JP2017056259A - 被検体情報取得装置 - Google Patents

被検体情報取得装置 Download PDF

Info

Publication number
JP2017056259A
JP2017056259A JP2016252861A JP2016252861A JP2017056259A JP 2017056259 A JP2017056259 A JP 2017056259A JP 2016252861 A JP2016252861 A JP 2016252861A JP 2016252861 A JP2016252861 A JP 2016252861A JP 2017056259 A JP2017056259 A JP 2017056259A
Authority
JP
Japan
Prior art keywords
light
light source
subject
unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016252861A
Other languages
English (en)
Other versions
JP6362666B2 (ja
JP2017056259A5 (ja
Inventor
紘一 鈴木
Koichi Suzuki
紘一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016252861A priority Critical patent/JP6362666B2/ja
Publication of JP2017056259A publication Critical patent/JP2017056259A/ja
Publication of JP2017056259A5 publication Critical patent/JP2017056259A5/ja
Application granted granted Critical
Publication of JP6362666B2 publication Critical patent/JP6362666B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】光音響測定を行う際に、光源からの電磁ノイズが光センサに及ぼす影響を抑制する。
【解決手段】光源と、光源を駆動する駆動回路を備える光源ユニットと、光源から出射された光の照射を受けて被検体から発生する音響波を電気信号に変換する探触子と、光源から出射された光を検知してトリガ信号を生成する光検知手段と、光検知手段からのトリガ信号と、探触子からの電気信号とを受信し、被検体内部の特性情報を生成するコントローラと、光源ユニットから発生する電磁ノイズをシールドするハウジングを有し、ハウジングは、光源ユニットと光検知手段とを隔離するように光検知手段を格納する被検体情報取得装置を用いる。
【選択図】図1

