JP2017054582A - 炭素材、及び、非水系二次電池 - Google Patents

炭素材、及び、非水系二次電池 Download PDF

Info

Publication number
JP2017054582A
JP2017054582A JP2015175403A JP2015175403A JP2017054582A JP 2017054582 A JP2017054582 A JP 2017054582A JP 2015175403 A JP2015175403 A JP 2015175403A JP 2015175403 A JP2015175403 A JP 2015175403A JP 2017054582 A JP2017054582 A JP 2017054582A
Authority
JP
Japan
Prior art keywords
carbon material
graphite
particles
less
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015175403A
Other languages
English (en)
Other versions
JP6808919B2 (ja
Inventor
慎吾 諸隈
Shingo Morokuma
慎吾 諸隈
曽我 巌
Iwao Soga
巌 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2015175403A priority Critical patent/JP6808919B2/ja
Publication of JP2017054582A publication Critical patent/JP2017054582A/ja
Application granted granted Critical
Publication of JP6808919B2 publication Critical patent/JP6808919B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高容量且つ、優れた入出力特性を有する非水系二次電池を得ることが可能な炭素材を提供し、その結果として、高性能な非水系二次電池を提供する。【解決手段】複数の炭素材料からなる造粒粒子を含有する非水系二次電池用炭素材であって、前記非水系二次電池用炭素材の断面SEM画像から前記造粒粒子を任意に30粒子選択した際に、粒子内空隙の分散性を表す。分散度Dの30粒子の平均値が60%以上である、非水系二次電池用炭素材。【選択図】 なし

