JP2017057496A - Block door of converter type refining furnace and operation method of converter type refining furnace - Google Patents

Block door of converter type refining furnace and operation method of converter type refining furnace Download PDF

Info

Publication number
JP2017057496A
JP2017057496A JP2016169074A JP2016169074A JP2017057496A JP 2017057496 A JP2017057496 A JP 2017057496A JP 2016169074 A JP2016169074 A JP 2016169074A JP 2016169074 A JP2016169074 A JP 2016169074A JP 2017057496 A JP2017057496 A JP 2017057496A
Authority
JP
Japan
Prior art keywords
furnace
door
slag
furnace body
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016169074A
Other languages
Japanese (ja)
Other versions
JP6327304B2 (en
Inventor
孝彦 前田
Takahiko Maeda
孝彦 前田
田中 高太郎
Kotaro Tanaka
高太郎 田中
敏勝 経塚
Toshikatsu Kyozuka
敏勝 経塚
佐野 秀樹
Hideki Sano
秀樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017057496A publication Critical patent/JP2017057496A/en
Application granted granted Critical
Publication of JP6327304B2 publication Critical patent/JP6327304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a slug from sticking to a meeting position in a converter type refining furnace that performs intermediate waste discharge.SOLUTION: A converter type refining furnace includes a first door part that has a first meeting part on one end side in an uniaxial direction and can cover a part of a furnace front side opening part of a fixed wall of the converter type refining furnace, and a second door part that is disposed in parallel with the first door part in the uniaxial direction, has a second meeting part on one end side opposite to the first door part, and can partially cover the furnace front side opening part, in which, in a state where the first meeting part and the second meeting part meet and the first door part and the second door part cover and close the furnace front side opening part, a first distance d in the direction in parallel with the uniaxial direction of a meeting position where the first meeting part and the second meeting part meet and a center position of the throat of a furnace body is larger than 0 m, and a relationship between a radius r of the throat, a second distance L between the throat and a furnace front floor, and a height from a center of a trunnion rotation axis of the furnace body to the throat satisfies a formula (1): d/r≥1-3 L/H.SELECTED DRAWING: Figure 1

Description

本開示は、転炉型精錬炉の遮断扉及び転炉型精錬炉の操業方法に関する。   The present disclosure relates to a shut-off door for a converter-type refining furnace and a method for operating the converter-type refining furnace.

近年、1つの転炉型精錬炉を用いて溶銑を脱燐或いは脱炭する送酸精錬を行う際に、転炉型精錬炉の炉体内に溶銑を保持したままスラグのみを排出(「中間排滓」ともいう)させる中間排滓工程を途中で行い、送酸精錬を2段階で連続して行う方法が実用化されている。例えば、特許文献1には、脱燐処理後に溶銑を転炉内に残したまま転炉を傾転させてスラグのみを排出し、その後に同一転炉で脱炭精錬を実施し、脱炭精錬後のスラグを次の溶銑の脱燐処理に再利用する方法が開示されている。また、特許文献2には、一つの転炉型精錬炉を用いて、溶銑の脱珪処理と脱燐処理とを途中の排滓工程を挟んで連続して行う溶銑の予備処理(脱燐)方法が開示されている。   In recent years, when carrying out acid refining to dephosphorize or decarburize hot metal using one converter-type smelting furnace, only slag is discharged while holding the hot metal in the furnace of the converter-type smelting furnace ( A method has been put to practical use in which an intermediate waste removal process is also performed in the middle and acid refining is continuously performed in two stages. For example, Patent Document 1 discloses that after the dephosphorization process, the converter is tilted while leaving the hot metal in the converter, and only the slag is discharged. Thereafter, the decarburization refining is performed in the same converter, A method is disclosed in which the later slag is reused for the subsequent dephosphorization of hot metal. Patent Document 2 discloses a hot metal preliminary treatment (dephosphorization) in which a single converter-type refining furnace is used to continuously perform desiliconization treatment and dephosphorization treatment of hot metal with an intermediate waste removal step in between. A method is disclosed.

これらの方法では、途中の中間排滓を行わないで、送酸精錬を継続して行う精錬方法と比較して、途中でスラグを排出することにより、その後の処理でのCaO系媒溶剤の使用量を削減できる利点がある。
また、1段階目の送酸精錬を実施した後、スラグだけでなく溶銑も一旦精錬炉から排出して、同一精錬炉又は別の精錬炉に移し替えてから2段階目の送酸精錬を実施する方法と比較すると、(i)溶銑の出湯や再装入に要する時間を短縮して転炉型精錬炉の稼動率を高めることができる、(ii)溶銑の移し替えが少ないため放熱ロスを少なくできる、(iii)2段階目の送酸精錬のスラグを炉体内に残して、次の溶銑の1段階目の送酸精錬に再利用することにより、CaO系媒溶剤の使用量を削減することができる、(iv)高塩基度である2段階目の送酸精錬のスラグの排出を低減させて、比較的低塩基度である1段階目の送酸精錬のスラグの排出を増加させることで、スラグの水和膨張特性を改善してスラグの利用促進を図ることができる、という利点がある。
In these methods, the use of a CaO-based medium solvent in the subsequent treatment is performed by discharging slag in the middle compared with a refining method in which acid refining is continued without performing intermediate waste in the middle. There is an advantage that the amount can be reduced.
In addition, after performing the first-stage acid refining, not only slag but also molten iron is once discharged from the refining furnace and transferred to the same refining furnace or another refining furnace, and then the second-stage acid refining is performed. Compared with this method, (i) the time required for hot metal tapping and recharging can be shortened and the operating rate of the converter-type refining furnace can be increased. (Iii) The amount of CaO-based solvent used can be reduced by leaving the slag of the second-stage acid refining in the furnace and reusing it for the first-stage acid refining of the next hot metal. (Iv) reducing the discharge of the second-stage acid refining slag with high basicity and increasing the discharge of the first-stage acid refining slag with relatively low basicity Therefore, it is possible to improve the hydration expansion characteristics of slag and promote the use of slag Kill, there is an advantage in that.

これらの利点を享受するためには、中間排滓工程において、いかに速やかに目標量のスラグを炉内から排出するかが、操業上の重要な点となる。中間排滓工程でのスラグの排出量が少ない場合には、上述したようなCaO系媒溶剤の使用量を削減できる効果は期待できず、CaO系媒溶剤に使用量は途中の排滓を行わない方法とあまり変わらない。
そこで、特許文献1及び特許文献2では、中間排滓工程において効率的に排滓を行うために、1段階目の送酸精錬において溶融スラグをフォーミングさせて、溶融スラグの体積を増大させる方法が開示されている。特許文献1及び特許文献2では、溶融スラグの体積を増大させることにより、炉口から中間排滓する際に炉口下端からのスラグ浴面の高さを高くすることができ、溶融スラグの溢流による排出効率を高めることができる。ここで、スラグのフォーミングとは、溶融状態のスラグが気泡を含み、見掛け上、体積膨脹する現象である。
In order to enjoy these advantages, an important operational point is how quickly a target amount of slag is discharged from the furnace in the intermediate evacuation process. When the amount of slag discharged in the intermediate evacuation process is small, the effect of reducing the amount of CaO-based solvent used as described above cannot be expected, and the amount of CaO-based solvent used is evacuated midway. Not much different from no method.
Therefore, in Patent Document 1 and Patent Document 2, there is a method for forming molten slag in the first-stage acid refining to increase the volume of the molten slag in order to efficiently discharge in the intermediate discharging process. It is disclosed. In Patent Document 1 and Patent Document 2, by increasing the volume of the molten slag, the height of the slag bath surface from the lower end of the furnace port can be increased during intermediate discharge from the furnace port, and the overflow of molten slag The discharge efficiency by the flow can be increased. Here, slag forming is a phenomenon in which molten slag contains bubbles and apparently expands in volume.

しかし、溶融スラグの排出速度を高めようとすると、炉前側の操業床上まで溶融スラグが流れ出るおそれがあるため、中間排滓時には、遮断扉で炉体を囲む隔壁の一部である固定壁の炉前側開放部を覆う必要がある。
一般に転炉型精錬炉では、操業床への高温物質の飛散や煙の流出による作業環境の悪化や火災などの災害の発生を防止するため、例えば特許文献2に開示されているように、転炉型精錬炉の炉体を囲むように炉体と操業床上の空間との間に隔壁が設けられる。この隔壁は一般に、固定壁と固定壁の炉前側開放部を移動可能に覆う移動壁である遮断扉とを有する。遮断扉は、炉前側操業床に設置されたレール上を自走するなどして移動し、溶銑やスクラップなどを炉体内に装入するたびに開かれ、吹錬中や中間排滓中には固定壁の炉前側開放部を覆うように閉じられる。この際、遮断扉の移動速度が大き過ぎるとレール上の堆積物による脱線などのトラブルを招くおそれがあるため、遮断扉の移動速度には制約がある。しかしながら、遮断扉の移動速度が極端に遅い場合には、遮断扉の開閉時間が長くなるため、転炉型精錬炉設備の生産性低下の一因となる。
However, if the molten slag discharge speed is increased, the molten slag may flow up to the operation floor on the front side of the furnace, so at the time of intermediate evacuation, a fixed-wall furnace that is part of the partition wall surrounding the furnace body with a shut-off door It is necessary to cover the front opening.
In general, in a converter-type refining furnace, in order to prevent the occurrence of disasters such as deterioration of the working environment and fire due to the scattering of high-temperature substances to the operation floor and the outflow of smoke, as disclosed in Patent Document 2, for example, A partition wall is provided between the furnace body and the space on the operation floor so as to surround the furnace body of the furnace type refining furnace. This partition generally has a fixed wall and a blocking door that is a moving wall that movably covers the open front side of the fixed wall. The shut-off door moves by, for example, running on the rail installed on the operation floor in front of the furnace, and is opened whenever hot metal or scrap is charged into the furnace body. It is closed so as to cover the open part on the furnace front side of the fixed wall. At this time, if the moving speed of the blocking door is too high, troubles such as derailment due to deposits on the rails may be caused, so the moving speed of the blocking door is limited. However, when the moving speed of the shut-off door is extremely slow, the open / close time of the shut-off door becomes long, which contributes to a decrease in productivity of the converter-type refining furnace equipment.

遮断扉の移動ストロークを小さくして開閉時間を短縮するために、遮断扉は左右2枚に分割された両開きの構造であることが多い。しかし、中間排滓を頻繁に行う転炉型精錬炉設備の場合、中間排滓時に、遮断扉の召合せ位置のわずかな隙間に排出された溶融スラグが流れ込み易いため、溶融スラグが遮断扉や操業床の召合せ位置に凝固して付着する可能性があった。付着物は、中間排滓が繰り返し行われることで、次第に堆積し成長する。そして、付着物が大きくなりすぎると、遮断扉を閉じることができなくなり、遮断扉が機能しなくなるという問題があった。また、付着物を除去する場合には、余計な作業時間を要するため、生産性に悪影響を及ぼすこととなる。   In order to shorten the opening / closing time by reducing the moving stroke of the blocking door, the blocking door is often a double-open structure divided into two left and right. However, in the case of a converter-type refining furnace that frequently performs intermediate waste, the molten slag is likely to flow into a small gap at the summing position of the shut-off door during the intermediate waste, so the molten slag is There was a possibility of solidifying and adhering to the summing position of the operation floor. The deposits are gradually deposited and grown by repeated intermediate evacuation. If the deposit becomes too large, the blocking door cannot be closed and the blocking door will not function. Moreover, since extra work time is required when removing the deposits, the productivity is adversely affected.