Description

本発明は、被検体情報取得装置に関する。
従来、医療分野で、光音響効果を利用して被検体内部の形態や機能を画像化する光音響装置が研究されている。このような従来の光音響装置では、使用者の指示を受けると、光音響装置内部のコントローラが光源の駆動回路に信号を送り、パルス光を発光させる。このパルス光が導光手段を介して被検体に照射されると、光音響波が発生する。この光音響波は、被検体に接触した探触子により受信され、光音響信号と呼ばれる電気信号に変換される。コントローラはこの光音響信号に対して信号処理および画像再構成処理を行い、診断画像を使用者に提示する。
従来の光音響装置において、診断画像のコントラストを向上させるためには十分な光量のパルス光を被検体に照射する必要がある。そのため、光源として高出力のレーザが用いられている。このレーザ内部のフラッシュランプやQスイッチの駆動には高電圧、大電流が必要になる。
また、光源には個体差や経年変化があるため、コントローラが駆動信号を送ってからパルス光が実際に発光されるまでの時間にばらつきがあり、パルス光の発光タイミングは一定ではない。そこで光センサを備えることにより、パルス光の発光タイミングを検知可能とした光音響装置が提案されている(特許文献1)。特許文献1の光音響装置では、一部のパルス光を光センサに導き、発光タイミングを検知する。そして、光センサにて検知した発光タイミングに同期して、受信回路が光音響信号受信の開始、停止制御を行う。また、発光タイミングと受信信号の時間差に基づいて被検体内部の光吸収部位の位置を推定し、画像再構成を行う。
光源が上述のような高出力のレーザである場合、一般的には、光源と導光手段および光センサを一つのハウジング内に入れて、パルス光がハウジング外に漏れないようにすることで、装置の安全性を確保している。導光手段としてはビームスプリッタ、ミラーなどの光学部材が用いられ、パルス光を分岐して光センサに導く。
一方、照明装置の分野において、導光手段としてバンドルファイバを用いる装置が提案されている(特許文献2)。
特開2011−229556号公報 特開2001−174410号公報
従来の光音響装置において光源を駆動する際に、高電圧、大電流を扱う光源の駆動回路からの電磁ノイズが光センサに回り込む場合がある。その結果、光センサが誤動作し、発光タイミングと光音響波受信の同期処理に悪影響が生じて、被検体内部の状態を正確に画像化できなくなるおそれがある。これを防ぐために光センサにシールド部材などでノイズ対策を行うことも考えられる。しかし、光源からの電磁ノイズが大きいことや、開口部やコネクタ部など電磁シールドしにくい箇所があることから、電磁ノイズの影響を抑制する
効果には限界がある。
本発明は、上記課題に鑑みてなされたものであり、その目的は、光音響測定を行う際に、光源からの電磁ノイズが光センサに及ぼす影響を抑制することにある。
本発明は以下の構成を採用する。すなわち、光源と、該光源を駆動する駆動回路とを備える光源ユニットと、前記光源から出射された光の照射を受けて被検体から発生する音響波を電気信号に変換する探触子と、前記光源から出射された光を検知してトリガ信号を生成する光検知手段と、前記光検知手段からの前記トリガ信号と、前記探触子からの前記電気信号とを受信し、被検体内部の特性情報を生成するコントローラと、前記光源ユニットから発生する電磁ノイズをシールドするハウジングとを有し、前記ハウジングは、前記光源ユニットと前記光検知手段とを隔離するように前記光検知手段を格納することを特徴とする被検体情報取得装置である。
本発明によれば、光音響測定を行う際に、光源からの電磁ノイズが光センサに及ぼす影響を抑制することができる。
本発明の実施例1におけるブロック構成図。 本発明の実施例1における動作フローチャート。 本発明の実施例1におけるコントローラ内部構造を示す図。 本発明の実施例1におけるバンドルファイバの構成図。 本発明の実施例2におけるブロック構成図。 本発明の実施例2における探触子の構成図。 本発明の実施例1におけるタイミングチャート。
以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状及びそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の記載に限定する趣旨のものではない。
本発明の光音響装置は、被検体に光(電磁波)を照射することにより被検体内部で発生した音響波を受信して、被検体内部の特性情報を画像データとして取得する光音響効果を利用した装置である。このとき取得される特性情報は、光照射によって生じた音響波の発生源分布、被検体内部の初期音圧分布、あるいは初期音圧分布から導かれる光エネルギー吸収密度分布や吸収係数分布、組織を構成する物質の濃度分布を示す。物質の濃度分布とは、例えば、酸素飽和度分布や酸化・還元ヘモグロビン濃度分布などである。かかる特性情報は被検体情報とも呼ばれることから、本発明の光音響装置を、被検体情報取得装置と呼ぶこともできる。
本発明でいう音響波とは、典型的には超音波であり、音波、超音波、音響波と呼ばれる弾性波を含む。光音響効果により発生した音響波のことを、光音響波または光超音波と呼ぶ。被検体情報取得装置の探触子は、被検体内部で発生した音響波を受信する。
<実施例1>
本実施例は、光源からの出射光を被検体に導光する際に、出射光の一部を受信回路のハウジング内に置かれた光センサに導くものである。
図1は本実施例に係る光音響装置を示すブロック構成図である。図1において、符号101は被検体を固定し被検体にパルス光を照射するとともに、被検体からの光音響波を受信し、光音響信号に変換する保持ユニットである。符号102は光源および光源の駆動回路と光学系を含む光源ユニットである。符号103は光音響信号を受信し信号処理と画像処理を行い、使用者に診断画像を提示するとともに、装置全体の動作制御を行うコントローラである。符号104は光音響装置の被検体であり、被検者の体の一部である。ここでは乳房を例として説明する。
符号105および符号106はパルス光を被検体の近くまで導くための光路であり、多数の光ファイバを束ねたバンドルファイバにより構成される。本実施例では2方向から被検体104にパルス光を照射する例を用いて説明する。符号107および符号108はそれぞれバンドルファイバ105、106の一部の光ファイバであり、被検体104へのパルス光の一部を分岐してコントローラ103へ導光する。符号109は被検体内部に存在する光吸収の大きな部位(光吸収部位)を表したものであり、例えば乳がんに起因する新生血管がこれにあたる。光吸収部位109にパルス光が照射されると、光音響効果により光音響波110が生じる。バンドルファイバは本発明の導光手段に、その一部の光ファイバは本発明の入力手段に相当する。
符号111は探触子であり内部に光音響波110を受信するための振動子を備えている。この振動子はPZT、CMUTなどの超音波センサ素子をアレイ状に並べたものであり、光音響波110を電気信号である光音響信号に変換する。また、探触子111にはバンドルファイバ105が接続され、被検体104にパルス光を照射することができる。符号112は被検体の測定部位に探触子111と対向する向きからパルス光を照射するための投光部であり、バンドルファイバ106からの出射光を所定の倍率で拡大し、照射光の密度および照射領域を調整するための光学系を有している。なお、投光部112から被検体104に向かう方向をZ軸とし、これに垂直な平面の水平方向(紙面の奥行き方向)をX軸、垂直方向(紙面の上下方向)をY軸とする。
