JP2017051996A - Sequential molding method, and tool for sequential molding method - Google Patents

Sequential molding method, and tool for sequential molding method Download PDF

Info

Publication number
JP2017051996A
JP2017051996A JP2015179556A JP2015179556A JP2017051996A JP 2017051996 A JP2017051996 A JP 2017051996A JP 2015179556 A JP2015179556 A JP 2015179556A JP 2015179556 A JP2015179556 A JP 2015179556A JP 2017051996 A JP2017051996 A JP 2017051996A
Authority
JP
Japan
Prior art keywords
plate material
tool
forming method
sequential
pressing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015179556A
Other languages
Japanese (ja)
Other versions
JP6493112B2 (en
Inventor
内山 典子
Noriko Uchiyama
典子 内山
長山 森
Shin Nagayama
森 長山
紘敬 三輪
Hirotaka Miwa
紘敬 三輪
中川 成幸
Nariyuki Nakagawa
成幸 中川
南部 俊和
Toshikazu Nanbu
俊和 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015179556A priority Critical patent/JP6493112B2/en
Publication of JP2017051996A publication Critical patent/JP2017051996A/en
Application granted granted Critical
Publication of JP6493112B2 publication Critical patent/JP6493112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sequential molding method capable of reconciling improvement of processing speed with surface roughness of a processing surface; and to provide a tool used for a sequential molding apparatus.SOLUTION: In a sequential molding method, a plate is pressed by a moving press tool provided on one surface side of the plate, and the plate and the moving press tool are relatively moved, to thereby mold the plate into a three-dimensional shape. Then, the surface of the plate is melted and molded.SELECTED DRAWING: Figure 4

Description

本発明は、板材に押圧工具を押し当てながら相対移動させ、上記板材を伸ばして所定の立体形状に成形加工する逐次成形方法、及び該逐次成形装置に用いる工具に係り、更に詳細には、加工速度と成形品の表面粗さとを両立できる逐次成形方法、及び該逐次成形装置に用いる工具に関する。   The present invention relates to a sequential forming method in which a pressing tool is pressed against a plate material and moved relative to the plate material, and the plate material is stretched and formed into a predetermined three-dimensional shape, and a tool used in the sequential forming apparatus. The present invention relates to a sequential molding method capable of achieving both speed and surface roughness of a molded product, and a tool used in the sequential molding apparatus.

自動車の部品などを大量生産するための塑性加工方法として、金型を使用したプレス加工が広く用いられている。   As a plastic working method for mass production of automobile parts, press working using a mold is widely used.

しかしながら、プレス装置と金型とを用いた塑性加工方法では、設備が大型化するとともに、部品ごとに金型を作製しなければならず、多大な費用を要するため、消費者ニーズの多様化に対応した多品種少量生産には不向きである。また、プレス加工では作製できる部品の形状に制約があり、複雑な形状の部品の作製が困難である。   However, in the plastic working method using a press device and a die, the equipment becomes large, and a die must be produced for each part. It is unsuitable for corresponding high-mix low-volume production. In addition, the shape of parts that can be produced by press working is limited, and it is difficult to produce parts having complicated shapes.

特許文献1の特許第4287912号公報には、特定形状の金型に代えて、汎用の押圧工具を板材に押し当てながら相対移動させ、上記板材を伸ばしながら所定の立体形状を成形加工する逐次成形装置が開示されている。   In Japanese Patent No. 4287912 of Patent Document 1, instead of a die having a specific shape, a general-purpose pressing tool is moved relative to a plate material while being moved, and a predetermined three-dimensional shape is formed while the plate material is stretched. An apparatus is disclosed.

上記逐次成形装置は、上記押圧工具の移動を数値制御により行うため、同じ装置構成で異なる形状の部品を作製することができ、加えて、プレス加工では困難な複雑な形状の成形が可能である。そして、成形部位に潤滑剤を供給することで、押圧工具の移動速度を上げても、ステンレス板材においては押圧工具との凝着が防止され、アルミニウム板材においては割れの発生を防止できるとされる。   Since the sequential forming apparatus performs the movement of the pressing tool by numerical control, it is possible to produce parts having different shapes with the same apparatus configuration, and in addition, it is possible to form complicated shapes that are difficult to press. . And even if the moving speed of the pressing tool is increased by supplying the lubricant to the forming part, adhesion to the pressing tool is prevented in the stainless steel plate material, and cracking can be prevented in the aluminum plate material. .

