JP2017069400A - Foamed particle molding and radio wave absorptive material using the same - Google Patents

Foamed particle molding and radio wave absorptive material using the same Download PDF

Info

Publication number
JP2017069400A
JP2017069400A JP2015193715A JP2015193715A JP2017069400A JP 2017069400 A JP2017069400 A JP 2017069400A JP 2015193715 A JP2015193715 A JP 2015193715A JP 2015193715 A JP2015193715 A JP 2015193715A JP 2017069400 A JP2017069400 A JP 2017069400A
Authority
JP
Japan
Prior art keywords
foamed
molded body
radio wave
particles
particle molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015193715A
Other languages
Japanese (ja)
Other versions
JP6505570B2 (en
Inventor
琢也 千葉
Takuya Chiba
琢也 千葉
政春 及川
Masaharu Oikawa
政春 及川
利文 九岡
Toshifumi Kuoka
利文 九岡
一男 石塚
Kazuo Ishizuka
一男 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Riken Environmental System Co Ltd
Original Assignee
JSP Corp
Riken Environmental System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp, Riken Environmental System Co Ltd filed Critical JSP Corp
Priority to JP2015193715A priority Critical patent/JP6505570B2/en
Publication of JP2017069400A publication Critical patent/JP2017069400A/en
Application granted granted Critical
Publication of JP6505570B2 publication Critical patent/JP6505570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide aesthetic foamed particles for radio wave absorptive material in which variation of radio wave absorption performance is reduced, by using multilayer foamed particles having a unique layer structure, as a raw material for molding, and to provide a radio wave absorptive material using the same.SOLUTION: In a foamed particle molding for use in a radio wave absorptive material 4, the foamed particle 1 composing the foamed particle molding is a multilayer foamed particle having a thermoplastic resin core layer 2, and a thermoplastic resin coated layer 3 in foamed state covering the core layer, mass ratio of the core layer and coated layer is 50:50-1:99, and the core layer contains a dielectric loss material.SELECTED DRAWING: Figure 2

Description

本発明は、電波吸収体用発泡粒子成形体及びこれを用いた電波吸収体に関する。   The present invention relates to a foamed particle molded body for a radio wave absorber and a radio wave absorber using the same.

アンテナなどの通信機器の特性評価や、電子機器から放射される妨害波の測定のための設備として、外部からの電波の影響を受けず、内部での電波の反響もない電波暗室が使用される。従来、電磁波妨害に関する規格において、電波暗室で測定される電波の周波数帯は、テレビ、ラジオ、携帯電話等で使用される30MHz〜1GHz帯がメインとなっていたが、近年では、無線LAN、ETC、スマートフォン等の発達により30MHz〜18GHzとなっている。さらに、自動車衝突防止用レーダーや光通信などのミリ波を利用した設備の発展により、10GHz以上のマイクロ波帯、ミリ波帯などの高周波数帯にも対応した幅広い周波帯域に対応できる評価施設が求められている。   An anechoic chamber that is not affected by external radio waves and that does not reflect internal radio waves is used as a facility for evaluating the characteristics of communication devices such as antennas and measuring interference waves emitted from electronic devices. . Conventionally, in the standard concerning electromagnetic interference, the frequency band of radio waves measured in an anechoic chamber has been mainly 30 MHz to 1 GHz band used in televisions, radios, mobile phones, etc. In recent years, however, wireless LAN, ETC Due to the development of smartphones and the like, it is 30 MHz to 18 GHz. Furthermore, with the development of equipment that uses millimeter waves, such as radar for automobile collision prevention and optical communications, there is an evaluation facility that can handle a wide range of frequency bands, including microwaves and millimeter waves above 10 GHz. It has been demanded.

電波暗室で用いられる電波吸収体としては、導電性カーボン等の誘電損失材料を高充填させた発泡粒子からなる成形体を用いたものが知られている。このような電波吸収体は比較的高周波数であるGHz帯の電波吸収性能は優れているものの、比較的低周波数であるMHz帯の電波吸収性能が低下する傾向にある。そのため、電波吸収体の長さ寸法を大きくしてMHz帯の吸収特性を得るようにしている。しかしながら、電波暗室内の電波吸収体の空間占有率が大きくなり、限られた空間を有効に活用できなくなるといった問題があった。   As an electromagnetic wave absorber used in an anechoic chamber, one using a molded body made of foamed particles highly filled with a dielectric loss material such as conductive carbon is known. Although such a radio wave absorber has excellent radio wave absorption performance in the GHz band, which is a relatively high frequency, the radio wave absorption performance in the MHz band, which is a relatively low frequency, tends to decrease. For this reason, the length of the radio wave absorber is increased to obtain MHz band absorption characteristics. However, there is a problem that the space occupancy rate of the radio wave absorber in the anechoic chamber is increased, and the limited space cannot be effectively used.

このような問題を解決するために、これまでに、誘電損失材料を含有する発泡粒子を用いた発泡粒子成形体と、フェライトタイルとを組み合わせて小型化を図った電波吸収体が提案されている(例えば、特許文献1、2を参照)。これらの電波吸収体によれば、主に、誘電損失材料を含有する発泡粒子でGHz帯の電波を吸収させ、フェライトタイルなどの低周波吸収体でMHz帯の電波を吸収させている。   In order to solve such problems, radio wave absorbers that have been miniaturized by combining a foamed particle molded body using foamed particles containing a dielectric loss material and a ferrite tile have been proposed so far. (For example, see Patent Documents 1 and 2). According to these radio wave absorbers, the GHz band radio waves are mainly absorbed by foamed particles containing a dielectric loss material, and the MHz band radio waves are absorbed by a low frequency absorber such as a ferrite tile.

特開平4−267596号公報JP-A-4-267596 特開平4−56298号公報JP-A-4-56298

しかしながら、特許文献1に記載の電波吸収体では、誘電損失材料が練り込まれた発泡粒子を型内成形してなる発泡粒子成形体が用いられているため、成形体内に略均等に誘電損失材料が存在しており、GHz帯の電波吸収特性には優れるものの、MHz帯の電波吸収性能には限界があり、課題を残すものであった。   However, in the radio wave absorber described in Patent Document 1, a foamed particle molded body obtained by molding foamed particles kneaded with a dielectric loss material into a mold is used. However, although it has excellent radio wave absorption characteristics in the GHz band, there is a limit to the radio wave absorption performance in the MHz band, leaving problems.

また、特許文献2に記載の電波吸収体では、誘電損失材料が付着した発泡粒子と誘電損失材料が付着していない発泡粒子とを用いて電波吸収体用発泡粒子成形体を形成することによって、発泡粒子成形体のMHz帯の電波吸収性能を改善している。しかしながら、発泡粒子成形体成形時に、これら2種の発泡粒子を完全に均一混合することは困難であることから、発泡粒子成形体間の電波吸収性能にバラツキが生じるおそれがあり、生産の管理が難しく、製造上課題を残すものであった。また、通常、誘電損失材料が付着した発泡粒子が黒色系であるのに対して、誘電損失材料が付着していない発泡粒子は白色系であるため、発泡粒子成形体表面に色斑が生じて美観を損ねるといった問題があった。   Moreover, in the radio wave absorber described in Patent Document 2, by forming a foamed particle molded body for a radio wave absorber using foamed particles with a dielectric loss material attached and foamed particles with no dielectric loss material attached, Improves the radio wave absorption performance in the MHz band of the foamed particle compact. However, since it is difficult to completely and uniformly mix these two types of foam particles during molding of the foam particle molded body, there is a possibility that the radio wave absorption performance between the foam particle molded bodies may vary, and production control is difficult. It was difficult and left a manufacturing challenge. In addition, normally, the foamed particles to which the dielectric loss material is attached are black, whereas the foamed particles to which the dielectric loss material is not attached are white, resulting in color spots on the surface of the foamed particle molded body. There was a problem of detracting from aesthetics.

本発明は、上記の問題点に鑑みてなされたものであり、発泡粒子成形体間の電波吸収性能にバラツキが少なく、美観に優れる、電波吸収体用発泡粒子成形体及びこれを用いた電波吸収体を提供することを課題とする。   The present invention has been made in view of the above-described problems, and there is little variation in the radio wave absorption performance between the foam particle molded bodies, and the foam particle molded body for the radio wave absorber, which has excellent aesthetics, and the radio wave absorption using the same. The challenge is to provide a body.

本発明は、以下に記載の発泡粒子成形体及びこれを用いた電波吸収体を提供する。
<1>電波吸収体用発泡粒子成形体であって、前記発泡粒子成形体を構成する発泡粒子が、熱可塑性樹脂芯層と、該芯層を覆う発泡状態の熱可塑性樹脂被覆層とを有する多層発泡粒子であり、前記芯層と前記被覆層との質量比が50:50〜1:99の範囲であり、前記芯層には誘電損失材料が含有されていることを特徴とする発泡粒子成形体。
<2>前記発泡粒子成形体の、0.03〜18GHzにおける複素比誘電率の虚数部ε’’の値が、0.01〜1であることを特徴とする<1>に記載の発泡粒子成形体。
<3>前記芯層の、前記熱可塑性樹脂と前記誘電損失材料との合計量100質量%に対する、前記誘電損失材料の含有率が5〜80質量%であることを特徴とする<1>又は<2>に記載の発泡粒子成形体。
<4>前記誘電損失材料が導電性カーボンブラックであることを特徴とする<1>から<3>のいずれかに記載の発泡粒子成形体。
<5>前記芯層を構成する樹脂がポリプロピレン系樹脂であると共に、前記被覆層を構成する樹脂がポリプロピレン系樹脂であることを特徴とする<1>から<4>のいずれかに記載の発泡粒子成形体。
<6>前記<1>から<5>のいずれかに記載の発泡粒子成形体と、低周波吸収体とを備えることを特徴とする電波吸収体。
The present invention provides a foamed particle molded body described below and a radio wave absorber using the same.
<1> A foamed particle molded body for a radio wave absorber, wherein the foamed particles constituting the foamed particle molded body have a thermoplastic resin core layer and a foamed thermoplastic resin coating layer covering the core layer. Expanded foam particles, wherein the core layer and the coating layer have a mass ratio of 50:50 to 1:99, and the core layer contains a dielectric loss material. Molded body.
<2> The foamed particles according to <1>, wherein the value of the imaginary part ε ″ of the complex relative dielectric constant at 0.03 to 18 GHz of the foamed particle molded body is 0.01 to 1. Molded body.
<3> The content of the dielectric loss material is 5 to 80% by mass with respect to 100% by mass of the total amount of the thermoplastic resin and the dielectric loss material in the core layer, <1> or <2> The expanded particle molded body according to <2>.
<4> The foamed particle molded article according to any one of <1> to <3>, wherein the dielectric loss material is conductive carbon black.
<5> The foam according to any one of <1> to <4>, wherein the resin constituting the core layer is a polypropylene resin, and the resin constituting the coating layer is a polypropylene resin Particle compact.
<6> A radio wave absorber comprising the foamed particle molded body according to any one of <1> to <5> and a low frequency absorber.