特開2008−255446号公報JP 2008-255446 A 特開平4−362112号公報JP-A-4-362112

そこで、本発明は、上記の課題に着目してなされたものであり、中間排滓を行う転炉型精錬炉において、召合せ位置へのスラグの付着を抑制することができる転炉型精錬炉の遮断扉及び転炉型精錬炉の操業方法を提供することを目的としている。   Therefore, the present invention has been made paying attention to the above-mentioned problem, and in a converter type refining furnace that performs intermediate waste, a converter type refining furnace that can suppress adhesion of slag to the summing position. The purpose is to provide a method for operating the shut-off door and converter-type refining furnace.

本発明の一態様によれば、水平方向に平行な一軸方向に移動可能な第1の移動手段と、上記一軸方向の一端側に第1の召合せ部とを有し、転炉型精錬炉の炉体を囲む隔壁の一部である固定壁の炉前側開放部の一部を覆うことが可能な第1の扉部と、上記第1の扉部と上記一軸方向に並んで配され、上記一軸方向に移動可能な第2の移動手段と、上記第1の扉部と対向する上記一軸方向の一端側に第2の召合せ部とを有し、上記炉前側開放部の一部覆うことが可能な第2の扉部とを備え、上記第1の召合せ部と上記第2の召合せ部とが合わさり、上記第1の扉部と上記第2の扉部とにより上記炉前側開放部が覆われた閉じた状態において、上記第1の召合せ部と上記第2の召合せ部とが合わさる位置である召し合わせ位置と、上記炉体の炉口の中心位置との上記一軸方向に平行な方向における第1の距離d[m]が、0mよりも大きく、且つ、上記炉口の半径r[m]、上記炉体を正立した状態から反出湯側に90度傾転させた位置における上記炉口と炉前床との第2の距離L[m]、及び上記炉体のトラニオンの回転軸中心から上記炉口までの高さH[m]との関係が(1)式を満たすことを特徴とする転炉型精錬炉の遮断扉が提供される。
d/r≧1−3L/H ・・・(1)
According to one aspect of the present invention, a converter type refining furnace has first moving means that can move in a uniaxial direction parallel to the horizontal direction, and a first summing portion on one end side in the uniaxial direction. A first door part capable of covering a part of the front opening part of the fixed wall that is a part of a partition wall surrounding the furnace body, and the first door part and the first door part are arranged side by side in the uniaxial direction, The second moving means movable in the uniaxial direction, and the second summing portion on one end side in the uniaxial direction facing the first door portion, partially covering the furnace front side opening portion. A second door portion capable of being combined, wherein the first summing portion and the second summing portion are combined, and the first door portion and the second door portion allow the front side of the furnace In a closed state where the open part is covered, a summing position where the first summing part and the second summing part are combined, and a furnace opening of the furnace body From the state where the first distance d [m] in the direction parallel to the uniaxial direction with respect to the center position is larger than 0 m, the radius r [m] of the furnace port, and the furnace body upright, A second distance L [m] between the furnace port and the furnace front floor at a position tilted 90 degrees to the side, and a height H [m] from the center of the trunnion rotation axis of the furnace body to the furnace port Therefore, there is provided a shut-off door for a converter-type refining furnace characterized in that the relationship with the above satisfies the expression (1).
d / r ≧ 1-3 L / H (1)

本発明に一態様によれば、転炉型精錬炉の炉体に収容された溶銑に酸素ガスを供給し、上記溶銑を送酸精錬する一次送酸精錬工程と、上記一次送酸精錬工程の後、上記炉体に収容された上記溶銑を上記炉体に残留させたまま、上記炉体の炉口が炉前側に位置するように上記炉体を傾転させて、上記一次送酸精錬工程で生成したスラグの少なくとも一部を上記炉口から排出する中間排滓工程と、上記中間排滓工程の後、上記炉体に残留させた上記溶銑に上記酸素ガスを供給し、さらに送酸精錬する二次送酸精錬工程とを備え、上記中間排滓工程では、水平方向に平行な一軸方向に移動可能な第1の移動手段と上記一軸方向の一端側に第1の召合せ部とを有し、上記炉体を囲む隔壁の一部である固定壁の炉前側開放部の一部を覆うことが可能な第1の扉部と、上記第1の扉部と上記一軸方向に並んで配され、上記一軸方向に移動可能な第2の移動手段と、上記第1の扉部と対向する上記一軸方向の一端側に第2の召合せ部とを有し、上記炉前側開放部の一部を覆うことが可能な第2の扉部とを備えた遮断扉を、上記第1の召合せ部と上記第2の召合せ部とが合わさり、上記第1の扉部と上記第2の扉部とにより上記炉前側開放部が覆われた閉じた状態で、上記スラグを上記炉口から排出し、上記閉じた状態では、上記第1の召合せ部と上記第2の召合せ部とが合わさる位置である召し合わせ位置と、上記炉体の炉口の中心位置との上記一軸方向に平行な方向における第1の距離d[m]が、0mよりも大きく、且つ、上記炉口の半径r[m]、上記炉体を正立した状態から反出湯側に90度傾転させた位置における上記炉口と炉前床との第2の距離L[m]、及び上記炉体のトラニオンの回転軸中心から上記炉口までの高さH[m]との関係が(1)式を満たすことを特徴とする転炉型精錬炉の操業方法が提供される。   According to one aspect of the present invention, a primary acid refining step for supplying oxygen gas to the hot metal accommodated in a furnace body of a converter type refining furnace, and sending the hot metal by acid refining, and a primary acid refining step, Then, while the hot metal accommodated in the furnace body remains in the furnace body, the furnace body is tilted so that the furnace port of the furnace body is located on the front side of the furnace, and the primary acid refining step An intermediate waste process for discharging at least a part of the slag produced in the furnace from the furnace port, and after the intermediate waste process, supplying the oxygen gas to the molten iron remaining in the furnace body, and further acid refining A secondary acid feed refining step, wherein the intermediate waste step includes a first moving means movable in a uniaxial direction parallel to the horizontal direction and a first summing portion on one end side in the uniaxial direction. And a part of the open part on the furnace front side of the fixed wall that is part of the partition wall surrounding the furnace body. Door portion, the first door portion and the second moving means arranged side by side in the uniaxial direction and movable in the uniaxial direction, and one end side in the uniaxial direction facing the first door portion And a second door part capable of covering a part of the open side on the furnace front side with a second summing part, the first summing part and the second summing part. The slag is discharged from the furnace port in the closed state where the first door part and the second door part cover the furnace front side open part, and the closed. In the state, a first position in a direction parallel to the uniaxial direction between a summing position where the first summing part and the second summing part are combined with a center position of the furnace port of the furnace body. The distance d [m] is larger than 0 m, the radius r [m] of the furnace port, and the furnace body upright from the state where the furnace body is upright is 9 The relationship between the second distance L [m] between the furnace port and the front floor of the furnace at the tilted position, and the height H [m] from the rotation axis center of the trunnion of the furnace body to the furnace port Satisfies the equation (1). A method for operating a converter-type refining furnace is provided.

本発明の一態様によれば、中間排滓を行う転炉型精錬炉において、召合せ位置へのスラグの付着を抑制することができる。   According to one aspect of the present invention, it is possible to suppress the adhesion of slag to a summing position in a converter type refining furnace that performs intermediate waste.

炉体が傾転し、遮断扉が閉じた状態における転炉型精錬炉を示す正面図である。It is a front view which shows the converter type | mold refining furnace in the state which the furnace body tilted and the interruption | blocking door closed. 炉体が正立し、遮断扉が閉じた状態における転炉型精錬炉を示す正面図である。It is a front view which shows the converter type | mold refining furnace in the state in which the furnace body stood upright and the cutoff door was closed. 炉体が正立し、遮断扉が開いた状態における転炉型精錬炉を示す正面図である。It is a front view which shows the converter type refining furnace in the state where the furnace body stood upright, and the shut-off door opened. 転炉型精錬炉を示す平面図である。It is a top view which shows a converter type refining furnace. 転炉型精錬炉を示す側面図である。It is a side view which shows a converter type refining furnace. 本発明の一実施形態に係る転炉型精錬炉の操業方法を示す説明図である。It is explanatory drawing which shows the operating method of the converter type refining furnace which concerns on one Embodiment of this invention. 実施例において、d/rとL/Hとの関係が、遮断扉の召合わせ位置へのスラグ付着に与える影響を示すグラフである。In an Example, it is a graph which shows the influence which the relationship between d / r and L / H has on the slag adhesion to the summing position of the blocking door.

以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
<転炉型精錬炉の遮断扉の構成>
はじめに、図1〜図5を参照して、本発明の一実施形態に係る転炉型精錬炉の遮断扉について説明する。転炉型精錬炉1は、溶銑を送酸精錬する精錬装置であり、図1に示すように、炉体2と、隔壁3と、集塵設備4とを有する。
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
<Configuration of the shut-off door of the converter type refining furnace>
First, with reference to FIGS. 1-5, the shutoff door of the converter type refining furnace which concerns on one Embodiment of this invention is demonstrated. The converter-type refining furnace 1 is a refining apparatus that performs acid refining of hot metal, and includes a furnace body 2, a partition wall 3, and a dust collection facility 4 as shown in FIG. 1.

炉体2は、図2のように正立した状態で、鉛直方向であるz軸正方向側の上部に開口部である炉口21を有する精錬容器であり、内壁全面に耐火物が設けられる。また、炉体2は、水平方向であるx軸方向側の両端に一対のトラニオン22(筒耳)を有し、一対のトラニオン22に接続された不図示の傾転装置によって、x軸方向に平行な一対のトラニオン22の軸心を中心として傾転可能に構成される。また、炉体2は、正立した状態で、鉛直方向下側の一部が、炉前床5よりも低い高さとなるように設けられる。   The furnace body 2 is a refining vessel having a furnace port 21 that is an opening at the upper part on the z-axis positive direction side that is the vertical direction in an upright state as shown in FIG. 2, and a refractory is provided on the entire inner wall. . In addition, the furnace body 2 has a pair of trunnions 22 (cylinder ears) at both ends on the x-axis direction side which is the horizontal direction, and in the x-axis direction by a tilting device (not shown) connected to the pair of trunnions 22. It is configured to be tiltable about the axis of a pair of parallel trunnions 22. Moreover, the furnace body 2 is provided in an upright state so that a part of the lower side in the vertical direction is lower than the front floor 5 of the furnace.

隔壁3は、炉体2の炉前床5よりも上側(z軸正方向側)の領域を囲む壁であり、固定壁31と、遮断扉32とを有する。固定壁31は、炉体2を囲んで形成され、炉前側となるx軸及びz軸に垂直なy軸負方向側に、一部が開口した炉前側開放部311を有する。炉前側開放部311は、矩形状の開口領域であり、炉前床5から集塵設備4の一部を含む所定の高さに形成される。遮断扉32は、第1の扉部32aと、第2の扉部32bとからなる、移動式の壁である。   The partition wall 3 is a wall that surrounds a region on the upper side (z-axis positive direction side) of the furnace front floor 5 of the furnace body 2, and includes a fixed wall 31 and a blocking door 32. The fixed wall 31 is formed so as to surround the furnace body 2, and has a furnace front side opening portion 311 that is partially open on the y axis negative direction side perpendicular to the x axis and the z axis that are the furnace front side. The furnace front side open part 311 is a rectangular opening region, and is formed at a predetermined height including a part of the dust collection equipment 4 from the furnace front floor 5. The blocking door 32 is a movable wall composed of a first door portion 32a and a second door portion 32b.

