 of the piezoelectric valve driver 5, and an image processing unit that processes image data obtained using the camera 65. 61, an image discriminating unit 62 that discriminates the quality of the posture of the workpiece W based on data processed by the image processing unit 61, and a defective workpiece W ′ that is a workpiece W that the image discriminating unit 62 has determined to be defective is a processing position P. And a command unit 63 that outputs data (timing data) related to the timing of reaching the command input unit 54 of the piezoelectric valve driver 5 as an exclusion inversion command. The timing at which the defective workpiece W ′ arrives at the processing position P is obtained from, for example, the conveyance speed of the defective workpiece W ′ calculated using the image data, and the image processing apparatus 6 determines that the defective workpiece W ′ is at the processing position P. It also functions as a timing acquisition means for obtaining the timing to reach the position.

比例制御手段としての圧電バルブドライバ5は、通信入出力部51を介してパラメータが入力されると、パラメータ毎の比例制御に関する種々のデータ、例えばパラメータ毎の印加電圧を予め保持する印加電圧設定部53から対応する印加電圧を取り出して、2ポート弁3への印加電圧(比例制御)を設定する。同様に、印加電圧設定部53を介して、指令入力部54の信号に対し同期出力・ワンショット出力の切替、立ち上がり、立ち下り等の電圧出力波形の設定、ワンショットパルス時間の設定、指令入力部54や2ポート弁3の機構に合わせたノーマルクローズ・ノーマルオープンの切替等もパラメータ毎に設定する。   When a parameter is input via the communication input / output unit 51, the piezoelectric valve driver 5 serving as a proportional control unit stores various data relating to proportional control for each parameter, for example, an applied voltage setting unit that holds in advance an applied voltage for each parameter. The corresponding applied voltage is extracted from 53 and the applied voltage (proportional control) to the 2-port valve 3 is set. Similarly, switching of synchronous output / one-shot output, setting of voltage output waveform such as rising and falling, setting of one-shot pulse time, command input via the applied voltage setting unit 53 with respect to the signal of the command input unit 54 Switching between normally closed and normally open according to the mechanism of the unit 54 and the 2-port valve 3 is also set for each parameter.

また、圧電バルブドライバ5は、指令入力部54を介して指令部63から入力されたタイミングデータに基づき、出力制御部55および電圧出力回路56を介して、印加電圧設定部53で設定された電圧を2ポート弁3の電気的入力部32に印加する。このように同一の品種のワークWが搬送されている間は、圧縮空気の噴射毎に印加電圧のフィードバック制御を行わず、印加電圧を決め打ちすることで、噴射の応答性を早くすることができる。   In addition, the piezoelectric valve driver 5 uses the voltage set by the applied voltage setting unit 53 via the output control unit 55 and the voltage output circuit 56 based on the timing data input from the command unit 63 via the command input unit 54. Is applied to the electrical input 32 of the two-port valve 3. In this way, while the same type of workpiece W is being transported, the feedback control of the applied voltage is not performed every time compressed air is injected, and the applied voltage is determined and the injection response can be accelerated. it can.

このような構成では、ワークWの搬送が開始されると、上位コントローラ4からワークWの品種に適したパラメータがドライバ設定部64を介して圧電バルブドライバ5に出力され、印加電圧設定部53でワークWの品種に最適な印加電圧等が設定される。画像処理装置6は、カメラ65を用いて得た画像データに基づいて画像判定部62でワークWの姿勢等の良否を判別するとともに不良ワークW´が処理位置Pに到達するタイミングを求め、指令部63を介してタイミングデータを圧電バルブドライバ5に出力する。圧電バルブドライバ5は、タイミングデータが指令入力部54を介して入力されるたびに、印加電圧設定部53で設定されたワンショットパルス時間の間、印加電圧を2ポート弁3の電気的入力部32に与える。または、同期出力に設定されている場合は、画像処理装置6の指令部63から信号が出力されている間、印加電圧を入力部32に与える。   In such a configuration, when conveyance of the workpiece W is started, parameters suitable for the type of workpiece W are output from the host controller 4 to the piezoelectric valve driver 5 via the driver setting unit 64, and the applied voltage setting unit 53 An optimum applied voltage or the like for the type of workpiece W is set. The image processing device 6 determines the quality of the posture of the workpiece W by the image determination unit 62 based on the image data obtained using the camera 65, obtains the timing at which the defective workpiece W ′ reaches the processing position P, and instructs Timing data is output to the piezoelectric valve driver 5 via the unit 63. Each time the timing data is input via the command input unit 54, the piezoelectric valve driver 5 applies the applied voltage to the electrical input unit of the 2-port valve 3 for the one-shot pulse time set by the applied voltage setting unit 53. 32. Alternatively, when the synchronous output is set, the applied voltage is supplied to the input unit 32 while the signal is output from the command unit 63 of the image processing device 6.

2ポート弁3は、印加電圧に応じて作動部30が連続的に変位し、ワークWの品種に最適な流量および圧力で圧縮空気を出力させる。2ポート弁3から出力された圧縮空気は、エア給排路21を介して不良ワークWに到達し、不良ワークWを搬送路20上から適切に排除または搬送路20上で適切に反転させて姿勢変更させる。このようにワークWの品種に最適な流量および圧力で圧縮空気を噴射することで、例えばパーツフィーダ2の整列能力を好適な状態に維持することができる。   In the 2-port valve 3, the operating unit 30 is continuously displaced according to the applied voltage, and compressed air is output at a flow rate and pressure optimum for the type of workpiece W. The compressed air output from the 2-port valve 3 reaches the defective workpiece W via the air supply / discharge passage 21 and appropriately rejects the defective workpiece W from the conveyance path 20 or reverses it properly on the conveyance path 20. Change posture. Thus, by injecting compressed air at a flow rate and pressure optimal for the type of workpiece W, for example, the alignment capability of the parts feeder 2 can be maintained in a suitable state.

