JP2016006142A - Resin composition and foam made thereof - Google Patents

Resin composition and foam made thereof Download PDF

Info

Publication number
JP2016006142A
JP2016006142A JP2014127349A JP2014127349A JP2016006142A JP 2016006142 A JP2016006142 A JP 2016006142A JP 2014127349 A JP2014127349 A JP 2014127349A JP 2014127349 A JP2014127349 A JP 2014127349A JP 2016006142 A JP2016006142 A JP 2016006142A
Authority
JP
Japan
Prior art keywords
density polyethylene
foam
dielectric
resin composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014127349A
Other languages
Japanese (ja)
Inventor
山川 浩
Hiroshi Yamakawa
浩 山川
隆史 逸見
Takashi Henmi
隆史 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014127349A priority Critical patent/JP2016006142A/en
Publication of JP2016006142A publication Critical patent/JP2016006142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight resin composition having a high dielectric constant and utilizable for various dielectric antennas, radar radio reflectors and antennas, and the foam thereof.SOLUTION: Provided is a resin composition containing, to 100 pts.wt. of a polyolefin resin, 5 to 50 pts.wt. of high pressure method low density polyethylene in which vinylidene group amount (Vd) is 1.2 to 2.1 pieces/10C and MFR is 0.1 to 6.0 g/10 min and 5 to 50 pts.wt. of dielectric ceramic, and also provided is a foaming agent body obtained by foaming the resin composition.

Description

本発明はポリオレフィン系樹脂、特定の高圧法低密度ポリエチレン、及び誘電体セラミックスを含む樹脂組成物、及び該樹脂組成物を発泡してなる軽量、かつ高誘電率を示す発泡体、及びその製造方法に関する。   The present invention relates to a resin composition comprising a polyolefin-based resin, a specific high-pressure low-density polyethylene, and dielectric ceramics, a lightweight foam obtained by foaming the resin composition, and a method for producing the same. About.

各種の誘電体アンテナ、レーダー電波反射器などには高誘電樹脂発泡体が使用されているが、該高誘電樹脂発泡体には、耐熱性、寸法安定性、比誘電率の安定性、誘電正接が小さい、及び軽量であることが求められる。以下、これらの性能について説明する。   High dielectric resin foams are used in various dielectric antennas, radar wave reflectors, etc., and these high dielectric resin foams have heat resistance, dimensional stability, relative dielectric constant stability, dielectric loss tangent. Is required to be small and lightweight. Hereinafter, these performances will be described.

上述の各種のアンテナ、レーダー反射器等が屋外に設置される関係で、直射日光に長時間晒された場合、誘電体の温度が80℃を越える可能性が有り、特に温度上昇時において寸法安定性の観点から耐熱性が要求される。また、比誘電率が変化するとアンテナ、或いはレーダー反射器等の機能が十分に発揮されないため、かかる温度変化に対して比誘電率が安定していることも必要となる。   Since the various antennas and radar reflectors mentioned above are installed outdoors, the temperature of the dielectric may exceed 80 ° C when exposed to direct sunlight for a long time. From the viewpoint of safety, heat resistance is required. Further, when the relative permittivity changes, the functions of the antenna, the radar reflector, and the like cannot be sufficiently exhibited. Therefore, it is necessary that the relative permittivity is stable with respect to such a temperature change.

誘電正接は誘電損失を表す指標であり、上記の誘電体アンテナ等の性能を大きく左右する特性である。誘電損失が大きいと該アンテナ等の性能が十分に発揮できなくなる。誘電体部材の重量は、該アンテナ等を航空機、或いは小型船舶等に搭載する際、問題となり、通常の運搬、設置に関しても費用がかかるため、出来る限り軽量であることが重要である。   The dielectric loss tangent is an index representing dielectric loss, and is a characteristic that greatly affects the performance of the dielectric antenna and the like. If the dielectric loss is large, the performance of the antenna or the like cannot be sufficiently exhibited. The weight of the dielectric member poses a problem when the antenna or the like is mounted on an aircraft or a small ship, and costs are also required for normal transportation and installation. Therefore, it is important that the weight is as light as possible.

従来、高誘電樹脂発泡体としては、発泡スチレン系樹脂粒子に高誘電材料を添加し、軽量の高誘電材料を提供する方法(例えば、特許文献1、特許文献2参照)、発泡ウレタン樹脂に誘電体セラミックス粉体を分散させたもの(例えば、特許文献3参照)、ポリプロピレンに高誘電材料を分散させたもの(例えば、特許文献4参照)等が提案されている。   Conventionally, as a high dielectric resin foam, a method of providing a lightweight high dielectric material by adding a high dielectric material to expanded styrene resin particles (see, for example, Patent Document 1 and Patent Document 2), a dielectric material is applied to a urethane foam resin. A material in which a body ceramic powder is dispersed (for example, see Patent Document 3), a material in which a high dielectric material is dispersed in polypropylene (for example, see Patent Document 4), and the like have been proposed.

特許文献1に開示されている方法では、アルミフレークと発泡ポリスチレン樹脂を、溶融押出混練して得られたペレットを、予備発泡させ、該予備発泡粒子を再度成形するため、工程が煩雑であること、アルミフレークが誘電損失を高めること、及び発泡ポリスチレンが高価である等の問題があった。特許文献2に開示されている方法では、高誘電体粉末を含んだビニル系樹脂粒子を押出して、非発泡粒子を製造後、該粒子を水性媒体中に懸濁させ、この粒子表面にビニル系単量体を反応させ、更に、該粒子に発泡剤を含浸させるという極めて煩雑な製造工程を必要とし、高コスト化は避けられなかった。特許文献3では、発泡ウレタン樹脂を用いた高誘電樹脂発泡体を提案している。本技術は高誘電体セラミックスとウレタン原料のポリオールを混合し、発泡する方法を開示しているが、本手法では、ウレタン樹脂の誘電正接がスチレン系樹脂に比べて著しく高いという致命的な欠陥を有しており、誘電体としては実用性が低かった。特許文献4は、射出成形により得られる誘電正接の低い誘電体アンテナ用複合材料を開示しているが、発泡体に比べ重量が重いという問題を有していた。また、特許文献5で開示している技術はポリオレフィン系樹脂としてポリプロピレン、或いは低密度ポリエチレンを用いた高誘電発泡体を提案しているが、溶融張力が低いポリプロピレンは発泡時に破泡して発泡倍率が上がらない、更に、単独気泡が形成されにくいため機械強度も低いという問題を有している。また、低密度ポリエチレンを使用した高誘電発泡体は融点が低く、80℃以上の温度では収縮が大きく寸法安定性に劣るという問題があった。   In the method disclosed in Patent Document 1, the pellets obtained by melt extrusion kneading aluminum flakes and expanded polystyrene resin are pre-expanded, and the pre-expanded particles are molded again, so that the process is complicated. However, aluminum flakes increase dielectric loss, and foamed polystyrene is expensive. In the method disclosed in Patent Document 2, vinyl resin particles containing a high dielectric powder are extruded to produce non-foamed particles, and then the particles are suspended in an aqueous medium. An extremely complicated manufacturing process of reacting the monomer and impregnating the particles with the foaming agent is required, and cost increase is inevitable. Patent Document 3 proposes a high dielectric resin foam using a urethane foam resin. Although this technology discloses a method of mixing and foaming high dielectric ceramics and urethane raw material polyols, this method has a fatal defect that the dielectric loss tangent of urethane resin is significantly higher than that of styrene resin. Therefore, the practicality of the dielectric was low. Patent Document 4 discloses a composite material for a dielectric antenna having a low dielectric loss tangent obtained by injection molding, but has a problem that it is heavier than a foam. Further, the technology disclosed in Patent Document 5 proposes a high dielectric foam using polypropylene or low density polyethylene as a polyolefin resin, but polypropylene having a low melt tension is foamed during foaming and has a foaming ratio. In addition, there is a problem that the mechanical strength is low because single bubbles are not easily formed. In addition, the high dielectric foam using low density polyethylene has a low melting point, and has a problem that the shrinkage is large at a temperature of 80 ° C. or more and the dimensional stability is poor.