特許第4287912号公報Japanese Patent No. 4287912

しかしながら、自動車の部品などを生産する場合には、加工速度をタクトタイムに合わせるために押圧工具の移動速度を上げる必要がある。そこで、押圧工具の移動速度を従来の移動速度よりも速くすると、特許文献1に記載の潤滑剤を供給する方法によっては、板材と押圧工具との凝着を防止できず、加工面を粗らすため、高速化と表面粗さをと両立が困難である。   However, when producing automobile parts and the like, it is necessary to increase the moving speed of the pressing tool in order to adjust the processing speed to the tact time. Therefore, if the moving speed of the pressing tool is made higher than the conventional moving speed, adhesion between the plate material and the pressing tool cannot be prevented depending on the method of supplying the lubricant described in Patent Document 1, and the processing surface is roughened. Therefore, it is difficult to achieve both high speed and surface roughness.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、加工速度と加工面の表面粗さとを両立できる逐次成形方法、及び該逐次成形装置に用いる工具を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a sequential molding method and a sequential molding apparatus that can achieve both processing speed and surface roughness of the processed surface. It is to provide a tool to be used.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、板材の表面を溶融させて成形することで、上記板材と移動押圧工具との凝着が防止されて表面粗さが向上すると共に、移動押圧工具を従来よりも高速で移動させることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have prevented the adhesion between the plate material and the moving pressing tool by improving the surface roughness by melting and molding the surface of the plate material. At the same time, the present inventors have found that the moving pressing tool can be moved at a higher speed than before, and have completed the present invention.

即ち、本発明の逐次形成方法は、板材の一方の面側に設けられた移動押圧工具で上記板材を押圧し、上記板材と移動押圧工具を相対移動させ、上記板材を3次元形状に成形するものである。
そして、上記板材の表面を溶融させて成形することを特徴とする。
That is, in the sequential forming method of the present invention, the plate member is pressed with a moving pressing tool provided on one surface side of the plate member, the plate member and the moving pressing tool are relatively moved, and the plate member is formed into a three-dimensional shape. Is.
And the surface of the said board | plate material is melted and shape | molded, It is characterized by the above-mentioned.

また、本発明の逐次成形方法用工具は、板材の一方の面側に設けられた移動押圧工具で上記板材を押圧し、上記板材と移動押圧工具を相対移動させ、上記板材の表面を溶融しながら上記板材を3次元形状に成形する逐次成形方法に用いる工具である。
そして、逐次成形方法用工具は、加工温度で上記板材と合金化しない非合金化材料で形成され、上記板材を押圧しながら移動し、上記板材を3次元形状に成形することを特徴とする。
Further, the sequential forming method tool of the present invention presses the plate material with a moving pressing tool provided on one surface side of the plate material, relatively moves the plate material and the moving pressing tool, and melts the surface of the plate material. However, the tool is used in a sequential forming method for forming the plate material into a three-dimensional shape.
The sequential forming method tool is formed of a non-alloyed material that is not alloyed with the plate at a processing temperature, moves while pressing the plate, and forms the plate into a three-dimensional shape.

本発明によれば、板材の表面を溶融させて成形することとしたため、上記板材と移動押圧工具との凝着が防止されて表面粗さが向上すると共に、移動押圧工具を高速で摺動させることができ、加工速度と加工面の表面粗さとを両立できる逐次成形方法、及び該逐次成形装置に用いる工具を提供することができる。   According to the present invention, since the surface of the plate material is melted and molded, adhesion between the plate material and the moving pressing tool is prevented, the surface roughness is improved, and the moving pressing tool is slid at high speed. It is possible to provide a sequential forming method capable of achieving both the processing speed and the surface roughness of the processed surface, and a tool used in the sequential forming apparatus.