本発明によれば、電波吸収体用発泡粒子成形体を構成する発泡粒子が、特定の層構造を有する多層発泡粒子であることにより、製品間で電波吸収性能のバラツキが少なく、外観にも優れるものとなる。また、前記発泡粒子成形体と低周波吸収体を備える電波吸収体は、幅広い周波数領域にわたって優れた電波吸収性能を有すものとなる。   According to the present invention, the foamed particles constituting the foamed molded article for radio wave absorbers are multilayer foamed particles having a specific layer structure, so that there is little variation in radio wave absorption performance between products and the appearance is excellent. It will be a thing. Moreover, the radio wave absorber including the foamed particle molded body and the low frequency absorber has excellent radio wave absorption performance over a wide frequency range.

本発明の電波吸収体用発泡粒子成形体を構成する多層発泡粒子の一実施形態を模式的に示した概略斜視図である。It is the schematic perspective view which showed typically one Embodiment of the multilayer expanded particle which comprises the expanded particle molded object for electromagnetic wave absorbers of this invention. 図1における多層発泡粒子のA−Aの断面に相当する、電子顕微鏡写真である。It is an electron micrograph corresponding to the cross section of AA of the multilayer expanded particle in FIG. 図1における多層発泡粒子のB−Bの断面に相当する、電子顕微鏡写真である。It is an electron micrograph corresponding to the cross section of BB of the multilayer expanded particle in FIG. 電波暗室で使用される電波吸収体の形状を示す斜視図である。It is a perspective view which shows the shape of the electromagnetic wave absorber used in an anechoic chamber. (A)は表面を誘電損失材料でコーティングした発泡粒子から構成される発泡粒子成形体の概略図であり、(B)はその等価回路図である。(A) is the schematic of the foaming particle molded object comprised from the foaming particle which coat | covered the surface with dielectric loss material, (B) is the equivalent circuit schematic. (A)は本発明の発泡粒子から構成される発泡粒子成形体の概略図であり、(B)はその等価回路図である。(A) is the schematic of the foaming particle molded object comprised from the foaming particle of this invention, (B) is the equivalent circuit schematic. 周波数(MHz)と複素比誘電率の虚数部(ε’’)の関係を示すグラフである。It is a graph which shows the relationship between a frequency (MHz) and the imaginary part ((epsilon) '') of a complex dielectric constant.

以下、発明を実施するための形態をあげて、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments for carrying out the invention.

本発明の電波吸収体用発泡粒子成形体を構成する発泡粒子は、熱可塑性樹脂芯層と、該芯層を覆う発泡状態の熱可塑性樹脂被覆層とを有する多層発泡粒子である。本発明においては、該多層発泡粒子によって電波吸収体用発泡粒子成形体が構成されることによって、電波吸収性能に優れる発泡粒子成形体となる。   The foamed particles constituting the foamed molded article for a radio wave absorber of the present invention are multilayer foamed particles having a thermoplastic resin core layer and a foamed thermoplastic resin coating layer covering the core layer. In the present invention, a foamed particle molded article having excellent radio wave absorption performance is formed by forming a foamed particle molded article for a radio wave absorber with the multilayer foamed particles.

従来、誘電損失材料を練りこんで発泡粒子を形成する際には、発泡粒子を構成する樹脂に誘電損失材料を添加するだけであったので、発泡粒子中で誘電損失材料を偏在させることは困難であり、発泡粒子成形体全体に誘電損失材料が分散して、発泡粒子成形体は導電損失σの値が大きくなりやすく、MHz帯の吸収を阻害しやすい性質を有していた。   Conventionally, when forming foamed particles by kneading dielectric loss materials, it was difficult to make the dielectric loss material unevenly distributed in the foamed particles because only the dielectric loss material was added to the resin constituting the foamed particles. The dielectric loss material is dispersed throughout the foamed particle molded body, and the foamed particle molded body has a property that the value of the conductive loss σ tends to increase and the absorption in the MHz band tends to be hindered.

また、誘電損失材料を含有する発泡粒子と非含有の発泡粒子とを用いて発泡粒子成形体を形成する場合には、誘電損失材料を含有しない発泡粒子が存在することによって、電波吸収体としてのMHz帯の吸収性能が向上するものの、2種類の発泡粒子を完全に均一混合することは困難であり、製造上、品質の安定化の課題を有していた。   Further, in the case of forming a foamed particle molded body using foamed particles containing dielectric loss material and non-containing foamed particles, the presence of foamed particles not containing dielectric loss material, Although the absorption performance in the MHz band is improved, it is difficult to completely and uniformly mix the two types of expanded particles, and there is a problem of stabilizing the quality in production.

一方、本発明においては、前記多層発泡粒子を用いることにより、発泡粒子内で誘電損失材料を偏在させることができる。すなわち、該多層発泡粒子では、発泡粒子一つの中に、誘電損失材料を含有する部分と、非含有の部分とを存在させることができるので、2種の発泡粒子を混合する必要がないため、製造管理が容易である。そして、多数の多層発泡粒子により構成される発泡粒子成形体は、該多層発泡粒子同士が融着して形成され、被覆層の部分と芯層の部分が交互に、分断されて存在することになるので、電波吸収体としてのMHz帯の吸収性能を向上させると共に、電波吸収体の製品間に電波吸収性能のバラツキが生じ難い品質安定性に優れた発泡粒子成形体となる。   On the other hand, in the present invention, the dielectric loss material can be unevenly distributed in the expanded particles by using the multilayer expanded particles. That is, in the multi-layer foamed particles, a part containing a dielectric loss material and a part not containing can be present in one foamed particle, so it is not necessary to mix two kinds of foamed particles. Manufacturing management is easy. The foamed particle molded body composed of a large number of multilayer foam particles is formed by fusing the multilayer foam particles, and the coating layer portions and the core layer portions are alternately separated and exist. Therefore, the MHz-band absorption performance as a radio wave absorber is improved, and a foamed particle molded article having excellent quality stability in which variations in the radio wave absorption performance hardly occur between products of the radio wave absorber.

図1に、本発明の発泡粒子成形体を構成する多層発泡粒子の一実施形態を模式的に示した概略斜視図を示し、図2に、そのA−Aの断面の実物の電子顕微鏡写真を、図3に、そのB−Bの断面の実物の電子顕微鏡写真を示す。本実施形態の多層発泡粒子1は、図1に示すように、熱可塑性樹脂から形成されている芯層2と、熱可塑性樹脂から形成されている発泡状態の被覆層3とを備えている。   FIG. 1 is a schematic perspective view schematically showing an embodiment of a multilayer expanded particle constituting the expanded particle molded body of the present invention, and FIG. 2 is an actual electron micrograph of a cross section taken along line AA. FIG. 3 shows an actual electron micrograph of the cross section BB. As shown in FIG. 1, the multilayer expanded particle 1 of the present embodiment includes a core layer 2 formed from a thermoplastic resin, and a foamed coating layer 3 formed from a thermoplastic resin.

(芯層2)
前記熱可塑性樹脂の芯層2は、必須の成分として誘電損失材料を含有している。芯層2に誘電損失材料が含有されていることにより、発泡粒子成形体は、主にGHz帯の電波吸収性能に優れたものとなる。
(Core layer 2)
The core layer 2 of the thermoplastic resin contains a dielectric loss material as an essential component. When the core layer 2 contains a dielectric loss material, the foamed particle molded body is excellent mainly in radio wave absorption performance in the GHz band.

(熱可塑性樹脂)
芯層2の熱可塑性樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂や、ポリスチレン系樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリメタクリル系樹脂、アクリロニトリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、及びこれらのブレンドポリマー等が挙げられる。
(Thermoplastic resin)
Examples of the thermoplastic resin for the core layer 2 include polyolefin resins such as polyethylene resins and polypropylene resins, polystyrene resins, polycarbonate resins, polyvinyl chloride resins, polymethacrylic resins, acrylonitrile resins, and polyester resins. , Polyamide resins, and blended polymers thereof.

これらの中でも、ポリオレフィン系樹脂を用いることが好ましい。また、ポリオレフィン系樹脂と他樹脂との混合樹脂を用いる場合、ポリオレフィン系樹脂を50質量%以上含有することが好ましく、70質量%以上含有することがより好ましく、90質量%以上含有することがさらに好ましい。   Among these, it is preferable to use polyolefin resin. Moreover, when using the mixed resin of polyolefin resin and other resin, it is preferable to contain 50 mass% or more of polyolefin resin, it is more preferable to contain 70 mass% or more, and it is further contained 90 mass% or more. preferable.

前記ポリエチレン系樹脂としては、例えば低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、エチレン−メタクリル酸共重合体やその分子間を金属イオンで架橋したアイオノマー系樹脂等が挙げられる。   Examples of the polyethylene resin include low density polyethylene, high density polyethylene, linear low density polyethylene, ultra low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and ethylene-methacrylic acid copolymer. Examples thereof include ionomer-based resins in which coalesced molecules or their molecules are crosslinked with metal ions.

また、前記ポリプロピレン系樹脂としては、プロピレン単独重合体、プロピレンに由来する構造単位が50質量%以上のプロピレン系共重合体が挙げられ、該共重合体としては、エチレン−プロピレン共重合体、プロピレン−ブテン共重合体、プロピレン−エチレン−ブテン共重合体などのプロピレンとエチレン又は炭素数4以上のαオレフィンとの共重合体や、プロピレン−アクリル酸共重合体、プロピレン−無水マレイン酸共重合体等が例示できる。なお、これらの共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。   Examples of the polypropylene resin include a propylene homopolymer and a propylene copolymer having a structural unit derived from propylene of 50% by mass or more. Examples of the copolymer include an ethylene-propylene copolymer and propylene. -Butene copolymer, propylene-ethylene-butene copolymer and other propylene and ethylene or α-olefins having 4 or more carbon atoms, propylene-acrylic acid copolymer, propylene-maleic anhydride copolymer Etc. can be illustrated. These copolymers may be block copolymers, random copolymers, or graft copolymers.