1kHz〜1MHzの周波数領域におけるポリプロピレンの誘電損失は0.0005〜0.0018と優れているが、より優れた誘電特性を持つ材料としてポリエチレンがある。該ポリエチレンには高密度ポリエチレン、線状低密度ポリエチレン、及び、高圧法低密度ポリエチレンが有るが、何れの誘電損失も外周波数領域で0.0005以下でありポリプロピレンよりも優れている上、ポリプロピレンよりも安価である。しかし、該高密度ポリエチレンは本発明に求められる耐熱性を有しているものの、溶融張力が小さいため発泡成形が極めて難しいという問題を有している。一方、高圧法低密度ポリエチレンは耐熱性が低いが、発泡性に優れるという特長を有している。高密度ポリエチレンを発泡させる最も簡便な方法は高密度ポリエチレンに溶融張力の高いポリエチレンを添加する方法であり(例えば、特許文献6及び7参照)、特に高圧法低密度ポリエチレンが好適に用いられる。
この手法では、高密度ポリエチレンに、高密度ポリエチレンよりも低融点の高圧法低密度ポリエチレンを添加する際、添加量が多いほど高密度ポリエチレンが有する耐熱性が低下する。このため、この手法においては高誘電樹脂発泡体の耐熱性低下を出来る限り抑制するため、高密度ポリエチレンに添加する高圧法低密度ポリエチレンの量は出来る限り少量とする必要がある。しかしながら、これまで高密度ポリエチレンの耐熱性を維持したまま、所望の誘電特性と嵩比重を有する高誘電樹脂発泡体は得られていない。この問題を解決した、嵩比重が小さく、誘電特性及び耐熱性に優れた高誘電樹脂発泡体は、高密度ポリエチレンに高圧法低密度ポリエチレン、及び誘電体セラミックスを添加した組成物を発泡させることで得られることが期待される。
The dielectric loss of polypropylene in the frequency region of 1 kHz to 1 MHz is excellent at 0.0005 to 0.0018, but polyethylene is a material having more excellent dielectric properties. The polyethylene includes high-density polyethylene, linear low-density polyethylene, and high-pressure method low-density polyethylene, and any dielectric loss is 0.0005 or less in the external frequency region, which is superior to polypropylene. Is also cheap. However, although the high-density polyethylene has the heat resistance required for the present invention, it has a problem that foam molding is extremely difficult because of low melt tension. On the other hand, high-pressure low-density polyethylene has low heat resistance, but has a feature of excellent foamability. The simplest method of foaming high-density polyethylene is a method of adding polyethylene having high melt tension to high-density polyethylene (see, for example, Patent Documents 6 and 7), and high-pressure low-density polyethylene is particularly preferably used.
In this method, when the high-pressure polyethylene having a lower melting point than that of the high-density polyethylene is added to the high-density polyethylene, the heat resistance of the high-density polyethylene decreases as the amount added increases. For this reason, in this method, in order to suppress the heat resistance degradation of the high dielectric resin foam as much as possible, the amount of the high pressure method low density polyethylene added to the high density polyethylene needs to be as small as possible. However, a high dielectric resin foam having desired dielectric properties and bulk specific gravity has not been obtained so far while maintaining the heat resistance of high density polyethylene. A high dielectric resin foam that solves this problem and has a low bulk specific gravity and excellent dielectric properties and heat resistance is obtained by foaming a composition obtained by adding high-pressure polyethylene to low-density polyethylene and dielectric ceramics. Expected to be obtained.

特公昭61−21147号公報Japanese Examined Patent Publication No. 61-21147 特開平7−33901号公報JP-A-7-33901 特開平7−320537号公報JP-A-7-320537 特許第2979736号公報Japanese Patent No. 299736 特開2001−229735号公報JP 2001-229735 A 特開平10−7726号公報Japanese Patent Laid-Open No. 10-7726 特開平2−132109号公報JP-A-2-132109

本発明は、安価で、軽量かつ誘電損失が小さい発泡体を成形可能なポリオレフィン系樹脂、高圧法低密度ポリエチレン及び誘電体セラミックスを含む組成物、該組成物を発泡させて得られる発砲体及び該組成物を押出発泡させる低コストの高誘電発泡体の製造方法を提供することを目的とする。   The present invention relates to a composition comprising a polyolefin-based resin capable of forming a foam that is inexpensive, lightweight, and has a small dielectric loss, a high-pressure low-density polyethylene, and a dielectric ceramic, a foam obtained by foaming the composition, and the It is an object of the present invention to provide a method for producing a low-cost high dielectric foam in which a composition is extruded and foamed.

上記課題を達成するため、鋭意検討した結果、押出溶融加工時に加工機内部で溶融張力が増大する新しいタイプの高圧法低密度ポリエチレンを高密度ポリエチレンに添加すれば、高発泡倍率で、発泡セルの均一性、及び発泡外観にも優れた発泡体が得られること、該高圧法低密度ポリエチレンは溶融加工過程において押出機の内部で徐々に溶融張力、及び溶融粘度が増大していくため、高溶融張力のポリエチレンを直接ブレンドする手法に比べ、遥かにポリオレフィン系樹脂と均一にブレンドされること、該高圧法低密度ポリエチレンを押出加工した後は、更に、従来の未架橋低密度ポリエチレンでは達成出来ないレベルの高い溶融張力を示し、この特長が高密度ポリエチレンをブレンドした組成物においても保持されること、従来と同等の発泡倍率を得るために必要な高圧法低密度ポリエチレンの添加量を減量可能なことから、ポリオレフィン系樹脂、特定の高圧法低密度ポリエチレン、及び誘電体セラミックスからなるポリオレフィン系組成物を、低コストの押出発泡法により発泡させることにより、軽量、かつ誘電損失の小さい高誘電樹脂発泡体となることを見出し、本発明を完成させるに至った。   As a result of diligent studies to achieve the above-mentioned problems, a new type of high-pressure low-density polyethylene that increases the melt tension inside the processing machine during extrusion melt processing can be added to high-density polyethylene to achieve a high expansion ratio. A foam with excellent uniformity and foam appearance can be obtained, and the high-pressure low-density polyethylene gradually increases in melt tension and melt viscosity inside the extruder during the melt processing process. Compared with the method of directly blending polyethylene with high tension, it is much more uniformly blended with polyolefin resin. After extruding the high-pressure low-density polyethylene, it cannot be achieved with conventional uncrosslinked low-density polyethylene. High melt tension at a high level, and this feature is maintained even in compositions blended with high-density polyethylene. Since it is possible to reduce the amount of high-pressure low-density polyethylene added to obtain the foam magnification, a polyolefin-based composition comprising a polyolefin-based resin, a specific high-pressure low-density polyethylene, and dielectric ceramics can be manufactured at a low cost. It has been found that by foaming by an extrusion foaming method, it becomes a high dielectric resin foam that is lightweight and has a small dielectric loss, and has completed the present invention.

すなわち、本発明はポリオレフィン系樹脂100重量部に対し、特定の高圧法低密度ポリエチレンを5〜30重量部、誘電体セラミックスを5〜30重量部含む樹脂組成物、該誘電体セラミックスが、粉末またはウイスカーである請求項1記載の樹脂組成物、該樹脂組成物を発泡させて得られる発泡体、および該樹脂組成物を溶融押出発泡法により発泡させる発泡体の製造方法に関する。   That is, the present invention relates to a resin composition containing 5 to 30 parts by weight of a specific high-pressure low-density polyethylene and 5 to 30 parts by weight of dielectric ceramic with respect to 100 parts by weight of a polyolefin-based resin, The present invention relates to a resin composition according to claim 1, which is a whisker, a foam obtained by foaming the resin composition, and a method for producing a foam in which the resin composition is foamed by a melt extrusion foaming method.