逐次形成装置の一例を示す概略図である。It is the schematic which shows an example of a sequential formation apparatus. 逐次形成方法の加工開始前の状態を説明する図である。It is a figure explaining the state before the process start of a sequential formation method. 逐次形成方法の加工中の状態を説明する図である。It is a figure explaining the state in process of the sequential formation method. 逐次形成方法の加工中の状態を説明する図である。It is a figure explaining the state in process of the sequential formation method. 他の逐次形成装置の一例を示す概略図である。It is the schematic which shows an example of another sequential formation apparatus. 摺動摩擦熱と成形品の表面粗さとの関係を示すプロット図である。It is a plot figure which shows the relationship between sliding friction heat and the surface roughness of a molded article. 摺動摩擦熱と成形品の耐食性との関係を示すプロット図である。It is a plot figure which shows the relationship between sliding friction heat and the corrosion resistance of a molded article. 図8(a)は摺動摩擦熱μPVが5×10で成形したものの加工部の断面写真であり、図8(b)は摺動摩擦熱μPVが2×10で成形したものの加工部の断面写真である。FIG. 8 (a) is a cross-sectional photograph of a processed part formed with a sliding frictional heat [mu] PV of 5 * 10 < 8 >, and FIG. 8 (b) is a cross-sectional view of the processed part formed with a sliding frictional heat [mu] PV of 2 * 10 < 8 >. It is a photograph. 移動押圧工具の表面粗さと成形品の表面粗さとの関係を示すプロット図である。It is a plot figure which shows the relationship between the surface roughness of a moving press tool, and the surface roughness of a molded article. 移動押圧工具の表面粗さと耐食性との関係を示すプロット図である。It is a plot figure which shows the relationship between the surface roughness of a moving press tool, and corrosion resistance.

本発明の逐次形成方法について詳細に説明する。
本発明の逐次形成方法は、支持枠で周囲を支持された板材の一方の面側に設けられた移動押圧工具で上記板材を押圧し、上記板材の表面を溶融させ、上記板材と移動押圧工具を相対移動させて、上記板材を3次元形状に成形する逐次成形方法である。
The sequential forming method of the present invention will be described in detail.
In the sequential forming method of the present invention, the plate material is pressed with a moving pressing tool provided on one surface side of the plate material supported by a support frame, the surface of the plate material is melted, and the plate material and the moving pressing tool Is a sequential forming method in which the plate material is formed into a three-dimensional shape by relatively moving.

本発明の逐次形成方法は、従来公知の逐次成形装置を用いて形成することができるが、従来の方法のように、板材を成形するときの摩擦による発熱を抑えて製品に生じる加工痕を減少させるのではなく、逆に、板材の成形領域表面の温度を上昇させ、板材の表面を溶融させることで、加工面の表面粗さを低減させると共に、移動押圧工具の移動速度、すなわち摺動速度を従来の成形速度よりも、さらに速くすることを可能にしている。   The sequential forming method of the present invention can be formed using a conventionally known sequential forming apparatus, but, unlike the conventional method, suppresses heat generation due to friction when forming a plate material, and reduces processing marks generated in the product. On the contrary, the surface roughness of the processed surface is reduced by increasing the temperature of the surface of the plate material forming region and melting the surface of the plate material, and the moving speed of the moving pressing tool, that is, the sliding speed Can be made faster than the conventional molding speed.

一般的に、逐次成形装置1は、図1に示すように、板材2の周囲を支持する支持枠3、移動押圧工具4、及び図示しない制御装置、図示しない駆動装置を備えるものであり、必要に応じて、図2示すように固定押圧工具5を備えることができる。   In general, as shown in FIG. 1, the sequential forming apparatus 1 includes a support frame 3 that supports the periphery of the plate member 2, a moving pressing tool 4, a control device (not shown), and a drive device (not shown). Accordingly, a fixed pressing tool 5 can be provided as shown in FIG.

