JP2017076738A - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP2017076738A
JP2017076738A JP2015204532A JP2015204532A JP2017076738A JP 2017076738 A JP2017076738 A JP 2017076738A JP 2015204532 A JP2015204532 A JP 2015204532A JP 2015204532 A JP2015204532 A JP 2015204532A JP 2017076738 A JP2017076738 A JP 2017076738A
Authority
JP
Japan
Prior art keywords
antireflection film
refractive index
microlens
imaging device
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015204532A
Other languages
English (en)
Inventor
周輝 山田
Shuto Yamada
周輝 山田
理究 碇山
Rikyu Ikariyama
理究 碇山
竹人 松田
Taketo Matsuda
竹人 松田
昭仁 澤登
Akihito Sawanobori
昭仁 澤登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015204532A priority Critical patent/JP2017076738A/ja
Publication of JP2017076738A publication Critical patent/JP2017076738A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】静電気に起因する白傷の発生を抑制することができる固体撮像装置を提供すること。
【解決手段】一つの実施形態によれば、固体撮像装置が提供される。固体撮像装置は、半導体層とマイクロレンズと導電性反射防止膜と低屈折率防止膜とを備える。半導体層には、複数の光電変換素子が設けられる。マイクロレンズは、複数の光電変換素子の各受光面側に設けられる。導電性反射防止膜は、マイクロレンズの表面に設けられ、屈折率がマイクロレンズの屈折率よりも高い。低屈折率反射防止膜は、導電性反射防止膜の表面に設けられ、屈折率が空気の屈折率よりも高く、且つ、マイクロレンズの屈折率よりも低い。
【選択図】図4

Description

本発明の実施形態は、固体撮像装置に関する。
従来、固体撮像装置は、入射する光を光電変換する複数の光電変換素子と、各光電変換素子の受光面側に設けられ、入射する光を光電変換素子へ集光するマイクロレンズとを備える。また、固体撮像装置は、各マイクロレンズの表面に形成され、マイクロレンズ表面での反射を防止する反射防止膜を備える。
上記の固体撮像装置では、マイクロレンズ表面に反射防止膜を形成した後に装置の洗浄が行われる場合がある。かかる場合、洗浄によって反射防止膜表面に静電気が発生して電荷が帯電する。かかる電荷は、撮像画像が出力される際に暗電流となって検出され、撮像画素中に白傷となって現れることがある。
特開2012−84608号公報
一つの実施形態は、静電気に起因する白傷の発生を抑制することができる固体撮像装置を提供することを目的とする。
一つの実施形態によれば、固体撮像装置が提供される。固体撮像装置は、半導体層とマイクロレンズと導電性反射防止膜と低屈折率防止膜とを備える。半導体層には、複数の光電変換素子が設けられる。マイクロレンズは、複数の光電変換素子の各受光面側に設けられる。導電性反射防止膜は、マイクロレンズの表面に設けられ、屈折率がマイクロレンズの屈折率よりも高い。低屈折率反射防止膜は、導電性反射防止膜の表面に設けられ、屈折率が空気の屈折率よりも高く、且つ、マイクロレンズの屈折率よりも低い。
図1は、実施形態に係る固体撮像装置を備えるデジタルカメラの概略構成を示すブロック図である。 図2は、実施形態に係る固体撮像装置の概略構成を示すブロック図である。 図3は、実施形態に係る画素アレイの断面視による説明図である。 図4は、実施形態に係る画素アレイの模式的な構成の拡大を示す説明図である。 図5は、実施形態に係る反射防止膜を備えたマイクロレンズの透過率を示す説明図である。 図6は、実施形態に係る固体撮像装置の製造工程の断面視による説明図である。 図7は、実施形態に係る固体撮像装置の製造工程の断面視による説明図である。 図8は、実施形態に係る固体撮像装置の製造工程の断面視による説明図である。
以下に添付図面を参照して、実施形態に係る固体撮像装置および固体撮像装置の製造方法について詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