前記熱可塑性樹脂は、リサイクル性の観点からは架橋されていないことが好ましい。   The thermoplastic resin is preferably not crosslinked from the viewpoint of recyclability.

(誘電損失材料の種類)
芯層2に含まれる誘電損失材料は、発泡粒子成形体としたときに電波吸収性能を発現するものであれば特に限定されるものではなく、無機材料、有機材料を用いることができる。
(Dielectric loss material types)
The dielectric loss material contained in the core layer 2 is not particularly limited as long as it exhibits radio wave absorption performance when formed into a foamed particle molded body, and an inorganic material or an organic material can be used.

これらの無機材料としては、例えば、導電性カーボンブラック、黒鉛、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンマイクロファイバー、カーボンマイクロコイル、カーボンナノコイル等のカーボン類、ガラス繊維、金属繊維、カーボン繊維等の繊維、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム等の無機水酸化物、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の無機炭酸塩、亜硫酸カルシウム、亜硫酸マグネシウム等の無機亜硫酸塩、硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム等の無機硫酸塩、酸化鉄、フェライト酸化アルミニウム、酸化亜鉛、酸化珪素、酸化鉛、酸化マグネシウム、酸化コバルト、酸化チタン、酸化カルシウム、酸化アンチモン等の無機酸化物、ホウ酸亜鉛、ホウ酸カルシウム、ホウ酸マグネシウム、ホウ酸アルミニウム等のホウ酸塩、その他タルク、クレー、カオリン、ゼオライト等の粘土又は天然鉱物等を挙げることができる。   Examples of these inorganic materials include conductive carbon black, graphite, graphene, carbon nanotube, carbon nanofiber, carbon microfiber, carbon microcoil, carbon nanocoil and other carbons, glass fiber, metal fiber, carbon fiber, and the like. Fiber, inorganic hydroxide such as aluminum hydroxide, calcium hydroxide, magnesium hydroxide, inorganic carbonate such as calcium carbonate, magnesium carbonate, barium carbonate, inorganic sulfite such as calcium sulfite, magnesium sulfite, calcium sulfate, sulfuric acid Inorganic sulfates such as magnesium and aluminum sulfate, iron oxide, ferrite aluminum oxide, zinc oxide, silicon oxide, lead oxide, magnesium oxide, cobalt oxide, titanium oxide, calcium oxide, antimony oxide and other inorganic oxides, boron Zinc, calcium borate, magnesium borate, borate such as aluminum borate, other talc, clay, can be mentioned kaolin, clay or natural minerals such as zeolite and the like.

これらのなかでも、高い電波吸収性能を発現する無機材料として、カーボン類、金属酸化物が好ましく、その中でも電波吸収性の観点から、カーボン類を好適に用いることができ、具体的には、導電性カーボンブラック、黒鉛、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンマイクロファイバー、カーボンマイクロコイル、カーボンナノコイル等が挙げられる。   Among these, carbons and metal oxides are preferable as inorganic materials that exhibit high radio wave absorption performance. Among them, carbons can be preferably used from the viewpoint of radio wave absorption. Carbon black, graphite, graphene, carbon nanotube, carbon nanofiber, carbon microfiber, carbon microcoil, carbon nanocoil and the like.

さらに、カーボン類のなかでも、導電性カーボンブラックを好適に用いることができる。この導電性カーボンブラックは、製造法や組成が限定されるものではなく、オイルファーネスブラックやアセチレンブラック、中空構造を有するカーボンブラック等も含まれ、それらのカーボンブラックを親水化、疎水化、酸化、還元、酸性化、塩基性化、有機化処理したものなども含まれる。なお、導電性カーボンブラックとしては、JIS6217−4:2008に基づいて測定されるDBP吸収量が150〜700cm/100gのものが好ましい。 Further, among carbons, conductive carbon black can be suitably used. This conductive carbon black is not limited in production method or composition, and includes oil furnace black, acetylene black, carbon black having a hollow structure, etc., and these carbon blacks are hydrophilized, hydrophobized, oxidized, Reduction, acidification, basification, and organic treatment are also included. In addition, as electroconductive carbon black, the DBP absorption amount measured based on JIS6217-4: 2008 has a preferable thing of 150-700 cm < 3 > / 100g.

なお、誘電損失材料は、上記した化合物から選択された1種類を使用してもよいし、各種の化合物から2種以上を選択してそれら選択された化合物を併用して使用することもできる。   As the dielectric loss material, one kind selected from the above-mentioned compounds may be used, or two or more kinds selected from various compounds and the selected compounds may be used in combination.

(誘電損失材料の含有量)
誘電損失材料の含有量は、吸収する周波数帯及びその電波吸収性能に応じて適宜決定することができるが、通常、芯層2の樹脂と該誘電損失材料との合計100質量%に対する配合割合で5質量%以上90質量%以下、好ましくは6質量%以上85質量%以下、より好ましくは7質量%以上80質量%以下、さらに好ましくは10質量%以上70質量%以下の範囲である。
(Content of dielectric loss material)
The content of the dielectric loss material can be appropriately determined according to the frequency band to be absorbed and its radio wave absorption performance, but is usually a blending ratio with respect to a total of 100% by mass of the resin of the core layer 2 and the dielectric loss material. It is 5 mass% or more and 90 mass% or less, Preferably it is 6 mass% or more and 85 mass% or less, More preferably, it is 7 mass% or more and 80 mass% or less, More preferably, it is the range of 10 mass% or more and 70 mass% or less.

(芯層2の構造)
芯層2は電波吸収性能を発現させる誘電損失材料が含有されていることを必須の条件とするが、その構造は発泡状態でも、非発泡状態であってもよい。
(Structure of core layer 2)
The core layer 2 is required to contain a dielectric loss material that exhibits radio wave absorption performance, but the structure may be in a foamed state or a non-foamed state.

(被覆層3)
被覆層3は発泡状態で存在することが必要であり、被覆層3を形成する発泡構造は、熱可塑性樹脂を発泡させてなる構造である。被覆層3が発泡状態で存在することにより、より多くの電磁波を発泡粒子成形体中に透過させることが可能となり、効果的に発泡粒子成形体による電磁波の反射を抑制することが可能となる。なお、被覆層3は、熱可塑性樹脂に後述する発泡剤を添加して所定の装置と所定の条件で発泡させることで形成される。さらに、前記多層発泡粒子の被覆層3が発泡状態にあり、二次発泡性に優れていることから、発泡粒子同士の融着性が向上するため、表面平滑性に優れ、良好な機械的強度を有する発泡粒子成形体となる。
(Coating layer 3)
The covering layer 3 needs to be present in a foamed state, and the foam structure that forms the covering layer 3 is a structure formed by foaming a thermoplastic resin. When the coating layer 3 exists in a foamed state, more electromagnetic waves can be transmitted through the foamed particle molded body, and reflection of electromagnetic waves by the foamed particle molded body can be effectively suppressed. The covering layer 3 is formed by adding a foaming agent, which will be described later, to a thermoplastic resin and foaming it with a predetermined apparatus and predetermined conditions. Furthermore, since the coating layer 3 of the multilayer foamed particles is in a foamed state and excellent in secondary foamability, the fusion property between the foamed particles is improved, so that the surface smoothness is excellent and the mechanical strength is good. A foamed particle molded body having

(熱可塑性樹脂)
被覆層3を形成する熱可塑性樹脂としては、上記の芯層2を構成する熱可塑性樹脂と同様のものを用いることができる。なお、上記に例示した熱可塑性樹脂の範囲で、芯層2とは異なる熱可塑性樹脂を用いることもできる。
(Thermoplastic resin)
As the thermoplastic resin forming the coating layer 3, the same thermoplastic resin as that constituting the core layer 2 can be used. In addition, the thermoplastic resin different from the core layer 2 can also be used in the range of the thermoplastic resin illustrated above.

(被覆層3における誘電損失材料の存否)
被覆層3には、誘電損失材料が存在してもよいし誘電損失材料を非含有とすることもできるが、被覆層3は、その被覆層3中に配合される誘電損失材料の配合割合が芯層2中に配合される誘電損失材料の配合割合よりも少ないことが好ましく、誘電損失材料が非含有であることがさらに好ましい。なお、被覆層3に対して誘電損失材料を含有させた場合には、電波吸収性能を調整することができるが、発泡粒子成形体の成形性の観点からは、被覆層3における誘電損失材料の含有量は、被覆層3を形成する樹脂と該誘電損失材料の合計100質量%に対する配合割合で30質量%以下(0を含む)であることが好ましく、10質量%以下(0を含む)であることがより好ましく、5質量%以下(0質量%を含む)であることがさらに好ましい。
(Existence of dielectric loss material in coating layer 3)
The coating layer 3 may include a dielectric loss material or may not contain a dielectric loss material. However, the coating layer 3 has a blending ratio of the dielectric loss material blended in the coating layer 3. It is preferable that the blending ratio of the dielectric loss material blended in the core layer 2 is smaller, and it is more preferable that the dielectric loss material is not contained. In addition, when the dielectric loss material is included in the coating layer 3, the radio wave absorption performance can be adjusted. From the viewpoint of the moldability of the foamed particle molded body, the dielectric loss material of the coating layer 3 can be adjusted. The content is preferably 30% by mass or less (including 0) as a blending ratio with respect to 100% by mass of the resin forming the coating layer 3 and the dielectric loss material, and 10% by mass or less (including 0). More preferably, it is 5% by mass or less (including 0% by mass).

(その他の添加剤等)
多層発泡粒子1における芯層2、被覆層3には、本発明の効果を阻害しない範囲において、必要に応じて添加剤を配合することができる。このような添加剤としては、例えば酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、金属不活性剤、顔料、染料、結晶核剤等が挙げられる。
(Other additives)
The core layer 2 and the coating layer 3 in the multilayer foamed particle 1 can be blended with additives as necessary within a range that does not impair the effects of the present invention. Examples of such additives include antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, metal deactivators, pigments, dyes, crystal nucleating agents and the like.