Description

本発明は、炭素材と、その炭素材を用いた非水系二次電池用負極を備えた非水系二次電池に関するものである。
近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度の高く、大電流充放電特性に優れたリチウムイオン二次電池が注目されてきている。従来、リチウムイオン二次電池の高容量化は広く検討されているが、近年、リチウムイオン二次電池に対する更なる高性能化の要求が高まってきており、更なる高容量化、高入出力化、高寿命化を達成することが求められている。
リチウムイオン二次電池については、負極用活物質として、黒鉛等の炭素材料を使用することが知られている。中でも、黒鉛化度の大きい黒鉛は、リチウムイオン二次電池用の負極用活物質として用いた場合、黒鉛のリチウム吸蔵の理論容量である372mAh/gに近い容量が得られ、さらに、コスト・耐久性にも優れることから、負極用活物質として好ましいことが知られている。一方、高容量化のために負極材料を含む活物質層を高密度化すると、材料の破壊・変形により、初期サイクル時の充放電不可逆容量の増加、大電流充放電特性の低下、サイクル特性の低下といった問題点があった。
上記の問題を解決するために、例えば、特許文献1には、鱗片状天然黒鉛に力学的エネルギー処理を施すことにより球形化天然黒鉛を製造し、更に球形化天然黒鉛を核黒鉛としてその表面に非晶質炭素を被覆することにより、充填性や高速充放電特性を向上させる技術が開示されている。
特許文献2では、球状黒鉛に更に球形化処理を施すことにより、黒鉛粒子内の結晶配向を抑制させ、充放電時の膨れを低減させる技術が開示されている。また、特許文献3では、鱗片黒鉛を球形化して得られた球形化黒鉛を等方的に加圧することにより、粒子内空隙をなくして高密度化された等方性の高い黒鉛を製造することにより、高速充放電特性、及びサイクル特性を向上させる技術が開示されている。
特許第3534391号公報 特開2011−086617号公報 特開2005−50807号公報
しかしながら、本発明者らの検討によると、特許文献1や特許文献2で開示されている球形化天然黒鉛では、原料として用いた鱗片状黒鉛に比べると、高容量で、良好な急速充放電特性は得られるものの、粒子内空隙が粗く緻密さに欠ける構造となるため、電解液が粒子内空隙へスムーズ且つ効率的に行き渡らず、粒子内のLiイオン挿入脱離サイトを有効に利用できないため、それらの特性はまだ不十分なものであった。
また、特許文献3に開示されている等方的に加圧された球形化天然黒鉛では、粒子が高密度化され充填性が上がることで電極間の電解液移動がスムーズになるため一定の急速充放電特性の改善はみられるものの、粒子内空隙がなくなることで粒子内へ電解液が侵入で
きなくなり粒子内のLiイオン挿入脱離サイトを効率的に利用できなくなるため低温入出力特性が不十分であった。
本発明は、かかる背景技術に鑑みてなされたものであり、その課題は高容量且つ、優れた入出力特性を備えた非水系二次電池を得ることが可能な炭素材を提供し、その結果として、高性能な非水系二次電池を提供することにある。
本発明者らは、前記課題を解決すべく鋭意検討を行った結果、粒子内細孔を粒子内に均一に分散させることにより、高容量、且つ優れた低温入出力特性とサイクル特性を有する非水系二次電池負極材を得られることを見出し、本発明を完成するに至った。
本発明にかかる炭素材が前記効果を奏する理由については、次の様に考えている。
すなわち、粒子内細孔を粒子内に均一に分散させることにより、電解液が粒子内部へスムーズ且つ効率的に行き渡ることが可能になるため、充放電の際に、粒子外周部だけでなく粒子内部に存在するLiイオン挿入脱離サイトを有効且つ効率的に利用することが可能になり、高容量且つ良好な低温入出力特性を得ることが出来たと考えられる。
すなわち本発明の要旨は以下のとおりである。
<1>複数の炭素材料からなる造粒粒子を含有する非水系二次電池用炭素材であって、前記非水系二次電池用炭素材の断面SEM画像から前記造粒粒子を任意に30粒子選択した際に、下記測定方法で表される分散度Dの30粒子の平均値が60%以上である、非水系二次電池用炭素材。
(測定方法)
断面SEM画像を用いて測定対象となる造粒粒子の短軸及び長軸を20分割する格子を引く。格子の升目を用いて、下記定義のように造粒粒子を区画化し、下記式Aを用いてそれぞれの区画毎に空隙面積の期待値Eを算出し、下記式Bを用いて造粒粒子の分散度Dを算出する。
但し、断面SEM画像は、加速電圧10kVで取得された反射電子像である。
(造粒粒子の区画の定義)
前記格子の各升目の領域の内、造粒粒子の部分及び/又は造粒粒子内の空隙が存在する領域を区画と定義する。造粒粒子の粒子境界外部は区画から除外される。
(式A)
対象の区画における空隙面積の期待値E[μm]= (対象の造粒粒子1粒子の内部
空隙の総面積[μm] )/(対象の造粒粒子1粒子の断面積[μm] )×(対象の区画の面積[μm] )
(式B)
分散度D(%)=((対象の区画内の空隙の総面積[μm] )/(対象の区画にお
ける空隙面積の期待値E[μm] )が0.5以上を満たす区画の面積の総和[μm
] )/(対象の造粒粒子1粒子の全区画の面積の総和[μm] )×100
<2>前記造粒粒子はレーザー回折で測定された体積基準平均粒子径X、断面SEM画像から計測された円形相当径Xの関係が|X−X|/X≦0.2である、<1>に記
載の非水系二次電池用炭素材。
<3>前記造粒粒子はフロー式粒子像分析装置で測定された円形度Rと、断面SEM画像から計測された円形度Rとの関係が|R−R|≦0.1である、<1>又は<2>に記載の非水系二次電池用炭素材。
<4>タップ密度が0.7g/cm以上である、<1>乃至<3>の何れかに記載の非水系二次電池用炭素材。
<5>前記炭素材のフロー式粒子像分析より求められる円形度が0.88以上である、<1>乃至<4>の何れかに記載の非水系二次電池用炭素材。
<6>前記黒鉛粒子が鱗片状黒鉛、鱗状黒鉛、及び塊状黒鉛を造粒処理した球状黒鉛粒子
である、<1>乃至<5>の何れかに記載の非水系二次電池用炭素材。
<7>前記造粒処理が、少なくとも衝撃、圧縮、摩擦、及びせん断力のいずれかの力学的エネルギーを付与する処理である、<6>に記載の非水系二次電池用炭素材。
<8>前記造粒処理が、ケーシング内で高速回転する回転部材を備え、ケーシング内に複数のブレードを設置したローターを有する装置において、該ローターが高速回転することによって、内部に導入された黒鉛に対して衝撃、圧縮、摩擦、及びせん断力のいずれかを与えることで造粒する処理である、<7>又は<8>に記載の非水系二次電池用炭素材。<9>リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を備える非水系二次電池であって、該負極が集電体と該集電体上に形成された負極活物質層とを備え、該負極活物質層が<1>乃至<8>の何れかに記載の炭素材を含有する、非水系二次電池。
本発明の炭素材は、それを非水系二次電池用の負極活物質として用いることにより、高容量で、良好な低温入出力特性を有する非水系二次電池を提供することができる。
実施例1の炭素材中の1つの造粒粒子の二値化処理、格子の配置、区画化の方法を示している。 格子が作成した升目の内、区画と区画でない部分を示している。 比較例1の炭素材のSEM画像。SEM画像の二値化処理において、除外する場合の例を示している。
以下、本発明の内容を詳細に述べる。なお、以下に記載する発明構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨をこえない限り、これらの形態に特定されるものではない。
本発明の非水系二次電池用炭素材は、粒子内細孔が粒子内に均一に分散していることを特徴とする非水系二次電池用炭素材である。
<非水系二次電池用炭素材の種類>
本発明のリチウムイオンを吸蔵・放出可能な非水系二次電池用炭素材は、特に限定されないが、例えば、黒鉛、黒鉛化度の小さい炭素質物等の炭素材であり、中でも商業的に容易に入手可能であり、理論上372mAh/gの高い充放電容量を有し、さらには他の負極用活物質を用いた場合と比較して高電流密度での充放電特性の改善効果が大きい黒鉛であることが好ましい。さらに黒鉛としては、天然黒鉛、人造黒鉛等が挙げられ、高容量且つ高電流密度での充放電特性が良好な点から天然黒鉛であることがより好ましい。
また、黒鉛としては不純物の少ないものが好ましく、不純物の少ない黒鉛は公知である種々の精製処理を施すことで得ることができる。
天然黒鉛は、その性状によって、鱗片状黒(Flake Graphite)、鱗状(Crystal Line Graphite)、塊状黒鉛(Vein Graphite)、土壌黒鉛(Amorphous Graphite)に分類される(「粉粒体プロセス技術集成」((株)産業技術センター、昭和49年発行)の黒鉛の項、および「HANDBOOKOF CARBON, GRAPHITE, DIAMOND AND FULLERENES」(NoyesPubLications発行)参照)。黒鉛化度は、鱗状黒鉛や塊状黒鉛が100%で最も高く、これに次いで鱗片状黒鉛が99.9%で高く、本発明において好適である。
鱗片状天然黒鉛の産地は、主にマダガスカル、中国、ブラジル、ウクライナ、カナダ等であり、鱗状黒鉛の産地は、主にスリランカである。土壌黒鉛の主な産地は、朝鮮半島、中国、メキシコ等である。
天然黒鉛の中でも、例えば、鱗状、鱗片状、又は塊状の天然黒鉛、高純度化した鱗片状
黒鉛、後述する球形化処理した天然黒鉛(以降、球形化天然黒鉛とよぶことがある)等が挙げられる。中でも、炭素材の内部に好適な緻密な細孔を形成させることができ、優れた粒子の充填性や充放電負荷特性を発揮するという観点から好ましい。
人造黒鉛としては、例えば、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機物を焼成し、黒鉛化したものやバルクメソフェーズを黒鉛化したものが挙げられる。
また、バルクメソフェーズ等の黒鉛化可能な骨材又は黒鉛と、黒鉛化可能な有機物とに黒鉛化触媒を添加して混合し、焼成した後、粉砕することにより得た造粒型人造黒鉛を用いることもできる。
焼成温度は、2500℃以上、3200℃以下の範囲とすることができ、焼成の際、珪素含有化合物やホウ素含有化合物などを黒鉛化触媒として用いることもできる。
黒鉛化度の小さい炭素質物としては、有機物を通常2500℃未満の温度で焼成したものが挙げられ、具体的には、例えばバルクメソフェーズや非晶質炭素が挙げられる。有機物としては、コールタールピッチ、乾留液化油などの石炭系重質油;常圧残油、減圧残油などの直留系重質油;原油、ナフサなどの熱分解時に副生するエチレンタール等の分解系重質油などの石油系重質油;アセナフチレン、デカシクレン、アントラセンなどの芳香族炭化水素;フェナジンやアクリジンなどの窒素含有環状化合物;チオフェンなどの硫黄含有環状化合物;アダマンタンなどの脂肪族環状化合物;ビフェニル、テルフェニルなどのポリフェニレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラールなどのポリビニルエステル類、ポリビニルアルコールなどの熱可塑性高分子などが挙げられる。
バルクメソフェーズとしては、例えば、石油系重質油、石炭系重質油、直留系重質油を400〜600℃で熱処理した炭素質物が挙げられる。
非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、炭素質物前駆体を不融化処理し、焼成した粒子が挙げられる。
非晶質炭素は結晶化度の程度に応じて、焼成温度は600℃以上とすることができ、好ましくは900℃以上、より好ましくは950℃以上であり、通常2500℃未満とすることができ、好ましくは2000℃以下、より好ましくは1400℃以下の範囲である。
焼成の際、有機物に燐酸、ホウ酸、塩酸などの酸類、水酸化ナトリウム等のアルカリ類などを混合することもできる。
また、本発明の非水系二次電池用炭素材は、酸化物やその他金属を含んでいてもよい。その他金属としては、Sn、Si、Al、BiなどのLiと合金化可能な金属が挙げられる。
<非水系二次電池用炭素材の製法>
本発明の非水系二次電池用炭素材の製造方法は特に制限はないが、達成手段の一つとしては、少なくとも衝撃、圧縮、摩擦、及びせん断力のいずれかの力学的エネルギーを付与して原料炭素材を造粒し、前記造粒工程は、下記1)及び2)の条件を満足する造粒剤の存在下で行うことにより得ることができる。
1)前記原料炭素材を造粒する工程時に液体
2)造粒剤が有機溶剤を含む場合、有機溶剤の内、少なくとも1種は引火点を有さない、又は引火点を有する場合には該引火点が5℃以上である。
上記造粒工程を有すれば、必要に応じて別の工程を更に有していてもよい。別の工程は単独で実施しても良いし、複数工程を同時に実施しても良い。
上記方法にて造粒処理を施すと、規定の物性の造粒剤により黒鉛粒子間の液架橋付着力が生じ、炭素材粒子同士がより強固に付着することが可能となるため、Liイオン挿入脱離サイトが多い微粉が、造粒処理した炭素材(以降、造粒炭素材と称す。)となる母材に付着、及び/又は造粒炭素材粒子に内包された構造を取り易くなるため、Li挿入脱離サイトが多い造粒炭素材を製造することが可能となる。
さらに、造粒剤が潤滑材として作用することによって炭素材表面への物理的ダメージが軽減され、また、造粒剤が酸素との接触が抑制されることによって造粒処理中の炭素材表面の酸化も抑制されるため、炭素材の分子構造の共役系が崩れることによる不安定炭素の生成・増大を抑制することが可能となる。
これらの結果、より強固に微粉が付着する為、粒子表面の凹凸が少なくなり、規定の式の範囲内の値を有する炭素材を有することが可能となる。
上記製造方法のより好ましい実施態様として、下記の第1工程乃至第5工程を含む製造方法が挙げられる。 上記造粒工程を有すれば、必要に応じて別の工程を更に有していてもよい。別の工程は単独で実施してもよいし、複数工程を同時に実施してもよい。一実施形態としては、以下の第1工程乃至第5工程を含む。
(第1工程)原料炭素材の粒度を調整する工程
(第2工程)原料炭素材と造粒剤とを混合する工程
(第3工程)原料炭素材を造粒する工程
(第4工程)造粒剤を除去する工程
(第5工程)造粒炭素材を高純度化する工程
以下、これら工程について説明する。
(第1工程)原料炭素材の粒度を調整する工程
本発明で用いる原料炭素材は特に限定されず、前述した人造黒鉛や天然黒鉛を使用することが出来る。中でも、結晶性が高く高容量であることから天然黒鉛を使用することが好ましい。天然黒鉛としては、例えば、鱗状、鱗片状、塊状又は板状の天然黒鉛が挙げられ、中でも、鱗片状黒鉛が好ましい。
第1工程で得られる、球形化黒鉛の原料となる鱗片上黒鉛などの原料炭素材の平均粒径(体積基準のメジアン径:d50)は、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、好ましくは80μm以下、より好ましくは50μm以下、更に好ましくは35μm以下、非常に好ましくは20μm以下、特に好ましくは10μm以下、最も好ましくは8μm以下である。平均粒径は後述の方法により測定することが出来る。
平均粒径が上記範囲にある場合、造粒工程中に生成する微粉を、造粒された黒鉛(以降、造粒炭素材と称す。)となる母材に付着或いは母材の内部に包む込みながら造粒することが可能になり、球形化度が高く微粉が少ない造粒炭素材を得ることが出来る。
原料炭素材の平均粒径(d50)を上記範囲に調整する方法として、例えば(天然)黒鉛粒子を粉砕、及び/または分級する方法が挙げられる。
粉砕に用いる装置に特に制限はないが、例えば、粗粉砕機としてはせん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としては、機械式粉砕機、気流式粉砕機、旋回流式粉砕機等が挙げられる。具体的には、ボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル、サイクロンミル、ターボミル等が挙げられる。特
に、10μm以下の黒鉛粒子を得る場合には、気流式粉砕機や旋回流式粉砕機を用いることが好ましい。
分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合は、回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合は、重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)を用いることができ、また、湿式篩い分け、機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
また、第一工程で得られる、原料炭素材としては以下のような物性を満足することが好ましい。
原料炭素材に含まれる灰分は、炭素材の全質量に対して、好ましくは1質量%以下、より好ましくは0.5質量%以下であり、更に好ましくは0.1質量%以下である。また、灰分の下限は1ppm以上であることが好ましい。
灰分が上記範囲内であると非水系二次電池とした場合に、充放電時の炭素材と電解液との反応による電池性能の劣化を無視できる程度に抑えることができる。また、炭素材の製造に多大な時間とエネルギーと汚染防止のための設備とを必要としないため、コストの上昇も抑えられる。
原料炭素材のアスペクト比は、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上、特に好ましくは15以上である。また、好ましくは1000以下、より好ましくは500以下、更に好ましくは100以下、特に好ましくは50以下である。アスペクト比は、後述する方法により測定する。アスペクト比が上記範囲内にあると、粒径が100μm程度の大きな粒子が出来難く、一方で一方向からの加圧をした際に接触面積が適度なため、強固な造粒炭素材を得易くなる。アスペクト比が大きすぎると粒径が100μm程度の大きな粒子ができやすい傾向があり、小さすぎる粒子は、一方向からの加圧をした際に接触面積が小さいため、強固な造粒体が形成されない傾向があり、また粒子を造粒しても鱗片状黒鉛の小さい比表面積が反映して、比表面積が30m/gを超える造粒体となる傾向がある。
原料炭素材のX線広角回折法による002面の面間隔(d002)及び結晶子の大きさ(Lc)は、通常(d002)が3.37Å以下で(Lc)が900Å以上であり、(d002)が3.36Å以下で(Lc)が950Å以上であることが好ましい。面間隔(d002)及び結晶子の大きさ(Lc)は、炭素材バルクの結晶性を示す値であり、002面の面間隔(d002)の値が小さいほど、また結晶子の大きさ(Lc)が大きいほど、結晶性が高い炭素材であることを示し、黒鉛層間に入るリチウムの量が理論値に近づくので容量が増加する。結晶性が低いと高結晶性黒鉛を電極に用いた場合の優れた電池特性(高容量で、且つ不可逆容量が低い)が発現されない。面間隔(d002)と結晶子サイズ(Lc)は、上記範囲が組み合わされていることが特に好ましい。
X線回折は以下の手法により測定する。炭素粉末に総量の約15質量%のX線標準高純度シリコン粉末を加えて混合したものを材料とし、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法で広角X線回折曲線を測定する。その後、学振法を用いて面間隔(d002)及び結晶子の大きさ(Lc)を求める。
原料炭素材の充填構造は、粒子の大きさ、形状、粒子間相互作用力の程度等によって左右されるが、本明細書では充填構造を定量的に議論する指標の一つとしてタップ密度を適用することも可能である。本発明者らの検討では、真密度と平均粒径がほぼ等しい鉛質粒子では、形状が球状で粒子表面が平滑であるほど、タップ密度が高い値を示すことが確認
されている。すなわち、タップ密度を上げるためには、粒子の形状に丸みを帯びさせて球状に近づけ、粒子表面のささくれや欠損を除き平滑さを保つことが重要である。粒子形状が球状に近づき粒子表面が平滑であると、粉体の充填性も大きく向上する。原料炭素材のタップ密度は、好ましくは0.1g/cm以上であり、より好ましくは0.15g/cm以上であり、更に好ましくは0.2g/cm以上であり、特に好ましくは0.3g/cm以上である。タップ密度は実施例で後述する方法により測定する。
原料炭素材のアルゴンイオンレーザーラマンスペクトルは粒子の表面の性状を現す指標として利用されている。原料炭素材のアルゴンイオンレーザーラマンスペクトルにおける1580cm−1付近のピーク強度に対する1360cm−1付近のピーク強度比であるラマンR値は、好ましくは0.05以上0.9以下であり、より好ましくは0.05以上0.7以下であり、更に好ましくは0.05以上0.5以下である。R値は炭素粒子の表面近傍(粒子表面から100Å位まで)の結晶性を表す指標であり、R値が小さいほど結晶性が高い、あるいは結晶状態が乱れていないことを示す。ラマンスペクトルは以下に示す方法により測定する。具体的には、測定対象粒子をラマン分光器測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。なお、アルゴンイオンレーザー光の波長は514.5nmとする。
原料炭素材のX線広角回折法は、粒子全体の結晶性を表す指標として用いられる。鱗片状黒鉛は、X線広角回折法による菱面体結晶構造に基づく101面の強度3R(101)と六方晶結晶構造に基づく101面の強度2H(101)との比3R/2Hが好ましくは0.1以上、より好ましくは0.15以上、更に好ましくは0.2以上である。菱面体結晶構造とは、黒鉛の網面構造の積み重なりが3層おきに繰り返される結晶形態である。また、六方晶結晶構造とはとは黒鉛の網面構造の積み重なりが2層おきに繰り返される結晶形態である。菱面体結晶構造3Rの比率の多い結晶形態を示す鱗片状黒鉛の場合、菱面体結晶構造3Rの比率の少ない黒鉛に比べLiイオンの受け入れ性が高い。
原料炭素材のBET法による比表面積は、好ましくは0.3m/g以上、より好ましくは0.5m/g以上、更に好ましくは1m/g以上、特に好ましくは2m/g以上、最も好ましくは5m/g以上であり、好ましくは30m/g以下、より好ましくは20m/g以下、更に好ましくは15m/g以下である。BET法による比表面積は後述する実施例の方法により測定する。原料炭素材の比表面積が上記範囲内にあると、Liイオンの受け入れ性が良好となり、不可逆容量の増加による電池容量の減少を防ぐことができる。鱗片状黒鉛の比表面積が小さすぎると、Liイオンの受け入れ性が悪くなり、大きすぎると不可逆容量の増加による電池容量の減少を防ぐことができない傾向がある。