図1は、実施形態に係る固体撮像装置14を備えるデジタルカメラ1の概略構成を示すブロック図である。図1に示すように、デジタルカメラ1は、カメラモジュール11と後段処理部12とを備える。
カメラモジュール11は、撮像光学系13と固体撮像装置14とを備える。撮像光学系13は、被写体からの光を取り込み、被写体像を結像させる。固体撮像装置14は、撮像光学系13によって結像される被写体像を撮像し、撮像によって得られた画像信号を後段処理部12へ出力する。かかるカメラモジュール11は、デジタルカメラ1以外に、例えば、カメラ付き携帯端末などの電子機器に適用される。
後段処理部12は、ISP(Image Signal Processor)15、記憶部16および表示部17を備える。ISP15は、固体撮像装置14から入力される画像信号の信号処理を行う。かかるISP15は、例えば、ノイズ除去処理、欠陥画素補正処理、解像度変換処理などの高画質化処理を行う。
そして、ISP15は、信号処理後の画像信号を記憶部16、表示部17およびカメラモジュール11内の固体撮像装置14が備える後述の信号処理回路21(図2参照)へ出力する。ISP15からカメラモジュール11へフィードバックされる画像信号は、固体撮像装置14の調整や制御に用いられる。
記憶部16は、ISP15から入力される画像信号を画像として記憶する。また、記憶部16は、記憶した画像の画像信号をユーザの操作などに応じて表示部17へ出力する。表示部17は、ISP15あるいは記憶部16から入力される画像信号に応じて画像を表示する。かかる表示部17は、例えば、液晶ディスプレイなどである。
次に、図2を参照しながらカメラモジュール11が備える固体撮像装置14について説明する。図2は、実施形態に係る固体撮像装置14の概略構成を示すブロック図である。図2に示すように、固体撮像装置14は、イメージセンサ20と、信号処理回路21とを備える。
ここでは、イメージセンサ20が、入射光を光電変換する光電変換素子における入射光が入射する面とは逆の面側に配線層が形成される所謂裏面照射型CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである場合について説明する。
なお、実施形態に係るイメージセンサ20は、裏面照射型CMOSイメージセンサに限定するものではなく、表面照射型CMOSイメージセンサや、CCD(Charge Coupled Device)イメージセンサ等といった任意のイメージセンサであってもよい。
イメージセンサ20は、周辺回路22と、画素アレイ23とを備える。また、周辺回路22は、垂直シフトレジスタ24、タイミング制御部25、CDS(相関二重サンプリング)26、ADC(アナログデジタル変換部)27、およびラインメモリ28を備え、これらは主にアナログ回路で構成される。
画素アレイ23は、イメージセンサ20の撮像光学系13からの光が入射する領域に設けられる。固体撮像装置14では、画素アレイ23が撮像領域となる。かかる画素アレイ23には、撮像画像の各画素に対応する複数の光電変換素子が、水平方向(行方向)および垂直方向(列方向)へ2次元アレイ状(マトリックス状)に配置される。
各光電変換素子は、半導体層内に設けられ、各光電変換素子に対応して半導体層の光が入射する側に積層されたカラーフィルタおよびマイクロレンズを介して入射する光を受光量に応じた量の電荷へ光電変換し、各画素の輝度を示す信号電荷として蓄積する。
タイミング制御部25は、垂直シフトレジスタ24、CDS26、ADC27およびラインメモリ28に対して動作タイミングの基準となるパルス信号を出力する処理部である。垂直シフトレジスタ24は、アレイ(行列)状に2次元配列された複数の光電変換素子の中から信号電荷を読み出す光電変換素子を行単位で順次選択するための選択信号を画素アレイ23へ出力する処理部である。
画素アレイ23は、垂直シフトレジスタ24から入力される選択信号によって行単位で選択される各光電変換素子に蓄積された信号電荷を、各画素の輝度を示す画素信号として光電変換素子からCDS26へ出力する。なお、画素アレイ23の構成については、図3および図4を参照しながら後述する。
CDS26は、画素アレイ23から入力される画素信号から、相関二重サンプリングによってノイズを除去してADC27へ出力する処理部である。ADC27は、CDS26から入力されるアナログの画素信号をデジタルの画素信号へ変換してラインメモリ28へ出力する処理部である。ラインメモリ28は、ADC27から入力される画素信号を一時的に保持し、画素アレイ23における光電変換素子の行毎に信号処理回路21へ出力する処理部である。
信号処理回路21は、ラインメモリ28から入力される画素信号に対して所定の信号処理を行って後段処理部12へ出力する処理部であり、主にデジタル回路で構成される。信号処理回路21は、画素信号に対して、例えば、レンズシェーディング補正、傷補正、ノイズ低減処理などの信号処理を行う。