上記支持枠3及び移動押圧工具4は、駆動装置によって水平方向(X軸−Y軸方向)及び垂直方向(Z軸方向)に動かされる。上記固定押圧工具5は、上下に動かされるものであってもよい。   The support frame 3 and the moving pressing tool 4 are moved in the horizontal direction (X axis-Y axis direction) and the vertical direction (Z axis direction) by the driving device. The fixed pressing tool 5 may be moved up and down.

そして、上記支持枠によって周囲を支持された板材の一方の面に移動押圧工具を当接させ、移動押圧工具を相対移動させて逐次成形を行う。   Then, the moving pressing tool is brought into contact with one surface of the plate material supported by the support frame, and the moving pressing tool is relatively moved to perform sequential forming.

具体的には、図2に示すように、固定押圧工具の縁部に対応する板材の部位に移動押圧工具を当接させる。そして、図3に示すように、移動押圧工具を所定量下降させて板材を押圧し、板材を塑性変形させる。そして、図4に示すように、移動押圧工具の高さを変えずに、数値データに基づいて移動押圧工具が成形品の等高線上を移動するように支持枠及び/又は移動押圧工具を動かす。
移動押圧工具が一つの等高線上の移動経路をたどり終わると、さらに移動押圧工具を所定量下降させ、次の等高線上の移動経路を移動させる工程を繰り返すことで、板材を3次元形状に成形する。
なお、固定押圧工具を用いる場合を例について説明したが、成形品の形状や、板材の材質・厚さ等によっては、必ずしも固定押圧工具を用いる必要はない。
Specifically, as shown in FIG. 2, the moving pressing tool is brought into contact with a portion of the plate material corresponding to the edge of the fixed pressing tool. Then, as shown in FIG. 3, the moving pressing tool is lowered by a predetermined amount to press the plate material, and the plate material is plastically deformed. And as shown in FIG. 4, without changing the height of a movement press tool, based on numerical data, a support frame and / or a movement press tool are moved so that a movement press tool may move on the contour line of a molded article.
When the moving pressing tool finishes following the moving path on one contour line, the moving pressing tool is further lowered by a predetermined amount and the process of moving the moving path on the next contour line is repeated to form the plate material into a three-dimensional shape. .
In addition, although the case where the fixed pressing tool is used has been described as an example, the fixed pressing tool is not necessarily used depending on the shape of the molded product, the material / thickness of the plate material, and the like.

本発明は板材の表面を溶融させて成形を行う。板材の表面が溶融していることで、移動押圧工具が滑らかに相対移動することができる。そして、仮に、移動押圧工具が板材表面を引っ掻き、凹凸が形成されたとしても、表面が溶融しているため凹凸がならされて表面が粗れることが防止される。   In the present invention, molding is performed by melting the surface of a plate material. Since the surface of the plate material is melted, the moving pressing tool can move relatively smoothly. Even if the moving pressing tool scratches the surface of the plate material and the irregularities are formed, the surface is melted so that the irregularities are smoothed and the surface is prevented from becoming rough.

板材表面の溶融は、移動押圧工具と板材との摺動摩擦熱によって行う。具体的には、上記移動押圧工具の板材に対する相対的な移動速度を高速、例えば0.75m/sec〜5m/sec以上にすることで摺動摩擦熱により板材の表面を溶融させることができる。
また、移動押圧工具は自転及び/又は超音波振動しながら成形品の等高線上を移動することが好ましい。移動押圧工具が自転及び/又は超音波振動することで発熱量が増え、溶融させることができる。
The melting of the plate material surface is performed by sliding frictional heat between the moving pressing tool and the plate material. Specifically, the surface of the plate material can be melted by sliding frictional heat by setting the relative moving speed of the moving pressing tool to the plate material at a high speed, for example, 0.75 m / sec to 5 m / sec or more.
Moreover, it is preferable that a moving press tool moves on the contour line of a molded article, rotating and / or ultrasonically vibrating. When the moving pressing tool rotates and / or ultrasonically vibrates, the amount of generated heat increases and can be melted.