本発明で用いるポリオレフィン系樹脂としては、高密度ポリエチレン、或いは炭素数3〜8のα−オレフィンから導かれる繰返し単位からなるエチレン−α−オレフィン共重合体が例示され、エチレン−α−オレフィン共重合体を構成するα−オレフィンとしては、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテンなどが挙げられるが、これらの中で安価で誘電損失が小さい高密度ポリエチレンを用いるのが好ましい。   Examples of the polyolefin resin used in the present invention include high-density polyethylene or an ethylene-α-olefin copolymer composed of a repeating unit derived from an α-olefin having 3 to 8 carbon atoms. Examples of the α-olefin constituting the coal include propylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene. Among these, high-density polyethylene is inexpensive and has low dielectric loss. Is preferably used.

本発明で用いる高密度ポリエチレンとしては、チーグラー系触媒、或いはメタロセン系触媒などの重合触媒を用いて、気相重合法、溶液重合法、スラリー重合法、高圧イオン重合法等のプロセスにより製造されたものが例示される。   The high-density polyethylene used in the present invention is produced by a process such as a gas phase polymerization method, a solution polymerization method, a slurry polymerization method, or a high-pressure ion polymerization method using a polymerization catalyst such as a Ziegler catalyst or a metallocene catalyst. Are illustrated.

本発明で用いる高密度ポリエチレンの密度は940〜970kg/mであることが好ましく、更に好ましくは940〜960kg/mであり、最も好ましくは940〜950kg/mである。密度がこの範囲であれば、軽量な発泡体が得られるため好ましい。 The density of high-density polyethylene used in the present invention is preferably from 940~970kg / m 3, more preferably from 940~960kg / m 3, most preferably 940~950kg / m 3. A density within this range is preferable because a lightweight foam can be obtained.

本発明で用いる高密度ポリエチレンのMFRは1〜50g/10分であることが好ましく、更に好ましくは1〜40g/10分、最も好ましくは1〜30g/10分である。MFRがこの範囲に有れば、良好な押出特性を有する脂組成物となり、該組成物を発泡成形する際、発泡倍率が高くなるため好ましい。   The MFR of the high density polyethylene used in the present invention is preferably 1 to 50 g / 10 minutes, more preferably 1 to 40 g / 10 minutes, and most preferably 1 to 30 g / 10 minutes. If MFR is in this range, it becomes a fat composition having good extrusion characteristics, and when the composition is subjected to foam molding, the foaming ratio becomes high, which is preferable.

本発明で用いる高圧法低密度ポリエチレンのビニリデン基量(Vd)は1.2個/10C以上2.1個/10C以下であり、好ましくは1.3個/10C以上1.9個/10C以下であり、更に好ましくは1.5個/10C以上1.8個/10C以下である。ビニリデン基量が1.2個/10C未満、又は2.1個/10Cを超えると、何れも発泡倍率が低下するため好ましくない。 The vinylidene group amount (Vd) of the high-pressure method low-density polyethylene used in the present invention is 1.2 pieces / 10 4 C or more and 2.1 pieces / 10 4 C or less, preferably 1.3 pieces / 10 4 C or more and 1 .9 pieces / 10 4 C or less, more preferably 1.5 pieces / 10 4 C or more and 1.8 pieces / 10 4 C or less. If the amount of vinylidene group is less than 1.2 / 10 4 C or exceeds 2.1 / 10 4 C, the foaming ratio decreases, which is not preferable.

本発明で用いる高圧法低密度ポリエチレンのMFRは0.1g/10分以上6.0g/10分以下であり、好ましくは0.5g/10分以上5.0g/10分以下、更に好ましくは1.0g/10分以上5.0g/以下である。0.1g/10分未満又は6.0g/10分を超えると、何れも発泡倍率が低下するため好ましくない。   The MFR of the high-pressure method low density polyethylene used in the present invention is 0.1 g / 10 min or more and 6.0 g / 10 min or less, preferably 0.5 g / 10 min or more and 5.0 g / 10 min or less, more preferably 1 0.0 g / 10 min to 5.0 g / min. If it is less than 0.1 g / 10 minutes or more than 6.0 g / 10 minutes, both are not preferable because the expansion ratio is lowered.

本発明で用いる高圧法低密度ポリエチレンの溶融張力(測定条件:温度190℃、引取速度0.5m/分)は50mN以上200mN以下であり、好ましくは60mN以上180mN以下、更に好ましくは70mN以上160mN以下である。溶融張力がこの範囲内にあると、発泡倍率が高くなるため好ましい。   The melt tension (measurement conditions: temperature 190 ° C., take-off speed 0.5 m / min) of the high-pressure low-density polyethylene used in the present invention is 50 mN to 200 mN, preferably 60 mN to 180 mN, more preferably 70 mN to 160 mN. It is. A melt tension within this range is preferable because the expansion ratio is increased.

本発明の高圧法低密度ポリエチレンの分子量分布は特に制限されないが、押出加工性の観点から、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)の比で定義される分散度(Q)=Mw/Mnが7以上12以下が好ましく、更に好ましくは8以上11以下である。   The molecular weight distribution of the high-pressure method low density polyethylene of the present invention is not particularly limited, but from the viewpoint of extrusion processability, the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC). The dispersity defined by (Q) = Mw / Mn is preferably 7 or more and 12 or less, more preferably 8 or more and 11 or less.

本発明の高圧法低密度ポリエチレンの製造はラジカル重合開始剤の存在下で、溶媒の存在下あるいは不存在下において、必要に応じて主に分子量調節を目的に連鎖移動剤を添加して、高圧圧縮機を備えた連続式のベッセル型、或いはチューブラー型高圧法ポリエチレン製造装置により製造できるが、重合装置としては反応器内部の温度分布を制御し易いベッセル型重合装置が好適に用いられる。本発明の低密度ポリエチレンは、エチレン流量、エチレンガス温度、ラジカル開始剤量の最適化により反応器入口と出口の間に、必要に応じて予め設定した温度勾配を生じさせると同時に、この温度勾配の大きさに応じた最適な反応圧力を設定することにより容易かつ効率的に製造出来る。具体的には、本発明の低密度ポリエチレンは、反応器内の平均反応温度を出来る限り高温にしてビニリデン基量を高め、同時に、MFRを可能な限り低下させるため、高分子量成分を生成する低温領域を同一反応器内に設けて、反応器内部に温度勾配を生じさせた上で、所望のビニリデン基量とMFRとなるように、反応圧力、及び反応器内部に供給するエチレンの温度を最適化することで容易、かつ効率的に製造することが出来る。   In the production of the high-pressure low-density polyethylene of the present invention, in the presence of a radical polymerization initiator, in the presence or absence of a solvent, a chain transfer agent is added as necessary mainly for the purpose of adjusting the molecular weight, Although it can be produced by a continuous vessel type or tubular type high pressure polyethylene production apparatus equipped with a compressor, a vessel type polymerization apparatus that can easily control the temperature distribution inside the reactor is preferably used as the polymerization apparatus. The low density polyethylene of the present invention generates a preset temperature gradient between the reactor inlet and outlet by optimizing the ethylene flow rate, ethylene gas temperature, and the amount of radical initiator, and at the same time, this temperature gradient. It can be manufactured easily and efficiently by setting an optimum reaction pressure according to the size of. Specifically, the low-density polyethylene of the present invention increases the amount of vinylidene groups by making the average reaction temperature in the reactor as high as possible, and at the same time lowers MFR as much as possible. Provide a region in the same reactor to generate a temperature gradient inside the reactor, and then optimize the reaction pressure and the temperature of ethylene supplied to the reactor so that the desired vinylidene group amount and MFR are obtained. Therefore, it can be manufactured easily and efficiently.

重合圧力としては100MPa以上400MPa以下、好ましくは150MPa以上190MPa以下が用いられる。この圧力の範囲内であれば、ビニリデン基量が高く、かつMFRが低い低密度ポリエチレンを得ることが出来るため好ましい。   The polymerization pressure is from 100 MPa to 400 MPa, preferably from 150 MPa to 190 MPa. Within this pressure range, a low density polyethylene having a high vinylidene group amount and a low MFR can be obtained, which is preferable.