造粒炭素材の原料炭素材(原料黒鉛)に含まれる水分量は、原料黒鉛の全質量に対して、好ましくは1質量%以下、より好ましくは0.5質量%以下であり、更に好ましくは0.1質量%以下、特に好ましくは0.05質量%以下、最も好ましくは0.01質量%以下である。また、水分量の下限は1ppm以上であることが好ましい。水分量は例えばJIS M8811に準拠した方法で測定することが出来る。水分量が上記範囲内であると
、球形化処理の際に粒子間の静電引力が大きくなるため粒子間付着力が増し、微粉が母材に付着、及び球形化粒子に内包された状態となりやすく好ましい。また、疎水性造粒剤を用いる場合の濡れ性低下を防ぐことができる。
造粒炭素材の原料炭素材(原料黒鉛)の水分量を上記範囲とするために、必要に応じて乾燥処理を実施することが出来る。処理温度は、通常60℃以上、好ましくは100℃以上、より好ましくは200℃以上、更に好ましくは、250℃以上、特に好ましくは30
0℃以上、最も好ましくは350℃であり、また通常1500℃以下、好ましくは1000℃以下、より好ましくは800℃以下、更に好ましくは600℃以下である。低すぎると、水分量を十分に低減できなくなる傾向があり、高すぎると、生産性の低下、コスト増大を招く傾向がある。
乾燥処理時間は、通常0.5〜48時間、好ましくは1〜40時間、より好ましくは2〜30時間、更に好ましくは、3〜24時間である。長すぎると、生産性の低下を招き、短すぎると、熱処理効果が十分に発揮されない傾向になる。
熱処理の雰囲気は、大気雰囲気などの活性雰囲気、もしくは、窒素雰囲気やアルゴン雰囲気などの不活性雰囲気があげられ、200℃〜300℃で熱処理する場合には特段制限はないが、300℃以上で熱処理を行う場合には、黒鉛表面の酸化を防止する観点で、窒素雰囲気やアルゴン雰囲気などの不活性雰囲気が好ましい。
原料炭素材である球形化黒鉛の原料となる鱗片状黒鉛のXPSより求められる表面官能基量O/C値(%)は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.3以上、特に好ましくは0.5以上、好ましくは5以下、より好ましくは3以下、更に好ましくは2.5以下、特に好ましくは2以下、最も好ましくは1.5以下である。上記範囲内であると、吸湿性が抑えられて粒子が乾燥状態を保ちやすく、球形化処理の際に粒子間の静電引力が大きくなるため粒子間付着力が増し、微粉が母材に付着、及び球形化粒子に内包された状態となりやすく好ましい。
(第2工程)原料炭素材と造粒剤とを混合する工程
本発明の実施形態で用いる造粒剤は、1)前記原料炭素材を造粒する工程時に液体及び2)造粒剤が有機溶剤を含まないか、有機溶剤を含む場合、有機溶剤の内、少なくとも1種は引火点を有さない、又は引火点を有するときには該引火点が5℃以上、の条件を満足するものである。
上記要件を満たす造粒剤を有することで、続く第3工程における原料炭素材を造粒する工程の際に、原料炭素材間を造粒剤が液架橋することにより、原料炭素材間に液橋内の毛管負圧と液の表面張力によって生じる引力が粒子間に液架橋付着力として働くため、原料炭素材間の液架橋付着力が増大し、原料炭素材がより強固に付着することが可能となる。
本発明の実施形態においては、原料炭素材間を造粒剤が液架橋することによる原料炭素材間の液架橋付着力の強さはγcosθ値に比例する(ここで、γ:液の表面張力、θ:液と粒子の接触角)。すなわち、原料炭素材を造粒する際に、造粒剤は原料炭素材との濡れ性が高いことが好ましく、具体的にはγcosθ値>0となるようにcosθ>0となる造粒剤を選択するのが好ましく、造粒剤の下記測定方法で測定した黒鉛との接触角θが90°未満であることが好ましい。
<黒鉛との接触角θの測定方法>
HOPG表面に1.2μLの造粒剤を滴下し、濡れ広がりが収束して一秒間の接触角θの変化率が3%以下となったとき(定常状態ともいう)の接触角を接触角測定装置(協和界面社製自動接触角計DM−501)にて測定する。ここで、25℃における粘度が500cP以下の造粒剤を用いる場合には25℃における値を、25℃における粘度が500cPより大きい造粒剤を用いる場合には、粘度が500cP以下となる温度まで加温した温度における接触角θの測定値とする。
さらに、原料炭素材と造粒剤の接触角θが0°に近いほど、γcosθ値が大きくなるため、黒鉛粒子間の液架橋付着力が増大し、黒鉛粒子同士がより強固に付着することが可能となる。従って、前記造粒剤の黒鉛との接触角θは85°以下であることがより好ましく、80°以下であることが更に好ましく、50°以下であることがこと更に好ましく、
30°以下であることが特に好ましく、20°以下であることが最も好ましい。
表面張力γが大きい造粒剤を使用することによっても、γcosθ値が大きくなり黒鉛粒子の付着力は向上するため、γは好ましくは0以上、より好ましくは15以上、更に好ましくは30以上である。
造粒剤の表面張力γは、表面張力計(例えば、協和界面科学株式会社製DCA−700)を用いてWilhelmy法により測定する。
また、粒子の移動に伴う液橋の伸びに対する抵抗成分として粘性力が働き、その大きさは粘度に比例する。このため、原料炭素材を造粒する造粒工程時において液体であれば造粒剤の粘度は特段限定されないが、造粒工程時において1cP以上であることが好ましい。
また造粒剤の、25℃における粘度が1cP以上100000cP以下であることが好ましく、5cP以上10000cP以下であることがより好ましく、10cP以上8000cP以下であることが更に好ましく、50cP以上6000cP以下であることが特に好ましい。粘度が上記範囲内にあると、原料炭素材を造粒する際に、ローターやケーシングとの衝突などの衝撃力による付着粒子の脱離を妨ぐことが可能となる。
本発明で用いる造粒剤の粘度は、レオメーター(例えば、Rheometric Scientific社製ARES)を用い、カップに測定対象(ここでは造粒剤)を適量入れ、所定の温度に調節して測定する。せん断速度100s−1におけるせん断応力が0.1Pa以上の場合にはせん断速度100s−1で測定した値を、せん断速度100s−1におけるせん断応力が0.1Pa未満の場合には1000s−1で測定した値を、せん断速度1000s−1におけるせん断応力が0.1Pa未満の場合にはせん断応力が0.1Pa以上となるせん断速度で測定した値を、本明細における粘度と定義する。なお、用いるスピンドルを低粘度流体に適した形状とすることでもせん断応力を0.1Pa以上とすることが出来る。
さらに、本発明の実施形態で用いる造粒剤は、有機溶剤を含まないか、有機溶剤を含む場合、有機溶剤の内、少なくとも1種は引火点を有さない、あるいは引火点を有するときは引火点が5℃以上のものである。これにより、続く第3工程における原料炭素材を造粒する際に、衝撃や発熱に誘発される有機化合物の引火、火災、及び爆発の危険を防止することができるため、安定的に効率良く製造を実施することが出来る。
造粒剤としては、例えば、コールタール、石油系重質油、流動パラフィンなどのパラフィン系オイルやオレフィン系オイルやナフテン系オイルや芳香族系オイルなどの合成油、植物系油脂類や動物系脂肪族類やエステル類や高級アルコール類などの天然油、引火点5℃以上、好ましくは21℃以上の有機溶媒中に樹脂バインダを溶解させた樹脂バインダ溶液などの有機化合物、水などの水系溶媒、及びそれらの混合物などが挙げられる。引火点5℃以上の有機溶剤としては、キシレン、イソプロピルベンゼン、エチルベンゼン、プロピルベンゼンなどのアルキルベンゼン、メチルナフタレン、エチルナフタレン、プロピルナフタレンなどのアルキルナフタレン、スチレンなどのアリルベンゼン、アリルナフタレンなどの芳香族炭化水素類や、オクタン、ノナン、デカンなどの脂肪族炭化水素類や、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどのケトン類や、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミルなどのエステル類や、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、グリセリンなどのアルコール類や、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリ
コールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、メトキシプロパノール、メトキシプロピル−2−アセテート、メトキシメチルブタノール、メトキシブチルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、エチレングリコールモノフェニルエーテル、などのグリコール類誘導体類や、1,4−ジオキサンなどのエーテル類や、ジメチルホルムアミド、ピリジン、2−ピロリドン、N−メチル−2−ピロリドンなどの含窒素化合物、ジメチルスルホキシドなどの含硫黄化合物、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、クロロベンゼンなどの含ハロゲン化合物、及びそれらの混合物などがあげられ、例えばトルエンのような引火点が低い物は含まれない。これら有機溶剤は単体で造粒剤としても用いることが出来る。なお、本明細書において、引火点は、公知の方法により測定できる。
樹脂バインダとしては、公知のものを使用することができる。例えば、エチルセルロース、メチルセルロース、及びそれらの塩等のセルロース系の樹脂バインダ、ポリメチルアクリレート、ポリエチルアクリレート、ポリブチルアクリレート、ポリアクリル酸、及びそれらの塩等のアクリル系の樹脂バインダ、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリブチルメタクリレート等のメタクリル系の樹脂バインダ、フェノール樹脂バインダ等を使用することができる。以上の中でも、コールタール、石油系重質油、流動パラフィンなどのパラフィン系オイル、芳香族系オイルが、球形化度(円形度)が高く微粉が少ない炭素材を製造できるため好ましい。
造粒剤としては、後述する造粒剤を除去する工程(第4工程)において、効率よく除去が可能であり、容量や出力特性や保存・サイクル特性などの電池特性への悪影響を与えることが無い性状のものが好ましい。具体的には、不活性雰囲気下700℃に加熱した時に通常50%以上、好ましくは80%以上、より好ましくは95%以上、更に好ましくは99%以上、特に好ましくは99.9%以上重量減少するものを適宜選択することが出来る。
原料炭素材と造粒剤を混合する方法として、例えば、原料炭素材と造粒剤とをミキサーやニーダーを用いて混合する方法や、有機化合物を低粘度希釈溶媒(有機溶剤)に溶解させた造粒剤と原料炭素材を混合した後に該希釈溶媒(有機溶剤)を除去する方法等が挙げられる。また、続く第3工程にて原料炭素材を造粒する際に、造粒装置に造粒剤と原料炭素材とを投入して、原料炭素材と造粒剤を混合する工程と造粒する工程とを同時に行う方法も挙げられる。
造粒剤の添加量は、原料炭素材100質量部に対して好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは3質量部以上、より更に好ましくは6質量部以上、こと更に好ましくは10質量部以上、特に好ましくは12質量部以上、最も好ましくは15質量部以上であり、好ましくは1000質量部以下、より好ましくは100質量部以下、更に好ましくは80質量部以下、特に好ましくは50質量部以下、最も好ましくは20質量部以下である。上記範囲内にあると、粒子間付着力の低下による球形化度の低下や、装置への原料炭素材の付着による生産性の低下といった問題が生じ難くなる。
(第3工程)原料炭素材を造粒する工程(原料炭素材に対して球形化処理を行う工程)
炭素材は、原料炭素材に衝撃圧縮、摩擦、せん断力等の機械的作用を与えることにより球形化処理(以下、造粒とも称する)を施したものであることが好ましい。また、該球形化黒鉛は、複数の鱗片状又は鱗状黒鉛、及び磨砕された黒鉛微粉からなるものであることが好ましく、特に複数の鱗片状黒鉛からなるものであることが特に好ましい。
本発明の実施形態は、少なくとも衝撃、圧縮、摩擦、及びせん断力のいずれかの力学的エネルギーを付与して原料炭素材を造粒する造粒工程を有することが好ましい。
この工程に用いる装置としては、例えば、衝撃力を主体に、原料炭素材の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し与える装置を用いることができる。
具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された原料炭素材に対して衝撃、圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、原料炭素材を循環させることによって機械的作用を繰り返し与える機構を有するものであるのが好ましい。
このような装置としては、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン、クリプトロンオーブ(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム、ノビルタ、ファカルティ(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)、COMPOSI(日本コークス工業製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。
前記装置を用いて処理する場合、例えば、回転するローターの周速度は好ましくは30m/秒以上、より好ましくは50m/秒以上、更に好ましくは60m/秒以上、特に好ましくは70m/秒以上、最も好ましくは80m/秒以上であり、好ましくは100m/秒以下である。上記範囲内であると、より効率的に球形化と同時に微粉の母材への付着や母材による内包を行うことができるため好ましい。
また、原料炭素材に機械的作用を与える処理は、単に原料炭素材を通過させるだけでも可能であるが、原料炭素材を30秒以上、装置内を循環又は滞留させて処理するのが好ましく、より好ましくは1分以上、更に好ましくは3分以上、特に好ましくは5分以上、装置内を循環又は滞留させて処理する。
また原料炭素材を造粒する工程においては、原料炭素材を、その他の物質存在下で造粒してもよく、その他の物質としては、例えばリチウムと合金化可能な金属或いはその酸化物、鱗片状黒鉛、鱗状黒鉛、磨砕された黒鉛微粉、非晶質炭素、及び生コークスなどが挙げられる。原料炭素材以外の物質と併せて造粒することで様々なタイプの粒子構造の非水系二次電池用炭素材を製造できる。
また、原料炭素材や造粒剤や上記その他の物質は上記装置内に全量投入してもよく、分けて逐次投入してもよく、連続投入してもよい。また、原料炭素材や造粒剤や上記その他の物質は上記装置内に同時に投入してもよく、混合して投入してもよく、別々に投入してもよい。原料炭素材と造粒剤と上記その他の物質を同時に混合してもよいし、原料炭素材と造粒剤を混合したものに上記その他の物質を添加してもよいし、その他の物質と造粒剤を混合したものに原料炭素材を添加してもよい。粒子設計に併せて、別途適切なタイミングで添加・混合することができる。
炭素材の球形化処理の際には、球形化処理中に生成する微粉を母材に付着、及び/又は球形化粒子に内包しながら球形化処理することがより好ましい。球形化処理中に生成する微粉を母材に付着、及び/又は球形化粒子に内包しながら球形化処理することにより、粒子内空隙構造をより緻密化することが可能となる。このため、電解液が粒子内空隙へと有効且つ効率的に行き渡り、粒子内のLiイオン挿入脱離サイトを効率的に利用できなくなるため、良好な低温出力特性やサイクル特性を示す傾向がある。また、母材に付着する微粉は球形化処理中に生成したものに限らず、鱗片状黒鉛粒度調整の際に同時に微粉を含むよう調整しても良いし、別途適切なタイミングで添加・混合してもよい。
微粉を母材に付着、及び球形化粒子に内包させるために、鱗片状黒鉛粒子−鱗片状黒鉛粒子間、鱗片状黒鉛粒子−微粉粒子間、及び微粉粒子−微粉粒子間の付着力を強くすることが好ましい。粒子間の付着力として、具体的には、粒子間介在物を介さないファンデルワールス力や静電引力、粒子間介在物を介する物理的及び/または化学架橋力等が挙げられる。
ファンデルワールス力は、平均粒径(d50)が100μmを境に小さくなるほど「自重<付着力」となる。このため、球形化黒鉛の原料となる鱗片状黒鉛(原料炭素材)の平均粒径(d50)が小さいほど粒子間付着力が増し、微粉が母材に付着、及び球形化粒子に内包された状態となりやすく好ましい。鱗片状黒鉛の平均粒径(d50)は、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、好ましくは80μm以下、より好ましくは50μm以下、更に好ましくは35μm以下、非常に好ましくは20μm以下、特に好ましくは10μm以下、最も好ましくは8μm以下である。
静電引力は、粒子摩擦等による帯電に由来しており、粒子が乾燥しているほど帯電しやすく粒子間付着力が大きくなる傾向がある。従って、例えば球形化処理を行う前の黒鉛に含まれる水分量を少なくしておくことで粒子間付着力を高めることができる。
球形化処理の際には、処理中の鱗片状黒鉛が吸湿しないよう、低湿度雰囲気下で行うことが好ましい、また処理中に機械処理のエネルギーにより鱗片状黒鉛表面の酸化反応が進行して酸性官能基が導入されることを防ぐことを目的として不活性雰囲下で球形化処理を行うことが好ましい。
粒子間介在物を介する物理的及び/または化学的架橋力としては、液体性介在物、固体性介在物、を介する物理的及び/または化学的架橋力が挙げられる。上記化学的架橋力としては、粒子と粒子間介在物との間で化学反応、焼結、メカノケミカル効果などにより、共有結合、イオン結合、水素結合等が形成された場合の架橋力が挙げられる。
(第4工程)造粒剤を除去する工程
本発明の実施形態においては、前記造粒剤を除去する工程を有していてもよい。造粒剤を除去する方法としては、例えば、溶剤により洗浄する方法や、熱処理により造粒剤を揮発・分解除去する方法が挙げられる。
熱処理温度は、好ましくは60℃以上、より好ましくは100℃以上、更に好ましくは200℃以上、より更に好ましくは300℃以上、特に好ましくは400℃以上、最も好ましくは500℃であり、好ましくは1500℃以下、より好ましくは1000℃以下、更に好ましくは800℃以下である。上記範囲内にあると、十分に造粒剤を揮発・分解除去でき生産性を向上できる。
熱処理時間は、好ましくは0.5〜48時間、より好ましくは1〜40時間、更に好ましくは2〜30時間、特に好ましくは3〜24時間である。上記範囲内にあると、十分に造粒剤を揮発・分解除去でき生産性を向上できる。
熱処理の雰囲気は、大気雰囲気などの活性雰囲気、もしくは、窒素雰囲気やアルゴン雰囲気などの不活性雰囲気があげられ、200℃〜300℃で熱処理する場合には特段制限はないが、300℃以上で熱処理を行う場合には、黒鉛表面の酸化を防止する観点で、窒素雰囲気やアルゴン雰囲気などの不活性雰囲気が好ましい。
(第5工程)造粒炭素材を高純度化する工程
本発明においては、造粒炭素材を高純度化する工程を有していてもよい。造粒炭素材を高純度化する方法としては、硝酸や塩酸を含む酸処理を行う方法が挙げられ、活性の高い硫黄元となりうる硫酸塩を系内に導入することなく黒鉛中の金属、金属化合物、無機化合
物などの不純物を除去できるため好ましい。
なお、上記酸処理は、硝酸や塩酸を含む酸を用いればよく、その他の酸、例えば、臭素酸、フッ酸、ホウ酸あるいはヨウ素酸などの無機酸、または、クエン酸、ギ酸、酢酸、シュウ酸、トリクロロ酢酸あるいはトリフルオロ酢酸などの有機酸を適宜混合した酸を用いることもできる。好ましくは濃フッ酸、濃硝酸、濃塩酸であり、より好ましくは濃硝酸、濃塩酸である。なお、本発明において硫酸にて黒鉛を処理してもよいが、本発明の効果や物性を損なわない程度の量と濃度にて用いることとする。
酸を複数用いる場合、例えば、フッ酸、硝酸、塩酸の組み合わせが、上記不純物を効率良く除去できるため好ましい。上記のように酸の種類を組み合わせた場合の混合酸の混合比率は、最も少ないものが通常10質量%以上、好ましくは20質量%以上、より好ましくは、25質量%以上である。上限は、全て等量混合した値である(100質量%/酸の種類で表される)。
酸処理における黒鉛と酸の混合比率(質量比率)は、通常100:10以上、好ましくは100:20以上、より好ましくは、100:30以上、更に好ましくは、100:40以上であり、また100:1000以下、好ましくは100:500以下、より好ましくは100:300以下である。少なすぎると上記不純物を効率良く除去できなくなる傾向がある。一方、多すぎると、一回に洗浄できる黒鉛量が減り、生産性低下とコストの上昇を招くため、好ましくない。
酸処理は、黒鉛を前記のような酸性溶液に浸漬することにより行われる。浸漬時間は、通常0.5〜48時間、好ましくは1〜40時間、より好ましくは2〜30、更に好ましくは、3〜24時間である。長すぎると、生産性低下とコストの上昇を招く傾向があり、短すぎると、上記不純物を十分に除去できなくなる傾向がある。
浸漬温度は、通常25℃以上、好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは、60℃以上である。水系の酸を用いる場合の理論上限は水の沸点である100℃である。この温度が低すぎると、上記不純物を十分に除去できなくなる傾向がある。
酸洗浄により残った酸分を除去し、pHを弱酸性から中性域にまで上昇させる目的で、更に水洗浄を実施することが好ましい。例えば、前記処理黒鉛のpHが、通常3以上、好ましくは3.5以上、より好ましくは4以上、更に好ましくは4.5以上であれば、水で洗浄することは省略できるし、もし上記範囲でなければ、必要に応じて水で洗浄することが好ましい。洗浄する水は、イオン交換水や蒸留水を用いることが、洗浄効率の向上、不純物混入防止の観点から好ましい。水中のイオン量の指標となる比抵抗が、通常0.1MΩ・cm以上、好ましくは1MΩ・cm以上、より好ましくは、更に好ましくは10MΩ・cm以上、である。25℃での理論上限は18.24MΩ・cmである。この数値が小さいと水中のイオン量が多くなることを示しており、不純物混入、洗浄効率低下の傾向がある。
水で洗浄する、つまり前記処理黒鉛と水とを撹拌する時間は、通常0.5〜48時間、好ましくは1〜40時間、より好ましくは2〜30時間、更に好ましくは、3〜24時間である。長すぎると、生産効率が低下する傾向があり、短すぎると、残留不純物・酸分が増大する傾向になる。