被覆層3中の誘電損失材料の含有量が、芯層2中の誘電損失材料の含有量よりも少ない場合又は被覆層3中に誘電損失材料を含まない場合には、該多層発泡粒子は、芯層2と同濃度の誘電損失材料を含む単層発泡粒子に比べて融着性に優れる。したがって、単層型の、誘電損失材料を含有する発泡粒子に比べて、隣り合う多層発泡粒子1同士をより確実に融着させることが容易となる。また、外層は、添加剤などを加えることによって着色したり、色調を変えることができる。例えば、外層を白色または色が薄くなるようにして、白色等の明るい色調にすることで、電波暗室内の照明効率を高めることができ、外観、色調に優れたものとなるという効果が得られる。   When the content of the dielectric loss material in the coating layer 3 is less than the content of the dielectric loss material in the core layer 2 or when the dielectric loss material is not included in the coating layer 3, the multilayer expanded particles are: Compared to single-layer expanded particles containing a dielectric loss material having the same concentration as the core layer 2, the fusion property is excellent. Therefore, it becomes easier to fuse adjacent multilayer foamed particles 1 more reliably than foamed particles containing a single layer type dielectric loss material. Further, the outer layer can be colored or the color tone can be changed by adding an additive or the like. For example, by making the outer layer white or light in color and making it a bright color tone such as white, the illumination efficiency in the anechoic chamber can be increased, and the effect of improving the appearance and color tone can be obtained. .

(芯層2と被覆層3の質量比)
前記多層発泡粒子1において、芯層2と被覆層3との質量比は、芯層:被覆層が50:50〜1:99、好ましくは40:60〜2:98、より好ましくは20:80〜3:97である。このような質量比とすることにより、誘電損失材料を多く含有する芯層2が被覆層3により確実に被覆され、誘電損失材料の含有量を多くしつつ成形時の融着性にも優れる多層発泡粒子となる。
(Mass ratio of core layer 2 and coating layer 3)
In the multilayer foamed particle 1, the mass ratio of the core layer 2 to the coating layer 3 is 50:50 to 1:99, preferably 40:60 to 2:98, more preferably 20:80. ~ 3: 97. With such a mass ratio, the core layer 2 containing a large amount of dielectric loss material is surely covered with the coating layer 3, and the multi-layer has excellent fusion properties during molding while increasing the content of the dielectric loss material. It becomes foamed particles.

[多層発泡粒子1の製造方法]
熱可塑性樹脂多層発泡粒子1を製造する際には、例えば、2基の押出し機を準備し、一方の押出し機で芯層2を形成するための熱可塑性樹脂組成物を混練し、他方の押出し機で被覆層3を形成するための熱可塑性樹脂組成物を混練した後、所定形状のダイから共押出を行うことにより、芯層(R)と、芯層(R)を被覆する被覆層(R)とからなる鞘芯型の紐状の複合体を得、該複合体を切断し、芯層(R)と被覆層(R)とからなる、0.1〜10mgの、柱状の非発泡の樹脂粒子を得る。
[Method for producing multilayer expanded particle 1]
When producing the thermoplastic resin multilayer foamed particles 1, for example, two extruders are prepared, the thermoplastic resin composition for forming the core layer 2 is kneaded with one extruder, and the other extrusion After kneading the thermoplastic resin composition for forming the coating layer 3 with a machine, the core layer (R) and the coating layer that covers the core layer (R) (R) are coated by coextrusion from a die having a predetermined shape. R) and a sheath-core type string-like composite is obtained, the composite is cut, and 0.1 to 10 mg of a columnar non-foam made of a core layer (R) and a coating layer (R) Of resin particles are obtained.

次に、前記芯層(R)と被覆層(R)からなる複合樹脂粒子を、加圧可能な密閉容器(例えば、オートクレーブ)中の水性媒体(通常水)に分散させ、分散剤を添加し、所要量の発泡剤を圧入し加圧し所要時間加温下に撹拌して発泡剤を複合樹脂粒子に含浸させた後、水性媒体と一緒に内容物を容器内圧力より低圧域に放出して発泡させることなどにより、多層発泡粒子を得ることができる。なお、発泡剤としては、例えば、プロパン、ブタン、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロブタン、シクロヘキサン等の環式脂肪族炭化水素類、クロロフロロメタン、トリフロロメタン、メチルクロライド、エチルクロライド等のハロゲン化炭化水素などの有機系物理発泡剤や、窒素、酸素、空気、二酸化炭素、水といったいわゆる無機系物理発泡剤などといった各種の物理発泡剤が例示される。こうした各種物理発泡剤の中でも、窒素、酸素、空気、二酸化炭素、水からなる群から選択される1又は2以上の無機系物理発泡剤を主成分とするものが好適である。   Next, the composite resin particles comprising the core layer (R) and the coating layer (R) are dispersed in an aqueous medium (usually water) in a pressurizable sealed container (for example, an autoclave), and a dispersant is added. , Press the required amount of foaming agent, pressurize and stir under heating for the required time to impregnate the foaming agent into the composite resin particles, and then discharge the contents together with the aqueous medium to a pressure lower than the pressure inside the container. Multi-layer expanded particles can be obtained by foaming. Examples of the blowing agent include aliphatic hydrocarbons such as propane, butane, hexane, and heptane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclohexane, chlorofluoromethane, trifluoromethane, methyl chloride, and ethyl chloride. Examples thereof include various organic foaming agents such as organic physical foaming agents such as halogenated hydrocarbons, and so-called inorganic physical foaming agents such as nitrogen, oxygen, air, carbon dioxide, and water. Among these various physical foaming agents, those mainly composed of one or more inorganic physical foaming agents selected from the group consisting of nitrogen, oxygen, air, carbon dioxide, and water are suitable.

(見掛け密度)
前記多層発泡粒子は、軽量性の観点から、発泡粒子全体の見掛け密度が0.3g/cm以下であることが好ましい。前記多層発泡粒子は、見掛け密度が0.3g/cm以下であっても、優れた二次発泡性が得られるとともに、成形性にも優れている。前記見掛け密度は、0.02〜0.25g/cmであることがより好ましく、さらに好ましくは0.03〜0.2g/cmである。
(Apparent density)
The multilayer foamed particles preferably have an apparent density of the whole foamed particles of 0.3 g / cm 3 or less from the viewpoint of lightness. Even if the apparent density of the multilayer foamed particles is 0.3 g / cm 3 or less, excellent secondary foamability is obtained and the moldability is also excellent. The apparent density is more preferably from 0.02~0.25g / cm 3, more preferably from 0.03~0.2g / cm 3.

(平均気泡径)
前記多層発泡粒子の被覆層3部分の平均気泡径は、型内成形性や得られる成形体の機械的強度の観点から40〜300μmであることが好ましい。さらに
前記平均気泡径は、45〜280μmであることが好ましく、より好ましくは50〜250μmである。
(Average bubble diameter)
The average cell diameter of the coating layer 3 portion of the multilayer foamed particles is preferably 40 to 300 μm from the viewpoint of in-mold moldability and mechanical strength of the obtained molded body. Furthermore, the average cell diameter is preferably 45 to 280 μm, more preferably 50 to 250 μm.

(独立気泡率)
前記多層発泡粒子の独立気泡率は、発泡成形性、発泡粒子成形体の機械的強度や表面平滑性等の観点から、70%以上であることが好ましい。より好ましくは80%以上、さらに好ましくは90%以上である。なお、平均気泡径、見掛け密度、及び独立気泡率は、後述する実施例に記載の方法により求めることができる。
(Closed cell rate)
The closed cell ratio of the multilayer foamed particles is preferably 70% or more from the viewpoints of foam moldability, mechanical strength of the foamed particle molded body, surface smoothness, and the like. More preferably, it is 80% or more, More preferably, it is 90% or more. In addition, an average bubble diameter, an apparent density, and a closed cell rate can be calculated | required by the method as described in the Example mentioned later.

(熱可塑性樹脂発泡粒子成形体)
本発明に係る熱可塑性樹脂発泡粒子成形体は、多数の熱可塑性樹脂発泡粒子1から構成される。前記発泡粒子成形体は発泡粒子を型内成形することにより得ることができる。熱可塑性樹脂発泡粒子成形体に形状は特に限定されるものではなく、板状や柱状、また、種々の立体形状に適宜設定が可能である。本発明の発泡粒子成形体は、多層発泡粒子により構成されるものであるので、発泡粒子成形体中で芯層と被覆層とが交互に存在する。したがって、本発明の発泡粒子成形体は、MHz帯からGHz帯までの広域な電磁波の吸収特性を持つ優れた電波吸収性能を有するものとなる。
(Thermoplastic resin foam particle molding)
The thermoplastic resin expanded particle molded body according to the present invention is composed of a large number of expanded thermoplastic resin particles 1. The foamed particle molded body can be obtained by molding foamed particles in a mold. The shape of the thermoplastic resin expanded particle molded body is not particularly limited, and can be appropriately set to a plate shape, a column shape, or various three-dimensional shapes. Since the expanded particle molded body of the present invention is composed of multilayer expanded particles, the core layer and the coating layer are alternately present in the expanded particle molded body. Therefore, the foamed particle molded body of the present invention has excellent radio wave absorption performance having a wide electromagnetic wave absorption characteristic from the MHz band to the GHz band.

(見かけ密度)
前記熱可塑性樹脂発泡粒子成形体は、その見かけ密度を特に限定するものではないが、見かけ密度が0.015〜0.45g/cmであることが好ましい。発泡粒子成形体の見かけ密度は、成形体の質量を成形体の体積で除することにより求めることができる。上記観点から、0.02〜0.3g/cmであることが好ましく、0.03〜0.2g/cmであることがさらに好ましい。なお、成形体の体積は、成形体の外形寸法などから求めることができる。
(Apparent density)
Although the apparent density of the thermoplastic resin foam particle molded body is not particularly limited, the apparent density is preferably 0.015 to 0.45 g / cm 3 . The apparent density of the foamed particle molded body can be determined by dividing the mass of the molded body by the volume of the molded body. In view of the above, it is preferably 0.02~0.3g / cm 3, further preferably 0.03~0.2g / cm 3. In addition, the volume of a molded object can be calculated | required from the external dimension etc. of a molded object.

(融着率)
前記熱可塑性樹脂発泡粒子成形体は、一体性を保つことができれば特に融着率が限定されるものではないが、機械的強度に優れた熱可塑性樹脂発泡粒子成形体を得る点を考慮した場合、熱可塑性樹脂発泡粒子成形体の融着率が60%以上、好ましくは70%以上、より好ましくは80%以上であることが望ましい。本発明においては、融着性に優れる多層発泡粒子を型内成形してなるので、融着に優れた発泡粒子成形体となる。
(Fusion rate)
The thermoplastic resin foam particle molded body is not particularly limited as long as the integrity can be maintained, but in consideration of obtaining a thermoplastic resin foam particle molded body having excellent mechanical strength The fusion rate of the thermoplastic resin expanded particle molded body is 60% or more, preferably 70% or more, more preferably 80% or more. In the present invention, the multi-layer foamed particles having excellent fusion properties are molded in the mold, so that a foamed particle molded product having excellent fusion properties is obtained.