符号113は被検体104を圧迫固定するための板状部材であり、被検体104と探触子111の間にあり、探触子111と接するように固定されている。板状部材113は音響インピーダンスが被検体104と近い材料で構成され、光音響波110を効率よく探触子111へ伝達することができる。符号114は被検体104を圧迫固定するための板状部材であり、使用者は投光部112と被検体104の間でZ方向に動かすことができる。これにより、被検体104のサイズに応じてさまざまな厚みで被検体104を圧迫固定することができる。また、板状部材114は光透過性の高い部材で構成され、パルス光を効率よく被検体104に照射することができる。
符号115は使用者の指示に応じて板状部材114をZ方向に動かすための駆動回路およびモータからなる保持機構駆動部である。また、保持機構駆動部115は、板状部材113および板状部材114の距離から被検体104の厚みを計測するセンサを備える。また、板状部材113と板状部材114の間に被検体104が固定されているか否かを検知する近接センサを備える。符号116は投光部112および探触子111をXY平面上で2次元走査させるための駆動回路およびモータからなるステージ駆動部である。投光部112と探触子111を被検体104全体にわたり走査させることにより広範囲の診断画像を得ることができる。
符号117は光ファイバコネクタからなる光入力部であり、光ファイバ107および光ファイバ108を接続することができる。光ファイバ107および光ファイバ108を光入力部117に接続すると、光ファイバの出射端がフォトダイオードに対向し、パルス光
がフォトダイオードに入射するように位置決めされる。符号118は光センサ回路であり、フォトダイオードによって変換された電流を整形し、デジタルパルス信号に変換する回路からなる。光センサ回路118は、電流電圧変換回路、コンパレータ、シュミットトリガ回路により構成される。光入力部および光センサ回路は、本発明の光検知手段に相当する。
符号119は探触子111によって変換された光音響信号を受信するためのプローブコネクタであり、多チャンネルのZIFコネクタにより構成される。符号120はプローブコネクタ119を介して入力された光音響信号に対し、増幅、A/D変換、ノイズ除去などの信号処理を行う受信回路である。受信回路120は光センサ回路118からのデジタルパルス信号の立ち上がりに同期して、A/D変換処理および停止タイミングを決定する。そして、一定期間の間光音響信号を取得し、内部のメモリ121に保存する。
制御部122は受信回路120、保持機構駆動部115、ステージ駆動部116、光源駆動回路132に指示を送り、全体の動作制御を行う部分であり、CPUおよびソフトウェアで構成される。符号123は画像処理回路であり、メモリ121に保存された光音響信号データを読み出し、画像再構成処理を行い、被検体104内部の吸収係数分布を表す診断画像データを生成する。
符号124は使用者が光音響装置の動作条件の設定や動作開始指示を行うためのユーザインタフェース、すなわち操作部であり、キーボード、マウス、ボタンスイッチなどで構成される。動作条件としては、被検体104の測定範囲や光音響信号の測定時間などがある。また、動作指示としては被検体の撮影開始および撮影中断などがある。符号125は使用者に診断画像を表示したり、光音響装置の状態を通知したりするためのディスプレイである。
符号126および符号127はパルス光を発生させるためのパルスレーザ光源であり、YAGレーザ、チタンサファイアレーザなどで構成される。パルスレーザ光源は内部のレーザ媒質を励起するための手段としてフラッシュランプおよびQスイッチをもち、外部から電気的に発光タイミングを制御可能な構成になっている。また、パルスレーザ光源は投入エネルギーを設定するためのインタフェースをもち、外部からパルス光のエネルギーを電気的に制御可能な構成になっている。
符号128および符号129はそれぞれ光源126、光源127からのパルス光を遮断するためのシャッタである。使用者の指示に基づきシャッタを閉じ、被検体への光照射を停止することができる。光ファイバ入力部130および131はそれぞれシャッタ128およびシャッタ129を通過したパルス光をバンドルファイバ105、106へ入力させる部分である。バンドルファイバ105および106の入射端へ光軸をあわせる部材や、照射密度およびビーム径を調整する拡大光学系が含まれる。
符号132は光源126、光源127およびシャッタ128、シャッタ129の駆動回路、すなわち光源駆動回路である。光源駆動回路132は一定周期でフラッシュランプを点灯させ、レーザ媒質に励起エネルギーを蓄積した後にQスイッチをONにし、ジャイアントパルスと呼ばれる高いエネルギーをもつパルス光が出力させる。温度調節部133は光源126および127でレーザ発振を安定して行わせるために内部の温度を一定の範囲にするためのエアコンやチラーである。この温度の範囲は25度から30度の範囲であるとする。
光源ユニット102はレーザ光が外部に漏れ出さず、かつ内部の温度を一定となるように、ハウジングで外部と遮断されている。パルス光は保持ユニット内の投光部112と探
触子111から被検体104に照射される。投光部112および探触子111はXY平面上で動くため、可とう性のあるバンドルファイバ105および106により光源ユニット102から保持ユニット101へパルス光を伝送する。バンドルファイバは数100本の光ファイバが束ねられているものである。バンドルファイバ105および106内でまばらに分布するように数本を選択し、光ファイバ107および108としてコントローラ103へパルス光を伝送する。コントローラ103内では、パルス光を受信したタイミングに同期して探触子111からの光音響信号取得を開始する。
図2はコントローラ103で実行される生体検査装置の動作フローを示す。また、図7はコントローラがパルス光を出力させてから光音響信号を受信するまでの制御信号のタイミングチャートである。
ステップS201において、制御部122は保持機構駆動部115の近接センサからの信号により測定準備ができているか否かを確認する。被検体104が板状部材113および114の間に固定されている場合(S201=Yes)には、測定準備ができていると判断し、ステップS203へ進む。測定準備ができていない場合(S201=No)にはステップS202へ進み、一定時間待機した後にステップS201に戻る。
続いてステップS203において、CPU122は使用者が操作部124を介して指定した設定情報を読み込み、内部のメモリ121へと記録する。設定情報としては同じ測定位置での繰り返し照射回数や測定範囲、パルス光の波長などがある。
続いてステップS204において、CPU122はステージ駆動部116を介してXYステージを駆動し、被検体104の測定位置まで投光部112および探触子111を移動させる。
続いてステップS205においてCPU122は光源駆動回路132を介してシャッタ128およびシャッタ129を開く制御信号を出す。これにより、レーザ126およびレーザ127からのパルス光は、バンドルファイバ105および106を経て被検体104に、光ファイバ107および108を経て光入力部117に到達するようになる。
続いてステップS206においてCPU122は光源駆動回路132を介して光源126および127へ制御信号を送り、パルス光を発光させる。この処理について、図7のタイミングチャートを参照して詳述する。
図7において符号701は制御部122内において一定の周期で立ち上がる基準パルス信号である。ここでは基準パルス信号701は100ミリ秒ごとに立ち上がるものとする。ここでは、まず、時刻T722にレーザ126への励起開始信号702、時刻T726にレーザ127への励起開始信号706を立ち上げ、フラッシュランプを点灯させ光源内部のレーザ媒質を励起させる。