前記処理黒鉛と水との混合割合は、通常100:10以上、好ましくは100:30以上、より好ましくは、100:50以上、更に好ましくは、100:100以上であり、また100:1000以下、好ましくは100:700以下、より好ましくは100:500以下、更に好ましくは100:400以下である。多すぎると生産効率が低下する傾
向があり、少なすぎると残留不純物・酸分が増大する傾向になる。
撹拌温度は、通常25℃以上、好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは、60℃以上である。上限は水の沸点である100℃である。低すぎると、残留不純物・酸分が増大する傾向になる。
また、水洗浄処理をバッチ式にて行う場合は、純水中での攪拌−ろ過の処理工程を複数回繰り返して洗浄行うことが不純物・酸分除去の観点から好ましい。上記処理は、上述した処理黒鉛のpHが上記範囲になるように繰り返し行ってもよい。通常、1回以上、好ましくは2回以上、より好ましくは、3回以上である。
上述したように処理を施すことにより、得られた黒鉛の廃水イオン濃度が、通常200ppm以下、好ましくは100ppm以下、より好ましくは50ppm以下、更に好ましくは30ppm以下、また通常1ppm以上、好ましくは2ppm以上、より好ましくは3ppm以上、更に好ましくは4ppm以上となる。イオン濃度が高すぎると、酸分が残存してpHが低下する傾向があり、低すぎると処理に時間がかかり生産性の低下に繋がる傾向がある。
(第6工程)造粒炭素材に、さらに原料炭素材より結晶性が低い炭素質物を添着する工程
本発明の実施形態では、造粒炭素材に、さらに原料炭素材より結晶性が低い炭素質物を添着する工程を有していてもよい。すなわち、前記炭素材に炭素質物を複合化することができる。この工程によれば、電解液との副反応抑制や、急速充放電性の向上できる炭素材を得ることができる。
造粒炭素材に、さらに原料炭素材より結晶性が低い炭素質物を添着した複合黒鉛を「炭素質物複合炭素材」又は「複合炭素材」と呼ぶことがある。
造粒炭素材への炭素質物添着(複合化)処理は炭素質物となる有機化合物と、造粒炭素材を混合し、非酸化性雰囲気下、好ましくは窒素、アルゴン、二酸化炭素などの流通下に加熱して、有機化合物を炭素化又は黒鉛化させる処理である。
炭素質物となる具体的な有機化合物としては、軟質ないし硬質の種々のコールタールピッチや石炭液化油などの炭素系重質油、原油の常圧又は減圧蒸留残渣油などの石油系重質油、ナフサ分解によるエチレン製造の副生物である分解系重質油など種々のものを用いることができる。
また、分解系重質油を熱処理することで得られるエチレンタールピッチ、FCCデカントオイル、アシュランドピッチなどの熱処理ピッチ等を挙げることができる。さらにポリ塩化ビニル、ポリビニルアセテート、ポリビニルブチラール、ポリビニルアルコール等のビニル系高分子と3−メチルフェノールホルムアルデヒド樹脂、3,5−ジメチルフェノールホルムアルデヒド樹脂等の置換フェノール樹脂、アセナフチレン、デカシクレン、アントラセンなどの芳香族炭化水素、フェナジンやアクリジンなどの窒素環化合物、チオフェンなどのイオウ環化合物などを挙げることができる。また、固相で炭素化を進行させる有機化合物としては、セルロースなどの天然高分子、ポリ塩化ビニリデンやポリアクリロニトリルなどの鎖状ビニル樹脂、ポリフェニレン等の芳香族系ポリマー、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等熱硬化性樹脂やフルフリルアルコールのような熱硬化性樹脂原料などを挙げることができる。これらの中でも石油系重質油が好ましい。
加熱温度(焼成温度)は混合物の調製に用いた有機化合物により異なるが、通常は800℃以上、好ましくは900℃以上、より好ましくは950℃以上に加熱して十分に炭素化又は黒鉛化させる。加熱温度の上限は有機化合物の炭化物が、混合物中の鱗片状黒鉛の
結晶構造と同等の結晶構造に達しない温度であり、通常は高くても3500℃である。加熱温度の上限は3000℃、好ましくは2000℃、より好ましくは1500℃に止めるのが好ましい。
上述したような処理を行った後、次いで解砕及び/又は粉砕処理を施すことにより、炭素質物複合炭素材とすることができる。
形状は任意であるが、平均粒径は、通常2〜50μmであり、5〜35μmが好ましく、特に8〜30μmである。上記粒径範囲となるよう、必要に応じて、解砕及び/又は粉砕及び/又は分級を行う。
なお、本実施形態の効果を損なわない限り、他の工程の追加や上述に記載のない制御条件を追加してもよい。
炭素質物複合炭素材中の炭素質物の含有量は、原料となる造粒炭素材に対して、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.3%以上、更に好ましくは0.7質量%以上、特に好ましくは1質量%以上、最も好ましくは1.5質量%以上であり、であり、また前記含有量は、通常20質量%以下、好ましくは15質量%以下、更に好ましくは10質量%以下、特に好ましくは7質量%以下、最も好ましくは5質量%以下である。
炭素質物複合炭素材中の炭素質物の含有量が多すぎると、非水系二次電池において高容量を達成する為に十分な圧力で圧延を行った場合に、炭素材にダメージが与えられて材料破壊が起こり、初期サイクル時充放電不可逆容量の増大、初期効率の低下を招く傾向がある。
一方、含有量が小さすぎると、被覆による効果が得られにくくなる傾向がある。
また、炭素質物複合炭素材中の炭素質物の含有量は、下記式のように材料焼成前後のサンプル質量より算出できる。なおこのとき、造粒炭素材の焼成前後質量変化はないものとして計算する。
炭素質物の含有量(質量%)=[(w2−w1)/w1]×100
(w1を造粒炭素材の質量(kg)、w2を炭素質物複合炭素材の質量(kg)とする)
また、炭素質物複合炭素材は、導電性向上のために炭素微粒子を含有してもよい。炭素微粒子を含有させる方法は、特に制限されないが具体的には、特開2014-060148に記載の
方法を用いることができる。
炭素微粒子の体積平均粒子径(d50)は、通常0.01μm以上10μm以下であり、好ましくは0.05μm以上、より好ましくは0.07μm以上であり、更に好ましくは0.1μm以上であり、好ましくは8μm以下、より好ましくは5μm以下、更に好ましくは1μm以下である。
炭素微粒子が、1次粒子が集合・凝集した2次構造を有する場合、1次粒子径が3nm以上500nm以下であればその他の物性や種類は特に限定されないが、1次粒子径は、好ましくは3nm以上、より好ましくは15nm以上であり、更に好ましくは30nm以上であり、特に好ましくは40nm以上であり、また、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下である。炭素微粒子の1次粒子径は、SEM等の電子顕微鏡観察やレーザー回折式粒度分布計などによって測定することができる。
炭素微粒子の形状は特に限定されず、粒状、球状、鎖状、針状、繊維状、板状、鱗片状等の何れであってもよい。
具体的に、炭素微粒子は特に限定されないが、石炭微粉、気相炭素粉、カーボンブラック、ケッチェンブラック、フラーレン、カーボンナノファイバー、カーボンナノチューブ
、カーボンナノウォールなどナノ構造をもつ物質等が挙げられる。この中でもカーボンブラックが特に好ましい。カーボンブラックであると、低温下においても入出力特性が高くなり、同時に安価・簡便に入手が可能という利点がある。
「造粒炭素材」100質量部に対し、「炭素微粒子」は、通常0.01質量部以上、好ましくは0.1質量部以上、より好ましくは1質量部以上であり、通常20質量部以下、好ましくは10質量部以下、より好ましくは5質量部以下である。
[炭素材料の混合]
また、本発明では、極板の配向性、電解液の浸透性、導電パス等を向上させ、サイクル特性、極版膨れ等の改善を目的とし、前記造粒炭素材とは異なる炭素材料を混合することができる(以下、前記造粒炭素材に、前記造粒炭素材とは異なる炭素材料を混合して得られた炭素材を「混合炭素材」と呼ぶことがある)。
前記炭素材とは異なる炭素材料としては、例えば天然黒鉛、人造黒鉛、炭素材を炭素質物で被覆した被覆黒鉛、非晶質炭素、金属粒子や金属化合物を含有した炭素材の中から選ばれる材料を用いることができる。これらの材料は、何れかを一種を単独で用いても良く、二種以上を任意の組み合わせ及び組成で併用しても良い。
天然黒鉛としては、例えば、高純度化した炭素材や球形化した天然黒鉛を用いることができる。本発明でいう高純度化とは、通常、塩酸、硫酸、硝酸、弗酸などの酸中で処理する、若しくは複数の酸処理工程を組み合わせて行なうことにより、低純度天然黒鉛中に含まれる灰分や金属等を溶解除去する操作のことを意味し、通常、酸処理工程の後に水洗処理等を行ない高純度化処理工程で用いた酸分の除去をする。また、酸処理工程の代わりに2000℃以上の高温で処理することにより、灰分や金属等を蒸発、除去しても構わない。また、高温熱処理時に塩素ガス等ハロゲンガス雰囲気で処理することにより灰分や金属等を除去しても構わない。更にまた、これらの手法を任意に組み合わせて用いても良い。
天然黒鉛の体積基準平均粒径は、通常5μm以上、好ましくは8μm以上、より好ましくは10μm以上、特に好ましくは12μm以上また、通常60μm以下、好ましくは40μm以下、特に好ましくは30μm以下の範囲である。平均粒径がこの範囲であれば、高速充放電特性、工程性が良好となるため好ましい。
天然黒鉛のBET比表面積は、通常1m/g以上、好ましくは2m2/g以上、また、通常30m/g以下、好ましくは15m/g以下の範囲である。比表面積がこの範囲であれば、高速充放電特性、工程性が良好となるため好ましい。
また、天然黒鉛のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。この範囲であれば高速充放電特性、工程性が良好となるため好ましい。
人造黒鉛としては、炭素材を黒鉛化した粒子等が挙げられ、例えば、単一の黒鉛前駆体粒子を粉状のまま焼成、黒鉛化した粒子や、複数の黒鉛前駆体粒子を成形し焼成、黒鉛化し解砕した造粒粒子などを用いることができる。
人造黒鉛の体積基準平均粒径は、通常5μm以上、好ましくは10μm以上、また、通常60μm以下、好ましくは40μm、更に好ましくは30μm以下の範囲である。この範囲であれば、極板膨れの抑制や工程性が良好となるため好ましい。
人造黒鉛のBET比表面積は、通常0.5m/g以上、好ましくは1.0m/g以上、また、通常8m/g以下、好ましくは6m/g以下、更に好ましくは4m/g以下の範囲である。この範囲であれば、極板膨れの抑制や工程性が良好となるため好まし
い。
また、人造黒鉛のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.5g/cm以下、1.4g/cm以下が好ましく、1.3g/cm以下がより好ましい。この範囲であれば、極板膨れの抑制や工程性が良好となるため好ましい。
炭素材を炭素質物で被覆した被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に上述した炭素質物の前駆体である有機化合物を被覆、焼成及び/又は黒鉛化した粒子や、天然黒鉛や人造黒鉛に炭素質物をCVDにより被覆した粒子を用いることができる。
被覆黒鉛の体積基準平均粒径は、通常5μm以上、好ましくは8μm以上、より好ましくは10μm以上、特に好ましくは12μm以上また、通常60μm以下、好ましくは40μm以下、特に好ましくは30μm以下の範囲である。平均粒径がこの範囲であれば、高速充放電特性、工程性が良好となるため好ましい。
被覆黒鉛のBET比表面積は、通常1m/g以上、好ましくは2m/g以上、更に好ましくは2.5m/g以上、また、通常20m/g以下、好ましくは10m/g以下、更に好ましくは8m/g以下、特に好ましくは5m/g以下の範囲である。比表面積がこの範囲であれば、高速充放電特性、工程性が良好となるため好ましい。
また、被覆黒鉛のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度がこの範囲であれば、高速充放電特性、工程性が良好となるため好ましい。
非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、易黒鉛化性有機化合物を不融化処理し、焼成した粒子を用いることができる。
非晶質炭素の体積基準平均粒径は、通常5μm以上、好ましくは12μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。この範囲であれば、高速充放電特性、工程性が良好となるため好ましい。
非晶質炭素のBET比表面積は、通常1m/g以上、好ましくは2m/g以上、更に好ましくは2.5m/g以上、また、通常8m/g以下、好ましくは6m/g以下、更に好ましくは4m/g以下の範囲である。比表面積がこの範囲であれば、高速充放電特性、工程性が良好となるため好ましい。
また、非晶質炭素のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度がこの範囲であれば、高速充放電特性、工程性が良好となるため好ましい。
金属粒子や金属化合物を含有した炭素材は、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、Nb、Mo、Cu、Zn、Ge、In、Ti等からなる群から選ばれる金属又はその化合物を黒鉛と複合化した材料が挙げられる。用いることができる金属又はその化合物としては、2種以上の金属からなる合金を使用しても良く、金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその化合物が好ましく、中でも好ましくはSi及びSiOxである。この一般式SiOxは、二酸化Si(SiO)と金属Si(Si)とを原料として得られるが、そのxの値は通常0<x<2であり、好ましくは0.2以上、1.8以下
、より好ましくは0.4以上、1.6以下、更に好ましくは0.6以上、1.4以下である。この範囲であれば、高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
金属粒子の体積基準平均粒径は、サイクル寿命の観点から、通常0.005μm以上、好ましくは0.01μm以上、より好ましくは0.02μm以上、更に好ましくは0.03μm以上であり、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。平均粒径がこの範囲であると充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性を得ることができる。
金属粒子のBET比表面積は、通常0.5m/g以上120m/g以下、1m/g以上100m/g以下であることが好ましい。比表面積が前記範囲内であると、電池の充放電効率および放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。
前記造粒炭素材と前記造粒炭素材とは異なる炭素材料を混合するために用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、
Pugmill型混合機、流動化型混合機等を用いることができる。
<非水系二次電池用炭素材の物性>
本発明の非水系二次電池用炭素材は、複数の炭素材料からなる造粒粒子を含有し、更に粒子断面に特徴を有しており、本発明の分散度は、粒子断面の画像から特定される。
・非水系二次電池用炭素材が含有する下記(1)及び(2)を満たす造粒粒子について
本発明において、複数の炭素材料からなる造粒粒子とは、造粒粒子が少なくとも2つ以上の黒鉛粒子を含むことをいう。
非水系二次電池用炭素材が含有する造粒粒子は、複数の炭素材料からなるものであれば特に限定されないが、レーザー回折で測定された体積基準平均粒径X、断面SEM画像から計測された円形相当径Xの関係|X−X|/Xが、通常0.2以下であり、好ま
しくは0.15以下、より好ましくは0.1以下である。
|X−X|/Xが大きすぎる場合、代表的な粒子を選択できず、全体の傾向を表現
できない可能性がある。
体積基準平均粒径Xは、界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標)が挙げられる)の0.2質量%水溶液10mLに、本発明の非水系二次電池用炭素材0.01gを懸濁させ、これを測定サンプルとして市販のレーザー回折/散乱式粒度分布測定装置(例えばHORIBA製LA−920)に導入し、測定サンプルに28kHzの超音波を出力60Wで1分間照射した後、前記測定装置において体積基準のメジアン径として測定したものであると定義する。
断面SEM画像から計測された円形相当径Xは、粒子周長L[μm]を用いて以下の式1であらわされる。
また、本発明の非水系二次電池用炭素材が含有する造粒粒子は、フロー式粒子像分析装置で測定された円形度R、断面SEM画像から計測された円形度Rの関係|R−R
が、通常0.1以下、好ましくは0.08以下、より好ましくは0.06以下である。
|R−R|が大きすぎる場合、粒子境界を正しくとらえておらず、過大に評価しているため正しく解析ができない可能性がある。
フロー式粒子像分析装置で測定された円形度Rの値としては、例えば、フロー式粒子像分析装置(例えば、シスメックスインダストリアル社製FPIA)を用い、試料(本発明の非水系二次電池用炭素材)約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、分散液に28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が1.5〜40μmの範囲の粒子について測定した値を用いる。
断面SEM画像からから計測された円形度Rは、画像から求めた粒子面積S[μm2]
、周長L[μm]を用いて以下の式2から算出される。
粒子境界の取り方であるが、特に制限はないが市販の解析ソフトで自動もしくは手動で行えばよい。好ましくは多角形で近似することであるが、この際15角形以上に近似することが好ましい。これ以下であると曲線部を近似した際背景の部分を粒子内と処理してしまうからである。
・粒子断面画像の取得
粒子断面の画像は、SEM(走査電子顕微鏡)を用いて加速電圧10kVで取得された反射電子像を用いる。粒子断面画像を得る方法は特に制限されないが、非水系二次電池用炭素材を含む極板、非水系二次電池用炭素材の塗布膜を用いて集束イオンビーム(FIB)やイオンミリングにより切断し、粒子断面を切り出した後、SEMを用いて粒子断面画像を取得する。
SEM(走査型電子顕微鏡)にて非水系二次電池用炭素材の断面を観察する際の加速電圧は10kVである。
この加速電圧であれば、SEMの画像において反射二次電子像の違いにより、非水系二次電池用炭素材の有する空隙領域とそれ以外の領域との識別が容易となる。また、撮像倍率は通常500倍以上、より好ましくは1000倍以上、更に好ましくは2000倍であり、通常10000倍以下である。上記の範囲であれば、非水系二次電池用炭素材の1粒子の全体像が取得可能である。解像度は200dpi(ppi)以上、好ましくは256dpi(ppi)以上である。また、画素数は800ピクセル以上で評価することが好ましい。
・断面SEM画像の空隙の分散度D
非水系二次電池用炭素材は、断面SEM画像から複数の炭素材料からなる造粒粒子を任意に30粒子選択した際に、下記測定方法で表される分散度Dの30粒子の平均値が通常60%以上であり、好ましくは61%以上、より好ましくは62%以上、通常90%以下、好ましくは85%以下、より好ましくは80%以下である。
(測定方法)
断面SEM画像を用いて測定対象となる造粒粒子の短軸及び長軸を20分割する格子を作成する。格子の升目を用いて、下記定義のように造粒粒子を区画化し、下記式(A)を用いてそれぞれの区画毎に空隙面積の期待値Eを算出し、下記式(B)を用いて造粒粒子
の分散度Dを算出する。
・格子の引き方。
図1のように断面SEM画像を用いて測定対象となる造粒粒子の短軸及び長軸を20分割する格子を引く。この際の画像は粒子長軸と画像に平行である必要がある。
・区画の定義
前記格子の各升目の領域の内、造粒粒子の部分及び/又は造粒粒子内の空隙が存在する領域を区画と定義する。造粒粒子の粒子境界外部は区画から除外される。格子が粒子境界によって分割されるものは図2のように二つに分割さされたもののうち粒子を含む側の領域を区画と定義する。
・期待値の定義
格子および粒子境界で分割された区画について各々の区画面積に対応した空隙面積の期待値Eを下記式Aから求める。
(式A)
対象の区画における空隙面積の期待値E[μm]= (対象の造粒粒子1粒子の内部
空隙の総面積[μm] )/(対象の造粒粒子1粒子の断面積[μm] )×(対象の区画の面積[μm] )
粒子境界によって分割された区画の期待値Eはその面積に応じて格子の升目の期待値Eよりも小さく計算される。
・分散度Dの定義
粒子内部の空隙の分散度を表す指標である分散度Dは下記式Bから算出する。
(式B)
分散度D(%)=((対象の区画内の空隙の総面積[μm] )/(対象の区画にお
ける空隙面積の期待値E[μm] )が0.5以上を満たす区画の面積の総和[μm
] )/(対象の造粒粒子1粒子の全区画の面積の総和[μm] )×100
分散度Dとは、ごく微小な空隙面積を有する区画を除外し、空隙が粒子内部全体に分散しているかを表す指標となる。
なお、非水系二次電池用炭素材の上記式(A)及び上記式(B)は、下記の(a)〜(d)を考慮し算出する。
(a)造粒粒子の抽出方法、長軸及び短軸の定義
粒子境界の区切りの仕方は、たとえばフリーハンドで実施しても、多角形に近似してもよいが、境界をうまく分割する方法でなくてはならない。特に制限はないが、粒子の形状を示す興味領域(ROI: region of interest)をもれのないように粒子とその他の領域の境界を区切る必要がある。境界が単純な楕円ではなくではなく、複雑な形状になっている場合は、たとえば境界を等間隔で任意の数で区切って粒子領域を多角形で近似してもよい。ただしフロー式粒子像分析装置で測定された円形度Rを逸脱しないような境界の取り方を行う。ここで逸脱しないとはフロー式粒子像分析装置で測定された球形化度R、断面SEM画像から計測された球形化度Rの関係が|R−R|≦0.1となるようにすることである。また導電性の乏しいバインダーで塗布した電極を用いる場合、本発明の測定条件では境界が判別しにくいものもある。これは粒子の断面の奥に粒子の側面が見えている場合に、バインダーの導電性不良のため起こる現象である。そのような場合は加速電圧を下げて境界を明瞭にした像を別でとって境界を判断する必要がある。