(複素比誘電率の虚数部ε’’)
本発明の発泡粒子成形体においては、周波数0.03〜18GHzにおける、複素比誘電率の虚数部ε’’が、0.01〜1の範囲であることが好ましく、0.01〜0.5の範囲であることがより好ましく、さらに好ましくは0.01〜0.3である。上記範囲内であれば、電波吸収体用発泡粒子成形体として優れた電波吸収性能を有するものとなる。
(Imaginary part ε ″ of complex relative permittivity)
In the foamed particle molded body of the present invention, the imaginary part ε ″ of the complex relative dielectric constant at a frequency of 0.03 to 18 GHz is preferably in the range of 0.01 to 1, More preferably, it is the range of 0.01-0.3. If it is in the said range, it will have the outstanding electromagnetic wave absorption performance as a foaming particle molding for electromagnetic wave absorbers.

[電波吸収体]
本発明の電波吸収体は、前記発泡粒子成形体と低周波吸収体とを備えるものであり、MHz帯からGHz帯までの電磁波を吸収させることで、幅広い周波数領域に対応が可能な電波吸収体となる。具体的には、前記発泡粒子成形体と磁性損失材料からなる低周波吸収体とを積層して、電磁波到来側に前記発泡粒子成形体を配置し、他方側に低周波吸収体を配置することが好ましい。また、前記発泡粒子成形体は、電磁波到来側の端部から他方の端部に向かって、単位体積に占める発泡粒子成形体の体積の割合が大きくなる形状であることが好ましい。例えば、発泡粒子成形体は楔(ウェッジ)形状や多角錘形状を有することが好ましい。
[Radio wave absorber]
The radio wave absorber of the present invention comprises the foamed particle molded body and a low frequency absorber, and can absorb a wide range of frequencies by absorbing electromagnetic waves from the MHz band to the GHz band. It becomes. Specifically, the foamed particle molded body and a low frequency absorber made of a magnetic loss material are laminated, the foamed particle molded body is disposed on the electromagnetic wave arrival side, and the low frequency absorber is disposed on the other side. Is preferred. Moreover, it is preferable that the said foaming particle molded object is a shape where the ratio of the volume of the foaming particle molded object which occupies for a unit volume becomes large toward the other edge part from the edge part by the side of electromagnetic wave arrival. For example, the foamed particle molded body preferably has a wedge shape or a polygonal pyramid shape.

また、低周波吸収体としては、MHz帯の比較的低周波数の電波を吸収可能なものであれば特に制限はないが、フェライト等の磁性損失材料が挙げられ、具体的には板状のフェライトタイルなどがある。本発明の発泡粒子成形体とフェライトタイル等とを組み合わせて電波吸収体とすることにより、MHz帯からGHz帯までの広い帯域の周波数の電磁波をより安定的に吸収可能な電波吸収体とすることができる。   The low-frequency absorber is not particularly limited as long as it can absorb a relatively low-frequency radio wave in the MHz band, and examples thereof include a magnetic loss material such as ferrite. Specifically, a plate-like ferrite is used. There are tiles. By combining the foamed particle molded body of the present invention with a ferrite tile or the like to form a radio wave absorber, a radio wave absorber capable of more stably absorbing electromagnetic waves in a wide frequency band from the MHz band to the GHz band. Can do.

以下に、誘電損失材料を含有する発泡粒子成形体と磁性損失材料を含有する低周波吸収体とからなる電波吸収体について説明する。   Hereinafter, a radio wave absorber comprising a foamed particle molded body containing a dielectric loss material and a low frequency absorber containing a magnetic loss material will be described.

上記のような複合型電波吸収体においては、例えば、誘電損失材料として導電性グラファイトを含有する発泡粒子成形体と、磁性損失材料としてフェライトタイルとからなる電波吸収体が用いられる。ここで、フェライトタイルは400MHz以下の低周波域において良好な吸収特性を示すので、低周波域の電波をフェライトの磁性損失により吸収し、400MHz以上の高周波域の電波はフェライトタイルの表面側に設置した誘電損失材料を含有する発泡粒子成形体により吸収する仕組みとなっている。   In the composite type electromagnetic wave absorber as described above, for example, an electromagnetic wave absorber composed of a foamed particle molded body containing conductive graphite as a dielectric loss material and a ferrite tile as a magnetic loss material is used. Here, since the ferrite tile shows good absorption characteristics in the low frequency range of 400 MHz or less, radio waves in the low frequency range are absorbed by the magnetic loss of ferrite, and radio waves in the high frequency range of 400 MHz or more are installed on the surface side of the ferrite tile. The foamed particle molded body containing the dielectric loss material thus obtained is absorbed.

なお、フェライトタイルと空間(空気)のインピーダンスがマッチングするように設計すると発泡粒子成形体の誘電損失材料濃度が濃すぎる場合には、そのインピーダンスが空気と大きく異なるため、インピーダンス不整合により発泡粒子成形体部分での電磁波の反射が起こりやすくなり、低周波域を受け持つフェライトタイルの吸収特性を阻害し易くなると考えられる。   In addition, if the dielectric loss material concentration of the foamed particle molded body is too high when the impedance of ferrite tile and space (air) is designed to match, the impedance is greatly different from that of air. It is considered that electromagnetic waves are likely to be reflected at the body part, and the absorption characteristics of ferrite tiles responsible for the low frequency range are likely to be hindered.

一方、発泡粒子成形体の誘電損失材料を低濃度化すると、フェライトタイルの吸収特性を阻害することはなくなるが、発泡粒子成形体自体の単位長さあたりの電波吸収特性が低下するため、同じ性能を出すためには、吸収体を長く(発泡粒子成形体が多角錘形状の場合には多角錘の高さを高く)しなければならない。結果として、空間占有率が大きくなり、限られた空間を有効に活用できなくなってしまう。   On the other hand, if the dielectric loss material of the foamed particle compact is reduced in concentration, the absorption characteristics of the ferrite tile will not be disturbed, but the radio wave absorption characteristics per unit length of the foamed particle compact itself will decrease, so the same performance In order to produce the above, it is necessary to lengthen the absorbent body (in the case where the foamed particle molded body has a polygonal pyramid shape, the height of the polygonal pyramid must be increased). As a result, the space occupancy increases and the limited space cannot be used effectively.

したがって、前記電波吸収体における発泡粒子成形体は、フェライトの吸収特性の良い低周波域(30〜400MHz)においては複素比誘電率の虚数部ε’’が低く、それ以上の高周波域では複素比誘電率の虚数部ε’’が高くなるような周波数特性を持ったものが望ましい。つまり、低周波域ではフェライトタイルが電波を吸収し、高周波域では発泡粒子成形体が電波を吸収し、広い周波数帯域において効率的に電波を吸収できる。 Therefore, the foamed particle molded body in the radio wave absorber has a low imaginary part ε ″ of the complex relative dielectric constant in the low frequency range (30 to 400 MHz) where the absorption characteristics of ferrite are good, and the complex ratio in the higher frequency range. It is desirable to have a frequency characteristic that increases the imaginary part ε ″ of the dielectric constant. That is, the ferrite tile absorbs radio waves in the low frequency range, and the foamed particle molded body absorbs radio waves in the high frequency range, so that radio waves can be efficiently absorbed in a wide frequency band.

なお、誘電損失材料の電波吸収は、誘電損失ε’’に起因するもの、導電損失σに起因するものがあり、下式(1)で表される。
ε’’=ε’’ + σ/(2πf) ・・・(1)
(式中、ε’’は誘電損失、σは導電損失、ε’’は複素比誘電率の虚数部、fは周波数を意味する。)
The electromagnetic wave absorption of the dielectric loss material may be caused by the dielectric loss ε ″ * or the conductive loss σ, and is expressed by the following formula (1).
ε ″ = ε ″ * + σ / (2πf) (1)
(Where ε ″ * is dielectric loss, σ is conduction loss, ε ″ is the imaginary part of the complex relative permittivity, and f is the frequency.)

前記発泡粒子成形体とフェライトタイルとを複合させた電波吸収体に使用する観点からは低周波帯ではフェライトによる吸収効果を主とするため発泡粒子成形体のε’’が小さいほうが望ましく、特に、周波数が30〜400MHzの範囲において複素比誘電率の虚数部ε’’が0.01〜1の範囲であることが好ましく、0.01〜0.5の範囲であることがより好ましい。   From the viewpoint of use in the radio wave absorber in which the foamed particle molded body and the ferrite tile are combined, it is desirable that ε '' of the foamed particle molded body is small because the absorption effect by ferrite is mainly used in the low frequency band. In the frequency range of 30 to 400 MHz, the imaginary part ε ″ of the complex relative dielectric constant is preferably in the range of 0.01 to 1, and more preferably in the range of 0.01 to 0.5.

図5(A)に示す従来例のように、発泡粒子の表面を誘電損失層でコーティングした場合には、各発泡粒子間に誘電損失層が連続して形成され、等価回路としては図5(B)のようになると考えられる。この場合には、等価回路の抵抗成分の影響が大きく、式(1)において導電損失σが主体となる。したがって、電波吸収体としては望ましくない。   When the surface of the expanded particle is coated with a dielectric loss layer as in the conventional example shown in FIG. 5A, a dielectric loss layer is continuously formed between the expanded particles, and an equivalent circuit is shown in FIG. It is thought that it becomes like B). In this case, the influence of the resistance component of the equivalent circuit is large, and the conduction loss σ is mainly used in the equation (1). Therefore, it is not desirable as a radio wave absorber.

一方、図6(A)に示す本発明のように、多層発泡粒子からなる発泡粒子成形体においては、発泡粒子の芯層に該当する誘電損失層が完全に他の誘電損失層と分断されることになり、等価回路としては、図6(B)のようになると考えられる。この場合は、等価回路のコンデンサー成分が大きく、式(1)においては誘電損失ε’’ *が主体となるので、電波吸収体として特に優れたものとなる。   On the other hand, as in the present invention shown in FIG. 6A, in the foamed particle molded body made of multilayer foamed particles, the dielectric loss layer corresponding to the core layer of the foamed particles is completely separated from other dielectric loss layers. Therefore, it is considered that an equivalent circuit is as shown in FIG. In this case, the capacitor component of the equivalent circuit is large, and the dielectric loss ε ″ * is mainly used in the equation (1), so that it is particularly excellent as a radio wave absorber.