続いて、十分励起したところで、時刻T723に光源126への発振開始信号703を、時刻T727に光源127への発振開始信号を立ち上げ、Qスイッチを駆動させる。これにより、レーザ媒質内部で急激な発振が起こり、大きなエネルギーのパルス光が出射される。光源駆動回路132は光源126および127への励起開始信号と発振開始信号のタイミングを調整することにより、複数の光源の個体差によらず、パルス光704および708がほぼ同時刻(T724およびT728)に被検体104に照射されるようにする。パルス光の時間幅は10ナノ秒程度であるが、時刻T724と時刻T728の時間差は10ナノ秒以下になるように調整する。
このとき、パルス光は被検体104だけでなく光入力部117にも入力され、光センサ
回路118により電気パルス信号705および709に変換され、ほぼ同時刻(T725および時刻T729)に受信回路120に通知される。時刻T723から時刻T724までの間および、時刻T727から時刻T728までの間は数100ナノ秒から数マイクロ秒の遅延があり、かつ光源内部のフラッシュランプの個体差や経年変化によって変わる。そのため、受信回路120はパルス光が被検体に照射されるタイミングを検知するために光センサ回路からのトリガ信号を用いる。
続いて、被検体104内部で発生した光音響波は探触子111にて光音響信号711に変換され、時刻T731に受信回路120に伝達される。この処理は、図2のステップS207に対応する。ステップS207において受信回路120は光センサ回路118からの電気パルス信号が立ち上がった後に、一定時間光音響信号711をA/D変換し、内部メモリに保存する。そのために、受信回路120は被検体104からの光音響信号711が受信回路に届く時刻T731より前にA/D変換器への変換開始信号710を立ち上げておく(T730)。そして、被検体からの光音響信号711が受信回路に到達し終えた時刻T732より後の時刻T733に変換開始信号710を立ち下げる(T733)。また、その際に被検体上の同位置の信号同士で加算平均を行いノイズの影響を低減させる処理を行う。
続いて時刻T730と時刻T733の求め方について説明する。板状部材113の厚みをd1[m]、板状部材113と板状部材114の間隔をd2[m]、生体内の平均音速をv[m/s]とする。d1とvの値は予め算出され、メモリ121内に保存されている。d2の値は保持機構駆動部115の距離センサにより計測される。またパルス光が被検体104に照射されてから受信回路までトリガ信号が届くまでにかかる遅延をt1[s]とする。
このとき、パルス光が光吸収部位109までに到達するのにかかる時間と、光音響波110が探触子111に到達するのにかかる時間では、後者のほうが十分大きい。そのため、時刻T725から時刻T731までの間隔は、被検体104からの光音響信号が板状部材113を経過する時間を考慮して、d1/v[s]とみなすことができる。時刻T725から時刻T732までの間隔は、被検体104の全体からの光音響信号が到達する時間を考慮して、(d2+d1)/v[s]とみなすことができる。そこで、信号処理部315はトリガ信号が入力された時刻T725からd1/v−t1[s]だけ時間が経過する前に変換開始信号710をアサートする(時刻T730)。また、時刻T725から(d2+d1)/v−t1[s]だけ時間が経過した後に変換開始信号710をネゲートする(時刻T733)。
これにより、被検体104からの光音響信号を全てデジタルデータとしてメモリ121に保存することができる。これらのデジタルデータは制御部122上のCPUにより読み出され、被検体104上の同じ位置にあたるデータ同士で加算平均される。続いて画像処理基板123に入力され、画像再構成が行われる。この際に早い時刻に高い値の光音響信号が受信されている場合には光吸収部位が被検体104の探触子111に近い位置にあると判断される。一方、遅い時刻に高い値の光音響信号が受信されている場合には光吸収部位が被検体104の探触子111に遠い位置にあると判断される。
このように画像再構成を行う際のデータが、誤動作したトリガ信号に基づいて取得されたものである場合、時刻と光音響信号の対応がずれてしまう。その結果、診断画像上では実際とは異なる位置にアーチファクトが描出されてしまうおそれがある。
一方、本発明では光センサ回路を光源ユニット102とは別のハウジングに格納し、パルス光で情報を伝送することにより、レーザ126、127からの電磁ノイズによるトリガ信号の誤動作を防いでいる。
続いて、図2のフローに戻って説明を続行する。ステップS208において、光音響信号を内部メモリへ保存した回数がステップS203で読み込まれた繰り返し照射回数に達しているか否かを判定する。読み込まれた値に達している場合(S208=Yes)、ステップS209へ進み、達していない場合(S208=No)、ステップS206へ戻る。例えばステップS203で繰り返し照射回数として3という値が読み込まれていた場合には、ステップS206およびステップS207の処理を3回繰り返した後にステップS209へ進む。
続いて、ステップS209において被検体104の測定範囲全体の測定が終わっているか否かを判定する。測定範囲についてはステップS203で読み込まれている。全測定範囲での測定が完了している場合(S209=Yes)、ステップS210へ進む。まだ測定が完了していない位置がある場合(S209=No)、ステップS204に戻り、処理を継続する。
ステップS210において、CPU122は画像処理回路123へ指示を出し、受信処理回路116の内部メモリに保存されている各測定位置での光音響信号データをもとに画像再構成を行う。そして、生体内部の分光特性を示す診断画像をディスプレイ125に出力する。
図3にコントローラ内部の基板の構成を示す。
符号301は光ファイバ107を接続するためのファイバコネクタである。符号302は光ファイバ108を接続するためのファイバコネクタである。ファイバコネクタ301と302を合わせたものが光入力部117に相当する。
符号303および符号304はフォトダイオードであり、それぞれファイバコネクタ301およびファイバコネクタ302の光軸上に受光面が配置されているものとする。符号305および符号306は電流電圧変換回路であり、オペアンプおよび抵抗などの受動素子から構成される。パルス光がフォトダイオードに入射すると、光電流が流れ、電流電圧変換回路305および306により、光電流に比例した電圧が出力される。
符号307および符号308は比較回路からなる比較器である。比較器は電流電圧変換回路305および306の出力電圧をある一定の閾値と比較し、閾値を越えたときのみ電圧レベルをハイレベルにする。閾値以下の場合には電圧レベルをローレベルにする。光源126および127からのパルス光の幅は10ナノ秒程度である。そのため、電流電圧変換回路305、306および比較器307、308の出力電圧のパルス幅も10ナノ秒程度である。
符号309および符号310は波形整形回路からなる波形整形器である。波形整形器はパルス幅を10ナノ秒から1マイクロ秒程度まで拡大し、受信回路120で発光タイミングを検知しやすくする。波形整形器は単安定マルチバイブレータ回路およびバッファ回路により構成される。波形整形器309および310の出力パルスをトリガ信号と呼ぶ。トリガ信号はトリガ分岐基板311へ入力される。
一般に受信回路120は複数の基板で構成される。本実施例では、探触子111のもつ超音波センサ素子が600素子あり、探触子111から600本の信号線からなるケーブルがプローブコネクタ119へ入力されるものとする。また、受信回路120は4枚の基板から構成され、各基板は150チャンネルの信号をデジタル化することができるものとする。
トリガ分岐基板311は波形整形回路309および310の出力信号を4枚の受信回路基板に分配し、各基板が同じタイミングで動作するようにするものとする。トリガ分岐基板は高精度のバッファ回路により構成される。一方、プローブコネクタ119に入力された光音響信号は光音響信号分岐基板312に入力される。光音響信号分岐基板312は600本の光音響信号を150本ずつに分割し、4枚の受信基板に入力させるための基板である。