一般的に、摩擦熱により摩擦面の温度が高温になると、激しい凝着現象、すなわち焼き付き現象が生じる。例えば、鉄と鉄等、同種の材料を摩擦させると凝着し、成形品の表面を粗し易い。   Generally, when the temperature of the friction surface becomes high due to frictional heat, a severe adhesion phenomenon, that is, a seizure phenomenon occurs. For example, when the same kind of material such as iron and iron is rubbed, it adheres and the surface of the molded product is easily roughened.

本発明逐次形成方法においては、上記移動押圧工具として、板材の表面を構成する材料と異種材料で形成されたものを選択使用することが好ましく、さらに、上記板材と加工温度で合金化しない非合金化材料で形成されたものを選択使用することが好ましい。
非合金化材料で形成された移動押圧工具を選択使用することで、凝着が防止され成形品の表面粗さを小さくできる。
In the sequential forming method of the present invention, as the moving pressing tool, it is preferable to selectively use a material formed from a material different from the material constituting the surface of the plate material, and further, a non-alloy that does not alloy with the plate material at the processing temperature. It is preferable to selectively use a material formed of a chemical material.
By selectively using a moving pressing tool formed of a non-alloyed material, adhesion is prevented and the surface roughness of the molded product can be reduced.

上記移動押圧工具を構成する材料としては、成形する板材表面を構成する材料や、該表面材料の融点等にもよるが、例えば、炭化タングステン(WC)、高炭素クロム軸受鋼(SUJ2)、粉末ハイス鋼、及びこれらの表面に硬質層を形成したものや、硬質材を先端に接着接合したもの等を使用することができる。   Examples of the material constituting the moving pressing tool include tungsten carbide (WC), high carbon chromium bearing steel (SUJ2), powder, depending on the material constituting the surface of the plate material to be molded and the melting point of the surface material. High-speed steel, those having a hard layer formed on these surfaces, and those obtained by bonding a hard material to the tip can be used.

上記硬質層及び硬質材としては、ダイヤモンド及び/又はダイヤモンドライクカーボンを含むものを挙げることができる。上記ダイヤモンド及びダイヤモンドライクカーボンは、多結晶であることが好ましく、ダイヤモンド、ダイヤモンド焼結体(PCD)、及びダイヤモンドライクカーボンの多結晶体を挙げることができる。
上記多結晶ダイヤモンド等を含む硬質層又は硬質材を設けることで、板材との凝着が防止され、成形品の表面粗さを小さくすることができる。
Examples of the hard layer and the hard material include those containing diamond and / or diamond-like carbon. The diamond and diamond-like carbon are preferably polycrystalline, and examples thereof include diamond, a diamond sintered body (PCD), and a diamond-like carbon polycrystal.
By providing the hard layer or hard material containing the polycrystalline diamond or the like, adhesion with the plate material can be prevented, and the surface roughness of the molded product can be reduced.

上記多結晶ダイヤモンド等は、単結晶ダイヤモンドのように結晶面及び結晶方向により特性が異なることがなく、等方性であるため、全方位で均一な特性を示し、どのような方向からの力に対しても強く劈開し難い。さらに単結晶ダイヤモンドよりも高硬度で摩擦係数も低いため長期に亘り高速成形が可能である。   The above-mentioned polycrystalline diamond does not have different characteristics depending on the crystal plane and crystal direction as in the case of single crystal diamond, and is isotropic, so it exhibits uniform characteristics in all directions and can be applied to force from any direction. It is also difficult to cleave. Furthermore, since it is harder and has a lower coefficient of friction than single crystal diamond, it can be molded at high speed over a long period of time.

上記多結晶ダイヤモンドの平均粒径は、10μm以下であることが好ましい。10μm以下であることで、硬化層の表面粗さを低減することができ、摩擦係数を小さくできる。   The average grain size of the polycrystalline diamond is preferably 10 μm or less. By being 10 micrometers or less, the surface roughness of a hardened layer can be reduced and a friction coefficient can be made small.