以下、実施例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

以下の原料を用いて調整し、実施例1〜4及び比較例1〜3の熱可塑性樹脂発泡粒子、成形体、及び電波吸収体を得た。
(原料)
熱可塑性樹脂:表1に示すポリプロピレン系樹脂
誘電損失材料:表2に示す導電性カーボンブラック
It adjusted using the following raw materials, and obtained the thermoplastic resin foam particles, the molded object, and the electromagnetic wave absorber of Examples 1-4 and Comparative Examples 1-3.
(material)
Thermoplastic resin: Polypropylene resin shown in Table 1 Dielectric loss material: Conductive carbon black shown in Table 2

[熱可塑性樹脂発泡粒子の製造]
(実施例1)
内径65mmの樹脂粒子芯層用押出機及び内径30mmの樹脂粒子被覆層用押出機の出口側に多層ストランド形成用ダイを付設した押出機を用い、表3に示した配合となるように、表1のポリプロピレン系樹脂、誘電損失材料として表2の導電性カーボンブラックを内径65mmの芯層用押出機に、また、同時に、表3に示した配合となるように、表1のポリプロピレン系樹脂、着色剤として表2のカーボンブラックを内径30mmの被覆層用押出機に供給し、それぞれを設定温度200〜220℃に加熱、溶融、混練した後、前記ダイに供給した。そして、ダイ内で合流させて押出機先端に取り付けた口金の細孔から、芯層の側面に被覆層が被覆された多層ストランドとして共押出し、ペレタイザーで2mg(L/D=1.3)になるように切断して2層(鞘芯構造)に形成された円柱状の樹脂粒子を得た。また、芯層:被覆層の質量比を実施例1では10:90とした。上記樹脂粒子1kgを、分散媒体の水3L、分散剤としてカオリン3g、ドデシルベンゼンスルホン酸ナトリウム0.02gと共に5Lのオートクレーブ内に仕込み、分散媒中で密閉容器内に発泡剤として二酸化炭素を圧入し、撹拌下に発泡温度まで加熱昇温して同温度に15分間保持して調整し、密閉容器内圧力を表3に示す値とした後、オートクレーブ内容物を大気圧下に水と共に放出して発泡粒子を得た。
[Production of thermoplastic resin foam particles]
Example 1
Using an extruder having a 65 mm inner diameter resin particle core layer extruder and a 30 mm inner diameter resin particle coating layer extruder provided with a die for forming a multilayer strand on the outlet side, the composition shown in Table 3 was obtained. Polypropylene resin of Table 1, conductive carbon black of Table 2 as a dielectric loss material in an extruder for core layer with an inner diameter of 65 mm, and at the same time, the polypropylene resin of Table 1 so as to have the composition shown in Table 3, Carbon black of Table 2 as a colorant was supplied to a coating layer extruder having an inner diameter of 30 mm, and each was heated, melted and kneaded to a set temperature of 200 to 220 ° C., and then supplied to the die. Then, it is coextruded as a multilayer strand in which the coating layer is coated on the side surface of the core layer from the pores of the die that are joined in the die and attached to the tip of the extruder, and is 2 mg (L / D = 1.3) with a pelletizer The columnar resin particles formed into two layers (sheath core structure) were obtained by cutting in such a manner. Further, the mass ratio of the core layer to the coating layer was 10:90 in Example 1. 1 kg of the above resin particles are charged into a 5 L autoclave together with 3 L of water as a dispersion medium, 3 g of kaolin as a dispersant and 0.02 g of sodium dodecylbenzenesulfonate, and carbon dioxide is injected as a blowing agent into a sealed container in the dispersion medium. Then, heat up to the foaming temperature under stirring and adjust it by holding at the same temperature for 15 minutes. After adjusting the pressure in the sealed container to the value shown in Table 3, the autoclave contents are discharged together with water under atmospheric pressure. Expanded particles were obtained.

[熱可塑性樹脂発泡粒子成形体(発泡粒子成形体)の製造]
前記で得られた発泡粒子を、平板形状の金型に充填し、スチーム加熱による型内成形を行って平板状発泡成形体を得た。
[Production of thermoplastic resin foamed particle molded body (foamed particle molded body)]
The foamed particles obtained above were filled into a flat plate-shaped mold and subjected to in-mold molding by steam heating to obtain a flat plate-shaped foam molded body.

[電波吸収体の製造]
上記と同様にして得られた発泡粒子を用いて、高さ300mmの四角錐形状に変更した以外は、上記の条件と同様にして発泡粒子成形体を得た。得られた発泡粒子成形体と、フェライトタイル(底面100mm×100mm、厚さ5.2mm;リケン環境システム社製、商品名RF044)とを積層して、図4のような成形体形状(全体の底面が600mm×600mmとなるようにして、電波吸収体を得た。なお、発泡粒子成形体は、フェライトタイル上に木下地を取り付け、ビスで固定した。
[Manufacture of electromagnetic wave absorber]
Using the foamed particles obtained in the same manner as described above, a foamed particle molded body was obtained in the same manner as described above, except that the shape was changed to a pyramid shape having a height of 300 mm. The obtained foamed particle molded body and a ferrite tile (bottom 100 mm × 100 mm, thickness 5.2 mm; manufactured by Riken Environment System Co., Ltd., trade name RF044) are laminated to form a molded body shape (the whole A radio wave absorber was obtained with a bottom surface of 600 mm × 600 mm, and the foamed particle molded body was fixed with screws by attaching a wood substrate on the ferrite tile.

(実施例2〜5)
表3に示された条件を変更した以外は、実施例1と同様にして、樹脂粒子、発泡粒子、発泡粒子成形体、電波吸収体を得た。
(Examples 2 to 5)
Resin particles, expanded particles, expanded particle molded bodies, and radio wave absorbers were obtained in the same manner as in Example 1 except that the conditions shown in Table 3 were changed.

(比較例1)
表1のPP1 86質量%、表2のCB1 14質量%、及び、PP1とCB1の合計100質量部に対してホウ酸亜鉛0.1質量部となるように、内径50mm単軸押出機に供給し、200〜220℃で溶融混練してストランド状に押出し、該ストランドを冷却、切断して、ペレタイザーで2mg、L/D=2.4になるように切断して表3に記載の単層の樹脂粒子を得た以外は、実施例1と同様にして、樹脂粒子、発泡粒子、発泡粒子成形体、電波吸収体を得た。
(Comparative Example 1)
Supplied to a single-screw extruder with an inner diameter of 50 mm so that the amount of zinc borate is 0.1 parts by mass with respect to 86 parts by mass of PP1 in Table 1, 14 parts by mass of CB1 in Table 2, and 100 parts by mass of PP1 and CB1. And melt-kneaded at 200 to 220 ° C., extruded into a strand, cooled, cut, and cut with a pelletizer to 2 mg, L / D = 2.4. Resin particles, expanded particles, expanded particle molded bodies, and radio wave absorbers were obtained in the same manner as in Example 1 except that the above resin particles were obtained.

(比較例2)
表3に示された条件を変更した以外は、実施例1と同様にして、樹脂粒子、発泡粒子、発泡粒子成形体、電波吸収体を得た。
(Comparative Example 2)
Resin particles, expanded particles, expanded particle molded bodies, and radio wave absorbers were obtained in the same manner as in Example 1 except that the conditions shown in Table 3 were changed.

(比較例3)
表1のPP1 86質量%、表2のCB1 14質量%、及び、PP1とCB1の合計量100質量部に対してホウ酸亜鉛0.1質量部となるように、内径50mm単軸押出機に供給し、200〜220℃で溶融混練してストランド状に押出し、該ストランドを冷却、切断して、ペレタイザーで2mg、L/D=2.4になるように切断して樹脂粒子1を得た。
(Comparative Example 3)
In a single screw extruder with an inner diameter of 50 mm, 86 mass% of PP1 in Table 1, 14 mass% of CB1 in Table 2, and 0.1 mass part of zinc borate with respect to 100 mass parts of the total amount of PP1 and CB1. Then, the mixture was melt-kneaded at 200 to 220 ° C., extruded into a strand shape, the strand was cooled and cut, and cut with a pelletizer to give 2 mg and L / D = 2.4 to obtain resin particles 1 .

表1のPP2を99.4質量%、表2のCB2を0.6質量%、PP2とCB2の合計量100質量部に対してホウ酸亜鉛0.1質量部を、内径50mmの単軸押出機に供給し、200〜220℃で溶融混練してストランド状に押出し、該ストランドを冷却、切断して、ペレタイザーで2mg、L/D=2.4になるように切断して樹脂粒子2を得た。   Single-screw extrusion with 99.4% by mass of PP2 in Table 1, 0.6% by mass of CB2 in Table 2, 0.1 part by mass of zinc borate with respect to 100 parts by mass of PP2 and CB2, and an inner diameter of 50 mm To the machine, melt kneaded at 200-220 ° C., extruded into a strand, cooled and cut the strand, and cut with a pelletizer to give 2 mg, L / D = 2.4 to obtain resin particles 2 Obtained.

上記樹脂粒子1 1kgを、分散媒体の水3L、分散剤としてカオリン3g、ドデシルベンゼンスルホン酸ナトリウム0.04gと共に5Lのオートクレーブ内に仕込み、分散媒中で密閉容器内に発泡剤として二酸化炭素を圧入し、撹拌下に148℃まで加熱昇温して密閉容器内圧力を2.6MPaに保持しつつ、同温度で15分間保持して調整した後、オートクレーブ内容物を大気圧下に水と共に放出して、見かけ密度0.065g/cmの発泡粒子1を得た。また、樹脂粒子2においても同様にして、見かけ密度0.065g/cmの発泡粒子2を得た。発泡粒子1と2を質量比率で15:85となるようにタンブラーで混合し、これを用いて、成形圧0.26(MPa(G))で成形を行い、実施例1と同様の形状の発泡粒子成形体(見かけ密度0.055g/cm)、電波吸収体を得た。 1 kg of the above resin particles 1 are charged into a 5 L autoclave together with 3 L of water as a dispersion medium, 3 g of kaolin as a dispersant and 0.04 g of sodium dodecylbenzenesulfonate, and carbon dioxide is injected as a blowing agent into a sealed container in the dispersion medium. Then, the temperature was raised to 148 ° C. with stirring and the pressure inside the sealed container was maintained at 2.6 MPa, and maintained at the same temperature for 15 minutes, and then the contents of the autoclave were released together with water under atmospheric pressure. Thus, expanded particles 1 having an apparent density of 0.065 g / cm 3 were obtained. Further, in the same manner for the resin particles 2, foamed particles 2 having an apparent density of 0.065 g / cm 3 were obtained. The foamed particles 1 and 2 are mixed with a tumbler so that the mass ratio is 15:85, and using this, molding is performed at a molding pressure of 0.26 (MPa (G)). A foamed particle molded body (apparent density 0.055 g / cm 3 ) and an electromagnetic wave absorber were obtained.