符号313は光音響信号を増幅するためのプリアンプからなる増幅部である。増幅部313により数10マイクロV程度の微弱な光音響信号が数ミリV程度まで増幅される。符号314は増幅された光音響信号をデジタル化するA/D変換回路からなるA/D変換部である。A/D変換の開始および停止のタイミングは後述の信号処理部からの制御信号に基づいて決定されるものとする。符号315はA/D変換部314にてデジタル化された光音響信号に対し、信号処理を行う回路であり、FPGAで構成される。また、信号処理部315にはトリガ分岐基板311で分配されたトリガ信号が入力される。これらの信号は図7の705および709に相当する。
信号処理部315はトリガ信号の立ち上がりを検知すると、A/D変換部314へA/D変換開始信号をアサートし、光音響信号の受信を開始する。A/D変換部から出力されたデータは順次メモリ316へ格納される。信号処理部315は被検体104からの光音響波が探触子111まで伝わる時関よりも十分長い時間のデータをメモリ316へ格納した後にA/D変換部の変換開始信号をネゲートし、A/D変換を停止する。
符号317は受信回路、プローブコネクタおよびファイバコネクタ、光センサ回路を格納する導電性のハウジングであり接地されているものとする。ハウジングの材質としては銅、鉄、アルミニウム、導電性プラスチックなどを用いる。また、ハウジング317は外部と接続するコネクタ部以外は隙間が最小限にされており、電磁シールドの役割を果たす。これにより、光源ユニット102や保持ユニット101からの電磁ノイズの回り込みを抑制できる。その結果、パルス光が出ていないのに光センサ回路がトリガ信号を発光する誤動作を防ぐことができる。また、誤動作による診断画像へのアーチファクトの混入を抑制できる。尚、ハウジングは図3に示す形態に限らず、少なくとも光センサ回路を光源ユニット102から隔離するように格納すればよい。また、好ましくは、電磁ノイズに感受性のある部分であるコントローラ103全体をハウジングに格納し、光源ユニット102から隔離するとよい。
また、この際にプローブコネクタ119の外装部およびファイバコネクタ301、302の外装の部分をハウジング317と絶縁しておく。これにより、保持ユニット101や光源ユニット102からのノイズ電流がプローブコネクタの外装シールド部やファイバコネクタの外装部を経由してコントローラ103に伝播することを防止することができ、光音響信号のSN比向上につながる。
本実施例においては、上記のように光入力部や光センサ回路が、外部(特に高出力の光源)からの影響を受けないように電磁シールドされたハウジングに格納されている。このように光源を含むハウジングとは異なるハウジングに光を検知する部材を配置することにより、電磁ノイズの影響を抑制できるようになる。
本実施例においてはさらに、光入力部や光センサが、コントローラと共通のハウジングに格納されている。これにより、光を検知して出力された信号が微弱な電気信号であっても、制御部に入力されるまでの間に外部からのノイズによる影響を受けることがなくなる。ただし、光を検知する部材を光源に起因するノイズからシールドできれば、本発明の効果は得られる。例えば、光入力部や光センサを、光源を含むハウジングおよびコントロー
ラを含むハウジングとは異なるハウジングに格納し、光を検知した際の電気信号をコントローラに送信するようにしても、光源に起因するノイズからのシールドは可能である。
図4にファイバ入力部130のバンドルファイバ入射端を拡大した図を示す。符号401は多数のファイバを円状にまとめる枠体である。白い丸で示した符号402は光源ユニットから被検体104へパルス光を導光する光ファイバである。光ファイバ402がまとめられ、バンドルファイバ105となる。黒い丸で示した符号403は光源ユニットからコントローラ103へパルス光を導光する光ファイバである。光ファイバ403がまとめられバンドルファイバの一部である光ファイバ107となる。コントローラ103に向かう光ファイバ403は枠体401の中をまばらに分布するように選択される。また光ファイバ403の本数は、フォトダイオード303に対し、トリガ信号を生成するのに必要十分な光量を照射するように選択される。
このように光源ユニット102から保持ユニット101へ入力される光ファイバの一部をコントローラ103へ分岐させることにより、ビームスプリッタなどの部品を追加することなく、パルス光を分岐することができる。また、光源ユニット102、保持ユニット101およびコントローラ103の間を光ファイバ伝送することにより、光源ユニットをコントローラ103および保持ユニットから離しても、厳密な光路調整を行う必要が無く組み立ての容易な装置を実現することができる。
以上説明してきたように、本発明の実施例1によれば、受信回路のA/D変換開始タイミングを生成するための光センサを光源ユニットとは離れたコントローラ内部に配置している。これにより、光源からの電磁ノイズの回り込みを防ぎ、信頼性の高い光音響装置を実現することができる。
なお、本実施例では光源が2台あり、2方向から被検体にパルス光を照射する例を用いて説明したが、光源の台数や照射方向はこれに限らない。例えば1台の光源からのパルス光を光源ユニット102内で分岐し、2方向から被検体に照射することも可能である。また、1方向からのみ被検体にパルス光を照射する場合にも本発明は適用可能である。また、2台の光源を持つ場合にも、探触子111の方向からと、投光部112の方向のいずれか一方からパルス光を照射する場合においても本発明は適用可能である。
また、本実施例では光源から保持ユニットおよびコントローラへ光ファイバで伝送する例を用いて説明したが、導光手段の一部または全体を空間伝送に置き換えても本発明は適用できる。この場合には光軸あわせを行う位置決め手段や光路を曲げるためのミラー、プリズムなどを適切に配置すれば、光ファイバを用いるよりも安価な光音響装置を実現しうる。
なお、本実施例ではステップS207において、信号処理部315が光センサ回路118からのトリガ信号を受信してから一定時間後にA/D変換を開始させるものとして説明した。しかし、トリガ信号と同期して行う処理の内容はこれに限定されない。例えば、A/D変換部314は常時動作させておき、信号処理部315はトリガ信号受信後の、光音響信号が存在する範囲の信号のみをメモリ316に保存するように制御してもよい。
また、本実施例では光源ユニットから保持ユニットへのバンドルファイバの一部をコントローラに入力することでパルス光を分岐していたが、パルス光の分岐方法はこの方法に限定されるものではない。例えば、光源ユニット内部のファイバ入力部130の手前にビームスプリッタを用いてパルス光を分岐し、光ファイバ105および106とは別の光ファイバを用いてコントローラ103に導光してもよい。
また、本実施例はフォトダイオード303からの信号を光音響信号の受信タイミングを決定するために用いていたが、それ以外に、フォトダイオード303を用いて光量や波長測定に用いる場合にも本発明を適用することが可能である。
<実施例2>
続いて実施例2について説明する。本実施例が実施例1と異なる点は、被検体に照射したパルス光が反射した戻り光をコントローラに入力する点である。また、実施例1では被検体を板状部材で挟んで固定し、投光部および探触子を自動で走査する装置の例を用いて説明したが、本実施例では被検体に探触子を直接当て、使用者が手で探触子を被検体の表面に沿って走査する装置の例を用いて説明する。
図5は本実施例に係る光音響装置の構成を示すブロック図である。