反応温度としては100℃以上330℃以下、好ましくは200℃以上280℃以下が用いられる。反応器内部の最高温度と最低温度の差は10℃以上200℃以下、好ましくは13℃以上100℃以下の条件が用いられる。反応器の温度が100℃以上であり、かつ反応器上部と下部の温度差が上記の範囲内であれば、ビニリデン基量が高く、かつMFRが低い低密度ポリエチレンを得ることが出来るため好ましい。   The reaction temperature is 100 ° C. or higher and 330 ° C. or lower, preferably 200 ° C. or higher and 280 ° C. or lower. The difference between the maximum temperature and the minimum temperature inside the reactor is 10 ° C. or more and 200 ° C. or less, preferably 13 ° C. or more and 100 ° C. or less. If the temperature of the reactor is 100 ° C. or higher and the temperature difference between the upper part and the lower part of the reactor is within the above range, it is preferable because a low density polyethylene having a high vinylidene group amount and a low MFR can be obtained.

反応器に供給するエチレンの供給量と温度は、反応圧力、反応温度に依存し、所望のビニリデン基量とMFRとするため、適宜変更され、エチレン供給量は生産速度に応じても適宜変更し得る。エチレン供給量としては10kg/h以上30kg/h以下が用いられ、エチレンの温度は10℃以上100℃以下が用いられる。エチレン供給量が10kg/h以上であり、エチレン温度が10℃以上であれば、低密度ポリエチレンが経済性に優れた生産速度で製造出来るため好ましい。   The supply amount and temperature of ethylene supplied to the reactor depend on the reaction pressure and reaction temperature, and are appropriately changed to obtain the desired vinylidene group amount and MFR. The ethylene supply amount is also changed appropriately depending on the production rate. obtain. The ethylene supply rate is 10 kg / h or more and 30 kg / h or less, and the ethylene temperature is 10 ° C. or more and 100 ° C. or less. If the ethylene supply rate is 10 kg / h or more and the ethylene temperature is 10 ° C. or more, low density polyethylene is preferable because it can be produced at a production rate excellent in economic efficiency.

ラジカル重合開始剤としては例えば酸素、過酸化水素、ジエチルペルオキシド、t−ブチルヒドロペルオキシド、ジ−t−ブチルペルオキシド、ジクミルペルオキシド、ジクミルペルオキシド、t−ブチルペルオキシベンゾエート、ジ−t−ブチルペルオキシアセテート、t−ブチルペルオキシピバレート等を用いることが出来るが、反応温度に応じて最適な分解温度の開始剤を選定出来る。本発明で用いる開始剤の量は、開始剤の種類、反応器内部の温度、高圧反応器へ導入するエチレン流量、及びエチレンの温度に合わせ適宜調整されるため、厳密に特定の範囲に限定し得るものではないが、一般的には1〜25kg/hである。   Examples of radical polymerization initiators include oxygen, hydrogen peroxide, diethyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, dicumyl peroxide, dicumyl peroxide, t-butyl peroxybenzoate, and di-t-butyl peroxyacetate. T-butyl peroxypivalate can be used, and an initiator having an optimal decomposition temperature can be selected according to the reaction temperature. The amount of the initiator used in the present invention is appropriately adjusted according to the kind of the initiator, the temperature inside the reactor, the ethylene flow rate introduced into the high-pressure reactor, and the temperature of ethylene, and is strictly limited to a specific range. Although not obtained, it is generally 1-25 kg / h.

連鎖移動剤は主に分子量の増大を抑える目的で使用でき、また二重結合量を増加させる目的でも使用できる。連鎖移動剤の例としてはエタン、プロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素、プロピレン、1−ブテン、イソブテン、1−ヘキセン等のオレフィン化合物、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物、ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。   Chain transfer agents can be used mainly for the purpose of suppressing the increase in molecular weight, and can also be used for the purpose of increasing the amount of double bonds. Examples of chain transfer agents include aliphatic hydrocarbons such as ethane, propane, butane, pentane and hexane, olefin compounds such as propylene, 1-butene, isobutene and 1-hexene, aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde, Examples thereof include aromatic hydrocarbons such as benzene and toluene.

本発明の高圧法低密度ポリエチレンは高圧法製造装置により製造されたペレットを、溶融混練等の後処理なく、また、架橋剤等の添加剤を添加する必要もなく、直接、押出加工性改良材として利用することが出来る。該ポリエチレンは押出加工前にはMS、及び溶融粘度が比較的小さいため他のポリオレフィン樹脂に添加した際の均一混合性に優れており、更に、押出加工時MS増大量が大きいため、少量の添加で加工性を改良出来るという特徴を有している。   The high-pressure method low-density polyethylene of the present invention is a direct extrusion processability improving material for pellets produced by a high-pressure method production apparatus, without post-treatment such as melt-kneading and without the need to add additives such as a crosslinking agent. Can be used as Since this polyethylene has a relatively low MS and melt viscosity before extrusion, it is excellent in uniform mixing when added to other polyolefin resins. Furthermore, the amount of increase in MS during extrusion is large, so a small amount is added. It has the feature that processability can be improved.

本発明で用いる高圧法低密度ポリエチレンの造粒方法に特に制限はなく、一般的に用いられている公知の方法を用いることができる。造粒方法の例としてストランドカット、アンダーウォーターカット等が例示される。本発明で用いる造粒機の押出機内のスクリューは溶融樹脂に強いせん断力がかからず、樹脂がせん断発熱しにくいニーディングゾーンの無いシングルフライト型スクリューを備えた一軸押出機を用いるのが好ましい。   There is no restriction | limiting in particular in the granulation method of the high pressure method low density polyethylene used by this invention, The well-known method generally used can be used. Examples of granulation methods include strand cutting and underwater cutting. The screw in the extruder of the granulator used in the present invention is preferably a single screw extruder provided with a single flight type screw without a kneading zone in which a strong shearing force is not applied to the molten resin and the resin is difficult to generate shear heat. .

本発明で使用する誘電体セラミックスはオレフィン系樹脂の比誘電率を増大させる為に添加される。チタン酸バリウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム、チタン酸鉛等が例示され、これらは単独または必要に応じて混合使用できる。これらの誘電体セラミックスは、粉末状であっても、ウイスカー状であっても良い。比誘電率を高める誘電体としては、金属粉、金属粒子、或いは金属箔等の金属を使用することも出来るが、誘電率が高まり、比誘電率の温度依存性も大きくなるため、上記のセラミックス誘電体を用いるのが好ましい。   The dielectric ceramic used in the present invention is added to increase the relative dielectric constant of the olefin resin. Examples thereof include barium titanate, calcium titanate, magnesium titanate, strontium titanate, lead titanate and the like, and these can be used alone or as needed. These dielectric ceramics may be in the form of powder or whisker. Metals such as metal powder, metal particles, or metal foil can be used as the dielectric for increasing the dielectric constant. However, since the dielectric constant is increased and the temperature dependence of the dielectric constant is increased, the ceramics described above are used. It is preferable to use a dielectric.

本発明の脂組成物を構成する高圧法低密度ポリエチレンの配合量は、ポリオレフィン系樹脂100重量部に対して、高圧法低密度ポリエチレン5〜30重量部であり、好ましくは7〜30重量部、更に好ましくは10〜25重量部である。該高圧法低密度ポリエチレンが5重量未満の場合、発泡時の破泡が顕著で発泡倍率が低く、発泡セルの均一性も低下するため好ましくない。一方、30重量部を超えると発泡倍率が上がらないため好ましくない。   The blending amount of the high pressure method low density polyethylene constituting the fat composition of the present invention is 5 to 30 parts by weight, preferably 7 to 30 parts by weight, based on 100 parts by weight of the polyolefin resin. More preferably, it is 10-25 weight part. When the high-pressure low-density polyethylene is less than 5 weights, it is not preferable because foam breakage during foaming is remarkable, the foaming ratio is low, and the uniformity of the foamed cells is also lowered. On the other hand, if the amount exceeds 30 parts by weight, the expansion ratio does not increase.