以上のように本実施形態のエア噴射機構1は、複数の被噴射物としてのワークWに向けて順次圧縮空気を噴射するものであって、圧縮空気源11に接続され、開閉量を連続的に変更可能な切替弁としての2ポート弁3を有する流量調整手段3Aと、ワークWの種類、具体的には品種に適したパラメータを出力するパラメータ出力手段としての上位コントローラ4と、パラメータに対応する印加電圧に基づき、2ポート弁3の開閉量を比例制御する比例制御手段としての圧電バルブドライバ5と、を備えるよう構成される。   As described above, the air injection mechanism 1 of the present embodiment sequentially injects compressed air toward the workpieces W as a plurality of objects to be injected, and is connected to the compressed air source 11 and continuously opens and closes. The flow rate adjusting means 3A having a two-port valve 3 as a changeable valve, the host controller 4 as a parameter output means for outputting a parameter suitable for the type of workpiece W, specifically, the type, and corresponding to the parameter And a piezoelectric valve driver 5 as proportional control means for proportionally controlling the opening / closing amount of the two-port valve 3 based on the applied voltage.

このような構成であると、上位コントローラ4から出力されるパラメータに基づき、流量調整手段3Aが有する2ポート弁3への印加電圧が設定され、その印加電圧で圧電バルブドライバ5により2ポート弁3の開閉量を比例制御できるので、2ポート弁3から出力される圧縮空気の流量や圧力をワークWの品種に適したものに設定できる。そのため、2ポート弁3から出力される圧縮空気の流量を適切に微調整できるとともに、同一設定への再現性を有し、エア噴射機構1から噴射される圧縮空気の流量や圧力を正確にデジタル管理できる。また、多品種対応(多品種共用パーツフィーダ時)の場合に、搬送させるワークWの品種を変更する毎に、異なる設定がなされた2ポート弁3に付け替える必要がなく、切換作業を効率化でき、作業効率の低下を防止できる。   With such a configuration, the applied voltage to the 2-port valve 3 of the flow rate adjusting means 3A is set based on the parameters output from the host controller 4, and the 2-port valve 3 is set by the piezoelectric valve driver 5 with the applied voltage. Therefore, the flow rate and pressure of the compressed air output from the 2-port valve 3 can be set to be suitable for the type of workpiece W. Therefore, the flow rate of the compressed air output from the 2-port valve 3 can be finely adjusted appropriately, and the reproducibility to the same setting can be achieved, and the flow rate and pressure of the compressed air injected from the air injection mechanism 1 can be accurately digitalized. Can manage. Also, in the case of multi-product support (when using multi-product shared parts feeder), it is not necessary to replace the 2-port valve 3 with different settings each time the type of work W to be transferred is changed, and switching work can be made more efficient. It is possible to prevent a decrease in work efficiency.

特に、2ポート弁3が圧電バルブであることから、圧縮空気の噴射の応答性を良好にできる。   In particular, since the 2-port valve 3 is a piezoelectric valve, the responsiveness of compressed air injection can be improved.

さらに、搬送路20に沿って搬送されるワークWのうち不良ワークW´に所定の処理位置Pで圧縮空気を噴射するパーツフィーダ2に適用されるものであって、不良ワークW´が処理位置Pに到達するタイミングを求めるタイミング取得手段としての画像処理装置6を備えるとともに、上位コントローラ4が、搬送させるワークWの品種に適したパラメータを出力するよう構成され、圧電バルブドライバ5は、画像処理装置6が求めたタイミングで、パラメータに対応する電圧を2ポート弁3に印加するよう構成されることから、上位コントローラ4から出力されるパラメータに基づいて2ポート弁3の開閉量を比例制御でき、圧電バルブドライバ5により、ワークWの品種に適した流量および圧力の圧縮空気を適切なタイミングで不良ワークW´に噴射することが可能となる。   Further, the present invention is applied to the parts feeder 2 that injects compressed air at a predetermined processing position P to a defective workpiece W ′ among the workpieces W conveyed along the conveying path 20, and the defective workpiece W ′ is processed at the processing position. The image processing apparatus 6 is provided as timing acquisition means for obtaining the timing to reach P, and the host controller 4 is configured to output parameters suitable for the type of work W to be conveyed. Since the voltage corresponding to the parameter is applied to the 2-port valve 3 at the timing determined by the device 6, the opening / closing amount of the 2-port valve 3 can be proportionally controlled based on the parameter output from the host controller 4. , Compressed air with a flow rate and pressure suitable for the type of workpiece W is detected at a suitable timing by the piezoelectric valve driver 5 It becomes possible to inject to W '.