このように、イメージセンサ20では、画素アレイ23に配置される複数の光電変換素子が入射光を受光量に応じた量の信号電荷へ光電変換して蓄積し、周辺回路22が各光電変換素子に蓄積された信号電荷を画素信号として読み出すことによって撮像を行う。
また、イメージセンサ20は、撮像光学系13からの光を、マイクロレンズによって集光させ、集光させた光をカラーフィルタを介して光電変換素子へ入射する。
ここで、一般的なマイクロレンズは、表面上に1層の反射防止膜が形成されており、かかる反射防止膜によりマイクロレンズ表面での反射を防止し、光電変換素子の受光面に入射する光量の増大を図っている。
ところで、固体撮像装置では、マイクロレンズ表面に反射防止膜を形成した後に純水などを用いて装置表面の洗浄が行われる場合がある。かかる場合、洗浄によって反射防止膜表面に静電気が発生して電荷が帯電してしまう。かかる電荷は、撮像画像が出力される際に暗電流となって検出され、撮像画素中に白傷となって現れることがある。
そこで、本実施形態に係る固体撮像装置14は、マイクロレンズの表面に、マイクロレンズ側から導電性反射防止膜と低屈折率反射防止膜とを積層した2層の反射防止膜を設けた。そして、固体撮像装置14は、内層の導電性反射防止膜によって外層の低屈折率反射防止膜に静電気により帯電した電荷を逃がすことで、白傷の発生を抑制した。以下、静電気に起因した白傷の発生を抑制させた画素アレイ23について図3および図4を参照して説明する。
図3は、実施形態に係る画素アレイ23の断面視による模式的な構成を示す説明図である。図4は、実施形態に係る画素アレイ23の模式的な構成の拡大を示す説明図である。なお、ここでは、便宜上、画素アレイ23の光9が入射する側を上として、画素アレイ23の光9が入射する側とは逆側を下として説明する。
図3に示すように、画素アレイ23は、支持基板31上に接着層32を介して設けられる多層配線層35と、光電変換素子38とを備える。多層配線層35は、層間絶縁膜34と、層間絶縁膜34の内部に設けられる読み出しゲート3および多層配線33とを備える。多層配線33は、光電変換素子38によって光電変換された負の信号電荷(電子)の読み出しや、各回路素子への駆動信号等の伝送に用いられる。
光電変換素子38は、例えば、ボロン(B)等のP型の低濃度の不純物がドープされたP型のSi層36と、P型のSi層36の内部に、例えば、リン(P)等のN型の高濃度の不純物がドープされたN型のSi領域37とのPN接合によって形成されるフォトダイオードである。
かかる光電変換素子38は、P型のSi層36内にアレイ(行列)状に2次元配列される。そして、光電変換素子38は、多層配線層35との界面とは逆側の端面から入射する光9を受光量に応じた量の信号電荷へ光電変換してN型のSi領域37に蓄積する。
また、画素アレイ23は、光電変換素子38の受光面上に、P型の正孔蓄積領域5を備える。かかる正孔蓄積領域5は、N型のSi領域37内に存在する正の電荷(正孔)を蓄積する。
つまり、P型の正孔蓄積領域5は、正の電荷がN型のSi領域37における受光面近傍で生じる界面準位に起因した負の電荷と再結合し、入射光の有無とは無関係に生じて暗電流の原因となる負の電荷を低減する領域である。
また、画素アレイ23は、P型の正孔蓄積領域5の受光面上に、第1のSi酸化膜40を備える。かかる第1のSi酸化膜40は、N型のSi領域37の受光面側端面に生じるダングリングボンドを終端する。これにより、画素アレイ23は、ダングリングボンドによる界面準位の増加を抑制することによって暗電流を低減する。
さらに、画素アレイ23は、P型の正孔蓄積領域5の受光面上に順次積層されるSi窒化膜6、カラーフィルタ70、およびマイクロレンズ71を備える。
Si窒化膜6は、カラーフィルタ70を透過する入射光の反射を防止する反射防止膜として機能する。また、カラーフィルタ70は、例えば、赤、緑、青の3原色のうち、いずれか一色の入射光を透過させる。
マイクロレンズ71は、平凸レンズであり、画素アレイ23へ入射する入射光を光電変換素子38へ集光する。かかるマイクロレンズ71は、屈折率n1が1.6〜1.7の高屈折率材料を用いて形成される。本実施形態では、マイクロレンズ71は、屈折率n1が、例えば、1.62の有機系樹脂によって形成される。
また、画素アレイ23は、マイクロレンズ71の表面に、マイクロレンズ71側から導電性反射防止膜80と低屈折率反射防止膜81とを積層した2層からなる反射防止膜8を備える。
具体的に、図4を参照して説明する。図4に示すように、実施形態に係るマイクロレンズ71は、表面にマイクロレンズ71側から導電性反射防止膜80と低屈折率反射防止膜81とを積層した2層の反射防止膜8を備える。導電性反射防止膜80は、膜厚d1が低屈折率反射防止膜81の膜厚d2よりも厚くなっている。具体的には、導電性反射防止膜80の膜厚d1は、低屈折率反射防止膜81の膜厚d2よりも、例えば、20〜40nmほど厚くなっている。