第1の扉部32aは、炉前側開放部311の一部を覆うことが可能な略矩形状の形状を有し、第1の移動手段321aと、x軸負方向側端部の第1の召合せ部322aと、第1の保護板323aとを有する。第1の扉部32aのy軸正方向側の面には、z軸負方向側となる下端側の所定領域に、鋼管などの冷却部材が設けられる。冷却部材は、内部に冷却水が流れることで、冷却される。また、第1の扉部32aのy軸正方向側の面における上記所定領域は、後述する中間排滓工程において、炉口21から排出されるスラグがかかる可能性のある領域や炉内からの輻射熱を強く受ける領域を含むように設けられる。第1の移動手段321aは、第1の扉部32aの下端にx軸方向に並んで設けられた一対の車輪であり、炉前床5上の水平方向に平行な一軸方向となるx軸方向に延在して設けられる不図示のレール上に配される。また、第1の移動手段321aは、第1の扉部32aに設けられた不図示のモータ等の駆動装置に接続され、駆動装置の駆動力を受けて回転することで、第1の扉部32aをx軸方向に沿って移動させる。第1の保護板323aは、図4及び図5に示すように、第1の扉部32aの下端部に、第1の召合せ部322aからx軸正方向へ延在し、且つ炉体2側となるy軸正方向側に突出して設けられる。第1の保護板323aは、y軸正方向側の高さが低くなるように上面が傾斜し、炉前床5よりもy軸正方向に延出して設けられる。   The first door portion 32a has a substantially rectangular shape capable of covering a part of the furnace front side opening portion 311 and includes the first moving means 321a and the first end of the x-axis negative direction side end portion. A summing unit 322a and a first protective plate 323a are provided. A cooling member such as a steel pipe is provided in a predetermined region on the lower end side which is the z-axis negative direction side on the surface on the y-axis positive direction side of the first door portion 32a. The cooling member is cooled by flowing cooling water therein. In addition, the predetermined region on the surface on the y-axis positive direction side of the first door portion 32a is a region where slag discharged from the furnace port 21 may be applied in the intermediate evacuation step described later or from the inside of the furnace. It is provided so as to include a region that receives strong radiant heat. The first moving means 321a is a pair of wheels provided side by side in the x-axis direction at the lower end of the first door portion 32a, and the x-axis direction is a uniaxial direction parallel to the horizontal direction on the furnace front floor 5 It is arranged on a rail (not shown) provided so as to extend. The first moving means 321a is connected to a driving device such as a motor (not shown) provided in the first door portion 32a, and rotates by receiving the driving force of the driving device. 32a is moved along the x-axis direction. As shown in FIGS. 4 and 5, the first protective plate 323a extends from the first summing portion 322a in the x-axis positive direction at the lower end portion of the first door portion 32a, and the furnace body 2 Projecting to the positive y-axis direction side. The upper surface of the first protective plate 323a is inclined so that the height on the y-axis positive direction side is low, and the first protection plate 323a is provided to extend in the y-axis positive direction from the furnace front floor 5.

第2の扉部32bは、炉前側開放部311の一部を覆うことが可能な略矩形状の形状を有し、第2の移動手段321bと、x軸正方向側端部の第2の召合せ部322bと、第2の保護板323bとを有する。第2の扉部32bのy軸正方向側の面には、必要に応じて第1の扉部32aと同様に、z軸負方向側となる下端側の所定領域に、鋼管などの冷却部材が設けられる。第2の移動手段321bは、第1の移動手段321aと同様な一対の車輪であり、炉前床5上のレール上に配される第1の移動手段321aと同じレール上に配される。また、第2の移動手段321bは、第2の扉部32bに設けられた不図示のモータ等の駆動装置に接続され、駆動装置の駆動力を受けて回転することで、第2の扉部32bをx軸方向に沿って移動させる。第2の保護板323bは、第1の保護板323aと同様に、第2の扉部32bの下端部に、第2の召合せ部322bからx軸負方向へ延在し、且つ炉体2側となるy軸正方向側に突出して設けられる。第2の保護板323bは、y軸正方向側の高さが低くなるように上面が傾斜し、炉前床5よりもy軸正方向に延出して設けられる。   The second door portion 32b has a substantially rectangular shape capable of covering a part of the furnace front side opening portion 311. The second moving means 321b and the second end of the x-axis positive direction side end portion. A summing unit 322b and a second protective plate 323b are provided. On the surface of the second door 32b on the positive side in the y-axis, a cooling member such as a steel pipe is provided on a predetermined region on the lower end side that is on the negative side of the z-axis as necessary, as with the first door 32a. Is provided. The second moving means 321b is a pair of wheels similar to the first moving means 321a, and is arranged on the same rail as the first moving means 321a arranged on the rail on the furnace front floor 5. Further, the second moving means 321b is connected to a driving device such as a motor (not shown) provided in the second door portion 32b, and rotates by receiving the driving force of the driving device. 32b is moved along the x-axis direction. Similarly to the first protection plate 323a, the second protection plate 323b extends from the second summing portion 322b in the negative x-axis direction to the lower end portion of the second door portion 32b, and the furnace body 2 Projecting to the positive y-axis direction side. The upper surface of the second protective plate 323b is inclined so that the height on the y-axis positive direction side is low, and the second protection plate 323b extends from the furnace front floor 5 in the y-axis positive direction.

遮断扉32は、両開き式の扉であり、第1及び第2の扉部32a,32bが、第1及び第2の移動手段によって水平方向に移動することで開閉動作を行う。この際、図1及び図2に示すように、第1の召合せ部322aと第2の召合せ部322bとが合わさり、炉前側開放部311を覆った状態が、遮断扉32が閉じた状態となる。一方、図3に示すように、第1の召合せ部322aと第2の召合せ部322bとが離間し、炉前側開放部311が開放された状態が、遮断扉32が開いた状態となる。遮断扉32が閉じた状態では、第1の召合せ部322aと第2の召合せ部322bとが合わさるx軸方向の位置である召合せ位置Pが、炉口21の中心位置Pに対して、x軸方向に第1の距離d[m]だけずれて配される。 The blocking door 32 is a double-open door, and opens and closes when the first and second door portions 32a and 32b are moved in the horizontal direction by the first and second moving means. At this time, as shown in FIGS. 1 and 2, the state in which the first summing unit 322 a and the second summing unit 322 b are combined and the furnace front side opening unit 311 is covered is the state where the shut-off door 32 is closed. It becomes. On the other hand, as shown in FIG. 3, the state in which the first summing unit 322 a and the second summing unit 322 b are separated and the furnace front side opening unit 311 is opened is the state in which the blocking door 32 is opened. . In a state where the shutoff door 32 is closed,召合allowed position P a and first convene mating portion 322a and the second convene mating portion 322b is x-axis direction position mated is, the center position P c of the furnace opening 21 On the other hand, the first distance d [m] is shifted in the x-axis direction.

ここで、第1の距離dは、0mよりも大きく、且つ下記(1)式を満たす。なお、(1)式において、rは炉口21の半径[m]、Lは図5のように炉体2を正立した状態から反出湯側に90度傾転させた位置における炉口21と炉前床5とのy軸方向の第2の距離[m]、Hは炉体2のトラニオン22の回転軸中心から炉口21までの高さ[m](図5におけるy軸方向の高さ)をそれぞれ示す。なお、炉口21が円形ではない場合には、上記rは炉口21のx軸方向の径の1/2とする。
d/r≧1−3L/H ・・・(1)
Here, the first distance d is larger than 0 m and satisfies the following expression (1). In equation (1), r is the radius [m] of the furnace port 21, and L is the furnace port 21 at a position where the furnace body 2 is tilted 90 degrees from the upright state to the side of the hot water as shown in FIG. And the second distance [m] in the y-axis direction between the furnace front floor 5 and H is the height [m] from the rotation axis center of the trunnion 22 of the furnace body 2 to the furnace port 21 (in the y-axis direction in FIG. 5). Height). When the furnace port 21 is not circular, r is ½ of the diameter of the furnace port 21 in the x-axis direction.
d / r ≧ 1-3 L / H (1)

さらに、第1の距離dの条件に加えて、半径rに対する第1の距離dの比の値d/rが、0.2以上であることが好ましく、0.86以上であることがより好ましい。
また、第1及び第2の扉部32a,32bの炉前側開放部311を覆う矩形領域のx軸方向の幅W1,W2は、幅W1と幅W2とを足した長さが炉前側開放部311のx軸方向の長さ以上となるように形成される。さらに、半径rに対する第1の距離dの比の値d/rが0.20以上である場合、幅W1の長さは、幅W2の長さの1.25倍以上4.0倍以下であることが好ましく、1.8倍以上3.0倍以下であることがより好ましい。
Further, in addition to the condition of the first distance d, the value d / r of the ratio of the first distance d to the radius r is preferably 0.2 or more, and more preferably 0.86 or more. .
Further, the widths W1 and W2 in the x-axis direction of the rectangular area covering the furnace front side opening part 311 of the first and second door parts 32a and 32b have a length obtained by adding the width W1 and the width W2 to the furnace front side opening part. It is formed to have a length equal to or greater than 311 in the x-axis direction. Furthermore, when the value d / r of the ratio of the first distance d to the radius r is 0.20 or more, the length of the width W1 is not less than 1.25 times and not more than 4.0 times the length of the width W2. It is preferable that it is 1.8 times or more and 3.0 times or less.

なお、炉前床5は、炉体2の回転駆動系の保守点検が容易に行えるように、トラニオン22の回転軸中心よりも低い(z軸負方向側の)位置に配置される。また、工場の建設費用を抑制する観点からトラニオン22の高さが制約され、且つ、炉前床5の高さをその下を取鍋等が通過できる高さ以上にする必要があることから、炉前床5からトラニオン22の回転軸中心までの高さは、通常、高さHの1/2程度以下となる。   In addition, the furnace front floor 5 is disposed at a position lower (on the z-axis negative direction side) than the center of the rotation axis of the trunnion 22 so that maintenance and inspection of the rotary drive system of the furnace body 2 can be easily performed. Moreover, since the height of the trunnion 22 is restricted from the viewpoint of suppressing the construction cost of the factory, and the height of the furnace front floor 5 needs to be higher than the height at which the ladle or the like can pass below, The height from the front floor 5 to the center of the rotation axis of the trunnion 22 is usually about ½ or less of the height H.

集塵設備4は、送酸精錬中や中間排滓中、出湯中などに、炉体2の炉口21から排出する排ガスや粉塵を吸引し、排ガス中のガス成分とダストとを分離回収する設備である。集塵設備4は、z軸方向に昇降可能なスカート41と、スカート41の上部に接続されたフード42とを有する。炉口21から発生する排ガスは、スカート41及びフード42を介して、不図示の排ガス回収装置へと送られ、分離回収される。   The dust collection equipment 4 sucks the exhaust gas and dust discharged from the furnace port 21 of the furnace body 2 during acid refining, intermediate waste, and hot water, and separates and recovers gas components and dust in the exhaust gas. Equipment. The dust collection equipment 4 includes a skirt 41 that can be raised and lowered in the z-axis direction, and a hood 42 connected to the upper part of the skirt 41. The exhaust gas generated from the furnace port 21 is sent to an exhaust gas recovery device (not shown) via the skirt 41 and the hood 42, and is separated and recovered.

<転炉型精錬炉の操業方法>
次に、図6を参照して、本実施形態に係る転炉型精錬炉1の操業方法について説明する。本実施形態では、1つの転炉型精錬炉1を用いて、高炉から出銑された溶銑の脱珪処理及び脱燐処理を連続して行う。まず、図6(A)に示すように、トラニオン22を中心に炉口21が炉前側に位置するように、反出湯側に傾転させた炉体2に、溶銑鍋6に収容された溶銑Mを炉口21から注ぎいれることで、炉体2に溶銑Mを装入する(装入工程)。装入工程では、溶銑Mが装入される前に、予め、炉体2の内部には、スクラップ等の冷鉄源Sが収容される。また、装入工程では、溶銑Mが装入される際には遮断扉32が開いた状態で行われ、装入工程が終了した後には遮断扉32の閉動作が行われ、遮断扉32が閉じた状態となる。
<Operation method of converter refining furnace>
Next, with reference to FIG. 6, the operation method of the converter type refining furnace 1 which concerns on this embodiment is demonstrated. In the present embodiment, using one converter-type refining furnace 1, the desiliconization process and the dephosphorization process of the hot metal discharged from the blast furnace are continuously performed. First, as shown in FIG. 6 (A), the hot metal accommodated in the hot metal ladle 6 is placed in the furnace body 2 tilted to the side of the reaction hot water so that the furnace port 21 is located on the front side of the furnace with the trunnion 22 as the center. The hot metal M is charged into the furnace body 2 by pouring M from the furnace port 21 (charging process). The charging step, before the hot metal M is charged in advance, the interior of the furnace body 2, a cold iron source S c scrap and the like are accommodated. Further, in the charging process, when the hot metal M is charged, the blocking door 32 is opened, and after the charging process is completed, the closing door 32 is closed, and the blocking door 32 is opened. Closed state.