切替弁は、圧縮空気源11に通ずる第1ポート3aと、搬送路20に形成されるエア給排路21に通ずる第2ポート3bとを備え、第1ポート3aと第2ポート3bとを連通状態にする連通位置Rと、第1ポート3aと第2ポート3bとを非連通状態にする非連通位置としての閉塞位置Lとの間で切替可能な2ポート弁3であるように2ポート以上の切替弁であることが必要である。さらに後述するように、前記切替弁が、大気域に通じる第3ポート弁をさらに備え、前記第1ポートと前記第2ポートとを連通させる連通位置と、前記第2ポートと前記第3ポートとを連通させる非連通位置としての大気開放位置とに切替可能な3ポートの切替弁であることで、圧縮空気の圧力の立ち下がりを早めて圧縮空気の噴射の応答性を一層良好にする。   The switching valve includes a first port 3a that communicates with the compressed air source 11, and a second port 3b that communicates with an air supply / discharge passage 21 formed in the conveyance path 20, and communicates the first port 3a and the second port 3b. Two or more ports so that the two-port valve 3 can be switched between the communication position R to be in the state and the closed position L as the non-communication position in which the first port 3a and the second port 3b are not in communication. It is necessary to be a switching valve. As will be described later, the switching valve further includes a third port valve that communicates with the atmosphere, and a communication position for communicating the first port and the second port; the second port and the third port; By using the three-port switching valve that can be switched to the atmospheric open position as a non-communication position that communicates with each other, the fall of the pressure of the compressed air is accelerated and the responsiveness of the compressed air injection is further improved.

また、パーツフィーダ2は、本実施形態のエア噴射機構1を用いて、搬送路20に沿って搬送される不良ワークW´に圧縮空気を噴射し、当該不良ワークW´を搬送路20から排除あるいは搬送路20上で反転させて姿勢変更するよう構成されることから、1つの2ポート弁3を用いて噴射される圧縮空気の流量や圧力を微調整可能で、同一設定への再現性を有し、噴射される圧縮空気の流量および圧力を正確に管理できるとともに、多品種対応の場合に、搬送させるワークWの品種を変更する毎に、異なる設定がなされた2ポート弁3に交換する必要がなく、作業効率が低下することを防止できる。   Further, the parts feeder 2 uses the air injection mechanism 1 of the present embodiment to inject compressed air onto the defective workpiece W ′ conveyed along the conveyance path 20 and excludes the defective workpiece W ′ from the conveyance path 20. Alternatively, since the posture is changed by reversing on the conveyance path 20, the flow rate and pressure of the compressed air injected using one two-port valve 3 can be finely adjusted, and the reproducibility to the same setting can be achieved. It is possible to accurately control the flow rate and pressure of the compressed air to be injected, and in the case of dealing with various types, every time the type of work W to be conveyed is changed, it is replaced with a 2-port valve 3 which is set differently. There is no need to prevent the work efficiency from being lowered.

以上、本発明の一実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。以下、前述した構成と同様のものについては同じ符号を付して説明を省略する。   As mentioned above, although one Embodiment of this invention was described, the specific structure of each part is not limited only to embodiment mentioned above. Hereinafter, the same components as those described above are denoted by the same reference numerals and description thereof is omitted.

例えば、本実施形態では上位コントローラ4からワークWの品種毎に異なるパラメータが出力されたが、図3に示すように、上位コントローラ4から搬送させるワークWの品種データが出力される構成であってもよい(上位コントローラ4は品種指定のみ)。この場合、画像処理装置6が、品種データ毎に適したパラメータを保持するパラメータ設定部66を備え、パラメータ設定部66によって、上位コントローラ4から出力された品種データに適したパラメータをドライバ設定部64を介して圧電バルブドライバ5に出力する構成とすることが考えられる。なお、この構成では、画像処理装置6がパラメータ出力手段を構成する。   For example, in this embodiment, different parameters are output from the host controller 4 for each type of workpiece W, but as shown in FIG. 3, the type data of the workpiece W to be conveyed is output from the host controller 4. (The host controller 4 is only for product type designation). In this case, the image processing apparatus 6 includes a parameter setting unit 66 that holds parameters suitable for each type of data. The parameter setting unit 66 sets parameters suitable for the type data output from the host controller 4 to the driver setting unit 64. It can be considered that the output is made to the piezoelectric valve driver 5 via the. In this configuration, the image processing device 6 constitutes a parameter output unit.

また、上位コントローラ4からパラメータを出力する構成に限定されず、図4に示すように、圧電バルブドライバ5が備える入力部としての設定入力部52から、搬送させるワークWの品種に関するデータを手動で入力可能とし(パネル入力)、設定入力部52に入力されたデータから品種毎に適したパラメータを生成して、印加電圧設定部53で印加電圧等を設定する構成としてもよい。なお、この構成では、圧電バルブドライバ5がパラメータ出力手段を構成する。また、カメラ65および画像処理装置6の代わりに、センサ67および判定機能付きのセンサアンプ68を用いる構成であってもよい。図4に示す構成では、センサ67がワークWを検知するとともに、センサ67の検知結果に基づいて、不良ワークW´が処理位置Pに到達するタイミングを求めるタイミング取得手段としてのセンサアンプ68が排除反転指令を指令入力部54に出力するよう構成され、排除反転指令が指令入力部54に入力されるたび、印加電圧設定部53を介して設定された印加電圧が2ポート弁3に印加される。   Further, the present invention is not limited to the configuration in which parameters are output from the host controller 4, and as shown in FIG. It is also possible to adopt a configuration in which input is possible (panel input), parameters suitable for each product type are generated from the data input to the setting input unit 52, and the applied voltage and the like are set by the applied voltage setting unit 53. In this configuration, the piezoelectric valve driver 5 constitutes parameter output means. Further, instead of the camera 65 and the image processing apparatus 6, a configuration using a sensor 67 and a sensor amplifier 68 with a determination function may be used. In the configuration illustrated in FIG. 4, the sensor 67 detects the workpiece W, and the sensor amplifier 68 serving as a timing acquisition unit that obtains the timing at which the defective workpiece W ′ reaches the processing position P based on the detection result of the sensor 67 is excluded. An inversion command is output to the command input unit 54, and an applied voltage set via the applied voltage setting unit 53 is applied to the 2-port valve 3 every time an exclusion inversion command is input to the command input unit 54. .