符号501は光源ユニットである。実施例1の光源ユニット102との違いは内部のレーザが2台でなく1台である点である。符号502は実施例1と同様のコントローラである。被検体503、光吸収部位504、光音響波505、探触子506はそれぞれ実施例1の被検体104、光吸収部位109、光音響波110、探触子111と同じであるため説明を省略する。
符号507はバンドルファイバの一部であり、光源ユニット501からのパルス光を、探触子506を介して被検体503に導くのに用いられる。一方、符号508はバンドルファイバの一部であり、コントローラ502へ入力され、発光タイミングを検知するために用いられる。本実施例では、探触子506に接続されるバンドルファイバが光源ユニットに接続される光ファイバ507とコントローラに接続される光ファイバ508の2つに分岐される。符号509は探触子506から出力された光音響信号をコントローラ502に伝送するためのケーブルである。ケーブル509と光ファイバ508を一つのケーブルにまとめることもできる。
光入力部510、光センサ回路511、光源駆動回路522はそれぞれ実施例1の光入力部117、光センサ回路118、光源駆動回路132と同様であるが、レーザ光が2系統ではなく1系統である点が異なる。
プローブコネクタ512、受信回路513、メモリ514は実施例1と同様であるため説明を省略する。制御部515は受信回路513、光源駆動回路522に指示を送り、全体の動作制御を行う部分(手段)であり、CPUおよびソフトウェアで構成される。
画像処理回路516、操作部517、ディスプレイ518、は実施例1の画像処理回路123、操作部124、ディスプレイ125と同じであるため説明を省略する。レーザ519、シャッタ520、ファイバ入力部521、温度調節部523は実施例1のレーザ126、シャッタ128、ファイバ入力部130、温度調節部133と同じであるため説明を省略する。
本実施例の動作は、図2のフローにおいて、ステップS204での探触子の移動を使用者が手動で行う点が実施例1と異なる。しかし、それ以外の光照射から光音響信号取得までの動作フローは実施例1と同様である。
図6は探触子506の内部の配置を示した図である。符号601は光源ユニット501からのパルス光を被検体503に照射するための出射端部であり、バンドルファイバ507および508の出射端である。符号602は出射端部601に対向して配置された凹レンズであり、出射端部601からの出射光の照射密度と照射パターンを調整するものである。凹レンズ602を経由したパルス光は照射密度が下がり被検体503に照射可能にな
る。符号603は光音響波を受信し、光音響信号に変換するためのトランスデューサであり、数100チャンネルの超音波振動子がアレイ状に並べられたものである。
出射端部601の内部には図4の符号401と同様のバンドルファイバが格納されている。また、大部分のバンドルファイバ402は図5の光ファイバ507に対応しており、光源ユニット501のファイバ入力部521へ接続される。一部のまばらに選択された光ファイバ403は図5のファイバ508に対応しており、コントローラ502内部の光入力部510に接続される。
光源519からのパルス光はバンドルファイバ507を介して探触子506内部に導かれ、出射端601より凹レンズ602の方向に出射される。そして、凹レンズ601で拡大されたパルス光が被検体503に照射され、光吸収部位504から光音響波505が発生する。その光音響波をトランスデューサ603で光音響信号に変換し、ケーブル509でコントローラ内部の受信回路513に伝送する。その過程において、601から出射されたパルス光の一部は凹レンズ602の表面で反射し出射端601に戻り、ファイバ403内に入る。ファイバ403はまとめられファイバ508としてコントローラ502に接続されている。そのため、戻り光は光入力部510、光センサ回路511に入射し、トリガ信号が受信回路513の信号処理部315に入力される。
信号処理部315はトリガ信号の立ち上がりを検知すると、A/D変換部314へA/D変換開始信号をアサートし、光音響信号の受信を開始する。A/D変換部から出力されたデータは順次メモリ316へ格納される。信号処理部315は被検体503からの光音響波が探触子111まで伝わる時間よりも十分長い時間のデータをメモリ316へ格納する。その後、A/D変換部の変換開始信号をネゲートし、A/D変換を停止する。
本実施例での時刻T730と時刻T733の求め方について説明する。トランスデューサ603と被検体503の間隔をd3、被検体の厚みをd4[m]、生体内の平均音速をv[m/s]とする。またパルス光が被検体104に照射されてから受信回路にトリガ信号が届くまでにかかる遅延をt1[s]とする。d3、d4、vの値は予め算出され、メモリ514内に保存されている。
このとき、パルス光が光吸収部位504までに到達するのにかかる時間と、光音響波505か探触子506に到達するのにかかる時間では、後者のほうが十分大きい。そのため、時刻T725から時刻T731までの間隔は、被検体104からの光音響信号が伝播する時間を考慮して、d3/v[s]とみなすことができる。時刻T725から時刻T732までの間隔は、被検体104の全体からの光音響信号が伝播する時間を考慮して、(d3+d4)/v[s]とみなすことができる。そこで、信号処理部315はトリガ信号が入力された時刻T725からd3/v−t1[s]だけ時間が経過する前に変換開始信号710をアサートする(時刻T730)。また、時刻T725から(d3+d4)/v−t1[s]だけ時間が経過した後に変換開始信号710をネゲートする(時刻T733)。これにより、被検体104からの光音響信号を全てデジタルデータとしてメモリ316に保存することができる。これらのデジタルデータは制御基板122上のCPUにより読み出され、被検体104上の同じ位置にあたるデータ同士で加算平均される。
本実施例においても、シールドされたハウジングに光を導入して光音響波の受信タイミングを規定することにより、高電圧、大電流のレーザ光源からの影響を抑制して良好な診断画像を得るという本発明の効果を享受することが可能である。
さらに本実施例では、探触子508からの戻り光の一部をコントローラ502に入力することにより、光照射のタイミングを検知するだけではなく、被検体503にパルス光が
届いているかどうかを検出することができる。
バンドルファイバ507の断線故障や出射端部601での故障があると、制御部515が光源駆動回路522を介してレーザ519を発光させ、かつシャッタ520を開けているにもかかわらず、被検体に正しくパルス光が届いていない不具合が起こり得る。しかしこのような場合であっても、本実施例の構成を持つ光音響装置であれば、被検体に正しくパルス光が届いていない不具合を検知することができ、装置の信頼性を向上することができる。
なお、本実施例ではステップS207において、信号処理部315が光センサ回路118からのトリガ信号を受信してから一定時間後にA/D変換を開始させるものとして説明した。しかし、トリガ信号と同期して行う処理の内容はこれに限定されない。
例えば、制御部515が光源駆動回路522を介してレーザ519のQスイッチを駆動する時刻723と同時に信号処理部315がA/D変換を開始させるようにすることも考えられる。そして、トリガ信号受信後の、光音響信号が存在する範囲(時刻T731からT732)の信号のみをメモリ316に保存するように制御してもよい。このようにパルス光を照射する前からA/D変換を開始しておくことで、光センサ回路での遅延が大きくトリガ信号よりも前に光音響信号が探触子に届いてしまう場合にも、被検体からの光音響信号をとりこぼしなく取得することができる。
102:光源ユニット,103:コントローラ,105:バンドルファイバ,106:バンドルファイバ,107:光ファイバ,108:光ファイバ,111:探触子,117:光入力部,118:光センサ回路,122:制御部,123:画像処理回路,126:光源,127:光源