次いで、図6(B)に示すように、炉体2を正立させ、送酸ランス7から酸素ガスを吹き込み、溶銑Mに酸素ガスを供給することで脱珪処理(脱Si吹錬)を行う(一次送酸精錬工程)。この際、遮断扉32が閉じた状態で、脱珪処理が行われる。一次送酸精錬工程では、炉内に酸素源が供給され、さらに必要に応じて、CaO系媒溶剤や、珪素源などの燃焼熱源が供給される。また、一次送酸精錬工程では、次工程の中間排滓工程において、脱珪処理に伴い発生するスラグSの排滓性を高めるため、スラグSが適度にフォーミングするように実施条件が制御される。また、一次送酸精錬工程では、炉体2の底部に設けられた底吹きノズル23から不活性ガスが溶銑Mに吹き込まれ、溶銑Mの攪拌力が強まることで脱珪反応が促進される。一次送酸精錬工程は、溶銑Mの珪素濃度や溶銑量、副原料の添加量などに応じた所定量の酸素ガスが吹き込まれることで終了する。 Next, as shown in FIG. 6 (B), the furnace body 2 is erected, oxygen gas is blown from the acid feed lance 7, and oxygen gas is supplied to the hot metal M to perform desiliconization treatment (desiliconized blowing). Perform (primary acid refining process). At this time, the desiliconization process is performed with the blocking door 32 closed. In the primary acid refining process, an oxygen source is supplied into the furnace, and further a combustion heat source such as a CaO-based solvent or a silicon source is supplied as necessary. Also, in the primary acid refining process, the implementation conditions are controlled so that the slag S l is appropriately formed in order to enhance the slag S l generated in the intermediate evacuation process of the next process in order to improve the slag S l generated in the desiliconization process. Is done. Further, in the primary acid refining process, the inert gas is blown into the hot metal M from the bottom blowing nozzle 23 provided at the bottom of the furnace body 2, and the stirring force of the hot metal M is increased, thereby promoting the desiliconization reaction. The primary acid feeding refining process ends when a predetermined amount of oxygen gas is blown according to the silicon concentration of the hot metal M, the hot metal amount, the added amount of the auxiliary material, and the like.

さらに、図6(C)に示すように、炉体2を炉口21が炉前側に位置するように傾転させることで、炉体2から脱珪処理後のスラグSの少なくとも一部を排出する中間排滓が行われる(中間排滓工程)。中間排滓工程では、炉体2を反出湯側に傾転させることで、浴面に浮いている比重の軽いスラグSのみを炉口21から排出させる。中間排滓工程で排出されたスラグSは、炉体2の下方に配された不図示の溶滓収容容器(排滓鍋)に収容される。中間排滓工程におけるスラグSの排出量は、次工程の二次送酸精錬工程でのCaO系媒溶剤の使用量を効果的に削減するために、一次送酸精錬工程終了時における炉体2内のスラグSの半量程度以上とすることが望ましい。なお、本実施形態では、一次送酸精錬工程において、スラグSが適度にフォーミングするように実施条件を制御するため、スラグSがフォーミングし、スラグ層の表面レベルを高くした状態で中間排滓が行われる。このため、スラグSを効率よく排出することができる。 Furthermore, as shown in FIG. 6 (C), by tilting to the furnace body 2 throat 21 is positioned in the furnace front, at least a portion of the slag S l after desiliconizing treatment from the furnace body 2 The intermediate waste to be discharged is performed (intermediate waste process). Intermediate in Haikasu step, by tilting the furnace body 2 in the counter-tapping side, to discharge only mild slag S l specific gravity that floats on the bath surface from the throat 21. Slag S l, which is discharged in the middle Haikasu process is accommodated in溶滓container (not shown) disposed in the lower furnace body 2 (Haikasunabe). Emissions of slag S l in the intermediate Haikasu step, in order to reduce the amount of CaO-type medium solvent in the secondary oxygen-flow refining process of the next step effectively, the furnace body at the end of the primary oxygen-flow refining process It is desirable that the amount of slag S 1 in 2 is about half or more. In the present embodiment, in the primary oxygen-flow refining process, for controlling the execution condition as slag S l is forming moderately, intermediate drain in a state in which slag S l is forming, and increased surface levels of the slag layer A trap is performed. Therefore, it is possible to discharge the slag S l efficiently.

この際、炉体2の正立時において炉内のスラグSの表面の高さが高いほど、小さい傾動角度でスラグSの流出が始まり、傾動角度を大きくするにつれて、炉口21の位置及び角度が変化するとともに、スラグSの排出速度が増大する。炉体2の傾動角度は、スラグSの排出速度が適正な範囲となるよう随時調整され、最終的に溶銑Mが流出しない範囲で90度近くまで大きくなる。なお、スラグSの排出速度が小さ過ぎると排滓時間の延長や排滓量の減少を招き、スラグSの排出速度が大き過ぎると排滓鍋に収容されずに飛散するスラグSの割合が増大したり、スラグSに混入して流出する溶銑の量が増大したりする問題がある。このため、これらの観点から適正な排出速度となるよう、炉体2の傾動角度が調整される。 At this time, the higher the height of the surface of the slag S l in the furnace at the upright when the furnace body 2, the outflow of slag S l begins at a small tilt angle, as the tilt angle is increased, the position and the throat 21 with the angle changes, the discharge rate of slag S l is increased. Tilting angle of the furnace body 2 is optionally adjusted so that the discharge rate of slag S l is the appropriate range, finally molten iron M increases to 90 degrees near the extent that does not flow out. Incidentally, lead to reduction of the extension and Haikasu amount of the discharge rate of slag S l is too small Haikasu time, the slag S l the discharge rate of slag S l is scattered without being accommodated in too large Haikasu pot ratio or increasing, there is a problem that the amount of molten iron which flows mixed in the slag S l is or increases. For this reason, the tilt angle of the furnace body 2 is adjusted so that the discharge speed is appropriate from these viewpoints.

また、スラグSが排出される間、スラグSがオーバーフローする部分の炉口21の形状は、炉前側から見た高さ及び奥行が炉体2の傾動角度に応じて変化する円弧状の形状となる。この円弧状の形状の下端から炉内のスラグSの表面までの高さが高くなるほど、スラグSを排出する駆動力が大きくなってスラグSの流速が増すとともに、円弧の形状に沿ってスラグSの排出流の幅(x軸方向の長さ)も増大することから、スラグSの排出速度が増大する傾向となる。このとき、スラグSの排出流は、幅方向中心部の方が幅方向端部に比べて流速が大きくなる。また、上記の円弧部の形状から、スラグSの流出位置は、排出流の幅方向中心部の方が幅方向端部に比べてトラニオン22の軸から水平方向に離れた位置となる。スラグSの排出流は水平方向の流速を有するので、放物線状の軌跡をたどって落下するが、上記のような理由から、水平方向の到達距離は、スラグSの排出流の幅方向中心部で大きく、排出流の幅方向端部で相対的に小さくなる傾向となる。 In addition, the shape of the furnace port 21 where the slag S 1 overflows while the slag S l is discharged has an arc shape in which the height and depth viewed from the front side of the furnace change according to the tilt angle of the furnace body 2. It becomes a shape. Higher height from the lower end of the arcuate shape to the surface of the slag S l in the furnace increases, with increasing flow rate of the slag S l driving force for discharging the slag S l is increased, along an arc shape since the slag width S l exhaust stream (x-axis direction length) also increases Te, tends to discharge speed of slug S l is increased. At this time, the discharge flow of the slag S l, the flow rate is larger than the width direction end portion toward the widthwise center. Further, the shape of the arcuate section, the outflow position of the slag S l is a position away horizontally from the axis of the trunnion 22 than the width direction end portion toward the widthwise center portion of the exhaust stream. Because the discharge flow of the slag S l has a horizontal velocity, but falls following the parabolic trajectory, the reasons described above, the horizontal reach is the width direction center of the discharge flow of the slag S l It tends to be large at the portion and relatively small at the end portion in the width direction of the discharge flow.

さらに、中間排滓工程では、遮断扉32が閉じた状態でスラグSの排出が行われる。この際、炉口21から排出されるスラグSは、遮断扉32にかかることになるが、上記のようなスラグSの排出流の形状の特徴から、スラグSの排出流の遮断扉32(保護板323a、323bを含む)への衝突位置の幅(x軸方向の長さ)は、炉体2と炉前床5との距離、あるいは第2の距離Lが大きくなるに従って定性的に狭くなる傾向となる。 Further, in the intermediate Haikasu process, discharge of slag S l is performed in a state where blocking door 32 is closed. At this time, the slag S 1 discharged from the furnace port 21 is applied to the shut-off door 32. From the characteristics of the shape of the discharge flow of the slag S 1 as described above, the shut-off door of the discharge flow of the slag S 1 is used. 32 (including the protective plates 323a and 323b), the width of the collision position (the length in the x-axis direction) is qualitative as the distance between the furnace body 2 and the furnace floor 5 or the second distance L increases. Tend to become narrower.

さらに、スラグSの排出速度がある程度大きい場合、遮断扉32に衝突したスラグSの排出流は、遮断扉32の表面を幅方向(x軸方向)に広がりながら流下する。スラグの排出流の遮断扉32への衝突位置のz軸方向の高さは、落下する排出流の放物線状の軌跡から、炉体2と炉前床5との距離、あるいは上記の第2の距離Lが大きくなるに従って低くなる傾向となる。このため、スラグSの排出流が遮断扉32の表面を流下する際に幅方向(x軸方向)に広がる長さも、第2の距離Lが大きくなるに従って小さくなる傾向となる。 Furthermore, when the discharge speed of the slag S l is high to some extent, the discharge flow of the slag S l that collides with the blocking door 32 flows down while spreading the surface of the blocking door 32 in the width direction (x-axis direction). The height of the collision position of the slag discharge flow with the shut-off door 32 in the z-axis direction is the distance between the furnace body 2 and the furnace front floor 5 from the parabolic trajectory of the falling discharge flow, or the above-mentioned second height. The distance L tends to decrease as the distance L increases. Therefore, slug S l discharge flow spreads in the longitudinal width direction when flowing down the surface of the blocking doors 32 (x-axis direction) also becomes smaller tendency in accordance with the second distance L increases.

遮断扉32の表面において炉口21から排出されるスラグSがかかる幅に及ぼす、炉体2と炉前床5との距離、あるいは第2の距離Lの影響は、上述のように定性的に説明できる。さらに、本発明者らは、遮断扉32の表面のスラグSがかかる最大幅を炉口の半径r[m]で除して無次元化した指標、及び第2の距離L[m]を炉体2のトラニオン22の回転軸中心から炉口21までの高さH[m]で除して無次元化した指標を用いて整理することによって、遮断扉32にかかるスラグSの幅を定量的に評価することができることを知見した。即ち、本発明者らは、遮断扉32の表面のスラグSがかかる最大幅の半分(即ち、炉口の中心位置Pからのx軸方向の幅)をxsm[m]とすると、後述するように、xsm/r<1−3L/Hとなる関係にあることを見出した。 The influence of the distance between the furnace body 2 and the furnace front floor 5 or the second distance L on the width of the slag S 1 discharged from the furnace port 21 on the surface of the shut-off door 32 is qualitative as described above. Can be explained. Furthermore, the present inventors have found that the slag S l dividing by dimensionless index at a radius r [m] of the throat a maximum width take the surface of the blocking doors 32, and the second distance L [m] by organizing using dimensionless index by dividing the rotation axis center to the furnace opening 21 at a height H [m] of the furnace body 2 of the trunnion 22, the width of the slag S l according to the blocking doors 32 It was found that it can be quantitatively evaluated. That is, the present inventors have assumed that x sm [m] is a half of the maximum width (that is, the width in the x-axis direction from the center position P c of the furnace port) on which the slag S 1 on the surface of the blocking door 32 is applied. As described later, it was found that x sm / r <1-3 L / H.