また、本発明の樹脂組成物を構成する誘電体セラミックスの配合量は、ポリオレフィン系樹脂と高圧法低密度ポリエチレンの添加量の総量100重量部に対して5〜30重量部とするのが好ましく、更に好ましくは10〜30重量部、最も好ましくは20〜30重量部である。該添加量が5重量部未満であると所望の誘電特性が得られず、また30重量部を越えると樹脂の発泡度が低下し、強度低下が顕著となるため好ましくない。   The amount of the dielectric ceramic constituting the resin composition of the present invention is preferably 5 to 30 parts by weight based on 100 parts by weight of the total amount of the polyolefin resin and the high-pressure method low-density polyethylene, More preferably, it is 10-30 weight part, Most preferably, it is 20-30 weight part. If the added amount is less than 5 parts by weight, the desired dielectric properties cannot be obtained, and if it exceeds 30 parts by weight, the foaming degree of the resin is lowered and the strength is significantly reduced, which is not preferable.

本発明の脂組組成物を発泡させて得られる樹脂発泡体の嵩比重は軽量化の観点から0.05〜0.5g/cmが好ましく、更に好ましくは0.1〜0.4、最も好ましくは0.2〜0.3である。嵩比重が0.5g/cmを超えると、軽量化の効果が不十分であり、0.05g/cmを下回ると、発泡体の誘電率を所望の値まで増大させるために大量の誘電体を添加する必要があり好ましくない。ポリオレフィン系樹脂を発泡させると、発泡により比誘電率1.0の空気の気泡が導入される為比誘電率は発泡前の値よりも低下する。従い、該ポリオレフィン系樹脂の発泡倍率が高いほど、得られる発泡体の比誘電率は1.0に近くなる。発泡体を軽量化するためには発泡倍率を上げることが有効であるが、嵩比重が小さすぎると、比誘電率を高めるために高誘電物質を大量に樹脂に添加する必要がある上、機械強度が低下して実用性が失われるという問題が生じる。 The bulk specific gravity of the resin foam obtained by foaming the greasy composition of the present invention is preferably 0.05 to 0.5 g / cm 3, more preferably 0.1 to 0.4, most preferably from the viewpoint of weight reduction. Preferably it is 0.2-0.3. When the bulk specific gravity is more than 0.5 g / cm 3, the weight reduction effect is insufficient, if the lower 0.05 g / cm 3, a large amount of dielectric in order to increase the dielectric constant of the foam to the desired value It is not preferable because the body needs to be added. When the polyolefin-based resin is foamed, air bubbles having a relative dielectric constant of 1.0 are introduced by foaming, so that the relative dielectric constant is lower than the value before foaming. Therefore, the higher the expansion ratio of the polyolefin-based resin, the closer the dielectric constant of the obtained foam is to 1.0. Increasing the expansion ratio is effective to reduce the weight of the foam, but if the bulk specific gravity is too small, it is necessary to add a large amount of high dielectric material to the resin in order to increase the relative dielectric constant, and the machine There arises a problem that the strength is lowered and the practicality is lost.

本発明の樹脂組成物を構成するポリオレフィン系樹脂、高圧法低密度ポリエチレン及び誘電体セラミックスを配合する際には、押出混練、ロール混練など公知の方法を利用出来る。   When blending the polyolefin resin constituting the resin composition of the present invention, the high pressure method low density polyethylene and the dielectric ceramic, known methods such as extrusion kneading and roll kneading can be used.

本発明の樹脂組成物からなる発泡体の製造方法としては、発泡体が得られる限りいかなる方法を用いてもよい。例えば、本発明の樹脂組成物、及びタルク等の気泡調整剤、収縮防止剤等を必要に応じて添加して押出機に供給し、加熱溶融、混練し、更に発泡剤を供給して発泡性溶融樹脂混合物とした後、押出樹脂温度、押出ダイ内部圧力、吐出量等を調整して、押出機先端のダイから低圧域に押出して発泡させる方法が挙げられる。また、発泡体の形状に応じ、押出機先端に取付けるダイを選択することで丸棒状、シート状、或いは板状等の発泡体を製造できる。例えば、ストランドダイ、環状ダイ、及びスリットダイを用いた場合、それぞれ丸棒状、シート状、板状の発泡体を製造できる。   As a method for producing a foam comprising the resin composition of the present invention, any method may be used as long as a foam is obtained. For example, the resin composition of the present invention, and a bubble adjusting agent such as talc, an anti-shrinkage agent and the like are added as necessary and supplied to an extruder, and then melted by heating and kneading. After making into a molten resin mixture, the extrusion resin temperature, the extrusion die internal pressure, a discharge amount, etc. are adjusted, and it extrudes from the die | dye at the front-end | tip of an extruder to a low pressure area, and is made to foam. Further, by selecting a die attached to the tip of the extruder according to the shape of the foam, a foam such as a round bar, a sheet, or a plate can be produced. For example, when a strand die, an annular die, and a slit die are used, a round bar shape, a sheet shape, and a plate-like foam can be produced, respectively.

本発明の誘電体組成物の発泡に用いる発泡ガス発泡剤としては、メチレンクロライド、トリクロロフルオロメタン、ジクロロフルオロメタン、クロロジフルオロメタン、クロロトリフルオロメタン、ジクロロジフルオロメタン、1,1−ジフルオロエタン、1−クロロ−1,1−ジフルオロエタン、1,2−ジクロロテトラフルオロエタンまたはクロロペンタフルオロエタン、プロパン、ブタン、ペンタン、ペンテン、ヘキサン、ヘキセン、ヘプテン、オクタン、等の炭化水素、或いはハロゲン化炭化水素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン、炭酸ガス、窒素等の不活性ガスが例示されるが、窒素や炭酸ガス、好ましくは、窒素がコスト的に有利であるため望ましい。これらの不活性ガスは、通常単独で使用するが、必要に応じて2種以上を用いてもよい。不活性ガスの使用量は、発泡樹脂組成物100重量部に対して、0.01〜10.0重量部が好ましい。0.01重量部未満であると、70〜85%の高発泡体が得られず、一方、10重量部を超えると、過発泡が起こり、同軸ケーブルの品質が悪くなるため望ましくない。   The foaming gas blowing agent used for foaming the dielectric composition of the present invention includes methylene chloride, trichlorofluoromethane, dichlorofluoromethane, chlorodifluoromethane, chlorotrifluoromethane, dichlorodifluoromethane, 1,1-difluoroethane, 1-chloro. -1,1-difluoroethane, 1,2-dichlorotetrafluoroethane or chloropentafluoroethane, propane, butane, pentane, pentene, hexane, hexene, heptene, octane, etc., or halogenated hydrocarbon, helium, Examples of the inert gas include neon, argon, krypton, xenon, radon, carbon dioxide, and nitrogen. Nitrogen or carbon dioxide, preferably nitrogen is preferable because of its cost advantage. These inert gases are usually used alone, but two or more kinds may be used as necessary. As for the usage-amount of an inert gas, 0.01-10.0 weight part is preferable with respect to 100 weight part of foaming resin compositions. If it is less than 0.01 parts by weight, a high foam of 70 to 85% cannot be obtained. On the other hand, if it exceeds 10 parts by weight, excessive foaming occurs and the quality of the coaxial cable is deteriorated.

また、本発明では均一かつ微細なセル構造を形成させるために発泡核剤を利用することが出来る。発泡核剤としては、ナイロン粉末やテフロン(登録商標)粉末、アゾジカルボンアミドおよびタルク、窒化ホウ素、シリカなどが例示される。発泡核剤の配合量は、ポリエチレン系樹脂100重量部に対して、0.02〜3.0重量部、好ましくは0.1〜1.5重量部が好ましい。0.02重量部未満であると、均一で微細なセル構造が形成されず、同軸ケーブルの特性が悪くなり、一方、3.0重量部を越えると、均一でかつ微細なセル構造を形成させる効果が見られなくなることに加え、電気特性を悪化させるため望ましくない。   In the present invention, a foam nucleating agent can be used to form a uniform and fine cell structure. Examples of the foam nucleating agent include nylon powder, Teflon (registered trademark) powder, azodicarbonamide and talc, boron nitride, and silica. The blending amount of the foam nucleating agent is 0.02 to 3.0 parts by weight, preferably 0.1 to 1.5 parts by weight, based on 100 parts by weight of the polyethylene resin. If it is less than 0.02 parts by weight, a uniform and fine cell structure is not formed, and the characteristics of the coaxial cable are deteriorated. On the other hand, if it exceeds 3.0 parts by weight, a uniform and fine cell structure is formed. In addition to the ineffective effect, the electrical characteristics are deteriorated, which is undesirable.