平均粒径の測定は、硬化層又は硬質材の表面を撮影した写真像から、ダイヤモンド粒子の最大径(長軸径)を当該粒子の粒径とし、ランダムに選択した100個のダイヤモンド粒子について粒径を計測する。そして、これらの算術平均からダイヤモンド粒子の個数平均粒径を測定できる。   The average particle size is measured for 100 diamond particles selected at random from the photographic image obtained by photographing the surface of the hardened layer or hard material, with the maximum diameter (major axis diameter) of the diamond particles being the particle size of the particles. Measure the diameter. And the number average particle diameter of diamond particles can be measured from these arithmetic averages.

上記硬質層の厚さとしては、5μm〜1mmであることが好ましい。硬質層の厚さが上記範囲であることで、基材との密着性が向上し移動押圧工具の寿命を長くすることができる。   The thickness of the hard layer is preferably 5 μm to 1 mm. When the thickness of the hard layer is within the above range, the adhesion with the base material is improved and the life of the moving pressing tool can be extended.

移動押圧工具に上記硬質層を設ける場合は、基材の熱膨張係数が5×10−6以下であることが好ましい。ダイヤモンドの熱膨張係数との差が小さくなり、膨張収縮による硬質層の剥がれ防止される。 When providing the said hard layer in a moving press tool, it is preferable that the thermal expansion coefficient of a base material is 5x10 <-6> or less. The difference from the thermal expansion coefficient of diamond is reduced, and the hard layer is prevented from peeling off due to expansion and contraction.

上記移動押圧工具は、板材と接触する成形部分が、上記板材と加工温度で合金化しない非合金化材料で形成され、また板材と接触する成形部分に上記硬質層が形成されていればよく、必ずしも、移動押圧工具の全体が板材と合金化しない非合金化材料で形成される必要はなく、また、移動押圧工具全体に上記硬質層が形成される必要はない。   The moving pressing tool may be formed of a non-alloyed material that does not alloy with the plate material at the processing temperature, and the hard layer is formed on the formed portion that contacts the plate material. The entire moving pressing tool does not necessarily need to be formed of a non-alloyed material that is not alloyed with the plate material, and the hard layer need not be formed on the entire moving pressing tool.

上記移動押圧工具としては棒状の工具を使用することができ、先端部の形状としては、特に制限はなく円筒、半球、円錐、多角柱、多角錐の他、回転するボールが設けられていてもよいが、半球であることが好ましい。   A rod-shaped tool can be used as the moving pressing tool, and the shape of the tip is not particularly limited, and a rotating ball is provided in addition to a cylinder, a hemisphere, a cone, a polygonal column, and a polygonal pyramid. Although it is good, it is preferably a hemisphere.

上記移動押圧工具が板材と接触する成形部位の表面粗さ(Ra)は、0.2μm以下であることが好ましく、0.1μm以下であることがさらに好ましい。表面粗さ(Ra)が、0.2μm以下であることで、摩擦係数が低下し、潤滑剤を供給することなく高速成形が可能となる。また成形面の表面粗さが小さくなり、板材の耐食性が向上する。
なお、表面粗さ(Ra)は、JIS B 0601の規定に準拠し、触針式表面粗さ計を用いて測定できる。
The surface roughness (Ra) of the molding part where the moving pressing tool comes into contact with the plate material is preferably 0.2 μm or less, and more preferably 0.1 μm or less. When the surface roughness (Ra) is 0.2 μm or less, the friction coefficient is reduced, and high-speed molding is possible without supplying a lubricant. Further, the surface roughness of the molding surface is reduced, and the corrosion resistance of the plate material is improved.
The surface roughness (Ra) can be measured using a stylus type surface roughness meter in accordance with the provisions of JIS B 0601.

上記固定押圧工具は、上記移動押圧工具の反対側から板材を押圧するものであり、上記移動押圧工具と同様、棒状の工具を使用することができるが、図5に示すように成形品の輪郭に合わせた簡易な型を用いることができる。   The fixed pressing tool presses the plate material from the opposite side of the moving pressing tool. Like the moving pressing tool, a rod-shaped tool can be used, but the contour of the molded product as shown in FIG. A simple mold can be used.