従って、遮断扉32の召合せ位置Pと炉口21の中心位置Pとのx軸方向の第1の距離d[m]が、0よりも大きく、且つ上記(1)式を満たしていれば、距離dはxsmよりも大きい値となるため、召合せ位置Pに排出されるスラグSがかかることがない。このため、召合せ位置PへのスラグSの付着を抑制することができる。中間排滓工程は、所定量のスラグSが排出された後、炉体2を正立させることで終了する。遮断扉32の炉口21に対面するスラグSがかかる部位は、水冷された鋼管などの冷却部材が設けられるため、スラグSが付着しても容易に剥離し、炉下に配した溶滓収容容器内などに落下することから、落下物の除去に余計な作業時間を要することもない。 Accordingly, the first distance d in the x-axis direction between the center position P c of召合blocking door 32 allowed positions P a and throat 21 [m] is greater than 0, and not meet the above formula (1) lever, the distance d is to become a value larger than x sm, does not take slag S l discharged into召合allowed position P a. Therefore, it is possible to suppress the adhesion of slag S l to召合allowed position P a. Intermediate Haikasu step, after a predetermined amount of slag S l is discharged, terminated by erecting the furnace body 2. The portion of the door 32 where the slag S l facing the furnace port 21 is provided with a cooling member such as a water-cooled steel pipe, so that even if the slag S l adheres, it easily peels off and is disposed under the furnace. Since it falls into the container, it does not require extra work time to remove the fallen objects.

その後、図6(D)に示すように、一次送酸精錬工程と同様に、送酸ランス7から酸素ガスを吹き込み、溶銑Mに酸素ガスを供給することで脱燐処理(脱P吹錬)を行う(二次送酸精錬工程)。この際、遮断扉32が閉じた状態で、脱燐処理が行われる。二次送酸精錬工程では、石灰系の媒溶剤、および必要に応じてスラグSの成分の調整や滓化を促進させるための各種副原料が炉体2の内部に添加される。脱燐処理工程は、溶銑Mの燐濃度や溶銑量、温度、スラグ成分等に応じて決められる所定量の酸素ガスが吹き込まれることで終了する。 Thereafter, as shown in FIG. 6 (D), as in the primary acid refining step, oxygen gas is blown from the acid feed lance 7 and oxygen gas is supplied to the hot metal M to remove phosphorus (dephosphorization P blowing). (Secondary acid refining process). At this time, the dephosphorization process is performed in a state where the blocking door 32 is closed. In the secondary oxygen-flow refining process, lime medium solvents, and various order to facilitate adjustment and slag formation of the components of the slag S l optionally auxiliary material is added to the interior of the furnace body 2. The dephosphorization process is completed by blowing a predetermined amount of oxygen gas determined according to the phosphorus concentration of the hot metal M, the hot metal amount, the temperature, the slag component, and the like.

次いで、図6(E)に示すように、炉前側と反対となる出湯側へ炉口21が位置するように炉体2を傾転させ、炉体2の炉裏側に設けられた出湯孔24から脱燐処理された溶銑Mを排出(出湯)させる(出湯工程)。排出された溶銑Mは、炉体2の下方に配置された不図示の溶銑鍋に収容される。出湯工程では、溶銑Mを出湯した後、後述する次の溶銑の送酸精錬において脱燐処理後のスラグSが必要な場合は、脱燐処理後のスラグSが炉体2の内部に残存した状態で処理が終了する。一方、次の溶銑の送酸精錬において脱燐処理後のスラグSが必要でない場合は、脱燐処理後のスラグSが炉外へと排出されることで処理が終了する。出湯工程において、溶銑Mを排出する際及びスラグSを排出する際には、遮断扉32は閉じた状態を継続する。 Next, as shown in FIG. 6 (E), the furnace body 2 is tilted so that the furnace port 21 is located on the hot water side opposite to the front side of the furnace, and the hot water outlet hole 24 provided on the furnace back side of the furnace body 2. The hot metal M that has been dephosphorized is discharged (hot water) from the hot water (heated out process). The discharged hot metal M is accommodated in a hot metal pan (not shown) disposed below the furnace body 2. The tapping process, the molten iron M after pouring, when the slag S l after dephosphorization in the oxygen-flow-refining of the next molten iron to be described later is required, the slag S l after dephosphorization within the interior of the furnace body 2 The process ends with the remaining state. On the other hand, if not necessary slag S l after dephosphorization in the oxygen-flow-refining of the next hot metal treatment by slag S l after dephosphorization is discharged to the outside of the furnace is completed. In the hot water discharge process, when the hot metal M is discharged and when the slag Sl is discharged, the blocking door 32 continues to be closed.

以上の、装入工程、脱珪処理工程、中間排滓工程、脱燐処理工程及び出湯工程の一連の処理が行われることで、溶銑Mが連続して脱珪処理および脱燐処理される。なお、本実施形態では、上記一連の送酸精錬が行われた後、同一の転炉型精錬炉1にて、遮断扉32を開き、スクラップS及び次の溶銑を装入して上記一連の送酸精錬が繰り返し行われる。この際、脱珪処理工程にて、前の送酸精錬の二次送酸精錬工程で発生したスラグSが用いられる場合には、炉体2の内部に二次送酸精錬工程で発生したスラグSが残留した状態で、次の溶銑の送酸精錬における装入工程が実施される。 The molten metal M is continuously desiliconized and dephosphorized by performing a series of processes including the charging process, the desiliconization process, the intermediate waste process, the dephosphorization process and the hot water process. In the present embodiment, after the series of oxygen-flow refining is performed, in the same converter-type smelting furnace 1, to open the shut-off doors 32, the series was charged scrap S c and subsequent hot metal The acid feeding smelting is repeated. In this case, at desiliconization step, when the slag S l generated in the secondary oxygen-flow refining step prior to the oxygen-flow-refining used, occurred in the secondary oxygen-flow refining process inside the furnace 2 in a state in which slag S l is remaining, charging step is performed in the oxygen-flow-refining of the next hot metal.

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである。
<Modification>
Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. From the description of the invention, other embodiments of the invention will be apparent to persons skilled in the art, along with various variations of the disclosed embodiments. Therefore, it is to be understood that the claims encompass these modifications and embodiments that fall within the scope and spirit of the present invention.

例えば、上記実施形態では、召合せ位置Pが炉口21の中心位置Pに対して、x軸負方向側にずれているとしたが、本発明はかかる例に限定されない。例えば、召合せ位置Pが炉口21の中心位置Pに対して、x軸正方向側にずれていてもよい。
また、上記実施形態では、図1に示すように、幅W1の長さが幅W2の長さの1.25倍以上4.0倍以下とすることが好ましいとしたが、本発明はかかる例に限定されない。遮断扉32は、閉じた状態において、炉前側開放部311を覆い、召合せ位置Pと炉口21の中心位置Pとの第1の距離dが0mよりも大きく、且つ(1)式を満たすように配されていれば、幅W1,W2は上記範囲に限定されない。なお、幅W1,W2を上記範囲とすることで、一般的な転炉型精錬炉1において、本発明のうち半径rに対する第1の距離dの比の値d/rを0.2以上とする実施形態を適用することができ、遮断扉32の全体の幅を小さくすることができる。また、幅W1の長さを幅W2の長さの1.8倍以上とすることで、一般的な転炉型精錬炉1において、本発明のうち半径rに対する第1の距離dの比の値d/rを0.86以上とする実施形態を適用することができ、遮断扉32の全体の幅を小さくすることができる。なお、転炉型精錬炉1の炉体形状は概ね相似形であり、炉口の半径rとトラニオンの回転軸中心から炉口までの高さHとの比r/Hは0.3〜0.5の範囲内にあることが一般的である。幅W1の長さが幅W2の長さの1.25倍未満である場合、転炉型精錬炉1の寸法(炉前側開放部の幅、炉口の大きさ及び遮断扉32の全体の幅)によっては、第1の距離dが炉口21の半径rの0.2倍より小さくなる可能性が生じる。一方、幅W1の長さが幅W2の長さの4.0倍超である場合、転炉型精錬炉1の寸法(炉前側開放部の幅、炉口の大きさ及び遮断扉32の全体の幅)によっては、第1の扉部の幅W1が長くなりすぎるため、遮断扉32の開閉に掛かる時間が長くなる可能性がある。
For example, in the above embodiment, for召合allowed position P a is the center position P c of the furnace opening 21, although a are shifted in the x-axis negative direction, the present invention is not limited to such an example. For example,召合allowed position P a is with respect to the center position P c of the throat 21 may be offset in the x-axis positive direction.
In the above embodiment, as shown in FIG. 1, it is preferable that the length of the width W1 is 1.25 times or more and 4.0 times or less of the length of the width W2. It is not limited to. Blocking door 32 is in the closed state, covers the furnace front opening 311, a first distance d between the center position P c of召合allowed positions P a and throat 21 is larger than 0 m, and (1) The widths W1 and W2 are not limited to the above ranges as long as they satisfy the above requirements. In addition, by setting the widths W1 and W2 in the above range, in the general converter-type refining furnace 1, the value d / r of the ratio of the first distance d to the radius r in the present invention is 0.2 or more. The embodiment to be applied can be applied, and the entire width of the blocking door 32 can be reduced. Further, by setting the length of the width W1 to 1.8 times or more of the length of the width W2, in a general converter-type refining furnace 1, the ratio of the first distance d to the radius r in the present invention is An embodiment in which the value d / r is 0.86 or more can be applied, and the entire width of the blocking door 32 can be reduced. The furnace body shape of the converter-type refining furnace 1 is substantially similar, and the ratio r / H between the radius r of the furnace port and the height H from the center of the trunnion to the furnace port is 0.3 to 0. Generally, it is in the range of .5. When the length of the width W1 is less than 1.25 times the length of the width W2, the dimensions of the converter-type refining furnace 1 (the width of the front opening side of the furnace, the size of the furnace port, and the overall width of the shut-off door 32) ) May cause the first distance d to be smaller than 0.2 times the radius r of the furnace port 21. On the other hand, when the length of the width W1 is more than 4.0 times the length of the width W2, the dimensions of the converter-type refining furnace 1 (the width of the open portion on the front side of the furnace, the size of the furnace port, and the entire shut door 32) Depending on the width of the first door portion, the width W1 of the first door portion becomes too long, which may increase the time required to open and close the blocking door 32.