本発明では必要に応じて発泡助剤を使用できる。発泡助剤としては例えば、サリチル酸、ステアリン酸、フタル酸、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸マグネシウム、ステアリン酸カルシウム、エチレングリコール、グリセリン、エタノールアミン、尿素、尿素誘導体、メラミン、二塩基性亜リン酸鉛、三塩基性硫酸鉛、酸化亜鉛等が例示される。発泡助剤はV型ブレンダー、リボンミキサー、ヘンシェルミキサー、或いはタンブラー等を用いてブレンド出来る。   In the present invention, a foaming aid can be used as necessary. Examples of foaming aids include salicylic acid, stearic acid, phthalic acid, zinc stearate, lead stearate, magnesium stearate, calcium stearate, ethylene glycol, glycerin, ethanolamine, urea, urea derivatives, melamine, dibasic phosphorus Examples include lead acid, tribasic lead sulfate, and zinc oxide. The foaming aid can be blended using a V-type blender, a ribbon mixer, a Henschel mixer, or a tumbler.

押出加工時の樹脂温度はポリオレフィン系樹脂及び高圧法低密度ポリエチレンからなる樹脂組成物の融点Tmに対し、Tm±10℃以内が好ましく、より好ましくはTm±5℃以内である。ここで、該樹脂組成物の融点は、JIS K7121(1987)に基づいて熱流束DSC曲線により一定の熱処理を行なった試験片から求められるピークの頂点温度とする。   The resin temperature at the time of extrusion is preferably within Tm ± 10 ° C., more preferably within Tm ± 5 ° C., with respect to the melting point Tm of the resin composition comprising a polyolefin resin and high-pressure low-density polyethylene. Here, the melting point of the resin composition is a peak apex temperature obtained from a test piece subjected to a constant heat treatment by a heat flux DSC curve based on JIS K7121 (1987).

本発明の樹脂組成物には、耐熱安定剤、耐候安定剤、帯電防止剤、防曇剤、抗ブロッキング剤、スリップ剤、滑剤、核剤、顔料、タッキファイヤー、カーボンブラック、タルク、ガラス粉、ガラス繊維等の無機充填剤または補強剤、有機充填剤または補強剤、難燃剤、中性子遮蔽剤等の公知の添加剤を配合することができる。また、他の熱可塑性樹脂と混合して用いることもできる。これらの例として、粘着付与樹脂、ワックス、HDPE、L−LDPE、LDPE、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、ポリスチレン、これらの無水マレイン酸グラフト物等を例示することができる。   The resin composition of the present invention includes a heat stabilizer, weather stabilizer, antistatic agent, antifogging agent, antiblocking agent, slip agent, lubricant, nucleating agent, pigment, tackifier, carbon black, talc, glass powder, Known additives such as inorganic fillers or reinforcing agents such as glass fibers, organic fillers or reinforcing agents, flame retardants, and neutron shielding agents can be blended. Moreover, it can also be used by mixing with other thermoplastic resins. Examples of these are tackifying resins, waxes, HDPE, L-LDPE, LDPE, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer. Examples thereof include polymers, polystyrene, and maleic anhydride graft products thereof.

本発明の樹脂組成物を押出発泡することにより、安価、軽量かつ誘電損失が小さい発泡体を提供できる。   By extruding and foaming the resin composition of the present invention, it is possible to provide a foam that is inexpensive, lightweight, and has low dielectric loss.

以下に、実施例を示して本発明を更に詳細に説明するが、本発明はこれら実施例により制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

以下に、実施例および比較例で用いた測定方法を示す。
(1)ビニリデン基量
樹脂を窒素下、150℃、2分間プレスを行って厚み200μmのフィルムを作製し、パーキンエルマー社製Spectrum One赤外分光光度計を用い、ビニリデン基の特性吸収ピーク888cm−1を用いて定量分析し、炭素原子10000個当たりのビニリデン基の個数(個/10C)を求めた。
(2)密度
JIS K6922−1(1997年)に準拠して測定した。
(3)メルトフローレート(MFR)
JIS K6922−1に準拠して測定した。
(4)誘電特性
発泡シート成形品から一部を切り出し、キーコム(株)製の共振器COE−01、TMR−10A、及び、温度調節装置TCOV−04を組み合わせた装置を用いて、JISC2565に記載の方法に準拠し、摂動方式空洞共振法により10GHzでの比誘電率、及び誘電正接を測定した。この結果を表1に示した。
(5)熱安定性
発泡シートから10×10×10mmの大きさの試料を切り出し、85℃のオーブンに1週間保持した後、収縮量から寸法変化率として求めた。収縮量が小さいほど熱安定性が高いことを示す。
Below, the measuring method used by the Example and the comparative example is shown.
(1) Amount of vinylidene group The resin was pressed under nitrogen at 150 ° C. for 2 minutes to prepare a 200 μm thick film, and a characteristic absorption peak of vinylidene group was 888 cm using a Spectrum One infrared spectrophotometer manufactured by PerkinElmer. 1 was used for quantitative analysis, and the number of vinylidene groups per 10,000 carbon atoms (numbers / 10 4 C) was determined.
(2) Density The density was measured in accordance with JIS K6922-1 (1997).
(3) Melt flow rate (MFR)
The measurement was performed according to JIS K6922-1.
(4) Dielectric properties A part is cut out from the foamed sheet molded product, and is described in JISC2565 using a device in which resonators COE-01, TMR-10A manufactured by Keycom Co., Ltd., and a temperature control device TCOV-04 are combined. The relative dielectric constant and dielectric loss tangent at 10 GHz were measured by the perturbation method cavity resonance method. The results are shown in Table 1.
(5) Thermal stability A sample having a size of 10 × 10 × 10 mm 3 was cut out from the foamed sheet, held in an oven at 85 ° C. for one week, and then obtained as a dimensional change rate from the shrinkage. A smaller shrinkage indicates higher thermal stability.

合成例1
ベッセル型反応器に往復型高圧圧縮機で圧縮したエチレン21.1kg/hを温度45℃で圧入し、重合開始剤としてt−ブチルパーオキサイド7.1g/hを添加し、圧力180MPa、反応器上部の温度257℃、反応器下部の温度276℃で連続的に重合し、密度919kg/m、ビニリデン基量1.2個/10C、メルトフローレート(MFR)1.7g/10分、溶融張力(MS)149mNの高圧法低密度ポリエチレンC1を得た。
Synthesis example 1
21.1 kg / h of ethylene compressed by a reciprocating high-pressure compressor was injected into a Bessel type reactor at a temperature of 45 ° C., 7.1 g / h of t-butyl peroxide was added as a polymerization initiator, the pressure was 180 MPa, the reactor Polymerized continuously at an upper temperature of 257 ° C. and a reactor lower temperature of 276 ° C., density 919 kg / m 3 , vinylidene group content 1.2 / 10 4 C, melt flow rate (MFR) 1.7 g / 10 min A high-pressure low-density polyethylene C1 having a melt tension (MS) of 149 mN was obtained.

合成例2
ベッセル型反応器に往復型高圧圧縮機で圧縮したエチレン20.5kg/hを温度42℃で圧入し、重合開始剤としてt−ブチルパーオキサイド11.5g/hを添加し、圧力180MPa、反応器上部の温度257℃、反応器下部の温度276℃で連続的に重合し、密度919kg/m、ビニリデン基量1.3個/10C、MFR2.0g/10分、MS136mNの高圧法低密度ポリエチレンC2を得た。
Synthesis example 2
20.5 kg / h of ethylene compressed by a reciprocating high-pressure compressor was pressed into a Bessel type reactor at a temperature of 42 ° C., 11.5 g / h of t-butyl peroxide was added as a polymerization initiator, pressure was 180 MPa, reactor Polymerized continuously at an upper temperature of 257 ° C. and a reactor lower temperature of 276 ° C., a density of 919 kg / m 3 , vinylidene group content of 1.3 / 10 4 C, MFR of 2.0 g / 10 min, MS 136 mN Density polyethylene C2 was obtained.