このように、搬送路20に沿って搬送される不良ワークW´に所定の処理位置Pで圧縮空気を噴射するパーツフィーダ2に適用されるものであって、不良ワークW´が処理位置Pに到達するタイミングを求めるタイミング取得手段としてのセンサアンプ68を備えるとともに、パラメータ出力手段としての圧電バルブドライバ5が、搬送させるワークWの品種に関するデータを入力可能な入力部としての設定入力部52を有し、設定入力部52に入力されたデータに基づいて前記パラメータを生成して出力するよう構成され、圧電バルブドライバ5は、センサアンプ68が求めたタイミングで、前記パラメータに対応する電圧を2ポート弁3に印加するよう構成されることから、設定入力部52に入力されたデータに基づいて2ポート弁3の開閉量を比例制御できるとともに、圧電バルブドライバ5により、ワークWの品種に適した流量や圧力の圧縮空気を適切なタイミングで不良ワークW´に噴射することが可能になる。   Thus, the present invention is applied to the parts feeder 2 that injects compressed air at a predetermined processing position P onto a defective workpiece W ′ conveyed along the conveyance path 20, and the defective workpiece W ′ is at the processing position P. A sensor amplifier 68 is provided as a timing acquisition means for obtaining the arrival timing, and the piezoelectric valve driver 5 as a parameter output means has a setting input unit 52 as an input unit capable of inputting data relating to the type of work W to be conveyed. The piezoelectric valve driver 5 is configured to generate and output the parameter based on the data input to the setting input unit 52. The piezoelectric valve driver 5 outputs the voltage corresponding to the parameter at two ports at the timing obtained by the sensor amplifier 68. Since it is configured to be applied to the valve 3, the opening of the 2-port valve 3 is based on the data input to the setting input unit 52. The closing amount can be proportionally controlled, and the piezoelectric valve driver 5 can inject compressed air having a flow rate and pressure suitable for the type of the workpiece W onto the defective workpiece W ′ at an appropriate timing.

なお、図4に示す構成において、判定機能付きのセンサアンプ68に代えて、判定機能を有さないセンサアンプおよびプログラマブルコントローラを用いてもよい。   In the configuration shown in FIG. 4, a sensor amplifier and a programmable controller that do not have a determination function may be used instead of the sensor amplifier 68 with a determination function.

さらに、上記実施形態では流量調整手段3Aの有する切替弁として2ポート弁3が用いられたが、図5に示すような3ポート弁7が用いられてもよい。あるいは、4ポート以上の弁が用いられてもよい。   Furthermore, although the 2-port valve 3 is used as the switching valve of the flow rate adjusting means 3A in the above embodiment, a 3-port valve 7 as shown in FIG. 5 may be used. Alternatively, a valve having four or more ports may be used.

3ポート弁7は、第2エア配管経路13bすなわちレギュレータ12の出口に通ずる第1ポート7aと、第3エア配管経路13cすなわちパーツフィーダ2のエア給排路21に通ずる第2ポート7bと、大気域に通ずる第3ポート7cとを備える。3ポート弁7は、電気的入力部32への通電時に、作動部70の切替部73を介して第1ポート7aと第2ポート7bを内部で連通させる図5(b)に示す連通位置Rと、電気的入力部32への非通電時に、作動部70の切替部71を介して第2ポート7bと第3ポート7cとを内部で連通させるとともに第1ポート7aと第2ポート7bとを非連通状態にする同図(a)に示す非連通位置としての大気開放位置Nとの間で切替え可能に構成される。   The three-port valve 7 includes a second air piping path 13b, that is, a first port 7a that communicates with the outlet of the regulator 12, a third air piping path 13c, that is, a second port 7b that communicates with the air supply / discharge path 21 of the parts feeder 2, and the atmosphere. And a third port 7c leading to the area. The three-port valve 7 communicates with the first port 7a and the second port 7b through the switching unit 73 of the operating unit 70 when the electric input unit 32 is energized. When the electrical input unit 32 is de-energized, the second port 7b and the third port 7c are internally communicated via the switching unit 71 of the operating unit 70, and the first port 7a and the second port 7b are connected to each other. It is configured to be switchable between an open air position N as a non-communication position shown in FIG.

図5(a)に示す大気開放位置Nでは、レギュレータ12から3ポート弁7に供給された圧縮空気が第1ポート7a付近で閉止されるとともに、第2ポート7bが大気開放される。一方、同図(b)に示す連通位置Rでは、レギュレータ12から供給された圧縮空気を第1ポート7aから入力させて切替部73を介して第2ポート7bより出力させ、エア給排路21に給気する。これによりエア給排路21から処理位置Pに向けて圧縮空気が噴射される。   5A, the compressed air supplied from the regulator 12 to the three-port valve 7 is closed near the first port 7a, and the second port 7b is opened to the atmosphere. On the other hand, at the communication position R shown in FIG. 5B, the compressed air supplied from the regulator 12 is input from the first port 7a and output from the second port 7b via the switching unit 73, and the air supply / discharge path 21 is supplied. To air. As a result, compressed air is jetted from the air supply / discharge path 21 toward the processing position P.