抽出した任意の一つの造粒粒子にて、重心(図心)を定義する。まずこの境界から区切られる粒子を正方形の升目で近似する。升目の大きさは特に指定しないが、実寸相当として5nm以下が好ましい。画像上に2次元の座標を定める。升目の中心の座標を定義する
。各升目の重量を同一と仮定し、1〜N番まで番号を付ける。そして以下の式3によって造粒粒子の重心の座標を求める。
ここでriはi番目の升目の座標を示し、rは重心の座標を示す。重心を求める操作
を任意の画像ソフトで実施してもよく、区切られるメッシュが任意の図形で各々の重心を定義できるのであれば以下の式4で求めてもよい。
ここでAiはi番目の図形の面積でありriはi番目の図形の重心(図心)座標となる。
次に、求めた重心を通り前述定めた境界で区切られる任意の線分のうち最も長いものを長軸と定義する。また重心を通り前述定めた境界で区切られる任意の線分のうち長軸と直行するものを短軸と定義する。
(b)空隙領域及び空隙以外の領域の定義および面積の計算方法
空隙領域とそれ以外の炭素粒子領域が明確に分かれるように2値化処理を行うことが好ましい。2値化の方法は特に制限はないが、粒子内空隙と炭素部が明確に分かれる方法でなくてはならない。2値化処理は、SEM像のように8bitのグレースケールの画像を対
象とする場合、輝度を二つに分割し、分割した2つの画像を2つの値(8bitなら0と2
55に分割など)することを指す。2値化は任意の画像処理ソフトで実施すればよい。閾値で区切る際そのアルゴリズムには種々の方法があるが、たとえばモード法やISOData法
などがあり、空隙部と炭素部を明瞭に分割できる手法を用いればよい。また2値化ができる像でなくてはならない。2値化ができる像とはこの場合空隙部の輝度と炭素部の輝度がある閾値で明瞭に分かれる像を指す。画像の中には加工の精度で表面が荒れていたり、断面がななめを向いていたり、コントラスト、明るさの設定等の要因で空隙部と炭素部の輝度が近い場合がある。そのような像は2値化した際本来とは異なる空隙分布を示すことがあるので解析対象から除外するのが好ましい。たとえば図3は真ん中の黒鉛部の表面があれている模様で輝度が低く、細かい空隙の輝度も高くなるような画像である。そのような図で細かいものを拾って2値化させようとすると炭素部も空隙と表現されて、逆に炭素部に空隙がない輝度を閾値とすれば本来空隙であろう細かい空隙は表示できなくなる。このような粒子は選定しないことが好ましいが、代表的な断面の可能性もあるので、このように2値化しにくいSEM像では解析せず、画像の取り直し、明るさやコントラストの調整を実施することが必要になる。
このようにして算出された空隙領域及び空隙以外の粒子内領域それぞれの面積は、pixel単位で近似して計算を行い実単位に換算するものとする。
(c)格子の作成
2値化処理した画像において、各造粒粒子の短軸及び長軸を20分割する升目を作成す
る。升目の配置の仕方であるが、造粒粒子の長軸及び短軸に平行になるように配置すればよい。
(d)対象区画の期待値Eの算出、及び分散度Dの算出
造粒粒子の短軸及び長軸を20分割した、全400個の升目に対して、それぞれ上記式Aより求められる期待値Eを算出する。期待値Eが0.5以上の区画の面積の総和を算出し、上記式Bより分散度Dを算出する。
抽出した造粒粒子30粒子に対し、それぞれ分散度Dを算出し、30粒子の分散度Dの平均値を算出する。
(その他のパラメータ)
・タップ密度
本発明の炭素材のタップ密度は通常0.70g/cm以上、より好ましくは0.75g/cm以上、更に好ましくは0.80g/cm以上、特に好ましくは0.85g/cm以上、好ましくは1.3g/cm以下であり、より好ましくは1.2g/cm以下であり、更に好ましくは1.1g/cm以下である。
前記タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して本発明の負極材を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の質量から求めた密度として定義する。
上記範囲内であると、充填性が良好で、粒子間空隙にも適切な空隙を空けられるため、粒子内空隙と粒子間空隙で適切な空間を配置でき、より高い出力を出すことができる。
・体積基準平均粒径X(d50)
本発明の炭素材の体積基準平均粒径X(「d50」とも記載する)は好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは8μm以上である。また平均粒径d50は、通常50μm以下、好ましくは40μm以下、より好ましくは35μm以下、更に好ましくは30μm以下、特に好ましくは25μm以下である。平均粒径d50が小さすぎると、前記炭素材を用いて得られる非水系二次電池の不可逆容量の増加、初期電池容量の損失を招く傾向があり、一方平均粒径d50が大きすぎるとスラリー塗布における筋引きなどの工程不都合の発生、高電流密度充放電特性の低下、低温入出力特性の低下を招く場合がある。
・ラマンR値
本発明の炭素材の下記式で表されるラマンR値は、通常0.01以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上、特に好ましくは0.3以上、最も好ましくは0.35以上である。また、ラマンR値の上限に特に制限はないが、通常1以下、好ましくは0.7以下、より好ましくは0.6以下、更に好ましくは0.5以下である。
ラマン値R=ラマンスペクトル分析における1360cm-1付近のピークPの強度
/1580cm-1付近のピークPの強度I
なお、本明細書において「1580cm−1付近」とは1580〜1620cm-1
範囲を、「1360cm−1付近」とは1350〜1370cm-1の範囲を指す。
ラマンR値が上記範囲内であれば、炭素材粒子表面の結晶性が適度であるため、Liイオン挿入脱離サイトが十分に存在できるため、良好な低温入出力特性と放電容量を持つ炭素材が得られる傾向がある。
前記ラマンスペクトルは、ラマン分光器で測定できる。具体的には、測定対象粒子を測
定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。測定条件は以下の通りである。
アルゴンイオンレーザー光の波長 :514.5nm
試料上のレーザーパワー :25mW
分解能 :4cm−1
測定範囲 :1100cm−1〜1730cm−1
ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均によるコンボリューション5ポイント)
・BET比表面積(SA)
本発明の炭素材のBET法により測定した比表面積(SA)は、好ましくは1m/g以上、より好ましくは5m/g以上、更に好ましくは8m/g以上、最も好ましくは12m/g以上、最も好ましくは13m/g以上である。また、好ましくは30m/g以下、より好ましくは20m/g以下、更に好ましくは17m/g以下である。比表面積が上記範囲内であると、Liが出入りする部位を十分確保することができるため高速充放電特性出力特性に優れ、活物質の電解液に対する活性も適度抑えることができるため、初期不可逆容量が大きくならず、高容量電池を製造できる傾向にある。
また、炭素材を使用して負極を形成した場合の、その電解液との反応性の増加を抑制でき、ガス発生を抑えることができるため、好ましい非水系二次電池を提供することができる。 BET比表面積は、表面積計(例えば大倉理研社製比表面積測定装置「AMS8000」)を用い、炭素材試料に対して窒素流通下100℃、3時間の予備減圧乾燥を行なった後、液体窒素温度まで冷却し、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET法によって測定した値として定義する。
・円形度R
本発明の炭素材の円形度は、0.88以上、好ましくは0.90以上、より好ましくは0.91以上、更に好ましくは0.92以上である。また、円形度は好ましくは1以下、より好ましくは0.98以下、更に好ましくは0.97以下である。円形度が上記範囲内であると、非水系二次電池の高電流密度充放電特性の低下を抑制できる傾向にある。なお、円形度は以下の式で定義され、円形度が1のときに理論的真球となる。
円形度が上記範囲内であると、円形度が上記範囲内であると、Liイオン拡散の屈曲度が下がって粒子間空隙中の電解液移動がスムーズになり、且つ適度に炭素材同士が接触することが可能なため、良好な急速充放電特性、及びサイクル特性を示す傾向がある。
円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
・X線パラメータ
本発明の炭素材の、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)は、好ましくは0.335nm以上、0.340nm未満である。ここで、d値はより好ましくは0.339nm以下、更に好ましくは0.337nm以下である。d002値が上記範囲内にあると、黒鉛の結晶性が高いため、初期不可逆容量が増加を抑制する傾向にある。ここで、0.335nmは黒鉛の理論値である。
また、学振法によるX線回折で求めた前記炭素材の結晶子サイズ(Lc)は、好ましくは90nm以上、より好ましくは100nm以上の範囲である。上記範囲内であると、結晶性が低過ぎない粒子となり、非水系二次電池とした場合に可逆容量が減少し難くなる。
なお、Lcの下限は黒鉛の理論値である。
<非水系二次電池用負極>
本発明の実施形態に係る非水系二次電池用負極(以下適宜「電極シート」ともいう。)は、集電体と、集電体上に形成された負極活物質層とを備えると共に、活物質層は少なくとも本発明の炭素材とを含有することを特徴とする。更に好ましくはバインダを含有する。
バインダとしては特に限定されないが、分子内にオレフィン性不飽和結合を有するも
のを用いることが好ましい。その種類は特に制限されないが、具体例としては、スチレン−ブタジエンゴム、スチレン・イソプレン・スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン・プロピレン・ジエン共重合体などが挙げられる。このようなオレフィン性不飽和結合を有するバインダを用いることにより、活物質層の電解液に対する膨潤性を低減することができる。中でも入手の容易性から、スチレン−ブタジエンゴムが好ましい。
このようなオレフィン性不飽和結合を有するバインダと、活物質である炭素材とを組み合わせて用いることにより、負極板の強度を高くすることができる。負極の強度が高いと、充放電による負極の劣化が抑制され、サイクル寿命を長くすることができる。また、本発明に係る負極では、活物質層と集電体との接着強度が高いので、活物質層中のバインダの含有量を低減させても、負極を捲回して電池を製造する際に、集電体から活物質層が剥離するという課題も起こらないと推察される。
分子内にオレフィン性不飽和結合を有するバインダとしては、その分子量が大きいものか、及び/又は不飽和結合の割合が大きいものが望ましい。具体的に、分子量が大きいバインダの場合には、その重量平均分子量が好ましくは1万以上、より好ましくは5万以上、また、好ましくは100万以下、より好ましくは30万以下の範囲にあるものが望ましい。また、不飽和結合の割合が大きいバインダの場合には、全バインダの1g当たりのオレフィン性不飽和結合のモル数が、好ましくは2.5×10−7モル以上、より好ましくは8×10−7モル以上、また、好ましくは1×10−6モル以下、より好ましくは5×10−6モル以下の範囲にあるものが望ましい。バインダとしては、これらの分子量に関する規定と不飽和結合の割合に関する規定のうち、少なくとも何れか一方を満たしていればよいが、両方の規定を同時に満たすものがより好ましい。オレフィン性不飽和結合を有するバインダの分子量が上記範囲内であると機械的強度と可撓性に優れる。
また、オレフィン性不飽和結合を有するバインダは、その不飽和度が、好ましくは15%以上、より好ましくは20%以上、更に好ましくは40%以上、また、好ましくは90%以下、より好ましくは80%以下である。なお、不飽和度とは、ポリマーの繰り返し単位に対する二重結合の割合(%)を表す。
本発明においては、オレフィン性不飽和結合を有さないバインダも、本発明の効果が失われない範囲において、上述のオレフィン性不飽和結合を有するバインダと併用することができる。オレフィン性不飽和結合を有するバインダに対する、オレフィン性不飽和結合を有さないバインダの混合比率は、好ましくは150質量%以下、より好ましくは120質量%以下の範囲である。
オレフィン性不飽和結合を有さないバインダを併用することにより、塗布性を向上することができるが、併用量が多すぎると活物質層の強度が低下する。
オレフィン性不飽和結合を有さないバインダの例としては、メチルセルロース、カルボキシメチルセルロース、澱粉、カラギナン、プルラン、グアーガム、ザンサンガム(キサンタンガム)等の増粘多糖類、ポリエチレンオキシド、ポリプロピレンオキシド等のポリ
エーテル類、ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール類、ポリアクリル酸、ポリメタクリル酸等のポリ酸、或いはこれらポリマーの金属塩、ポリフッ化ビニリデン等の含フッ素ポリマー、ポリエチレン、ポリプロピレンなどのアルカン系ポリマー及びこれらの共重合体などが挙げられる。
本発明の炭素材は、上述のオレフィン性不飽和結合を有するバインダとを組み合わせて用いた場合、活物質層に用いるバインダの比率を従来に比べて低減することができる。具体的に、本発明の炭素材と、バインダ(これは場合によっては、上述のように不飽和結合を有するバインダと、不飽和結合を有さないバインダとの混合物であってもよい。)との質量比率は、それぞれの乾燥質量比で、好ましくは90/10以上、より好ましくは95/5以上であり、好ましくは99.9/0.1以下、より好ましくは99.5/0.5以下の範囲である。バインダの割合が上記範囲内であると容量の減少や抵抗増大を抑制でき、さらに極板強度にも優れる。
本発明の負極は、上述の本発明の炭素材とバインダとを分散媒に分散させてスラリーとし、これを集電体に塗布することにより形成される。分散媒としては、アルコールなどの有機溶媒や、水を用いることができる。このスラリーには更に、所望により導電剤(導電助剤)を加えてもよい。導電剤としては、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、平均粒径1μm以下のCu、Ni又はこれらの合金からなる微粉末などが挙げられる。導電剤の添加量は、本発明の炭素材に対して好ましくは10質量%以下程度である。
スラリーを塗布する集電体としては、従来公知のものを用いることができる。具体的には、圧延銅箔、電解銅箔、ステンレス箔等の金属薄膜が挙げられる。集電体の厚さは、好ましくは4μm以上、より好ましくは6μm以上であり、好ましくは30μm以下、より好ましくは20μm以下である。
スラリーを集電体上に塗布した後、好ましくは60℃以上、より好ましくは80℃以上、また、好ましくは200℃以下、より好ましくは195℃以下の温度で、乾燥空気又は不活性雰囲気下で乾燥し、活物質層を形成する。
スラリーを塗布、乾燥して得られる活物質層の厚さは、好ましくは5μm以上、より好ましくは20μm以上、更に好ましくは30μm以上、また、好ましくは200μm以下、より好ましくは100μm以下、更に好ましくは75μm以下である。活物質層の厚みが上記範囲内であると、活物質の粒径との兼ね合いから負極としての実用性に優れ、高密度の電流値に対する十分なLiの吸蔵・放出の機能を得ることができる。
活物質層の厚さは、スラリーの塗布、乾燥後にプレスすることにより、上記範囲の厚さになるように調整してもよい。
活物質層における炭素材の密度は、用途により異なるが、容量を重視する用途では、好ましくは1.55g/cm3以上、より好ましくは1.6g/cm3以上、更に好ましくは1.65g/cm3以上、特に好ましくは1.7g/cm3以上である。また、好ましくは1.9g/cm以下である。密度が上記範囲内であると、単位体積あたりの電池の容量は充分確保でき、レート特性も低下し難くなる。
以上説明した本発明の炭素材を用いて非水系二次電池用負極を作製する場合、その手法や他の材料の選択については、特に制限されない。また、この負極を用いてリチウムイオン二次電池を作製する場合も、リチウムイオン二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。以下、本発明の炭素材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池の詳細を例示するが、使用し得る材料や作製の方法等は以下の具体例に限定されるものではない。
<非水系二次電池>
本発明の非水系二次電池、特にリチウムイオン二次電池の基本的構成は、従来公知のリチウムイオン二次電池と同様であり、通常、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備える。負極としては、上述した本発明の炭素材を用いた負極を用いる。
正極は、正極活物質及びバインダを含有する正極活物質層を、集電体上に形成したものである。
正極活物質としては、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物などが挙げられる。金属カルコゲン化合物としては、バナジウムの酸化物、モリブデンの酸化物、マンガンの酸化物、クロムの酸化物、チタンの酸化物、タングステンの酸化物などの遷移金属酸化物、バナジウムの硫化物、モリブデンの硫化物、チタンの硫化物、CuSなどの遷移金属硫化物、NiPS、FePS等の遷移金属のリン−硫黄化合物、VSe、NbSeなどの遷移金属のセレン化合物、Fe0.250.75、Na0.1CrSなどの遷移金属の複合酸化物、LiCoS、LiNiSなどの遷移金属の複合硫化物等が挙げられる。
これらの中でも、リチウムイオンの吸蔵・放出の観点から、V、V13、VO、Cr、MnO、TiO、MoV、LiCoO、LiNiO、LiMn、TiS、V、Cr0.250.75、Cr0.50.5などが好ましく、特に好ましいのはLiCoO、LiNiO、LiMnや、これらの遷移金属の一部を他の金属で置換したリチウム遷移金属複合酸化物である。これらの正極活物質は、単独で用いても複数を混合して用いてもよい。
正極活物質を結着するバインダとしては、特に限定されず、公知のものを任意に選択して用いることができる。例としては、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン等の不飽和結合を有さない樹脂などが挙げられる。これらの中でも好ましいのは、酸化反応時に分解しにくいため、不飽和結合を有さない樹脂である。正極活物質を結着する樹脂として不飽和結合を有する樹脂を用いると酸化反応時に分解される恐れがある。これらの樹脂の重量平均分子量は通常1万以上、好ましくは10万以上、また、通常300万以下、好ましくは100万以下の範囲である。
正極活物質層中には、電極の導電性を向上させるために、導電剤(導電助剤)を含有させてもよい。
導電剤としては、活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。
正極板は、前記したような負極の製造と同様の手法で、正極活物質やバインダを溶剤でスラリー化し、集電体上に塗布、乾燥することにより形成する。正極の集電体としては、アルミニウム、ニッケル、ステンレススチール(SUS)などが用いられるが、何ら限定されない。
電解質(「電解液」と称することもある)としては、非水系溶媒にリチウム塩を溶解させた非水系電解液や、この非水系電解液に有機高分子化合物等を添加することによりゲル状、ゴム状、または固体シート状にしたものなどが用いられる。
非水系電解液に使用される非水系溶媒は特に制限されず、従来から非水系電解液の溶媒として提案されている公知の非水系溶媒の中から、適宜選択して用いることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖
状カーボネート類;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類;1,2−ジメトキシエタン等の鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の環状エーテル類;ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類などが挙げられる。
これらの非水系溶媒は、何れか一種を単独で用いても良く、二種以上を併用しても良い。混合溶媒の場合は、環状カーボネートと鎖状カーボネートを含む混合溶媒の組合せが好ましく、環状カーボネートが、エチレンカーボネートとプロピレンカーボネートの混合溶媒であることが、低温でも高いイオン電導度を発現でき、低温充電不可特性が向上するという点で特に好ましい。中でもプロピレンカーボネートが非水系溶媒全体に対し、2質量%以上80質量%以下の範囲が好ましく、5質量%以上70質量%以下の範囲がより好ましく、10質量%以上60質量%以下の範囲がさらに好ましい。プロピレンカーボネートの割合が上記より低いと低温でのイオン電導度が低下し、プロピレンカーボネートの割合が上記より高いと、黒鉛系電極を用いた場合にはリチウムイオンに溶媒和したプロピレンカーボネートが黒鉛相間へ共挿入することにより黒鉛系負極活物質の層間剥離劣化がおこり、十分な容量が得られなくなる問題がある。
非水系電解液に使用されるリチウム塩も特に制限されず、この用途に用い得ることが知られている公知のリチウム塩の中から、適宜選択して用いることができる。例えば、LiCl、LiBrなどのハロゲン化物、LiClO、LiBrO、LiClOなどの過ハロゲン酸塩、LiPF、LiBF、LiAsFなどの無機フッ化物塩などの無機リチウム塩、LiCFSO、LiCSOなどのパーフルオロアルカンスルホン酸塩、Liトリフルオロメタンスルホニルイミド((CFSONLi)などのパーフルオロアルカンスルホン酸イミド塩などの含フッ素有機リチウム塩などが挙げられ、この中でもLiClO、LiPF、LiBFが好ましい。
リチウム塩は、単独で用いても、2種以上を併用してもよい。非水系電解液中におけるリチウム塩の濃度は、通常0.5mol/L以上、2.0mol/L以下の範囲である。