合成例3
ベッセル型反応器に往復型高圧圧縮機で圧縮したエチレン22.5kg/hを温度40℃で圧入し、重合開始剤としてt−ブチルパーオキサイド12.9g/hを添加し、圧力180MPa、反応器上部の温度257℃、反応器下部の温度277℃で連続的に重合し、密度919kg/m、ビニリデン基量1.4個/10C、MFR2.2g/10分、MS131mNの低密度ポリエチレンC3を得た
合成例4
ベッセル型反応器に往復型高圧圧縮機で圧縮したエチレン21.8kg/hを温度33℃で圧入し、重合開始剤としてt−ブチルパーオキサイド13.5g/hを添加し、圧力188MPa、反応器上部の温度256℃、反応器下部の温度277℃で連続的に重合し、密度918kg/m、ビニリデン基量1.4個/10C、MFR2.5g/10分、MS122mNの低密度ポリエチレンC4を得た。
Synthesis example 3
22.5 kg / h of ethylene compressed by a reciprocating high pressure compressor was injected into a Bessel type reactor at a temperature of 40 ° C., 12.9 g / h of t-butyl peroxide was added as a polymerization initiator, a pressure of 180 MPa, a reactor temperature 257 ° C. at the top, the reactor was continuously polymerized at a temperature 277 ° C. lower, density 919 kg / m 3, the amount of vinylidene group 1.4 pieces / 10 4 C, MFR2.2g / 10 min, low density polyethylene MS131mN C3 was obtained Synthesis Example 4
21.8 kg / h of ethylene compressed by a reciprocating high pressure compressor was injected into a Bessel type reactor at a temperature of 33 ° C., 13.5 g / h of t-butyl peroxide was added as a polymerization initiator, pressure was 188 MPa, reactor Low density polyethylene with continuous polymerization at an upper temperature of 256 ° C. and a reactor lower temperature of 277 ° C., density 918 kg / m 3 , vinylidene group content 1.4 / 10 4 C, MFR 2.5 g / 10 min, MS 122 mN C4 was obtained.

合成例5
ベッセル型反応器に往復型高圧圧縮機で圧縮したエチレン22.8kg/hを温度35℃で圧入し、重合開始剤としてt−ブチルパーオキサイド13.8g/hを添加し、圧力180MPa、反応器上部の温度257℃、反応器下部の温度277℃で連続的に重合し、密度918kg/m、ビニリデン基量1.5個/10C、MFR2.8g/10分、MS113mNの低密度ポリエチレンC5を得た。
Synthesis example 5
22.8 kg / h of ethylene compressed by a reciprocating high-pressure compressor was injected into a Bessel type reactor at a temperature of 35 ° C., and 13.8 g / h of t-butyl peroxide was added as a polymerization initiator, and the pressure was 180 MPa. temperature 257 ° C. at the top, the reactor was continuously polymerized at a temperature 277 ° C. lower, density 918 kg / m 3, the amount of vinylidene groups 1.5 / 10 4 C, MFR2.8g / 10 min, low density polyethylene MS113mN C5 was obtained.

実施例1
(1)樹脂組成物の製造
高密度ポリエチレン(東ソー(株)製 ニポロンハード4000、密度:965kg/m、MFR:5g/10分)100重量部に対して、合成例1で製造した高圧法低密度ポリエチレン(C1)10重量部、及びチタン酸バリウム10重量部を添加してドライブレンドした後、プラコー社製50mm径単軸押出機にてバレル温度をC1:160℃、C2:180℃、C3:200℃、ダイヘッド:200℃として溶融混合して、ストランドカットによりペレット化した。
(2)樹脂組成物からなる発泡体の製造
上記樹脂組成物100重量部と発泡核剤としてタルク(商品名:MS、日本タルク製、平均粒径8μm)を0.1重量部含有する発泡成形用ポリエチレン系樹脂組成物とをドライブレンドした後、バレルの途中に揮発性液体注入孔を有する単軸押出機(スクリュー径50mmφ、L/D=36、共伸機械製)の発泡成形用押出設備を用い、該ドライブレンド物を15kg/時で供給し、溶融混練後、圧縮された液状ブタンを100g/時で該注入孔から圧入、分散させ、130℃に設定したスリットダイ(幅500mm)からシート状発泡成形体を押出した。
Example 1
(1) Production of Resin Composition High-pressure method produced in Synthesis Example 1 with respect to 100 parts by weight of high-density polyethylene (Nipolon Hard 4000, density: 965 kg / m 3 , MFR: 5 g / 10 min, manufactured by Tosoh Corporation) After 10 parts by weight of density polyethylene (C1) and 10 parts by weight of barium titanate were added and dry blended, the barrel temperature was C1: 160 ° C, C2: 180 ° C, C3 in a 50 mm diameter single screw extruder manufactured by Placo. : 200 ° C., die head: 200 ° C., melted and mixed, and pelletized by strand cutting.
(2) Production of foam comprising resin composition Foam molding containing 100 parts by weight of the above resin composition and 0.1 parts by weight of talc (trade name: MS, manufactured by Nippon Talc, average particle size: 8 μm) as a foam nucleating agent Equipment for foam molding of a single screw extruder (screw diameter 50 mmφ, L / D = 36, manufactured by Kyodo Shin) having a volatile liquid injection hole in the middle of a barrel after dry blending with a polyethylene resin composition for use The dry blended product is fed at 15 kg / hour, and after melt-kneading, the compressed liquid butane is press-fitted and dispersed from the injection hole at 100 g / hour, and is fed from a slit die (width 500 mm) set at 130 ° C. The sheet-like foamed molded product was extruded.

得られた発泡体シートの評価結果を表1に示す。発泡シートの嵩比重、比誘電率、誘電率、及び寸法安定性の何れも良好であった。   The evaluation results of the obtained foam sheet are shown in Table 1. The bulk specific gravity, relative dielectric constant, dielectric constant, and dimensional stability of the foamed sheet were all good.

実施例2〜5
合成例2〜5で製造した高圧法低密度ポリエチレンC2〜C5を用いて、表1に示した配合に従い、実施例1と同様の手法により押出発泡シートを得た。結果を表1に示す。何れのシートも嵩比重、比誘電率、誘電率、及び寸法安定性は良好であった。
Examples 2-5
Using the high-pressure low-density polyethylene C2 to C5 produced in Synthesis Examples 2 to 5, an extruded foam sheet was obtained in the same manner as in Example 1 according to the formulation shown in Table 1. The results are shown in Table 1. All sheets had good bulk specific gravity, relative dielectric constant, dielectric constant, and dimensional stability.

比較例1
高圧法低密度ポリエチレンとして東ソー(株)製 ペトロセン203(密度:918kg/m、MFR:8g/10分)を用いた以外は実施例1と同様の手法で発泡シートを製造したが、発泡倍率が低いために嵩比重が大きく、軽量な発泡体が得られず、また比誘電率も1.36と低い発泡体しか得られなかった。
Comparative Example 1
A foam sheet was produced in the same manner as in Example 1 except that Tosoh Co., Ltd. Petrocene 203 (density: 918 kg / m 3 , MFR: 8 g / 10 min) was used as the high-pressure low-density polyethylene. , The bulk specific gravity was large, a lightweight foam could not be obtained, and only a foam having a low dielectric constant of 1.36 could be obtained.