そして、電気的入力部32への通電が停止されると、作動部70が元の位置に向けて変位して同図(a)に示す大気開放位置Nに戻り、このときの第3エア配管経路13c内の残圧は、エア給排路21から大気中に開放されるとともに、3ポート弁7の第2ポート7bから切替部71を介して第3ポート7cより大気開放される。そのため、3ポート弁7を図5(b)に示す連通位置Rから同図(a)に示す大気開放位置Nに戻した直後には、3ポート弁7とパーツフィーダ2のエア給排路21との間の第3エア配管経路13c内の残圧が、エア給排路21および3ポート弁7の両方から適切に大気開放されるので、圧縮空気の圧力の立ち下がりを早めることができる。   When the energization to the electrical input unit 32 is stopped, the operating unit 70 is displaced toward the original position and returns to the atmosphere open position N shown in FIG. The residual pressure in the path 13c is released from the air supply / discharge passage 21 into the atmosphere, and is released from the third port 7c through the switching unit 71 from the second port 7b of the three-port valve 7. Therefore, immediately after the 3-port valve 7 is returned from the communication position R shown in FIG. 5B to the atmospheric release position N shown in FIG. 5A, the air supply / discharge passage 21 between the 3-port valve 7 and the parts feeder 2 is provided. Since the residual pressure in the third air piping path 13c between the two is properly released to the atmosphere from both the air supply / discharge passage 21 and the 3-port valve 7, the fall of the pressure of the compressed air can be accelerated.

このように、切替弁が、圧縮空気源11に通ずる第1ポート7aと、搬送路20に形成されるエア給排路21に通ずる第2ポート7bと、大気域に通ずる第3ポート7cとを少なくとも備え、第1ポート7aと第2ポート7bとを連通させる連通位置Rと、第2ポート7bと第3ポート7cとを連通させるとともに第1ポート7aと第2ポート7bとを非連通状態にする非連通位置としての大気開放位置Nとの間で切替可能な3ポート以上の3ポート弁7であることから、噴射後の第3エア配管経路13c内の残圧が、エア給排路21から大気中に開放されるとともに、3ポート弁7の第2ポート7bから切替部71を介して第3ポート7cより大気開放されるので、噴射後の排気をエア給排路21および3ポート弁7の両方から行うことができ、圧縮空気の噴射の立ち下がりを早めて圧縮空気の圧力の応答性をより一層良好にできる。   As described above, the switching valve includes the first port 7a that communicates with the compressed air source 11, the second port 7b that communicates with the air supply / discharge passage 21 formed in the conveyance path 20, and the third port 7c that communicates with the atmosphere. At least, the communication position R for communicating the first port 7a and the second port 7b, the second port 7b and the third port 7c are communicated, and the first port 7a and the second port 7b are disconnected. Since the three-port valve 7 having three or more ports that can be switched between the air release position N as the non-communication position, the residual pressure in the third air piping path 13c after the injection is supplied to the air supply / discharge path 21. From the second port 7b of the three-port valve 7 to the atmosphere from the third port 7c via the switching unit 71, so that the exhausted air is discharged from the air supply / discharge passage 21 and the three-port valve. To do from both It can, by advancing the fall of the injection of the compressed air can be the response of the pressure of the compressed air more better.

なお、上記実施形態では上述のように電気的入力部32への非通電時に大気開放されるノーマルクローズタイプの3ポート弁7が使用されるが、電気的入力部32への非通電時に閉止状態となるノーマルオープンタイプの3ポート弁7が使用されてもよい。ノーマルオープンとノーマルクローズとの切替は、図4等に示す印加電圧設定部53で行われる。   In the above-described embodiment, the normally closed three-port valve 7 that is opened to the atmosphere when the electrical input unit 32 is not energized is used as described above. A normally open type three-port valve 7 may be used. Switching between normal open and normal close is performed by an applied voltage setting unit 53 shown in FIG.

また、上記実施形態では上位コントローラ4からワークWの品種毎に異なるパラメータを出力するが、上位コントローラ4から品種およびロット毎に異なるパラメータを出力する構成としてもよい。ワークWは同品種であっても、ロット毎に外形、表面摩擦が若干異なるので、同一の設定であっても、反転の動き、排除の動きに違いが生じ、パーツフィーダ2の整列能力の低下を招くおそれがあるが、ワークWの品種およびロット毎に異なるパラメータを出力可能な構成であることで、噴射する圧縮空気の流量や圧力を一層最適にすることができる。   In the above embodiment, different parameters are output from the host controller 4 for each type of workpiece W, but different parameters may be output from the host controller 4 for each type and lot. Even if the workpiece W is of the same type, the external shape and surface friction are slightly different for each lot. However, the flow rate and pressure of the compressed air to be injected can be further optimized by the configuration capable of outputting different parameters for each type and lot of the work W.