導電性反射防止膜80は、屈折率n2がマイクロレンズ71の屈折率n1よりも高い金属酸化膜である。具体的には、導電性反射防止膜80は、屈折率n2が1.6〜2.7の金属酸化膜である。かかる金属酸化膜としては、例えば、酸化チタン(TiO)膜が挙げられる。
また、導電性反射防止膜80は、低屈折率反射防止膜81に静電気により帯電した電荷を外部へアースするため、図示しない配線パターンなどによって接続したパッドを介してグランドGNDに接続される。したがって、導電性反射防止膜80は、低屈折率反射防止膜81に静電気により帯電した電荷をグランドGNDに接続されたパッドへ導く役割を果たす。これにより、低屈折率反射防止膜81に静電気により帯電した電荷は、導電性反射防止膜80およびパッドを通ってグランドGNDに流される。
低屈折率反射防止膜81は、屈折率n3が空気(n0=1.0)の屈折率よりも高く、且つ、マイクロレンズ71の屈折率n1よりも低いシリコン酸化膜である。具体的には、低屈折率反射防止膜81は、屈折率n3が1.2〜1.6のシリコン酸化膜である。かかるシリコン酸化膜としては、例えば、二酸化シリコン(SiO)が挙げられる。
ここで、上記した2層からなる反射防止膜8を備えたマイクロレンズ71の透過率について図5を参照して説明する。図5は、実施形態に係る反射防止膜8を備えたマイクロレンズ71の透過率を示す説明図である。
図5において、縦軸は透過率[%]を示し、横軸は波長[nm]を示している。また、図5のグラフにおいて、太線は2層からなる反射防止膜8を備えたマイクロレンズ71の透過率、細線は低屈折率反射防止膜81を備えたマイクロレンズ71の透過率、一点鎖線は反射防止膜8を備えないマイクロレンズ71の透過率をそれぞれ示している。
なお、かかる透過率の評価試験では、マイクロレンズ71は屈折率n1が1.62の有機系樹脂、導電性反射防止膜80は屈折率n2が1.97の酸化タンタル膜、低屈折率反射防止膜81は屈折率n3が1.37のシリコン酸化膜をそれぞれ用いた。
図5に示すように、2層からなる反射防止膜8を備えたマイクロレンズ71は、透過率が低屈折率反射防止膜81を備えたマイクロレンズ71の透過率よりも高く、短波長域(450nm)から長波長域(700nm)までおよそ99%に達していることが分かる。
これは、屈折率n1が1.62のマイクロレンズ71と屈折率n3が1.37の低屈折率反射防止膜81との間に、屈折率n2が1.97とマイクロレンズ71の屈折率n1よりも高い導電性反射防止膜80を介在させているからである。
詳述すると、低屈折率反射防止膜81を介して導電性反射防止膜80へ入射した光9は、導電性反射防止膜80の屈折率n2がマイクロレンズ71の屈折率n1よりも高いため、導電性反射防止膜80とマイクロレンズ71との界面で全反射を起こす。しかし、かかる光9は、導電性反射防止膜80の屈折率n2が低屈折率反射防止膜81の屈折率n3よりも高いため、導電性反射防止膜80と低屈折率反射防止膜81との界面で再び全反射を起こす。そして、全反射による戻り光は、導電性反射防止膜80とマイクロレンズ71との界面では全反射せずにマイクロレンズ71へ入射する。
このようなことから、2層からなる反射防止膜8を備えたマイクロレンズ71は、透過率が低屈折率反射防止膜81を備えたマイクロレンズ71の透過率よりも高くなると考えられる。つまり、2層からなる反射防止膜8を備えたマイクロレンズ71は、高い透過率を有するとともに、静電気により帯電した電荷を除去する機能を有する。
また、2層からなる反射防止膜8を備えたマイクロレンズ71は、導電性反射防止膜80の膜厚d1が低屈折率反射防止膜81の膜厚d2よりも厚いことで、導電性反射防止膜80とマイクロレンズ71との界面における多重反射が抑制される。
上述した実施形態に係る固体撮像装置14は、マイクロレンズ71の表面に、マイクロレンズ71側から導電性反射防止膜80と低屈折率反射防止膜81とを積層した2層からなる反射防止膜8を備える。
これにより、固体撮像装置14は、内層の導電性反射防止膜80によって外層の低屈折率反射防止膜81に静電気により帯電した電荷を逃がすことができる。そのため、固体撮像装置14は、マイクロレンズ71表面に反射防止膜8を形成した後に純水などを用いて装置表面を洗浄する場合でも、洗浄によって低屈折率反射防止膜81表面に静電気により帯電した電荷を導電性反射防止膜80およびパッドを通ってグランドGNDへ流すことができる。したがって、固体撮像装置14は、静電気に起因する白傷の発生を抑制することができる。
また、上述の実施形態に係る固体撮像装置14は、導電性反射防止膜80と低屈折率反射防止膜81との2層からなる反射防止膜8が設けられたマイクロレンズ71を備える。これにより、固体撮像装置14は、2層からなる反射防止膜8を備えたマイクロレンズ71の透過率が一般的な1層の反射防止膜を備えたマイクロレンズの透過率に比べて高いため、光電変換素子38に入射する光9の量が増えて画素の受光感度が向上する。