また、上述の非水系電解液に有機高分子化合物を含ませ、ゲル状、ゴム状、或いは固体シート状にして使用する場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω−メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω−メトキシオリゴオキシエチレンメタクリレート−co−メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン−フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
上述の非水系電解液は、更に被膜形成剤を含んでいても良い。被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物、エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;1,3−プロパンスルトン、1,4−ブタンスルトンなどのスルトン化合物;マレイン酸無水物、コハク酸無水物などの酸無水物などが挙げられる。更に、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。
上記添加剤を用いる場合、その含有量は、上記非水系電解液の総質量に対して通常10質量%以下、好ましくは8質量%以下、更に好ましくは5質量%以下、特に好ましくは2
質量%以下の範囲である。上記添加剤の含有量が多過ぎると、初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼすおそれがある。
また、電解質として、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。高分子固体電解質としては、前述のポリエーテル系高分子化合物にリチウムの塩を溶解させたものや、ポリエーテルの末端水酸基がアルコキシドに置換されているポリマーなどが挙げられる。
正極と負極との間には通常、電極間の短絡を防止するために、多孔膜や不織布などの多孔性のセパレータを介在させる。この場合、非水系電解液は、多孔性のセパレータに含浸させて用いる。セパレータの材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエーテルスルホンなどが用いられ、好ましくはポリオレフィンである。
本発明の非水系二次電池の形態は特に制限されない。例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状及び大きさにして用いることができる。
本発明の非水系二次電池を組み立てる手順も特に制限されず、電池の構造に応じて適切な手順で組み立てればよいが、例を挙げると、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。
次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。 実施例において、製造した負極材の物性は以下の方法により測定した。また、造粒剤の粘度、接触角、表面張力、rcosθは、それぞれ明細書中に記載の方法により測定した。
<電極シートの作製>
実施例又は比較例の黒鉛質粒子を用い、活物質層密度1.35±0.03g/cm3
活物質層を有する極板を作製した。具体的には、負極材50.00±0.02gに、1質量%カルボキシメチルセルロースナトリウム塩水溶液を50.00±0.02g(固形分換算で0.500g)、及び重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョンを固形分換算で0.5gを、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。
このスラリーを、集電体である厚さ10μmの銅箔上に、負極材料が12.00±0.3mg/cm2付着するように、伊藤忠マシニング製小型ダイコーターを用いて幅10c
mに塗布し、直径20cmのローラを用いてロールプレスして、活物質層の密度が1.60±0.03g/cm3になるよう調整し電極シートを得た。
<非水系二次電池(2016コイン型電池)の作製>
上記方法で作製した電極シートを直径12.5mmの円盤状に打ち抜き、リチウム金属箔を直径14mmの円板状に打ち抜き対極とした。両極の間には、エチレンカーボネートとエチルメチルカーボネートの混合溶媒(容積比=3:7)に、LiPF6を1mol/
Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、2016コイン型電池をそれぞれ作製した。
<非水系二次電池(ラミネート型電池)の作製方法>
上記方法で作製した電極シートを4cm×3cmに切り出し負極とし、NMCからなる正極を同面積で切り出し、負極と正極の間にはセパレータ(多孔性ポリエチレンフィルム製)を置き、組み合わせた。エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートの混合溶媒(容積比=3:3:4)に、LiPFを1.2mol/Lになるように溶解させた電解液を250μl注液してラミネート型電池を作製した。
<放電容量の測定方法>
上述の方法で作製した非水系二次電池(2016コイン型電池)を用いて、下記の測定方法で電池充放電時の容量を測定した。
0.05Cの電流密度でリチウム対極に対して5mVまで充電し、さらに5mVの一定電圧で電流密度が0.005Cになるまで充電し、負極中にリチウムをドープした後、0.1Cの電流密度でリチウム対極に対して1.5Vまで放電を行った。引き続き同電流密度で2回目の充放電を行い、この2サイクル目の放電容量を本材料の放電容量とした。
<低温出力特性>
上記非水電解液二次電池の作製法により作製したラミネート型非水電解液二次電池を用いて、下記の測定方法で低温出力特性を測定した。
充放電サイクルを経ていない非水電解液二次電池に対して、25℃で電圧範囲4.1V〜3.0V、電流値0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)にて3サイクル、電圧範囲4.2V〜3.0V、電流値0.2Cにて(充電時には4.2Vにて定電圧充電をさらに2.5時間実施)2サイクル、初期充放電を行った。
さらに、SOC50%まで電流値0.2Cで充電を行った後、−30℃の低温環境下で、1/8C、1/4C、1/2C、1.5C、2Cの各電流値で2秒間定電流放電させ、各々の条件の放電における2秒後の電池電圧の降下を測定し、それらの測定値から充電上限電圧を3Vとした際に、2秒間に流すことのできる電流値Iを算出し、3×I(W)という式で計算される値をそれぞれの電池の低温出力特性とした。
<フロー式粒子像分析装置で測定された円形度R>
フロー式粒子像分析装置(東亜医療電子社製FPIA−2000)を使用し、円相当径による粒径分布の測定および平均円形度の算出を行った。分散媒としてイオン交換水を使用し、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用した。円相当径とは、撮影した粒子像と同じ投影面積を持つ円(相当円)の直径であり、円形度とは、相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率である。測定した相当径が1.5〜40μmの範囲の粒子の円形度を平均し、円形度Rとした。
<レーザー回折で測定された体積基準平均粒径X:d50>
界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標)が挙げられる)の0.2質量%水溶液10mLに、炭素材0.01gを懸濁させ、これを測定サンプルとして市販のレーザー回折/散乱式粒度分布測定装置(例えばHORIBA製LA−920)に導入し、測定サンプルに28kHzの超音波を出力60Wで1分間照射した後、前記測定装置において体積基準のメジアン径(d50)として測定した。
<タップ密度>
粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して本発明の炭素材を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の質量から求めた密度として定義した。
<断面SEM画像の取得>
炭素材の断面SEM画像は次のように測定した。炭素材を含有する極板は上記の性能評価用電池の作製と同様の極板を用いた。まず、クロスセクションポリッシャー(日本電子(株)製 IB−09020CP)を用い、電極断面を加工した。加工した電極断面は、SEM((株)日立ハイテクノロジーズ製 SU−70)で反射電子像を取得した。なお、SEM取得条件は加速電圧10kV、倍率1000倍であり、解像度256dpiにて1粒子が取得できる範囲の像を得た。その後、上述の分散度の測定方法及び条件に従い、150μm×100μmのSEM画像を2つ用いて|X−X|/X≦0.2、|R−
|≦0.1を満足する粒子を30個以上抽出した。その上、2値化ができる像として黒鉛部の平均輝度が80以上空間部の輝度が平均して65以下の粒子を30粒子選定した。
<粒子境界の設定>
画像処理ソフトimageJにて、多角形近似で粒子境界をくくり粒子境界とした。このとき粒子形状に合わせて15角形以上になるようにした。粒子外の領域はすべてのpixelで輝
度255になるように処理した。
<断面SEM画像の二値化(空隙領域と空隙以外の領域の分離)>
断面SEM画像から観察される炭素材の空隙領域と空隙以外の領域は、画像ソフトimageJを用い、閾値が輝度80〜85で設定して2値化した。
<断面SEM画像から計測された円形相当径X
多角形の粒子境界の線分の長さの合計値を粒子周長L[μm]として下記式から算出した。
<断面SEM画像から計測された円形度R
粒子境界として設定された多角形の面積をSとして、上記で算出した粒子周長Lから下記式で算出した。
<分散度Dの平均値>
取得したSEM画像から上記条件(1)及び(2)を満足する任意の造粒粒子を30粒子選択し、下記式Bで表される分散度Dをそれぞれの粒子に対して算出した。30粒子の分散度Dから、平均値を算出した。なお、対象の区画における空隙面積の期待値Eは、下記式Aより算出される。
(式B)
分散度D(%)=((対象の区画内の空隙の総面積[μm] )/(対象の区画にお
ける空隙面積の期待値E[μm] )が0.5以上を満たす区画の面積の総和[μm
] )/(対象の造粒粒子1粒子の全区画の面積の総和[μm] )×100
(式A)
対象の区画における空隙面積の期待値E[μm]= (対象の造粒粒子1粒子の内部
空隙の総面積[μm] )/(対象の造粒粒子1粒子の断面積[μm] )×(対象の区画の面積[μm] )
(実施例1)
d50が100μmの鱗片状天然黒鉛を乾式旋回流式粉砕機により粉砕し、d50が8.1μm、Tapが0.39g/cm、水分量0.08質量%の鱗片状天然黒鉛を得た。得られた鱗片状天然黒鉛100gに造粒剤として流動パラフィン(和光純薬工業社製、一級、25℃における物性:粘度=95cP、接触角=13.2°、表面張力=31.7
mN/m、rcosθ=30.9)を12g添加して撹拌混合した後、得られたサンプルをハンマーミル(IKA社製MF10)で回転数3000rpmにて解砕混合し、造粒剤が添着した鱗片状天然黒鉛を得た。得られた造粒剤が均一に添着した鱗片状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−1型にて、球形化処理中に生成する微粉を母材に付着、及び球形化粒子に内包させながら、ローター周速度85m/秒で10分間の機械的作用による球形化処理を行い、不活性ガス中で720℃で熱処理を施すことで、d50が12.9μmの球形化黒鉛を得た。前記測定法でd50、Tap、円形度、分散度D、放電容量、低温出力特性を測定した。結果を表1、表2に示す。
(実施例2)
d50が100μmの鱗片状天然黒鉛を乾式気流式粉砕機により粉砕し、d50が6μm、Tapが0.13g/cm、水分量0.08質量%の鱗片状天然黒鉛を得た。得られた鱗片状天然黒鉛100gに造粒剤としてパラフィン系オイル(流動パラフィン、和光純薬工業社製、一級、25℃における物性:粘度=95cP、接触角=13.2°、表面
張力=31.7mN/m、rcоsθ=30.9)を12g添加して撹拌混合した後、得られたサンプルをハンマーミル(IKA社製MF10)で回転数3000rpmにて解砕混合し、造粒剤が均一に添着した鱗片状天然黒鉛を得た。得られた造粒剤が均一に添着した鱗片状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−1型にて、球形化処理中に生成する微粉を母材に付着、及び球形化粒子に内包させながら、ローター周速度85m/秒で10分間の機械的作用による球形化処理を行い、不活性ガス中で720℃熱処理を施すことで、d50が9.2μmの球形化黒鉛を得た。実施例1同様の測定を行った結果を表1、表2に示す。
(実施例3)
d50が100μmの鱗片状天然黒鉛を粉砕機により乾式旋回流式粉砕機により粉砕し、d50が6μm、Tapが0.38g/cm、水分量0.08質量%の鱗片状天然黒鉛を得た。得られた鱗片状天然黒鉛100gに造粒剤としてパラフィン系オイル(流動パラフィン、和光純薬工業社製、一級、25℃における物性:粘度=95cP、接触角=1
3.2°、表面張力=31.7mN/m、rcоsθ=30.9)を12g添加して撹拌混合した後、得られたサンプルをハンマーミル(IKA社製MF10)で回転数3000rpmにて解砕混合し、造粒剤が均一に添着した鱗片状天然黒鉛を得た。得られた造粒剤が均一に添着した鱗片状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−1型にて、球形化処理中に生成する微粉を母材に付着、及び球形化粒子に内包させながら、ローター周速度85m/秒で10分間の機械的作用による球形化処理を行い、不活性ガス中で720℃熱処理を施すことで、d50が9.9μmの球形化黒鉛を得た。実施例1同様の測定を行った結果を表1、表2に示す。
(比較例1)
d50が100μmの鱗片状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−1型にて、ローター周速度85m/秒で10分間の機械的作用による球形
化処理を行った。得られたサンプルには母材に付着、及び球形化粒子に内包されていない状態の鱗片黒鉛状微粉が多く存在していることが確認された。このサンプルを分級し、上記鱗片黒鉛状微粉を除去し、d50が10.8μmの球形化黒鉛を得た。実施例1同様の測定を行った結果を表1、表2に示す。
(比較例2)
d50が100μmの鱗片状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−1型にて、ローター周速度85m/秒で5分間の機械的作用による造粒処理を行った。得られたサンプルには母材に付着、及び造粒粒子に内包されていない状態の鱗片黒鉛状微粉が多く存在していることが確認された。このサンプルを分級により上記鱗片黒鉛状微粉を除去して、d50が15.4μmの造粒炭素材を得た。実施例1同様の測定を行った結果を表1、表2に示す。
(実施例4)
実施例1で得られた熱処理前の球形化天然黒鉛と非晶質炭素前駆体としてコールタールピッチを混合し、不活性ガス中で1300℃熱処理を施した後、焼成物を解砕・分級処理することにより、黒鉛粒子と非晶質炭素とが複合化した複層構造炭素材を得た。焼成収率から、得られた複層構造炭素材において、球形化黒鉛質粒子と非晶質炭素との質量比率(球形化黒鉛質粒子:非晶質炭素)は1:0.08であることが確認された。実施例1同様の測定を行った結果を表3、表4に示す。
(比較例3)
比較例1で得られた球形化天然黒鉛と非晶質炭素前駆体としてコールタールピッチを混合し、不活性ガス中で1300℃熱処理を施した後、焼成物を解砕・分級処理することに
より、黒鉛粒子と非晶質炭素とが複合化した複層構造炭素材を得た。焼成収率から、得られた複層構造炭素材において、球形化黒鉛質粒子と非晶質炭素との質量比率(球形化黒鉛質粒子:非晶質炭素)は1:0.065であることが確認された。実施例1同様の測定を行った結果を表3、表4に示す。
本発明の炭素材は、それを非水系二次電池負極用の活物質として用いることにより、容量且つ、優れた入出力特性、高温保存特性、サイクル特性な非水系二次電池を提供することができる。また、当該材料の製造方法によれば、その工程数が少ない故、安定して効率的且つ安価に製造することができる。