Claims (6)

  1. 光源と、該光源を駆動する駆動回路とを備える光源ユニットと、
    前記光源から出射された光の照射を受けて被検体から発生する音響波を電気信号に変換する探触子と、
    前記光源から出射された光を検知してトリガ信号を生成する光検知手段と、
    前記光検知手段からの前記トリガ信号と、前記探触子からの前記電気信号とを受信し、被検体内部の特性情報を生成するコントローラと、
    前記光源ユニットから発生する電磁ノイズをシールドするハウジングと
    を有し、
    前記ハウジングは、前記光源ユニットと前記光検知手段とを隔離するように前記光検知手段を格納することを特徴とする被検体情報取得装置。
  2. 前記光源から出射された光を被検体に導く導光手段と、
    前記光源から出射された光を前記ハウジングに入力する入力手段と、
    をさらに有し、
    前記導光手段は、バンドルファイバであり、
    前記入力手段は、バンドルファイバの一部のファイバである
    ことを特徴とする請求項1に記載の被検体情報取得装置。
  3. 前記入力手段は、前記光源から被検体に照射される光の一部を分岐させて前記ハウジングに入力する
    ことを特徴とする請求項2に記載の被検体情報取得装置。
  4. 前記入力手段は、前記導光手段から被検体に照射されたのち反射した光を前記ハウジングに入力する
    ことを特徴とする請求項2に記載の被検体情報取得装置。
  5. 前記光検知手段を格納しているハウジングは、前記コントローラも格納するものであることを特徴とする請求項1ないし4のいずれか1項に記載の被検体情報取得装置。
  6. 前記コントローラは、前記トリガ信号により、前記電気信号のうち被検体から発生した音響波に基づく部分を決定し、当該被検体から発生した音響波に基づく電気信号の部分を用いて被検体内部の特性情報を生成する
    ことを特徴とする請求項1ないし5のいずれか1項に記載の被検体情報取得装置。
JP2016252861A 2016-12-27 2016-12-27 被検体情報取得装置 Active JP6362666B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016252861A JP6362666B2 (ja) 2016-12-27 2016-12-27 被検体情報取得装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016252861A JP6362666B2 (ja) 2016-12-27 2016-12-27 被検体情報取得装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012069673A Division JP6124503B2 (ja) 2012-03-26 2012-03-26 被検体情報取得装置