さらに、上記実施形態では、一次送酸精錬工程では脱珪処理を行い、二次送酸精錬工程では脱燐処理を行う精錬形態としたが、本発明はかかる例に限定されない。例えば、一次送酸精錬工程では脱珪処理を行い、二次送酸精錬工程では脱燐及び脱炭処理を行う精錬形態、一次送酸精錬工程では脱珪及び脱燐処理を行い、二次送酸精錬工程では脱炭処理を行う精錬形態、または一次送酸精錬工程では脱燐処理を行い、二次送酸精錬工程では脱炭処理を行う精錬形態であってもよい。なお、装入工程において炉内に収容される冷鉄源SやスラグSの量や、中間排滓工程におけるスラグSを炉外へ排出する量、出湯工程において炉体2内に二次送酸精錬工程後のスラグSを残留させる量などの各種操業条件は、上記各精錬形態に応じて、精錬効率や精錬コストが最小となるように適宜設定される。例えば、一次送酸精錬工程では脱珪処理を行い、二次送酸精錬工程では脱燐及び脱炭処理を行う精錬形態は、溶銑Mの珪素含有量が高い場合や、珪素を燃焼熱源として追加して大量のスクラップ溶解を行う場合、脱珪処理と同時に脱硫反応を進行させる場合などに用いられる。したがって、脱燐及び脱炭処理でのスラグ組成制御やスラグSからの復硫防止の観点から、特に中間排滓後の残留スラグ量を減少させることが必要となる。 Furthermore, in the said embodiment, although it was set as the refining form which performs a desiliconization process in a primary acid refining process, and performs a dephosphorization process in a secondary acid refining process, this invention is not limited to this example. For example, a refining configuration in which desiliconization treatment is performed in the primary acid refining process, dephosphorization and decarburization processes are performed in the secondary acid refining process, and desiliconization and dephosphorization processes are performed in the primary acid refining process. A refining form in which the decarburizing process is performed in the acid refining process, or a refining form in which the dephosphorizing process is performed in the secondary acid refining process and the decarburizing process is performed in the secondary acid refining process. Incidentally, and the amount of Hiyatetsugen S c and slag S l housed in the furnace in the charging step, the amount of discharging the slag S l in the intermediate Haikasu step out of the furnace, the furnace body 2 in the tapping step two various operating conditions such as the amount to residual slag S l after the next oxygen-flow refining process, according to the above refining embodiments, refining efficiency and refining costs are appropriately set so as to minimize. For example, the refining form in which desiliconization treatment is performed in the primary acid refining process and dephosphorization and decarburization processes are performed in the secondary acid refining process, when the silicon content of the hot metal M is high, or silicon is added as a combustion heat source When a large amount of scrap is melted, the desulfurization reaction is advanced simultaneously with the desiliconization treatment. Therefore, in view of resulfurization prevention from dephosphorization and decarburization slag composition control and the slag S l in the process, it is necessary to particularly reduce the residual amount of slag from intermediate Haikasu.

<実施形態の効果>
(1)本発明の一態様に係る転炉型精錬炉1の遮断扉32は、水平方向に平行な一軸方向(x軸方向)に移動可能な第1の移動手段321aと、一軸方向の一端側に第1の召合せ部322aとを有し、転炉型精錬炉1の炉体2を囲む隔壁3の一部である固定壁31の炉前側開放部311の一部を覆うことが可能な第1の扉部32aと、第1の扉部32aと一軸方向に並んで配され、一軸方向に移動可能な第2の移動手段321bと、第1の扉部32aと対向する一軸方向の一端側に第2の召合せ部322bとを有し、炉前側開放部311の一部覆うことが可能な第2の扉部32bとを備え、第1の召合せ部322aと第2の召合せ部322bとが合わさり、第1の扉部32aと第2の扉部32bとにより炉前側開放部311が覆われた閉じた状態において、第1の召合せ部322aと第2の召合せ部322bとが合わさる位置である召し合わせ位置Pと、炉体2の炉口21の中心位置Pとの一軸方向に平行な方向における第1の距離d[m]が、0mよりも大きく、且つ、炉口21の半径r[m]、炉体2を正立した状態から反出湯側に90度傾転させた位置における炉口21と炉前床5との第2の距離L[m]、及び炉体2のトラニオン22の回転軸中心から炉口21までの高さH[m]との関係が(1)式を満たす。
<Effect of embodiment>
(1) The shut-off door 32 of the converter-type refining furnace 1 according to one aspect of the present invention includes a first moving means 321a that can move in a uniaxial direction (x-axis direction) parallel to the horizontal direction, and one end in the uniaxial direction. It has a first summing unit 322a on the side, and can cover a part of the furnace front side open part 311 of the fixed wall 31 which is a part of the partition wall 3 surrounding the furnace body 2 of the converter type refining furnace 1 The first door portion 32a, the second door 321b arranged in a uniaxial direction with the first door portion 32a and movable in the uniaxial direction, and the uniaxial direction facing the first door portion 32a It has a second summoning section 322b on one end side, and a second door section 32b that can partially cover the furnace front side opening section 311. The first summing section 322a and the second summoning section 322b are provided. The mating portion 322b is combined, and the first door portion 32a and the second door portion 32b close the furnace front side open portion 311. In state, parallel to the uniaxial direction of the first convene mating portion 322a and the dressing alignment P a is the second convene mating portion 322b and is mated position, the center position P c of the furnace opening 21 furnace body 2 The first distance d [m] in the direction is greater than 0 m, the radius r [m] of the furnace port 21, and the position where the furnace body 2 is tilted 90 degrees from the upright state to the side of the hot water. The relationship between the second distance L [m] between the furnace port 21 and the furnace front floor 5 and the height H [m] from the rotation axis center of the trunnion 22 of the furnace body 2 to the furnace port 21 is expressed by the equation (1). Meet.

上記(1)の構成によれば、召合せ位置Pを炉口21の中心位置Pからずらすことにより、転炉型精錬炉1において中間排滓を行う際に、召合せ位置Pに排出されたスラグSがかかることを防止することができる。このため、遮断扉32の召合せ位置Pやその下方の炉前床5へのスラグSの流入及び付着を抑制することができる。このため、遮断扉の召合せ部に付着した付着物により遮断扉が機能しなくなることを防止でき、さらに、付着物を除去する必要がなくなることから生産性を向上させることができる。また、上記(1)の構成によれば、遮断扉32を両開き式とすることで、一枚の扉部からなる片開き式の遮断扉に比べ、扉の開閉に要する時間を短縮することができ、生産性を向上させることができる。なお、第1の距離dが(1)式を満たさない場合、スラグSをフォーミングさせた状態で中間排滓を行うと、炉口21からスラグSが流出する可能性がある領域に、召合わせ位置Pが位置することとなるため、召合せ部へのスラグSの付着の防止と、スラグSの排出速度の増大とを両立させることが困難であり、生産性を向上させる効果が十分に得られない。 According to the above configuration (1), by shifting the召合allowed position P a from the center position P c of the throat 21, when performing an intermediate Haikasu in the converter type refining furnace 1, the召合allowed position P a It is possible to prevent the discharged slag Sl from being applied. Therefore, it is possible to suppress the inflow and deposition of召合allowed position P a and slag S l of the lower furnace to the forehearth 5 of the blocking doors 32. For this reason, it is possible to prevent the blocking door from functioning due to the deposits attached to the summing portion of the blocking door, and further, it is not necessary to remove the deposits, thereby improving productivity. Further, according to the configuration of (1) above, the time required for opening and closing the door can be shortened by making the blocking door 32 double-opening as compared with a single-opening blocking door consisting of a single door. And productivity can be improved. When the first distance d (1) is not satisfied equation, when the intermediate Haikasu while being forming slag S l, in a region from the throat 21 there is a possibility that slag S l flows out, since convene alignment P a is to be positioned, and the prevention of adhesion of slag S l to convene mating portion, it is difficult to achieve both an increase in the discharge rate of slag S l, increase productivity The effect cannot be obtained sufficiently.

(2)上記(1)の構成において、半径rに対する第1の距離dの比の値d/rが、0.2以上である。
(3)上記(2)の構成において、半径rに対する第1の距離dの比の値d/rが、0.86以上である。
(4)上記(3)の構成において、閉じた状態において、召し合わせ位置Pが、一軸方向に平行な方向において、第1の距離dが炉口21の半径rよりも長くなるように配される。
(2) In the configuration of (1) above, the value d / r of the ratio of the first distance d to the radius r is 0.2 or more.
(3) In the configuration of (2) above, the value d / r of the ratio of the first distance d to the radius r is 0.86 or more.
(4) In the above configuration (3), in the closed state, calling aligned P a is, in a direction parallel to the uniaxial direction, distribution as the first distance d is longer than the radius r of the furnace opening 21 Is done.

上記(2)〜(4)の構成によれば、中間排滓を行う際に、召合せ位置Pに排出されたスラグSがかかることを、より確実に防止することができる。
(5)上記(2)〜(4)のいずれかの構成において、第1の扉部32aの一軸方向の幅W1は、第2の扉部32bの一軸方向の幅W2の1.25倍以上4.0倍以下である。
上記(5)の構成によれば、一般的な転炉型精錬炉1において適用することができる。
According to the above configuration (2) to (4), when performing intermediate Haikasu, that召合allowed slag S l, which is discharged to position P a is applied, can be more reliably prevented.
(5) In the configuration of any of (2) to (4) above, the uniaxial width W1 of the first door portion 32a is 1.25 times or more the uniaxial width W2 of the second door portion 32b. 4.0 times or less.
According to the configuration of the above (5), it can be applied to a general converter type refining furnace 1.

(6)本発明の一態様に係る転炉型精錬炉1の操業方法は、転炉型精錬炉1の炉体2に収容された溶銑Mに酸素ガスを供給し、溶銑Mを送酸精錬する一次送酸精錬工程と、一次精錬工程の後、炉体2に収容された溶銑Mを炉体2に残留させたまま、炉体2の炉口21が炉前側に位置するように炉体2を傾転させて、一次送酸精錬工程で生成したスラグSの少なくとも一部を炉口21から排出する中間排滓工程と、中間排滓工程の後、炉体2に残留させた溶銑Mに酸素ガスを供給し、さらに送酸精錬する二次送酸精錬工程とを備え、中間排滓工程では、水平方向に平行な一軸方向(x軸方向)に移動可能な第1の移動手段321aと一軸方向の一端側に第1の召合せ部322aとを有し、炉体2を囲む隔壁3の一部である固定壁31の炉前側開放部311の一部を覆うことが可能な第1の扉部32aと、第1の扉部32aと一軸方向に並んで配され、一軸方向に移動可能な第2の移動手段321bと、第1の扉部32aと対向する一軸方向の一端側に第2の召合せ部322bとを有し、炉前側開放部311の一部を覆うことが可能な第2の扉部32bとを備えた遮断扉32を、第1の召合せ部322aと第2の召合せ部322bとが合わさり、第1の扉部32aと第2の扉部32bとにより炉前側開放部311が覆われた閉じた状態で、スラグSを炉口21から排出し、閉じた状態では、第1の召合せ部322aと第2の召合せ部322bとが合わさる位置である召し合わせ位置Pと、炉体2の炉口21の中心位置Pとの一軸方向に平行な方向における第1の距離d[m]が、0mよりも大きく、且つ、炉口21の半径r[m]、炉体2を正立した状態から反出湯側に90度傾転させた位置における炉口21と炉前床5との第2の距離L[m]、及び炉体2のトラニオン22の回転軸中心から炉口21までの高さH[m]との関係が(1)式を満たす。 (6) The method of operating the converter type refining furnace 1 according to one aspect of the present invention is to supply oxygen gas to the hot metal M accommodated in the furnace body 2 of the converter type refining furnace 1 and send the hot metal M to the acid refining process. After the primary acid refining process and the primary refining process, the furnace body 2 is positioned so that the furnace port 21 of the furnace body 2 is located on the front side of the furnace body 2 while the hot metal M accommodated in the furnace body 2 remains in the furnace body 2. 2, and an intermediate waste process for discharging at least a part of the slag S 1 generated in the primary acid refining process from the furnace port 21, and a hot metal left in the furnace body 2 after the intermediate waste process And a secondary acid refining process for supplying oxygen gas to M and further refining the acid, and in the intermediate waste process, a first moving means movable in a uniaxial direction (x-axis direction) parallel to the horizontal direction 321a and a first summing portion 322a on one end side in the uniaxial direction, and the front side of the fixed wall 31 that is a part of the partition wall 3 surrounding the furnace body 2 A first door portion 32a capable of covering a part of the opening 311; a second moving means 321b arranged in a uniaxial direction with the first door portion 32a and movable in the uniaxial direction; The second summit portion 322b is provided at one end in the uniaxial direction facing the first door portion 32a, and the second door portion 32b capable of covering a part of the furnace front side open portion 311 is provided. The blocking door 32 is closed with the first summing portion 322a and the second summing portion 322b being combined, and the first door portion 32a and the second door portion 32b covering the furnace front side opening portion 311. state, to discharge the slag S l from the furnace outlet 21, in the closed state, and calling aligned P a is a position where the first convene mating portion 322a and the second convene mating portion 322b come together, the furnace 2 the first distance d in the direction parallel to the axial direction of the center position P c of the throat 21 [m] , The radius r [m] of the furnace port 21 and the position of the furnace port 21 and the furnace floor 5 at the position where the furnace body 2 is tilted 90 degrees from the upright state to the side of the hot water. The relationship between the distance L [m] of 2 and the height H [m] from the rotation axis center of the trunnion 22 of the furnace body 2 to the furnace port 21 satisfies the expression (1).