Claims (9)

  1. 複数の炭素材料からなる造粒粒子を含有する非水系二次電池用炭素材であって、前記非水系二次電池用炭素材の断面SEM画像から前記造粒粒子を任意に30粒子選択した際に、下記測定方法で表される分散度Dの30粒子の平均値が60%以上である、非水系二次電池用炭素材。
    (測定方法)
    断面SEM画像を用いて測定対象となる造粒粒子の短軸及び長軸を20分割する格子を引く。格子の升目を用いて、下記定義のように造粒粒子を区画化し、下記式Aを用いてそれぞれの区画毎に空隙面積の期待値Eを算出し、下記式Bを用いて造粒粒子の分散度Dを算出する。
    但し、断面SEM画像は、加速電圧10kVで取得された反射電子像である。
    (造粒粒子の区画の定義)
    前記格子の各升目の領域の内、造粒粒子の部分及び/又は造粒粒子内の空隙が存在する領域を区画と定義する。造粒粒子の粒子境界外部は区画から除外される。
    (式A)
    対象の区画における空隙面積の期待値E[μm]= (対象の造粒粒子1粒子の内部
    空隙の総面積[μm] )/(対象の造粒粒子1粒子の断面積[μm] )×(対象の区画の面積[μm] )
    (式B)
    分散度D(%)=((対象の区画内の空隙の総面積[μm] )/(対象の区画にお
    ける空隙面積の期待値E[μm] )が0.5以上を満たす区画の面積の総和[μm
    ] )/(対象の造粒粒子1粒子の全区画の面積の総和[μm] )×100
  2. 前記造粒粒子はレーザー回折で測定された体積基準平均粒径X、断面SEM画像から計測された円形相当径Xの関係が|X−X|/X≦0.2である、請求項1に記載の
    非水系二次電池用炭素材。
  3. 前記造粒粒子はフロー式粒子像分析装置で測定された円形度R、断面SEM画像から計測された円形度Rの関係が|R−R|≦0.1である、請求項1又は2に記載の非水系二次電池用炭素材。
  4. タップ密度が0.7g/cm以上である、請求項1乃至3の何れか1項に記載の非水系二次電池用炭素材。
  5. 前記炭素材のフロー式粒子像分析より求められる円形度が0.88以上である、請求項1乃至4の何れか1項に記載の非水系二次電池用炭素材。
  6. 前記黒鉛粒子が鱗片状黒鉛、鱗状黒鉛、及び塊状黒鉛を造粒処理した球状黒鉛粒子である、請求項1乃至5の何れか1項に記載の非水系二次電池用炭素材。
  7. 前記造粒処理が、少なくとも衝撃、圧縮、摩擦、及びせん断力のいずれかの力学的エネルギーを付与する処理である、請求項6に記載の非水系二次電池用炭素材。
  8. 前記造粒処理が、ケーシング内で高速回転する回転部材を備え、ケーシング内に複数のブレードを設置したローターを有する装置において、該ローターが高速回転することによって、内部に導入された黒鉛に対して衝撃、圧縮、摩擦、及びせん断力のいずれかを与えることで造粒する処理である、請求項6又は7に記載の非水系二次電池用炭素材。
  9. リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を備える非水系二次
    電池であって、該負極が集電体と該集電体上に形成された負極活物質層とを備え、該負極活物質層が請求項1乃至8の何れか1項に記載の炭素材を含有する、非水系二次電池。
JP2015175403A 2015-09-07 2015-09-07 炭素材、及び、非水系二次電池 Active JP6808919B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175403A JP6808919B2 (ja) 2015-09-07 2015-09-07 炭素材、及び、非水系二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175403A JP6808919B2 (ja) 2015-09-07 2015-09-07 炭素材、及び、非水系二次電池