また、上記実施形態では2ポート弁3あるいは3ポート弁7の代わりに、図6に示すような切替弁としての比例弁75およびエア配管経路13dを介して比例弁75に接続される高速の電磁弁76が用いられてもよい。すなわち、流量調整手段3Bが比例弁75と電磁弁76とで構成されてもよい。この構成では、上記圧電バルブドライバ5とほぼ同様の構成である比例制御手段としての電磁バルブドライバ5´から比例弁75の図示しないコイルに印加される電流で比例弁75の開閉量を比例制御して、比例弁75から出力される圧縮空気の流量や圧力をデジタル管理するとともに、タイミング取得手段が求めたタイミングで電磁バルブドライバ5´により電磁弁76を開閉させて圧縮空気を噴射する。   In the above embodiment, instead of the 2-port valve 3 or the 3-port valve 7, a high-speed electromagnetic valve connected to the proportional valve 75 via the proportional valve 75 and the air piping path 13d as shown in FIG. A valve 76 may be used. That is, the flow rate adjusting unit 3B may be configured by the proportional valve 75 and the electromagnetic valve 76. In this configuration, the opening / closing amount of the proportional valve 75 is proportionally controlled by a current applied to a coil (not shown) of the proportional valve 75 from an electromagnetic valve driver 5 'serving as a proportional control means that is substantially the same configuration as the piezoelectric valve driver 5. Thus, the flow rate and pressure of the compressed air output from the proportional valve 75 are digitally managed, and the electromagnetic valve 76 is opened and closed by the electromagnetic valve driver 5 ′ at the timing obtained by the timing acquisition means to inject the compressed air.

さらに、本実施形態のエア噴射機構1はパーツフィーダ2に適用されたが、これに限定されず、外観検査機、測定分別機およびテーピング機などに適用されてもよい。   Furthermore, although the air injection mechanism 1 of this embodiment was applied to the parts feeder 2, it is not limited to this, You may apply to an external appearance inspection machine, a measurement sorter, a taping machine, etc.

その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other configurations can be variously modified without departing from the spirit of the present invention.

1・・・エア噴射機構
2・・・パーツフィーダ
3・・・2ポート弁(切替弁、圧電バルブ)
3A,3B・・・流量調整手段
4・・・上位コントローラ(パラメータ出力手段)
5・・・圧電バルブドライバ(比例制御手段、パラメータ出力手段)
5´・・・電磁バルブドライバ(比例制御手段)
6・・・画像処理装置(タイミング取得手段、パラメータ出力手段)
7・・・3ポート弁(切替弁、圧電バルブ)
7a・・・第1ポート
7b・・・第2ポート
7c・・・第3ポート
11・・・圧縮空気源
20・・・搬送路
21・・・エア給排路
52・・・設定入力部(入力部)
68・・・センサアンプ(タイミング取得手段)
P・・・処理位置
R・・・連通位置
L・・・閉塞位置(非連通位置)
N・・・大気開放位置(非連通位置)
W・・・ワーク(被噴射物)
W´・・・不良ワーク
DESCRIPTION OF SYMBOLS 1 ... Air injection mechanism 2 ... Parts feeder 3 ... 2 port valve (switching valve, piezoelectric valve)
3A, 3B ... Flow rate adjusting means 4 ... Host controller (parameter output means)
5 ... Piezoelectric valve driver (proportional control means, parameter output means)
5 '... Electromagnetic valve driver (proportional control means)
6. Image processing apparatus (timing acquisition means, parameter output means)
7 ... 3 port valve (switching valve, piezoelectric valve)
7a ... 1st port 7b ... 2nd port 7c ... 3rd port 11 ... Compressed air source 20 ... Conveyance path 21 ... Air supply / discharge path 52 ... Setting input part ( Input part)
68... Sensor amplifier (timing acquisition means)
P: Processing position R: Communication position L: Blocking position (non-communication position)
N: Open to the atmosphere (non-communication position)
W ... Workpiece (Subject)
W '... Defect work

Claims (6)