Publications (3)

Publication Number Publication Date
JP2017056259A true JP2017056259A (ja) 2017-03-23
JP2017056259A5 JP2017056259A5 (ja) 2017-09-28
JP6362666B2 JP6362666B2 (ja) 2018-07-25

Family

ID=58389096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016252861A Active JP6362666B2 (ja) 2016-12-27 2016-12-27 被検体情報取得装置

Country Status (1)

Country Link
JP (1) JP6362666B2 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165673A (en) * 1981-04-07 1982-10-12 Nissan Motor Co Ltd Plasma ignition device
JPH02184740A (ja) * 1989-01-11 1990-07-19 Aloka Co Ltd 吸光度測定装置
JPH09145683A (ja) * 1995-11-24 1997-06-06 Hitachi Ltd 光音響分析方法及び光音響分析装置
JP2001087250A (ja) * 1999-08-30 2001-04-03 Cas Medical Systems Inc 近赤外線分光測光検査装置
JP2001174410A (ja) * 1999-12-21 2001-06-29 Nkk Corp 照明装置
JP2005504561A (ja) * 2001-03-01 2005-02-17 トラスティーズ・オブ・ダートマウス・カレッジ 蛍光寿命分光計(fls)および病変組織の検出方法
JP2006026174A (ja) * 2004-07-16 2006-02-02 Olympus Corp 内視鏡装置
JP2006326223A (ja) * 2005-05-30 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2010167167A (ja) * 2009-01-26 2010-08-05 Fujifilm Corp 光超音波断層画像化装置および光超音波断層画像化方法
JP2011229556A (ja) * 2010-04-23 2011-11-17 Canon Inc 光音響トモグラフィー装置およびその制御方法
JP2012005622A (ja) * 2010-06-24 2012-01-12 Fujifilm Corp 光音響画像化装置及び方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165673A (en) * 1981-04-07 1982-10-12 Nissan Motor Co Ltd Plasma ignition device
JPH02184740A (ja) * 1989-01-11 1990-07-19 Aloka Co Ltd 吸光度測定装置
JPH09145683A (ja) * 1995-11-24 1997-06-06 Hitachi Ltd 光音響分析方法及び光音響分析装置
JP2001087250A (ja) * 1999-08-30 2001-04-03 Cas Medical Systems Inc 近赤外線分光測光検査装置
JP2001174410A (ja) * 1999-12-21 2001-06-29 Nkk Corp 照明装置
JP2005504561A (ja) * 2001-03-01 2005-02-17 トラスティーズ・オブ・ダートマウス・カレッジ 蛍光寿命分光計(fls)および病変組織の検出方法
JP2006026174A (ja) * 2004-07-16 2006-02-02 Olympus Corp 内視鏡装置
JP2006326223A (ja) * 2005-05-30 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2010167167A (ja) * 2009-01-26 2010-08-05 Fujifilm Corp 光超音波断層画像化装置および光超音波断層画像化方法
JP2011229556A (ja) * 2010-04-23 2011-11-17 Canon Inc 光音響トモグラフィー装置およびその制御方法
JP2012005622A (ja) * 2010-06-24 2012-01-12 Fujifilm Corp 光音響画像化装置及び方法

Also Published As

Publication number Publication date
JP6362666B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
CN102596049B (zh) 光声装置
US20180338686A1 (en) Object information acquiring apparatus, control method thereof, and method for determination of contact
US9517016B2 (en) Object information acquiring apparatus and method of controlling the same
US10098547B2 (en) Photoacoustic measurement device, photoacoustic measurement method, and probe contact determination method
US20110319743A1 (en) Ultrasonic photoacoustic imaging apparatus and operation method of the same
EP2706905B1 (en) Subject information obtaining apparatus and subject information obtaining method
WO2012077356A1 (ja) 光音響検査用探触子および光音響検査装置
US20150335251A1 (en) Object information acquiring apparatus and object information acquiring method
US20130160558A1 (en) Photoacoustic imaging apparatus and control method thereof
US20140100438A1 (en) Object information acquiring apparatus and control method for same
US20170049331A1 (en) Object information acquiring apparatus and method of controlling the same
US20130205903A1 (en) Photoacoustic measuring device and method
CN105193444B (zh) 被检体信息获取装置和用于光声探测器的盖子
JP2013233238A (ja) 光音響計測装置および光音響計測装置用プローブ
WO2012114730A1 (ja) 光音響計測装置及び光音響信号検出方法
JP6124503B2 (ja) 被検体情報取得装置
US11058357B2 (en) Acoustic wave apparatus and control method thereof
JP6150496B2 (ja) 被検体情報取得装置およびその制御方法
JP2014083196A (ja) 被検体情報取得装置および光音響プローブ
JP5769652B2 (ja) 光音響計測装置および光音響計測方法
JP2012173136A (ja) 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
JP6362666B2 (ja) 被検体情報取得装置
JP6309077B2 (ja) 被検体情報取得装置
CN104856728A (zh) 光声装置
JP6443851B2 (ja) 被検体情報取得装置、被検体情報取得方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180626

R151 Written notification of patent or utility model registration

Ref document number: 6362666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151