上記(6)の構成によれば、上記(1)と同様な効果を得ることができる。また、中間排滓工程では、中間排滓処理に掛かる時間を短縮させることが必要となるが、スラグSの排出速度を上げてしまうと、スラグSが遮断扉32により大量にかかることとなる。しかし、上記(6)の構成によれば、中間排滓工程において、遮断扉32にスラグSがかかったとしても、召合せ位置PにスラグSがかかることがないため、スラグSの排出速度を上げることができ、中間排滓に掛かる時間を短縮させることができる。このため、転炉型精錬炉における生産性を向上させることができ、溶銑予備処理を実施する溶銑量や溶鋼の生産量を増大することができる。 According to the configuration of the above (6), the same effect as the above (1) can be obtained. Further, in the intermediate Haikasu step, it is necessary to shorten the time required for the intermediate Haikasu process and thus increase the discharge rate of slag S l, and slag S l can take a large amount by the blocking doors 32 Become. However, according to the above configuration (6), in the intermediate Haikasu process, even when freshly slag S l to the blocking door 32, since the slag S l does not take into召合allowed position P c, slag S l The discharge speed can be increased, and the time required for intermediate waste can be shortened. For this reason, the productivity in the converter type refining furnace can be improved, and the amount of hot metal for performing the hot metal pretreatment and the production amount of molten steel can be increased.

次に、本発明者らが行った実施例について説明する。実施例では、高さHに対する第2の距離Lの比の値L/Hが異なる複数の転炉型精錬炉1を用いて、溶銑Mを送酸精錬し、中間排滓時の遮断扉32へのスラグSの付着の状況を確認した。
まず、装入工程として、冷鉄源Sを予め装入した炉体2に高炉から出銑された溶銑Mを装入した。
Next, examples performed by the present inventors will be described. In the embodiment, using a plurality of converter-type refining furnaces 1 having different ratios L / H of the second distance L to the height H, the hot metal M is acid-refined and the shut-off door 32 at the time of intermediate discharge is obtained. The state of adhesion of slag Sl to the surface was confirmed.
First, as charged step, it was charged with hot metal M, which is tapped from the blast furnace body 2, which had been pre-charged with Hiyatetsugen S c.

次いで、遮断扉32を閉じて、一次送酸精錬工程として、脱珪処理を行った。一次送酸精錬工程では、送酸ランス7から酸素ガスを溶銑Mに供給すると共に、底吹きノズル23から攪拌ガスを溶銑Mに吹き込んだ。また、一次送酸精錬工程では、中間排滓工程でのスラグSの排滓性(排出性)を高めるために、スラグSの塩基度(スラグS中のSiOに対するCaOの質量%比)を0.8〜1.3の範囲に調整すると共に、送酸ランス7からの送酸速度とランス高さ(溶銑Mの浴面から送酸ランス7の下端までの高さ)を調整することで一次送酸精錬後のスラグS中の酸化鉄含有量が10〜30質量%となるような操業条件とすることで、スラグSをフォーミングさせた。 Next, the shut-off door 32 was closed, and desiliconization treatment was performed as a primary acid refining process. In the primary acid feed refining process, oxygen gas was supplied from the acid feed lance 7 to the hot metal M, and stirring gas was blown into the hot metal M from the bottom blowing nozzle 23. Further, in the primary oxygen-flow refining process, intermediate Haikasu discharging slag of the slag S l in the process in order to increase (dischargeability), slag S l basicity (weight of CaO with respect to SiO 2 in the slag S l% Ratio) is adjusted to a range of 0.8 to 1.3, and the acid feed speed and lance height from the acid feed lance 7 (height from the bath surface of the molten iron M to the lower end of the acid feed lance 7) are adjusted. by the iron oxide content in the slag S l after the primary oxygen-flow refining by to the operating conditions such that 10 to 30 mass%, was forming a slag S l.

さらに、中間排滓工程として、炉体2を炉前側に炉口21が位置するように傾転させ、炉内のスラグSを炉口21から流出させた。中間排滓工程では、召合せ位置Pが炉口21の中心位置Pからx軸方向に第1の距離dだけ離れた遮断扉32を閉じた状態で中間排滓を行った。排出されたスラグSは、炉体2の下方に配した溶滓収容容器に収容させた。
その後、二次送酸精錬工程として、脱燐処理を行った。一次送酸精錬工程では、送酸ランス7から酸素ガスを溶銑Mに供給すると共に、底吹きノズル23から攪拌ガスを溶銑Mに吹き込んだ。
次いで、出湯工程として、炉体2を炉前側に炉口21が位置するように傾転させ、脱燐処理を行った溶銑Mを出湯孔24から排出させた。
Further, as an intermediate Haikasu step is tilting to furnace opening 21 furnace body 2 to the furnace front is located, it drained slag S l in the furnace from the throat 21. In the intermediate Haikasu step, the intermediate Haikasu was performed in a state where召合allowed position P a closed blocking door 32 apart by a first distance d from the center position P c of the furnace opening 21 in the x-axis direction. The discharged slag S 1 was accommodated in a hot metal container disposed below the furnace body 2.
Thereafter, dephosphorization treatment was performed as a secondary acid refining process. In the primary acid feed refining process, oxygen gas was supplied from the acid feed lance 7 to the hot metal M, and stirring gas was blown into the hot metal M from the bottom blowing nozzle 23.
Next, as a hot water discharge step, the furnace body 2 was tilted so that the furnace port 21 was positioned on the front side of the furnace, and the hot metal M subjected to the dephosphorization treatment was discharged from the hot water discharge hole 24.

図7に実施例の結果を示す。図7に示すグラフは、横軸が高さHに対する第2の距離Lの比の値L/H、縦軸が半径rに対する第1の距離dの比の値d/rとなるプロットであり、各条件において遮断扉32の召合わせ位置PへのスラグSの付着の有無を示す。なお、実施例では、各L/Hの条件における遮断扉32のx軸方向へのスラグSの付着の有無から、各d/rの条件においてスラグSの付着が有るか否かを判別した。図7に示すように、スラグSの付着が有るのはd/r<1−3L/Hの領域であり、実線Aを閾値とする、第1の距離dが、0mよりも大きく、且つ(1)式を満たす条件とすることで、遮断扉32の召合せ位置PにスラグSがかかることがないことが確認できた。また、図7の破線B,Cに示すように、上記の第1の距離dの条件に加えて、d/rを0.2以上、さらに0.86以上とすることで、より確実に遮断扉32の召合せ位置PへのスラグSの付着を抑制することができることが確認できた。 FIG. 7 shows the results of the example. The graph shown in FIG. 7 is a plot in which the horizontal axis is the ratio value L / H of the second distance L to the height H, and the vertical axis is the ratio value d / r of the first distance d to the radius r. , indicating the presence or absence of adhesion of slag S l to convene alignment P a blocking doors 32 in each condition. In the embodiment, it is determined whether or not there is slag S 1 adhesion under each d / r condition from the presence or absence of slag S 1 adhesion in the x-axis direction of the blocking door 32 under each L / H condition. did. As shown in FIG. 7, the slag S 1 is attached in a region where d / r <1-3 L / H, the first distance d having a solid line A as a threshold is greater than 0 m, and (1) with the condition that satisfies the equation, that slag S l is not applied and it was confirmed to召合allowed position P a blocking door 32. Further, as shown by broken lines B and C in FIG. 7, in addition to the condition of the first distance d described above, the d / r is set to 0.2 or more, and further to 0.86 or more, thereby more reliably blocking. to be able to suppress the adhesion of slag S l to召合allowed position P a of the door 32 has been confirmed.

また、実施例では、実際に上記実施形態と同様に遮断扉32の召合わせ位置Pを配し、遮断扉32の召合せ位置PへのスラグSの付着の有無を確認した。図7に示す、L/Hが0.25、d/rが0.43となる条件のプロット、及びL/Hが0.15、d/rが1となる条件のプロットは、上記実施形態と同様に遮断扉32の召合わせ位置Pをずらして配した条件である。前者の条件では遮断扉の幅の比W1/W2は約1.5であり、後者の条件では遮断扉の幅の比W1/W2は約2.3であった。これらの条件では、中間排滓工程において、排出されたスラグSが召合せ位置Pにかかることがなかったため、スラグSの排出速度を上げることができ、召合せ位置Pが中心位置Pにある遮断扉に比べ、中間排滓工程に掛かる時間を短縮できることを確認した。また、中間排滓後において、遮断扉32の召合せ部322a,322bや炉前床5の召合せ位置Pに、スラグSなどの付着物がないことを確認した。
以上の結果から、本発明によれば、中間排滓を行う転炉型精錬炉1において、召合せ位置PへのスラグSの付着を抑制することができることが確認できた。
Further, in the embodiment, actually arranged convene alignment P a of the above embodiments and blocked similarly door 32, to confirm the presence or absence of adhesion of slag S l to召合allowed position P a blocking door 32. The plot of the condition shown in FIG. 7 where L / H is 0.25 and d / r is 0.43, and the plot of the condition where L / H is 0.15 and d / r is 1 are shown in the above embodiment. and the condition is arranged by shifting the convene alignment P a blocking door 32 as well. Under the former condition, the width ratio W1 / W2 of the blocking door was about 1.5, and under the latter condition, the width ratio W1 / W2 of the blocking door was about 2.3. Under these conditions, the intermediate Haikasu step, discharged slag S l is never applied to the positions P a was召合, it is possible to increase the discharge speed of slug S l, the center position召合allowed position P a is It was confirmed that the time required for the intermediate evacuation process can be shortened compared with the shut-off door at Pc . Further, after the intermediate Haikasu, convene mating portion 322a of the blocking doors 32, the召合allowed position P a of 322b and furnace forehearth 5, it was confirmed that there are no deposits, such as slag S l.
From the above results, according to the present invention, the converter type refining furnace 1 for intermediate Haikasu, it was confirmed that it is possible to suppress the adhesion of slag S l to召合allowed position P a.