次に、上述した画素アレイ23の形成方法を含む固体撮像装置14の製造方法について、図6〜図8を参照して説明する。なお、固体撮像装置14における画素アレイ23以外の部分の製造方法は、一般的なCMOSイメージセンサと同様である。このため、以下では、固体撮像装置14における画素アレイ23部分の製造方法について説明する。
図6〜図8は、実施形態に係る固体撮像装置14の製造工程を示す断面模式図である。図6(a)に示すように、画素アレイ23を製造する場合には、Siウェハ等の半導体基板30上にP型のSi層36を形成する。このとき、例えば、半導体基板30上にボロン等のP型の低濃度の不純物がドープされたSi層をエピタキシャル成長させることにより、P型のSi層36を形成する。なお、かかるP型のSi層36は、Siウェハの内部へP型の低濃度の不純物をイオン注入してアニール処理を行うことにより形成してもよい。
続いて、P型のSi層36の上面側からP型のSi層36内部へリン等のN型の高濃度の不純物をイオン注入してアニール処理を行うことによって、P型のSi層36にN型のSi領域37を行列状に2次元配列する。
こうして、P型のSi層36とN型のSi領域37とによりPN接合が形成されてフォトダイオードである光電変換素子38が形成される。なお、ここで、N型のSi領域37は、光電変換された負の電荷を蓄積する電荷蓄積領域となり、半導体基板30との接合面側が後に露出されて入射光の受光面となる。
続いて、図6(b)に示すように、光電変換素子38の上面に多層配線層35を形成する。多層配線層35を形成する工程では、先ず、P型のSi層36の表面における所定位置に、例えば、ポリシリコンによって読み出しゲート3などを形成する。次に、例えば、Si酸化膜等の層間絶縁膜34を成膜する工程と、層間絶縁膜34に所定の配線パターンを形成する工程と、配線パターン内に銅(Cu)等を埋め込んで多層配線33を形成する工程とを繰り返すことで多層配線層35が形成される。
その後、図6(c)に示すように、多層配線層35の上面に接着剤を塗布して接着層32を設け、接着層32の上面に、例えばSiウェハ等の支持基板31を貼着する。なお、接着層32を用いずに、多層配線層35の上面に支持基板31を直接接合してもよい。
続いて、図7(a)に示すように、図6(c)に示す構造体の天地を反転させた後、グラインダ等の研削装置によって半導体基板30を裏面側(ここでは、上面側)から研削し、半導体基板30を所定の厚さになるまで薄化する。
その後、例えば、CMP(Chemical Mechanical Polishing)によって半導体基板30の裏面側をさらに研磨し、N型のSi領域37の裏面(ここでは、上面)を露出させる。このとき、N型のSi領域37の研磨面である上面にはダングリングボンドが発生して界面準位が生じる。
そこで、先ず、図7(b)に示すように、光電変換素子38の受光面上に第1のSi酸化膜40を形成し、N型のSi領域37の受光面側端面に生じるダングリングボンドを終端する。第1のSi酸化膜40の形成には、例えば、ALD(Atomic Layer Deposition)法を用いる。次に、P型のSi層36における上部に、例えば、ボロン等のP型の高濃度の不純物をイオン注入してアニール処理を行うことにより正孔蓄積領域5を形成する。
次に、図7(c)に示すように、第1のSi酸化膜40の上面に、例えば、CVD法を用いて、反射防止膜となるSi窒化膜6を形成する。そして、図8(a)に示すように、Si窒化膜6の上面に、カラーフィルタ70およびマイクロレンズ71を順次形成する。
続いて、図8(b)に示すように、マイクロレンズ71の上面に、例えば、スパッタ法を用いて、例えば、酸化チタン(TiO)を含む所定の厚さd1の導電性反射防止膜80を形成する。なお、導電性反射防止膜80は、パターン配線などによってパッドに接続され、かかるパッドを介してグランドGNDに接続される。
その後、導電性反射防止膜80の上面に、例えば、CVD法を用いて、例えば、二酸化シリコン(SiO)を含む所定の厚さd2(d2<d1)の低屈折率反射防止膜81を形成することで、図3に示す画素アレイ23が製造される。そして、マイクロレンズ71の表面に反射防止膜8を形成した後、固体撮像装置14表面の洗浄が行われる。
上述したように、実施形態に係る固体撮像装置14は、マイクロレンズ71の表面に、マイクロレンズ71側から導電性反射防止膜80と低屈折率反射防止膜81とを積層した2層からなる反射防止膜8を備える。
これにより、固体撮像装置14は、内層の導電性反射防止膜80によって外層の低屈折率反射防止膜81に静電気により帯電した電荷を逃がすことができる。そのため、固体撮像装置14は、マイクロレンズ71表面に反射防止膜8を形成した後に純水などを用いて装置表面の洗浄が行われる場合でも、洗浄によって低屈折率反射防止膜81表面に静電気により帯電した電荷を導電性反射防止膜80およびパッドを通ってグランドGNDへ流すことができる。したがって、固体撮像装置14は、静電気に起因する白傷の発生を抑制することができる。