複数の被噴射物に向けて順次圧縮空気を噴射するエア噴射機構であって、
圧縮空気源に接続され、開閉量を連続的に変更可能な切替弁を有する流量調整手段と、
被噴射物の種類に適したパラメータを出力するパラメータ出力手段と、
前記パラメータに対応する印加電圧または印加電流に基づき、前記切替弁の開閉量を比例制御する比例制御手段と、を備えることを特徴とするエア噴射機構。
An air injection mechanism that sequentially injects compressed air toward a plurality of objects to be injected,
A flow rate adjusting means having a switching valve connected to a compressed air source and capable of continuously changing the opening and closing amount;
Parameter output means for outputting parameters suitable for the type of the injection target;
An air injection mechanism comprising: proportional control means for proportionally controlling an opening / closing amount of the switching valve based on an applied voltage or an applied current corresponding to the parameter.
前記切替弁が、圧電バルブであることを特徴とする請求項1に記載のエア噴射機構。   The air injection mechanism according to claim 1, wherein the switching valve is a piezoelectric valve. 搬送路に沿って搬送されるワークのうち不良ワークに所定の処理位置で圧縮空気を噴射するパーツフィーダに適用されるものであって、
不良ワークが前記処理位置に到達するタイミングを求めるタイミング取得手段を備えるとともに、前記パラメータ出力手段が、搬送させるワークの種類に適したパラメータを出力するよう構成され、
前記比例制御手段は、前記タイミング取得手段が求めたタイミングで、前記パラメータに対応する電圧を前記切替弁に印加するよう構成されることを特徴とする請求項1または2に記載のエア噴射機構。
It is applied to a parts feeder that injects compressed air at a predetermined processing position to a defective workpiece among the workpieces conveyed along the conveyance path,
In addition to providing timing acquisition means for obtaining the timing at which a defective workpiece arrives at the processing position, the parameter output means is configured to output a parameter suitable for the type of workpiece to be conveyed,
The air injection mechanism according to claim 1, wherein the proportional control unit is configured to apply a voltage corresponding to the parameter to the switching valve at a timing obtained by the timing acquisition unit.
搬送路に沿って搬送されるワークのうち不良ワークに所定の処理位置で圧縮空気を噴射するパーツフィーダに適用されるものであって、
不良ワークが前記処理位置に到達するタイミングを求めるタイミング取得手段を備えるとともに、前記パラメータ出力手段が、搬送させるワークの種類に関するデータを入力可能な入力部を有し、前記入力部に入力されたデータに基づいて前記パラメータを生成して出力するよう構成され、
前記比例制御手段は、前記タイミング取得手段が求めたタイミングで、前記パラメータに対応する電圧を前記切替弁に印加するよう構成されることを特徴とする請求項1または2に記載のエア噴射機構。
It is applied to a parts feeder that injects compressed air at a predetermined processing position to a defective workpiece among the workpieces conveyed along the conveyance path,
The timing acquisition means for obtaining the timing at which the defective workpiece reaches the processing position is provided, and the parameter output means has an input section capable of inputting data relating to the type of workpiece to be conveyed, and the data input to the input section Configured to generate and output the parameters based on
The air injection mechanism according to claim 1, wherein the proportional control unit is configured to apply a voltage corresponding to the parameter to the switching valve at a timing obtained by the timing acquisition unit.
前記切替弁が、圧縮空気源に通ずる第1ポートと、前記搬送路に形成されるエア給排路に通ずる第2ポートとを少なくとも備え、前記第1ポートと前記第2ポートとを連通状態にする連通位置と、前記第1ポートと前記第2ポートとを非連通状態にする非連通位置との間で切替可能な2ポート以上の切替弁であることを特徴とする請求項3または4に記載のエア噴射機構。   The switching valve includes at least a first port that communicates with a compressed air source and a second port that communicates with an air supply / discharge passage formed in the conveyance path, and the first port and the second port are in communication with each other. 5. The switching valve having two or more ports that can be switched between a communication position that performs communication and a non-communication position that places the first port and the second port in a non-communication state. The air injection mechanism described. 請求項1〜5の何れか1つに記載のエア噴射機構を用いて、搬送路に沿って搬送される不良ワークに圧縮空気を噴射し、当該不良ワークを前記搬送路から排除あるいは前記搬送路上で反転させて姿勢変更するよう構成されることを特徴とするパーツフィーダ。   Using the air injection mechanism according to any one of claims 1 to 5, compressed air is injected to a defective workpiece conveyed along a conveyance path, and the defective workpiece is excluded from the conveyance path or on the conveyance path. A parts feeder, characterized in that it is configured to change its posture by reversing the position.
JP2015213373A 2015-10-29 2015-10-29 Air injection mechanism and parts feeder Active JP6782537B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015213373A JP6782537B2 (en) 2015-10-29 2015-10-29 Air injection mechanism and parts feeder
CN201680063695.5A CN108349662B (en) 2015-10-29 2016-10-28 Gas injection mechanism and part feeder
PCT/JP2016/082085 WO2017073735A1 (en) 2015-10-29 2016-10-28 Air injection mechanism and parts feeder
TW105135096A TWI689457B (en) 2015-10-29 2016-10-28 Air injection mechanism and parts feeder
KR1020187011694A KR102605235B1 (en) 2015-10-29 2016-10-28 Air injection mechanism and parts feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213373A JP6782537B2 (en) 2015-10-29 2015-10-29 Air injection mechanism and parts feeder

Publications (2)

Publication Number Publication Date
JP2017080700A true JP2017080700A (en) 2017-05-18
JP6782537B2 JP6782537B2 (en) 2020-11-11

Family

ID=58630590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213373A Active JP6782537B2 (en) 2015-10-29 2015-10-29 Air injection mechanism and parts feeder

Country Status (5)

Country Link
JP (1) JP6782537B2 (en)
KR (1) KR102605235B1 (en)
CN (1) CN108349662B (en)
TW (1) TWI689457B (en)
WO (1) WO2017073735A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043761A (en) * 2017-09-07 2019-03-22 シンフォニアテクノロジー株式会社 Air nozzle, and part feeder provided with the same
JP2022148703A (en) * 2021-03-24 2022-10-06 株式会社ダイシン Air flow controlling system of transport article and transport device using the same
JP7474429B2 (en) 2021-08-11 2024-04-25 株式会社ダイシン Airflow control system for transported objects and transport device using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658967B (en) * 2017-12-15 2019-05-11 均華精密工業股份有限公司 Automatic high speed filling machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378771U (en) * 1986-11-12 1988-05-25
JPS63193173U (en) * 1987-05-30 1988-12-13
JPH03272373A (en) * 1989-11-14 1991-12-04 Hitachi Metals Ltd Flow rate control valve for high temperature area and mass flow controller and lamination type displacement element for high temperature area
JPH08229517A (en) * 1994-12-28 1996-09-10 Satake Eng Co Ltd Color sorting device for grains
JPH09304182A (en) * 1996-05-20 1997-11-28 Satake Eng Co Ltd Grain color selector
JP2012143670A (en) * 2011-01-07 2012-08-02 Satake Corp Optical sorter and method for sorting by optical sorter