比較例2〜3
高圧法低密度ポリエチレンとして東ソー(株)製 ペトロセン213(密度918kg/m、MFR8g/10分)、ペトロセン212(密度918kg/m、MFR12.5g/10分)、及び合成例1で得られたC1を用いた以外は実施例1と同様の手法で発泡シートを製造した。結果を表1に示すが、嵩比重が大きいものしか得られず、比誘電率も1.35〜1.36と低かった。
Comparative Examples 2-3
As high-pressure low-density polyethylene, obtained by Tosoh Co., Ltd. Petrocene 213 (density 918 kg / m 3 , MFR 8 g / 10 min), Petrocene 212 (density 918 kg / m 3 , MFR 12.5 g / 10 min), and Synthesis Example 1 A foam sheet was produced in the same manner as in Example 1 except that C1 was used. The results are shown in Table 1, and only those having a large bulk specific gravity were obtained, and the relative dielectric constant was also low at 1.35 to 1.36.

比較例4
高圧法低密度ポリエチレンとしてペトロセン360(密度918kg/m、MFR8g/10分)を用いた以外は実施例1と同様の手法で発泡シートを製造した。比誘電率は高いが、嵩比重も大きく軽量な発泡体を得ることが出来なかった。
Comparative Example 4
A foam sheet was produced in the same manner as in Example 1 except that Petrocene 360 (density 918 kg / m 3 , MFR 8 g / 10 min) was used as the high-pressure low-density polyethylene. Although the relative dielectric constant was high, it was not possible to obtain a lightweight foam having a large bulk specific gravity.

Figure 2016006142
Figure 2016006142

Claims (4)

ポリオレフィン系樹脂100重量部に対し、ビニリデン基量(Vd)が1.2個/10C以上2.1個/10C以下であり、メルトフローレート(MFR)(測定条件:190℃、2.16kg荷重)が0.1g/10分以上6.0g/10分以下であり、溶融張力(測定条件:温度190℃、引取速度0.5m/分)が50mN以上200mN以下である高圧法低密度ポリエチレンを5〜30重量部、誘電体セラミックスを5〜30重量部含む樹脂組成物。 The vinylidene group amount (Vd) is 1.2 pieces / 10 4 C or more and 2.1 pieces / 10 4 C or less with respect to 100 parts by weight of the polyolefin resin, and melt flow rate (MFR) (measuring condition: 190 ° C., 2.16 kg load) is 0.1 g / 10 min or more and 6.0 g / 10 min or less, and melt tension (measurement conditions: temperature 190 ° C., take-off speed 0.5 m / min) is 50 mN or more and 200 mN or less. A resin composition comprising 5 to 30 parts by weight of low density polyethylene and 5 to 30 parts by weight of dielectric ceramics. 誘電体セラミックスが、粉末またはウイスカーである請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the dielectric ceramic is a powder or a whisker. 請求項1又は2に記載の樹脂組成物を発泡させて得られる嵩比重が0.05〜0.5g/cmであり、比誘電率が1.5〜3.5である発泡体。 A foam having a bulk specific gravity of 0.05 to 0.5 g / cm 3 and a relative dielectric constant of 1.5 to 3.5 obtained by foaming the resin composition according to claim 1. 請求項1又は2に記載の樹脂組成物を溶融押出機発泡法により発泡させることを特徴とする請求項3に記載の発泡体の製造方法。 The method for producing a foam according to claim 3, wherein the resin composition according to claim 1 is foamed by a melt extruder foaming method.
JP2014127349A 2014-06-20 2014-06-20 Resin composition and foam made thereof Pending JP2016006142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127349A JP2016006142A (en) 2014-06-20 2014-06-20 Resin composition and foam made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127349A JP2016006142A (en) 2014-06-20 2014-06-20 Resin composition and foam made thereof

Publications (1)

Publication Number Publication Date
JP2016006142A true JP2016006142A (en) 2016-01-14

Family

ID=55224756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127349A Pending JP2016006142A (en) 2014-06-20 2014-06-20 Resin composition and foam made thereof

Country Status (1)

Country Link
JP (1) JP2016006142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056106A1 (en) * 2016-09-26 2018-03-29 パナソニックIpマネジメント株式会社 Resin composition for millimeter wave reflection, resin sheet using same, fiber and article for millimeter wave reflection
JP7130080B1 (en) 2021-03-15 2022-09-02 株式会社ジェイエスピー Expanded polyethylene resin particles, method for producing expanded polyethylene resin particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072649A1 (en) * 2001-03-12 2002-09-19 Idemitsu Petrochemical Co., Ltd. Process for producing polyolefin resin composition and polypropylene composition
JP2002348343A (en) * 2001-05-28 2002-12-04 Idemitsu Petrochem Co Ltd Olefin polymer, its manufacturing method and thermoplastic resin composition comprising the polymer
JP2005097485A (en) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd Ethylene-based resin composition
JP2005097483A (en) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd High pressure radical polymerization process polyethylene
JP2013001826A (en) * 2011-06-17 2013-01-07 Tosoh Corp Resin composition for injection foam, injection foam molded article, and method for producing the article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072649A1 (en) * 2001-03-12 2002-09-19 Idemitsu Petrochemical Co., Ltd. Process for producing polyolefin resin composition and polypropylene composition
JP2002348343A (en) * 2001-05-28 2002-12-04 Idemitsu Petrochem Co Ltd Olefin polymer, its manufacturing method and thermoplastic resin composition comprising the polymer
JP2005097485A (en) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd Ethylene-based resin composition
JP2005097483A (en) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd High pressure radical polymerization process polyethylene
JP2013001826A (en) * 2011-06-17 2013-01-07 Tosoh Corp Resin composition for injection foam, injection foam molded article, and method for producing the article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056106A1 (en) * 2016-09-26 2018-03-29 パナソニックIpマネジメント株式会社 Resin composition for millimeter wave reflection, resin sheet using same, fiber and article for millimeter wave reflection
JPWO2018056106A1 (en) * 2016-09-26 2019-06-24 パナソニックIpマネジメント株式会社 Resin composition for millimeter wave reflection, resin sheet using the same, fiber and article for millimeter wave reflection
JP7130080B1 (en) 2021-03-15 2022-09-02 株式会社ジェイエスピー Expanded polyethylene resin particles, method for producing expanded polyethylene resin particles
JP2022141166A (en) * 2021-03-15 2022-09-29 株式会社ジェイエスピー Polyethylene-based resin foam particle, and method for producing polyethylene-based resin foam particle

Similar Documents

Publication Publication Date Title
CA2969004C (en) Process for foaming polyolefin compositions using a fluororesin/azodicarbonamide mixture as a nucleating agent
JP3279382B2 (en) Non-crosslinked polyethylene resin foam particles and method for producing the same
JPWO2016060162A1 (en) Polypropylene-based resin expanded particles, polypropylene-based resin in-mold expanded molded body, and method for producing the same
JPWO2009047998A1 (en) Polypropylene resin pre-expanded particles and method for producing the same
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JP2007270116A (en) Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP2016006142A (en) Resin composition and foam made thereof
JPWO2016098698A1 (en) Polypropylene resin foam particles
JP5722564B2 (en) Automotive exterior materials
JPWO2016158686A1 (en) Method for producing polyethylene resin foam molding
JP6318655B2 (en) Foam and production method thereof
CN107312230B (en) Polyethylene composition, expanded beads, process for producing the same, and expanded bead molded body
EP3224836A1 (en) Process for foaming polyolefin compositions using fluororesin/citrate mixture as nucleating agent
JP5358106B2 (en) Polypropylene resin pre-expanded particles
JP5581138B2 (en) Parts packing material
JP3205225B2 (en) Polypropylene resin foam
JP2016024870A (en) Wire
JPH10306173A (en) Propylene resin particle for foam molding, foamable propylene resin particle, prefoamed propylene resin particle, and molded propylene resin foam
JP5568350B2 (en) Method for producing polypropylene-based modified resin
JP6797261B2 (en) A process for foaming a polyolefin composition using a fluororesin / azodicarbonamide mixture as a nucleating agent
JP5825071B2 (en) Polyethylene resin composition, foam and method for producing the same
JPH0781028B2 (en) Method for producing non-crosslinked linear low density polyethylene pre-expanded particles
JP2001347522A (en) Polypropylene resin particles for foaming and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703