1 転炉型精錬炉
2 炉体
21 炉口
22 トラニオン
23 底吹きノズル
24 出湯孔
3 隔壁
31 固定壁
311 炉前側開放部
32 遮断扉
32a 第1の扉部
321a 第1の移動手段
322a 第1の召合せ部
323a 第1の保護板
32b 第2の扉部
321b 第2の移動手段
322b 第2の召合せ部
323b 第2の保護板
4 集塵設備
41 スカート
42 フード
5 炉前床
6 溶銑鍋
7 送酸ランス
W1,W2 (遮断扉の)幅
召合せ位置
(炉口の)中心位置
r (炉口の)半径
d 第1の距離
L 第2の距離
H (トラニオン回転軸中心から炉口までの)高さ
M 溶銑
スラグ
スクラップ
DESCRIPTION OF SYMBOLS 1 Converter type refining furnace 2 Furnace body 21 Furnace port 22 Trunnion 23 Bottom blowing nozzle 24 Hot water outlet 3 Bulkhead
31 Fixed wall 311 Opening part on the furnace front side 32 Shut-off door 32a First door part 321a First moving means 322a First summing part 323a First protective plate 32b Second door part 321b Second moving means 322b Second 2 summoning section 323b 2nd protective plate 4 dust collecting equipment 41 skirt 42 hood 5 furnace front floor 6 hot metal ladle 7 acid lance W1, W2 (of shut-off door) width P a summing position P c (furnace entrance ) Center position r Radius of furnace opening d First distance L Second distance H Height from trunnion rotation axis center to furnace opening M Hot metal S l Slag S c Scrap

Claims (6)

水平方向に平行な一軸方向に移動可能な第1の移動手段と、前記一軸方向の一端側に第1の召合せ部とを有し、転炉型精錬炉の炉体を囲む隔壁の一部である固定壁の炉前側開放部の一部を覆うことが可能な第1の扉部と、
前記第1の扉部と前記一軸方向に並んで配され、前記一軸方向に移動可能な第2の移動手段と、前記第1の扉部と対向する前記一軸方向の一端側に第2の召合せ部とを有し、前記炉前側開放部の一部覆うことが可能な第2の扉部と
を備え、
前記第1の召合せ部と前記第2の召合せ部とが合わさり、前記第1の扉部と前記第2の扉部とにより前記炉前側開放部が覆われた閉じた状態において、前記第1の召合せ部と前記第2の召合せ部とが合わさる位置である召し合わせ位置と、前記炉体の炉口の中心位置との前記一軸方向に平行な方向における第1の距離d[m]が、0mよりも大きく、且つ、前記炉口の半径r[m]、前記炉体を正立した状態から反出湯側に90度傾転させた位置における前記炉口と炉前床との第2の距離L[m]、及び前記炉体のトラニオンの回転軸中心から前記炉口までの高さH[m]との関係が(1)式を満たすことを特徴とする転炉型精錬炉の遮断扉。
d/r≧1−3L/H ・・・(1)
Part of a partition wall having a first moving means movable in a uniaxial direction parallel to a horizontal direction and a first summing portion on one end side in the uniaxial direction and surrounding a furnace body of a converter type refining furnace A first door part capable of covering a part of the furnace front side opening part of the fixed wall,
A second moving means arranged side by side in the uniaxial direction with the first door portion and movable in the uniaxial direction, and a second sump on one end side in the uniaxial direction facing the first door portion. And a second door portion that can partially cover the furnace front side open portion,
In the closed state where the first summoning unit and the second summoning unit are combined, and the first door portion and the second door portion cover the furnace front side open portion, A first distance d [m] in a direction parallel to the uniaxial direction between a summing position where one summing part and the second summing part meet and a center position of a furnace port of the furnace body. ] Is larger than 0 m, the radius r [m] of the furnace port, and the furnace port and the floor in front of the furnace at a position where the furnace body is tilted 90 degrees from the upright state to the counter hot water side. The converter type refining characterized in that the relationship between the second distance L [m] and the height H [m] from the center of the rotation axis of the trunnion of the furnace body to the furnace port satisfies the equation (1). The furnace door.
d / r ≧ 1-3 L / H (1)
前記半径rに対する前記第1の距離dの比の値d/rが、0.2以上であることを特徴とする請求項1に記載の転炉型精錬炉の遮断扉。   2. The conversion door of the converter type refining furnace according to claim 1, wherein a value d / r of a ratio of the first distance d to the radius r is 0.2 or more. 前記半径rに対する前記第1の距離dの比の値d/rが、0.86以上であることを特徴とする請求項2に記載の転炉型精錬炉の遮断扉。   The value d / r of the ratio of the first distance d to the radius r is 0.86 or more, and the converter type refining furnace shut-off door according to claim 2. 前記閉じた状態において、前記召し合わせ位置が、前記一軸方向に平行な方向において、前記第1の距離dが前記半径rよりも長くなるように配されることを特徴とする請求項3に記載の転炉型精錬炉の遮断扉。   The said summing position in the said closed state is distribute | arranged so that the said 1st distance d may become longer than the said radius r in the direction parallel to the said uniaxial direction. Shutter door of the converter type smelting furnace. 前記第1の扉部の前記一軸方向の幅は、前記第2の扉部の前記一軸方向の幅の1.25倍以上4.0倍以下であることを特徴とする請求項2〜4のいずれか1項に記載の転炉型精錬炉の遮断扉。   The width in the uniaxial direction of the first door part is 1.25 times or more and 4.0 times or less than the width in the uniaxial direction of the second door part. A shut-off door of the converter type refining furnace according to any one of the above items. 転炉型精錬炉の炉体に収容された溶銑に酸素ガスを供給し、前記溶銑を送酸精錬する一次送酸精錬工程と、
前記一次送酸精錬工程の後、前記炉体に収容された前記溶銑を前記炉体に残留させたまま、前記炉体の炉口が炉前側に位置するように前記炉体を傾転させて、前記一次送酸精錬工程で生成したスラグの少なくとも一部を前記炉口から排出する中間排滓工程と、
前記中間排滓工程の後、前記炉体に残留させた前記溶銑に前記酸素ガスを供給し、さらに送酸精錬する二次送酸精錬工程と
を備え、
前記中間排滓工程では、水平方向に平行な一軸方向に移動可能な第1の移動手段と前記一軸方向の一端側に第1の召合せ部とを有し、前記炉体を囲む隔壁の一部である固定壁の炉前側開放部の一部を覆うことが可能な第1の扉部と、前記第1の扉部と前記一軸方向に並んで配され、前記一軸方向に移動可能な第2の移動手段と、前記第1の扉部と対向する前記一軸方向の一端側に第2の召合せ部とを有し、前記炉前側開放部の一部を覆うことが可能な第2の扉部とを備えた遮断扉を、前記第1の召合せ部と前記第2の召合せ部とが合わさり、前記第1の扉部と前記第2の扉部とにより前記炉前側開放部が覆われた閉じた状態で、前記スラグを前記炉口から排出し、
前記閉じた状態では、前記第1の召合せ部と前記第2の召合せ部とが合わさる位置である召し合わせ位置と、前記炉体の炉口の中心位置との前記一軸方向に平行な方向における第1の距離d[m]が、0mよりも大きく、且つ、前記炉口の半径r[m]、前記炉体を正立した状態から反出湯側に90度傾転させた位置における前記炉口と炉前床との第2の距離L[m]、及び前記炉体のトラニオンの回転軸中心から前記炉口までの高さH[m]との関係が(1)式を満たすことを特徴とする転炉型精錬炉の操業方法。
d/r≧1−3L/H ・・・(1)
A primary acid refining process in which oxygen gas is supplied to the hot metal contained in the furnace body of the converter-type refining furnace, and the hot metal is acid-refined,
After the primary acid refining process, the furnace body is tilted so that the furnace port of the furnace body is located on the front side of the furnace while the hot metal contained in the furnace body remains in the furnace body. An intermediate waste process for discharging at least a part of the slag generated in the primary acid refining process from the furnace port;
A secondary acid refining process for supplying the oxygen gas to the molten iron remaining in the furnace body after the intermediate waste process and further refining the acid.
The intermediate evacuation step includes a first moving means that is movable in a uniaxial direction parallel to a horizontal direction and a first summing portion on one end side in the uniaxial direction, and a partition wall that surrounds the furnace body. A first door part capable of covering a part of the furnace front side opening part of the fixed wall, which is a part, and a first door part arranged side by side in the uniaxial direction and movable in the uniaxial direction. And a second summing portion on one end side in the uniaxial direction opposite to the first door portion, and is capable of covering a part of the furnace front side opening portion. A shut-off door provided with a door portion is formed by combining the first summing portion and the second summing portion, and the first door portion and the second door portion allow the front opening portion of the furnace to be opened. With the covered closed state, the slag is discharged from the furnace port,
In the closed state, a direction parallel to the uniaxial direction between a summing position where the first summing part and the second summing part are combined with a center position of the furnace port of the furnace body The first distance d [m] is greater than 0 m, and the radius r [m] of the furnace port, the position at which the furnace body is tilted 90 degrees from the upright state to the side of the hot water. The relationship between the second distance L [m] between the furnace port and the front floor of the furnace and the height H [m] from the rotation axis center of the trunnion of the furnace body to the furnace port satisfies the equation (1). A method of operating a converter-type smelting furnace characterized by
d / r ≧ 1-3 L / H (1)
JP2016169074A 2015-09-14 2016-08-31 Shutter door of converter refining furnace and method of operating converter refining furnace Active JP6327304B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015180963 2015-09-14
JP2015180963 2015-09-14

Publications (2)

Publication Number Publication Date
JP2017057496A true JP2017057496A (en) 2017-03-23
JP6327304B2 JP6327304B2 (en) 2018-05-23

Family

ID=58391147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169074A Active JP6327304B2 (en) 2015-09-14 2016-08-31 Shutter door of converter refining furnace and method of operating converter refining furnace

Country Status (1)

Country Link
JP (1) JP6327304B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097029A (en) * 1975-12-31 1978-06-27 Pennsylvania Engineering Corporation Enclosure for steel converting apparatus
JPS5441405U (en) * 1977-08-26 1979-03-19
JPS5441404U (en) * 1977-08-26 1979-03-19
JPS54100909U (en) * 1977-12-27 1979-07-16
JPS54128907A (en) * 1977-12-29 1979-10-05 Creusot Loire Sampling device for liquid molten steel
JPS59123153U (en) * 1983-02-01 1984-08-18 川崎製鉄株式会社 Converter temperature sampling device
JP2008255446A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Method for killing slag

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097029A (en) * 1975-12-31 1978-06-27 Pennsylvania Engineering Corporation Enclosure for steel converting apparatus
JPS5441405U (en) * 1977-08-26 1979-03-19
JPS5441404U (en) * 1977-08-26 1979-03-19
JPS54100909U (en) * 1977-12-27 1979-07-16
JPS54128907A (en) * 1977-12-29 1979-10-05 Creusot Loire Sampling device for liquid molten steel
JPS59123153U (en) * 1983-02-01 1984-08-18 川崎製鉄株式会社 Converter temperature sampling device
JP2008255446A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Method for killing slag

Also Published As

Publication number Publication date
JP6327304B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
CN110923394B (en) Steelmaking apparatus and steelmaking method
KR20200070213A (en) Method for removing slag during production process of ultra-low steel and production method of ultra-low steel
CN110073161B (en) Electric stove
CN211367630U (en) Steel-smelting equipment
JP2018184645A (en) Slag outflow prevention apparatus
CN105714013A (en) Control method for vortex slag entrapment during converter tapping
WO2016132160A1 (en) Method of making steel using a single installation, and installation
JP6327304B2 (en) Shutter door of converter refining furnace and method of operating converter refining furnace
CN210856202U (en) Liquid metal smelting system
JP4533293B2 (en) Converter discharge method
JP6888477B2 (en) Top bottom blown converter type refining equipment and hot metal refining method
CN210856207U (en) Liquid metal refining device and liquid metal smelting system
CN104513879B (en) Method for treating molten iron
JP4206050B2 (en) Converter discharge method
RU2339887C2 (en) Intermidiate device for cutting of slag from metal at output of it in melt form from melting facility
JP3733013B2 (en) Hot metal dephosphorization method
JP5145736B2 (en) Dephosphorization method of hot metal in converter type refining furnace
SU910793A1 (en) Method for extrafurnace treatment of steel and martin furnace
JP7280479B2 (en) Arc electric furnace, slag discharge method in arc electric furnace, and method for producing molten metal
CN112176149B (en) Liquid metal refining device, liquid metal smelting system and refining method
JP2017145486A (en) METHOD FOR MELTING HIGH Si HIGH Al EXTRA-LOW CARBON STEEL
KR101749077B1 (en) Tundish and Method for casting using the same
KR101412553B1 (en) Tapping method of converter for reducing nitrogen in molten steel
CN110257588A (en) A kind of liquid metal smelting system and smelting process
SU1305179A1 (en) Method for treating steel outside furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250