なお、表3中、被覆層/芯層質量比とは、粒子全質量に占める被覆層、芯層それぞれの質量比率(%)を示す。 In Table 3, the coating layer / core layer mass ratio indicates the mass ratio (%) of each of the coating layer and the core layer in the total mass of the particles.

発泡粒子及び発泡粒子成形体、電波吸収体の評価方法は下記により行った。   The evaluation method of the expanded particles, the expanded particle molded body, and the radio wave absorber was performed as follows.

[発泡粒子の見掛け密度]
発泡粒子の見掛け密度は次のようにして求めた。まず1Lのメスシリンダーを準備し、メスシリンダー内の1Lの標線まで発泡粒子の群を充填した。充填された1Lあたりの発泡粒子群の質量(g/L)を測定し、単位換算することによって発泡粒子の見掛け密度(g/cm)を求めた。
[Apparent density of expanded particles]
The apparent density of the expanded particles was determined as follows. First, a 1 L graduated cylinder was prepared, and a group of expanded particles was filled up to a 1 L marked line in the graduated cylinder. The apparent density (g / cm 3 ) of the expanded particles was determined by measuring the mass (g / L) of the expanded expanded particle group per liter filled and converting the unit.

[発泡粒子の独立気泡率]
発泡粒子の独立気泡率は、下記により測定した。恒温室内にて、10日間放置した発泡粒子を測定用サンプルとし下記の通り水没法により正確に見かけの体積Vaを測定した。見かけの体積Vaを測定した測定用サンプルを十分に乾燥させた後、ASTM−D2856−70に記載されている手順Cに準じ、東芝・ベックマン株式会社製「空気比較式比重計930」により測定される測定用サンプルの真の体積の値Vxを測定した。そして、これらの体積値Va及びVxを基に、下記式(2)により独立気泡率を計算し、サンプル5個(N=5)の平均値を発泡粒子の独立気泡率とした。
[Closed cell ratio of expanded particles]
The closed cell ratio of the expanded particles was measured as follows. Using the foamed particles left for 10 days in a thermostatic chamber as a measurement sample, the apparent volume Va was accurately measured by the submersion method as described below. After the sample for measurement in which the apparent volume Va was measured was sufficiently dried, it was measured with an “air comparison hydrometer 930” manufactured by Toshiba Beckman Co., Ltd. according to the procedure C described in ASTM-D2856-70. The true volume value Vx of the measurement sample was measured. And based on these volume values Va and Vx, the closed cell rate was calculated by the following formula (2), and the average value of 5 samples (N = 5) was taken as the closed cell rate of the expanded particles.

独立気泡率(%)=(Vx−W/ρ)×100/(Va−W/ρ)・・・(2)
(式中、
Vx:上記方法で測定される発泡粒子の真の体積、即ち、発泡粒子を構成する樹脂の容積と、発泡粒子内の独立気泡部分の気泡全容積との和(cm
Va:発泡粒子を、水の入ったメスシリンダーに沈めて、水位上昇分から測定される発泡粒子の見かけの体積(cm
W:発泡粒子測定用サンプルの重量(g)
ρ:発泡粒子を構成する樹脂の密度(g/cm
を意味する)
Closed cell ratio (%) = (Vx−W / ρ) × 100 / (Va−W / ρ) (2)
(Where
Vx: the sum of the true volume of the expanded particles measured by the above method, that is, the volume of the resin constituting the expanded particles and the total volume of bubbles in the closed cell portion in the expanded particles (cm 3 )
Va: The apparent volume of the expanded particles (cm 3 ) measured from the rise in the water level after the expanded particles are submerged in a graduated cylinder containing water.
W: Weight of the foam particle measurement sample (g)
ρ: Density of resin constituting expanded particles (g / cm 3 )
Means)

[発泡粒子の平均気泡径]
発泡粒子の平均気泡径は、次のようにして測定した。
発泡粒子を図3のようなB−B断面で略二等分した切断面を顕微鏡で撮影した拡大写真に基づき、以下のとおり求めた。まず、発泡粒子の切断面拡大写真において、発泡粒子の切断面の中心を通るように上端表面から下端表面まで最小距離をとるような線分に対する垂直二等分線lを引き、lが通る発泡粒子の左端表面から右端表面までの線分lの長さを測定して、その長さをLc(μm)とし、直線lが交わる気泡の数Nc(個)を求め、LcをNで除した値(Lc/Nc)を発泡粒子1個の芯層2部分の平均気泡径とした。
[Average cell diameter of expanded particles]
The average cell diameter of the expanded particles was measured as follows.
Based on the enlarged photograph which image | photographed the cut surface which divided | segmented expanded particle | grains into the substantially bisected section like FIG. First, in the enlarged photograph of the cut surface of the expanded particle, a perpendicular bisector l is drawn with respect to a line segment that takes the minimum distance from the upper end surface to the lower end surface so as to pass through the center of the expanded surface of the expanded particle, The length of the line segment l from the left end surface to the right end surface of the particle was measured, the length was defined as Lc (μm), the number Nc (number) of bubbles intersecting the straight line l was obtained, and Lc was divided by N The value (Lc / Nc) was defined as the average cell diameter of the core layer 2 portion of one expanded particle.

次に、上端表面から100μm内側を通る曲線を右端表面から左端表面まで引き、その長さLs(μm)と曲線と交わる気泡の数Ns(個)を求め、LsをNsで除した値(Ls/Ns)を発泡粒子1個の被覆層3部分の平均気泡径とした。この作業を10個の発泡粒子について行い、各発泡粒子の芯層2、被覆層3部分の平均気泡径を相加平均した値を発泡粒子の芯層2、被覆層3部分の平均気泡径とした。   Next, a curve passing 100 μm inside from the upper end surface is drawn from the right end surface to the left end surface, the length Ls (μm) and the number Ns (number) of bubbles intersecting the curve are obtained, and Ls is divided by Ns (Ls / Ns) was defined as the average cell diameter of the coating layer 3 portion of one expanded particle. This operation is performed for 10 expanded particles, and the average cell diameter of the core layer 2 and the coating layer 3 portion of each expanded particle is calculated as the average cell diameter of the expanded particle core layer 2 and the coating layer 3 portion. did.

[発泡粒子成形体の見かけ密度]
発泡粒子成形体の見かけ密度は、成形体の質量(g)を成形体の外形寸法から求めた体積(cm)で割り算することにより求めた。
[Apparent density of molded foam particles]
The apparent density of the foamed particle molded body was determined by dividing the mass (g) of the molded body by the volume (cm 3 ) determined from the outer dimensions of the molded body.

[発泡粒子成形体の融着率]
融着率の測定は、発泡粒子成形体を破断した際の破断面に露出した発泡粒子のうち、材料破壊した発泡粒子の数の割合を測定した。具体的には、発泡粒子成形体から試験片を切り出し、カッターナイフで各試験片に深さ約5mmの切り込みを入れた後、切り込み部から発泡粒子成形体を破断させた。次に、発泡粒子成形体の破断面に存在する発泡粒子の個数(n)と、材料破壊した発泡粒子の個数(b)を測定し、(b)と(n)の比(b/n)を百分率で表して融着率(%)とした。
実施例1〜4、比較例1〜3の発泡粒子成形体の融着率はいずれも100%であった。
[Fusion rate of molded foam particles]
For the measurement of the fusion rate, the ratio of the number of foam particles whose material was destroyed among the foam particles exposed on the fracture surface when the foamed particle molded body was broken was measured. Specifically, a test piece was cut out from the foamed particle molded body, and after cutting a depth of about 5 mm into each test piece with a cutter knife, the foamed particle molded body was broken from the cut portion. Next, the number of foam particles (n) present on the fracture surface of the foam particle molded body and the number of foam particles (b) with material destruction were measured, and the ratio (b / n) of (b) and (n). Was expressed as a percentage and used as the fusion rate (%).
The fusion rates of the foamed particle molded bodies of Examples 1 to 4 and Comparative Examples 1 to 3 were all 100%.

[発泡粒子成形体の複素比誘電率の虚数部ε’’]
平板状に成形した発泡粒子成形体から、ドーナツ形状のサンプルを作製し、該サンプルについて同軸導波管を使用したSパラメーター法により、真空の誘電率との比である複素比誘電率の虚数部ε’’を30MHz〜18GHzについて測定した。測定結果の一例を表4、図7に示す。
[Imaginary part ε ″ of complex relative permittivity of molded foam particles]
An imaginary part of complex relative permittivity, which is a ratio to the dielectric constant of vacuum, is prepared from a foamed particle molded body formed into a flat plate shape by a S-parameter method using a coaxial waveguide for the sample. ε ″ was measured from 30 MHz to 18 GHz. An example of the measurement result is shown in Table 4 and FIG.

さらに、実施例2〜5、比較例1、2についても、同様の測定を行い、その結果から、以下の評価基準で評価した。
○:各周波数における、サンプル10個の測定値の平均値が0.01〜0.5の範囲内にある。
×:各周波数における、サンプル10個の測定値の平均値が0.01〜0.5の範囲外に存在する。
その結果を表3に示す。
Furthermore, the same measurement was performed for Examples 2 to 5 and Comparative Examples 1 and 2, and the evaluation was made based on the following evaluation criteria.
(Circle): The average value of the measured value of 10 samples in each frequency exists in the range of 0.01-0.5.
X: The average value of the measured values of 10 samples at each frequency is outside the range of 0.01 to 0.5.
The results are shown in Table 3.

[発泡粒子成形体間の性能のばらつき]
実施例1と比較例3において、発泡粒子成形体5個試作し、周波数1GHzにおいて同軸導波管を使用したSパラメーター法により、ε’’を測定した。そして、ε’’の(最大値−最小値)/2/平均値を求め性能のばらつきを評価した。その測定結果を表5に示す。
[Performance variation among foamed particle compacts]
In Example 1 and Comparative Example 3, five foamed particle molded bodies were produced as prototypes, and ε ″ was measured by the S-parameter method using a coaxial waveguide at a frequency of 1 GHz. Then, (maximum value−minimum value) / 2 / average value of ε ″ was obtained, and the variation in performance was evaluated. The measurement results are shown in Table 5.