また、固体撮像装置14は、マイクロレンズ71表面に反射防止膜8を形成した後に搬送アームによる搬送が行われる場合でも、搬送アームとの接触によって低屈折率反射防止膜81表面に静電気により帯電した電荷を導電性反射防止膜80およびパッドを通ってグランドGNDへ流すことができる。
なお、上述した固体撮像装置14は、導電性反射防止膜80がパッドを介してグランドGNDに接続されているが、かかる形態に限られず、グランドGNDに接続されていなくてもよい。
かかる形態であっても、低屈折率反射防止膜81の一箇所に留まっている静電気により帯電した電荷を、導電性反射防止膜80によって導電性反射防止膜80の形成領域に広く散らすことができるため、静電気に起因する白傷の発生を抑制することができる。
また、上述した実施形態では、Si層36をP型、Si領域37をN型としているが、Si層36をN型、Si領域37をP型として画素アレイ23を構成するようにしてもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 デジタルカメラ、 11 カメラモジュール、 12 後段処理部、 13 撮像光学系、 14 固体撮像装置、 15 ISP、 16 記憶部、 17 表示部、 20 イメージセンサ、 21 信号処理回路、 22 周辺回路、 23 画素アレイ、 24 垂直シフトレジスタ、 25 タイミング制御部、 26 CDS、 27 ADC、 28 ラインメモリ、 3 読み出しゲート、 30 半導体基板、 31 支持基板、 32 接着層、 33 多層配線、 34 層間絶縁膜、 35 多層配線層、 36 P型のSi層、 37 N型のSi領域、 38 光電変換素子、 40 第1のSi酸化膜、 5 正孔蓄積領域、 6 Si窒化膜、 70 カラーフィルタ、 71 マイクロレンズ、 8 反射防止膜、 80 導電性反射防止膜、 81 低屈折率反射防止膜、 9 光

Claims (4)

  1. 複数の光電変換素子が設けられる半導体層と、
    前記複数の光電変換素子の各受光面側に設けられるマイクロレンズと、
    前記マイクロレンズの表面に設けられ、屈折率が前記マイクロレンズの屈折率よりも高い、導電性反射防止膜と、
    前記導電性反射防止膜の表面に設けられ、屈折率が空気の屈折率よりも高く、且つ、前記マイクロレンズの屈折率よりも低い、低屈折率反射防止膜と
    を備えることを特徴とする固体撮像装置。
  2. 前記導電性反射防止膜は、
    膜厚が前記低屈折率反射防止膜の膜厚よりも厚い
    ことを特徴とする請求項1に記載の固体撮像装置。
  3. 前記導電性反射防止膜は、
    屈折率が1.6〜2.7の金属酸化膜である
    ことを特徴とする請求項1または2に記載の固体撮像装置。
  4. 前記低屈折率反射防止膜は、
    屈折率が1.2〜1.6のシリコン酸化膜である
    ことを特徴とする請求項1ないし3のいずれか一つに記載の固体撮像装置。
JP2015204532A 2015-10-16 2015-10-16 固体撮像装置 Pending JP2017076738A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015204532A JP2017076738A (ja) 2015-10-16 2015-10-16 固体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204532A JP2017076738A (ja) 2015-10-16 2015-10-16 固体撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019043816A Division JP2019091947A (ja) 2019-03-11 2019-03-11 固体撮像装置

Publications (1)

Publication Number Publication Date
JP2017076738A true JP2017076738A (ja) 2017-04-20

Family

ID=58551564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204532A Pending JP2017076738A (ja) 2015-10-16 2015-10-16 固体撮像装置

Country Status (1)

Country Link
JP (1) JP2017076738A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181536A1 (ja) * 2021-02-25 2022-09-01 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280533A (ja) * 2001-03-16 2002-09-27 Toppan Printing Co Ltd 固体撮像素子及びその製造方法