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8308826D0 (en) * 1983-03-30 1983-05-11 Dewhurst R J Flexible handling of mechanical components
IL93842A (en) 1990-03-22 1995-10-31 Argomed Ltd Apparatus for localized thermal treatment of mammals
JPH10300679A (en) * 1997-04-22 1998-11-13 Satake Eng Co Ltd Photodetector in granular object color-screening device
JP2000157937A (en) * 1998-11-26 2000-06-13 Nkk Corp High speed sorting device
JP2003010790A (en) 2001-06-28 2003-01-14 Ntn Corp Apparatus for supplying part
CN1439873A (en) * 2002-02-22 2003-09-03 松下电工株式会社 Parts appearance testers
JP2005233730A (en) * 2004-02-18 2005-09-02 Teitsu Engineering Co Ltd Component inspection device
CN201179512Y (en) * 2008-04-23 2009-01-14 上海新先锋药业有限公司 Automatic removing device for sorting powder injection medicine bottle
CN102976085B (en) * 2011-09-06 2016-03-30 昕芙旎雅有限公司 Workpiece arrangement feedway
BR112014026011B1 (en) * 2012-04-20 2021-09-28 Mechano Transformer Corporation PIZOELECTRIC VALVE AND OPTICAL SEPARATOR OF PARTICULATE MATERIAL PROVIDED WITH AIR BLOW MEANS USING PIZOELECTRIC VALVE
CN102680490B (en) * 2012-05-03 2014-10-01 天津大学 Steel ball surface defect detection automatic sorting device
CN203076217U (en) * 2013-01-22 2013-07-24 核工业理化工程研究院华核新技术开发公司 Bean color sorter
JP6260133B2 (en) * 2013-07-31 2018-01-17 シンフォニアテクノロジー株式会社 Parts feeder
JP6260132B2 (en) 2013-07-31 2018-01-17 シンフォニアテクノロジー株式会社 Speed detector for parts feeder and parts feeder
CN203402653U (en) * 2013-08-12 2014-01-22 安徽省科亿信息科技有限公司 Bottle cap sorting spacing adjustment mechanism
CN103495566B (en) * 2013-10-18 2015-12-02 核工业理化工程研究院华核新技术开发公司 The online separator of ore of view-based access control model recognition technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378771U (en) * 1986-11-12 1988-05-25
JPS63193173U (en) * 1987-05-30 1988-12-13
JPH03272373A (en) * 1989-11-14 1991-12-04 Hitachi Metals Ltd Flow rate control valve for high temperature area and mass flow controller and lamination type displacement element for high temperature area
JPH08229517A (en) * 1994-12-28 1996-09-10 Satake Eng Co Ltd Color sorting device for grains
JPH09304182A (en) * 1996-05-20 1997-11-28 Satake Eng Co Ltd Grain color selector
JP2012143670A (en) * 2011-01-07 2012-08-02 Satake Corp Optical sorter and method for sorting by optical sorter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043761A (en) * 2017-09-07 2019-03-22 シンフォニアテクノロジー株式会社 Air nozzle, and part feeder provided with the same
JP2022148703A (en) * 2021-03-24 2022-10-06 株式会社ダイシン Air flow controlling system of transport article and transport device using the same
JP7406755B2 (en) 2021-03-24 2023-12-28 株式会社ダイシン Airflow control system for conveyed objects and conveyance device using the same
JP7474429B2 (en) 2021-08-11 2024-04-25 株式会社ダイシン Airflow control system for transported objects and transport device using the same

Also Published As

Publication number Publication date
WO2017073735A1 (en) 2017-05-04
CN108349662B (en) 2021-03-26
TW201722816A (en) 2017-07-01
CN108349662A (en) 2018-07-31
TWI689457B (en) 2020-04-01
KR102605235B1 (en) 2023-11-24
KR20180075514A (en) 2018-07-04
JP6782537B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2017073735A1 (en) Air injection mechanism and parts feeder
WO2017073736A1 (en) Air injection mechanism and parts feeder
TW200730328A (en) Sheet forming apparatus and method of controlling the same
US10238020B2 (en) Component mounting machine
JP4555159B2 (en) Vibrating parts conveyor
JP6759790B2 (en) Gate valve, vacuum processing device and control method of vacuum processing device
JP3185633U (en) Article transportation apparatus and method thereof
JP6601111B2 (en) Air on / off circuit and parts feeder
JP2006068971A (en) Molded product ejector
JP2022148703A (en) Air flow controlling system of transport article and transport device using the same
JP7474429B2 (en) Airflow control system for transported objects and transport device using the same
AR024588A1 (en) APPLIANCE TO CONTINUOUSLY POSITION ITEMS THAT ADVANCE THROUGH A MACHINE FORMING MACHINE, A CONTROLLER OF THE APPLIANCE, MEANS OF POSITIONING CONTROL AND A METHOD TO CONTINUOUSLY POSITION ITEMS
JP5452979B2 (en) Parts supply device
EP1348659A3 (en) Device for processing of a strip-shaped workpiece
US20200107482A1 (en) Mounter air controller
JP6075540B2 (en) Liquid discharge device and liquid discharge method
JP5195627B2 (en) Paste coating apparatus, electronic component joining apparatus, paste coating method, and electronic component joining method
US20210185867A1 (en) Air control device for mounter
CN107628481A (en) Bobbin-winding machine warping operation reel tension force Length Control component
JP2009194078A (en) Electronic component mounting device
JP2010258002A (en) Paste coating device, electronic component joining device, paste coating method, and electronic component joining method
JPH06151476A (en) Frame feeding mechanism
JP2010263098A (en) Paste applying device, electronic component bonding device, paste applying method, and electronic component bonding method
JPH0819907B2 (en) Vacuum breaking device
JPH11121534A (en) Mounting equipment for semiconductor device and mounting method of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201020

R150 Certificate of patent or registration of utility model

Ref document number: 6782537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250