[電波吸収体性能測定]
実施例、比較例の発泡粒子を用いて電波吸収体を100個試作し、周波数30MHz、100MHz、1GHz、18GHzにおいて、IEEE Std1128による、同軸管法(周波数30MHz、100MHz)およびアーチ法(周波数1GHz、18GHz)により、電波吸収量(dB)を測定し、平均値を求めた。その結果を表6に示す。
[Radio wave absorber performance measurement]
100 radio wave absorbers were made using the expanded particles of Examples and Comparative Examples, and at a frequency of 30 MHz, 100 MHz, 1 GHz, and 18 GHz, according to IEEE Std1128, the coaxial tube method (frequency 30 MHz, 100 MHz) and the arch method (frequency 1 GHz, 18 GHz), the amount of radio wave absorption (dB) was measured, and the average value was obtained. The results are shown in Table 6.

上記表3の評価から、実施例1〜5の発泡体は、芯層には誘電損失材料を高充填しているため、誘電損失材料の機能を発揮させることができ、また、どの部分においても芯層と被覆層の比率が一定であるので、十分に安定した電波吸収能力を有することが確認された。   From the evaluation in Table 3 above, the foams of Examples 1 to 5 have the core layer highly filled with a dielectric loss material, so that the function of the dielectric loss material can be exhibited, and in any part Since the ratio between the core layer and the coating layer is constant, it was confirmed that the core layer has a sufficiently stable radio wave absorption capability.

一方、比較例1は、導電性発泡粒子のみを含むため、所望の電波吸収性能が得られなかった。   On the other hand, since Comparative Example 1 includes only conductive foam particles, the desired radio wave absorption performance could not be obtained.

また、比較例2は、芯層に比べて被覆層に誘電損失材料が多く充填されているため、十分な電波吸収性能が得られなかった。
比較例3は、芯2種類の発泡粒子の配合比が場所によって一定でないため、製品間の性能のばらつきが多い結果となった。
Further, in Comparative Example 2, since the coating layer was filled with more dielectric loss material than the core layer, sufficient radio wave absorption performance could not be obtained.
In Comparative Example 3, since the blending ratio of the two types of foam particles of the core was not constant depending on the location, the results showed that there were many variations in performance between products.

1 多層発泡粒子
2 芯層
3 被覆層
4 電波吸収体(四角錐)
DESCRIPTION OF SYMBOLS 1 Multi-layer foam particle 2 Core layer 3 Coating layer 4 Electric wave absorber (square pyramid)

Claims (6)

電波吸収体用発泡粒子成形体であって、
前記発泡粒子成形体を構成する発泡粒子が、熱可塑性樹脂芯層と、該芯層を覆う発泡状態の熱可塑性樹脂被覆層とを有する多層発泡粒子であり、
前記芯層と前記被覆層との質量比が50:50〜1:99の範囲であり、
前記芯層には誘電損失材料が含有されていることを特徴とする発泡粒子成形体。
A foamed particle molded body for a radio wave absorber,
The foamed particles constituting the foamed particle molded body are multilayer foamed particles having a thermoplastic resin core layer and a foamed thermoplastic resin coating layer covering the core layer,
The mass ratio of the core layer to the coating layer is in the range of 50:50 to 1:99;
The core layer contains a dielectric loss material.
前記発泡粒子成形体の、0.03〜18GHzにおける複素比誘電率の虚数部ε’’の値が、0.01〜1であることを特徴とする請求項1に記載の発泡粒子成形体。   2. The foamed particle molded body according to claim 1, wherein the foamed particle molded body has a value of an imaginary part ε ″ of a complex relative dielectric constant at 0.03 to 18 GHz of 0.01 to 1. 3. 前記芯層の、前記熱可塑性樹脂と前記誘電損失材料の合計100質量%に対する、前記誘電損失材料の含有率が5〜80質量%であることを特徴とする請求項1又は2に記載の発泡粒子成形体。   The foam according to claim 1 or 2, wherein the content of the dielectric loss material is 5 to 80 mass% with respect to 100 mass% of the thermoplastic resin and the dielectric loss material in the core layer. Particle compact. 前記誘電損失材料が導電性カーボンブラックであることを特徴とする請求項1から3のいずれか一項に記載の発泡粒子成形体。   The foamed particle molded body according to any one of claims 1 to 3, wherein the dielectric loss material is conductive carbon black. 前記芯層を構成する樹脂がポリプロピレン系樹脂であると共に、前記被覆層を構成する樹脂がポリプロピレン系樹脂であることを特徴とする請求項1から4のいずれか一項に記載の発泡粒子成形体。   The foamed particle molded body according to any one of claims 1 to 4, wherein the resin constituting the core layer is a polypropylene resin, and the resin constituting the coating layer is a polypropylene resin. . 請求項1から5のいずれか一項に記載の発泡粒子成形体と、低周波吸収体とを備えることを特徴とする電波吸収体。

A radio wave absorber comprising the foamed particle molded body according to any one of claims 1 to 5 and a low frequency absorber.

JP2015193715A 2015-09-30 2015-09-30 Foamed particle molded body and radio wave absorber using the same Active JP6505570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193715A JP6505570B2 (en) 2015-09-30 2015-09-30 Foamed particle molded body and radio wave absorber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193715A JP6505570B2 (en) 2015-09-30 2015-09-30 Foamed particle molded body and radio wave absorber using the same

Publications (2)

Publication Number Publication Date
JP2017069400A true JP2017069400A (en) 2017-04-06
JP6505570B2 JP6505570B2 (en) 2019-04-24

Family

ID=58495205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193715A Active JP6505570B2 (en) 2015-09-30 2015-09-30 Foamed particle molded body and radio wave absorber using the same

Country Status (1)

Country Link
JP (1) JP6505570B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456298A (en) * 1990-06-26 1992-02-24 Yokohama Rubber Co Ltd:The Radio wave absorbing material
JP2002111274A (en) * 2000-09-29 2002-04-12 Takenaka Komuten Co Ltd Granular material having electromagnetic wave absorption property and its manufacturing method
US6479140B1 (en) * 1997-11-12 2002-11-12 Otsuka Chemical Co., Ltd. Radio wave absorbing materials, radio wave absorber, and radio wave anechoic chamber and the like made by using the same
JP2003017887A (en) * 2001-06-29 2003-01-17 Takenaka Komuten Co Ltd Method for manufacturing electromagnetic wave absorbing board
JP2003273568A (en) * 2002-03-13 2003-09-26 Hitachi Ltd Capsule type electromagnetic wave absorption material
JP2008166834A (en) * 2003-05-28 2008-07-17 Nitta Ind Corp Electromagnetic wave absorbing body
JP2009059972A (en) * 2007-08-31 2009-03-19 Nitta Ind Corp Radio wave absorber, radio wave absorbing panel structure, and radio communication improvement system
JP2011016914A (en) * 2009-07-08 2011-01-27 Jsp Corp Foamed polypropylene resin particle and molded product of foamed particle made of the foamed particle
JP2014017425A (en) * 2012-07-10 2014-01-30 Riken Corp Wave absorber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456298A (en) * 1990-06-26 1992-02-24 Yokohama Rubber Co Ltd:The Radio wave absorbing material
US6479140B1 (en) * 1997-11-12 2002-11-12 Otsuka Chemical Co., Ltd. Radio wave absorbing materials, radio wave absorber, and radio wave anechoic chamber and the like made by using the same
JP2002111274A (en) * 2000-09-29 2002-04-12 Takenaka Komuten Co Ltd Granular material having electromagnetic wave absorption property and its manufacturing method
JP2003017887A (en) * 2001-06-29 2003-01-17 Takenaka Komuten Co Ltd Method for manufacturing electromagnetic wave absorbing board
JP2003273568A (en) * 2002-03-13 2003-09-26 Hitachi Ltd Capsule type electromagnetic wave absorption material
JP2008166834A (en) * 2003-05-28 2008-07-17 Nitta Ind Corp Electromagnetic wave absorbing body
JP2009059972A (en) * 2007-08-31 2009-03-19 Nitta Ind Corp Radio wave absorber, radio wave absorbing panel structure, and radio communication improvement system
JP2011016914A (en) * 2009-07-08 2011-01-27 Jsp Corp Foamed polypropylene resin particle and molded product of foamed particle made of the foamed particle
JP2014017425A (en) * 2012-07-10 2014-01-30 Riken Corp Wave absorber

Also Published As

Publication number Publication date
JP6505570B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
CN107226922B (en) Foamed particle molded body
TW561171B (en) Dielectric resin foam and lens for radio waves using the same
JP4638487B2 (en) Dielectric lens
EP1794221B1 (en) Expanded polypropylene bead for forming a dielectric material and dielectric lens member formed by the expanded polypropylene beads
TWI691534B (en) Thermoplastic resin foaming particle
JPS63183941A (en) Heat insulating thermoplastic resin foam
CN107603004A (en) It is electromagnetically shielded polymeric foamable material and preparation method thereof
CN108250577A (en) A kind of expanded polypropylene beads and its preparation process of fire-retardant low heat conduction
JPS5840326A (en) Foamable polyolefin resin composition
WO2011040463A1 (en) Low dielectric sheet for 2-d communication, production method therefor, and sheet structure for communication
JP6505570B2 (en) Foamed particle molded body and radio wave absorber using the same
KR101584133B1 (en) Expanded articles using different types of expanded particles and process for producing the same
WO2004086563A1 (en) Luneberg lens and process for producing the same
JP2001250423A (en) Heat-resistant dielectric foam
CN109280240A (en) The preparation method of chemical crosslinking polyethylene foamed material and a kind of screw rod
CN113969014A (en) Ethylene-vinyl acetate foaming wave-absorbing material
TWI816953B (en) Foamable polymer composition, foamed polymer composition, and cable having the same
EP0413255B1 (en) Method for manufacturing a foam-insulated electric wire
KR101948809B1 (en) Method for producing electromagnetic wave absorption structure and electromagnetic wave absorption structure
JP5976714B2 (en) Low-dielectric sheet for two-dimensional communication, manufacturing method thereof, and sheet structure for communication
JP2016113548A (en) Foam particle and foam molded body
JP2016006142A (en) Resin composition and foam made thereof
US4766159A (en) Process for producing polypropylene foam
JP2006121664A (en) Luneberg lens and method for manufacturing the same
KR20180133607A (en) Ethylene vinyl acetate foam particle with excellent impact resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190327

R150 Certificate of patent or registration of utility model

Ref document number: 6505570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250