JP2006190906A (ja) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd 固体撮像素子
JP2011211000A (ja) * 2010-03-30 2011-10-20 Sony Corp 固体撮像装置、固体撮像装置の製造方法、電子機器
JP2012084608A (ja) * 2010-10-07 2012-04-26 Sony Corp 固体撮像装置とその製造方法、並びに電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280533A (ja) * 2001-03-16 2002-09-27 Toppan Printing Co Ltd 固体撮像素子及びその製造方法
JP2006190906A (ja) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd 固体撮像素子
JP2011211000A (ja) * 2010-03-30 2011-10-20 Sony Corp 固体撮像装置、固体撮像装置の製造方法、電子機器
JP2012084608A (ja) * 2010-10-07 2012-04-26 Sony Corp 固体撮像装置とその製造方法、並びに電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181536A1 (ja) * 2021-02-25 2022-09-01 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Similar Documents

Publication Publication Date Title
KR101861964B1 (ko) 고체 촬상 장치, 고체 촬상 장치의 신호 처리 방법, 및, 전자 기기
US9006018B2 (en) Method of manufacturing a solid-state imaging device
KR101574878B1 (ko) 고체 촬상 장치 및 고체 촬상 장치의 제조 방법
US9349766B2 (en) Solid-state imaging device
KR101944115B1 (ko) 고체 촬상 장치, 및, 그 제조 방법, 전자 기기
US9269734B2 (en) Method of manufacturing solid-state imaging device
JP2009259934A (ja) 固体撮像素子
JP2015146356A (ja) 固体撮像装置および固体撮像装置の製造方法
US20160013228A1 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
US20140110806A1 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
KR20150016071A (ko) 고체 촬상 장치 및 카메라 모듈
JP2015099862A (ja) 固体撮像装置および固体撮像装置の製造方法
KR20130114609A (ko) 고체 촬상 장치 및 고체 촬상 장치의 제조 방법
JP2017076738A (ja) 固体撮像装置
JP2016082067A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2019091947A (ja) 固体撮像装置
JP2017054992A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2016063043A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2017076668A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2016048726A (ja) 固体撮像素子
JP2019149566A (ja) 固体撮像装置および固体撮像装置の製造方法
US20150035101A1 (en) Solid-state imaging device and method for manufacturing the solid-state imaging device
JP2016082103A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2011238636A (ja) 固体撮像素子及びその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181211