Publications (2)

Publication Number Publication Date
JP2017054582A true JP2017054582A (ja) 2017-03-16
JP6808919B2 JP6808919B2 (ja) 2021-01-06

Family

ID=58317020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175403A Active JP6808919B2 (ja) 2015-09-07 2015-09-07 炭素材、及び、非水系二次電池

Country Status (1)

Country Link
JP (1) JP6808919B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911221B1 (ja) * 2020-01-28 2021-07-28 Jfeケミカル株式会社 炭素質材料、炭素質材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911221B1 (ja) * 2020-01-28 2021-07-28 Jfeケミカル株式会社 炭素質材料、炭素質材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Also Published As

Publication number Publication date
JP6808919B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
US20200185721A1 (en) Carbon material and nonaqueous secondary battery using carbon material
WO2016006617A1 (ja) 炭素材、炭素材の製造方法及び炭素材を用いた非水系二次電池
JP6906891B2 (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP6864250B2 (ja) 炭素材、及び、非水系二次電池
JP6561790B2 (ja) 非水系二次電池用炭素材及び非水系二次電池
JP6634720B2 (ja) 炭素材、及び、非水系二次電池
JP6736845B2 (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP6609959B2 (ja) 非水系二次電池用複合炭素材、及び、非水系二次電池
JP2018088406A (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6609960B2 (ja) 炭素材、及び、非水系二次電池
JP6596959B2 (ja) 非水系二次電池用複合粒子の製造方法
JP6808920B2 (ja) 炭素材、及び、非水系二次電池
JP2016136517A (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP6808918B2 (ja) 炭素材、及び、非水系二次電池
JP2017126425A (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP6759586B2 (ja) 炭素材、及び、非水系二次電池
JP6672755B2 (ja) 炭素材、及び、非水系二次電池
JP6801171B2 (ja) 炭素材、及び、非水系二次電池
JP2016184581A (ja) 非水系二次電池用負極材の製造方法
JP7192932B2 (ja) 炭素材、及び、非水系二次電池
JP6794614B2 (ja) 炭素材、及び、非水系二次電池
JP6808919B2 (ja) 炭素材、及び、非水系二次電池
JP2017010650A (ja) 炭素材、及び、非水系二次電池
JP6609961B2 (ja) 炭素材、及び、非水系二次電池
JP2014165079A (ja) 非水系二次電池用炭素材及びその製造方法、それを用いた負極及び非水系二次電池

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R151 Written notification of patent or utility model registration

Ref document number: 6808919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151