上記固定押圧工具を用いることで、加工時の面圧を高くすることができ、精緻な成形が可能になるだけでなく、成形品の表面粗さを小さくすることができ、耐食性を向上させることができる。   By using the fixed pressing tool, the surface pressure during processing can be increased, and not only precise molding is possible, but also the surface roughness of the molded product can be reduced and the corrosion resistance can be improved. Can do.

具体的には、支持枠で周囲を支持された板材の一方の面側に固定押圧工具、他方の面側に移動押圧工具を設け、固定押圧工具の縁部に対応する板材の部位を移動押圧工具で押圧し、上記板材と移動押圧工具及び/又は上記固定押圧工具を相対移動させることで、より複雑な成形を行うことが可能である。   Specifically, a fixed pressing tool is provided on one surface side of the plate material supported around the support frame and a moving pressing tool is provided on the other surface side, and the plate material portion corresponding to the edge of the fixed pressing tool is moved and pressed. More complex molding can be performed by pressing with a tool and relatively moving the plate member and the moving pressing tool and / or the fixed pressing tool.

上記固定押圧工具を構成する材料としては、樹脂や金属等の他、上記移動押圧工具と同様のものを使用できる。   As a material constituting the fixed pressing tool, the same material as the moving pressing tool can be used in addition to resin and metal.

上記支持枠は、板材の周囲を挟持するものであり、上記制御装置によって数値制御された駆動装置によって水平方向及び垂直方向に動かされて、上記移動押圧工具と協働して板材と成形を行う。   The support frame sandwiches the periphery of the plate material, and is moved in the horizontal direction and the vertical direction by a driving device numerically controlled by the control device, and forms the plate material in cooperation with the moving pressing tool. .

上記支持枠は板材が完全にズレないように挟持するのではなく、板材を挟持する力が調節される。板材の変形により生じる応力が、板材を挟持する力よりも大きくなると板材は支持枠の間を滑って送り込まれ、仕上がり寸法が薄くなりすぎること等が防止される。
板材を挟持する力はバネ等の一定の弾性力を有するものによって調節してもよく、挟持力を出力するアクチュエータ等によって調節してもよい。
The support frame is not clamped so that the plate material is not completely displaced, but the force for clamping the plate material is adjusted. When the stress generated by the deformation of the plate material becomes larger than the force for sandwiching the plate material, the plate material is slid between the support frames to prevent the finished dimension from becoming too thin.
The force for sandwiching the plate material may be adjusted by an element having a certain elastic force such as a spring, or may be adjusted by an actuator or the like that outputs the sandwiching force.

上記制御装置は固定押圧工具の高さ、移動押圧工具及び支持枠の位置、並びに押圧力を検出し、成形品の数値データに基づいて上記移動押圧工具が成形品の等高線上を移動するように駆動装置を数値制御して成形を行う。   The control device detects the height of the fixed pressing tool, the positions of the moving pressing tool and the support frame, and the pressing force so that the moving pressing tool moves on the contour line of the molded product based on the numerical data of the molded product. Molding is performed by numerically controlling the drive unit.

制御装置としては、例えばマイクロコンピュータを応用した数値制御方式の電子制御装置を用いることができる。電子制御装置では、部品形状を表現する各部寸法、移動押圧工具及び固定押圧工具の相対な移動の順序、押圧力の大きさや発生タイミング等を数値データとして保持し、プログラムによって自動的に駆動装置制御することができる。   As the control device, for example, a numerical control type electronic control device using a microcomputer can be used. In the electronic control unit, the dimensions of each part expressing the part shape, the relative movement order of the moving pressing tool and the fixed pressing tool, the magnitude and timing of the pressing force, etc. are held as numerical data, and the driving device is automatically controlled by the program. can do.

本発明の逐次形成方法で形成できる板材としては、塑性変形するものであれば特に制限はなく、例えば、鋼材、ステンレス材、アルミニウム材等の金属製の板材を形成できる。   The plate material that can be formed by the sequential forming method of the present invention is not particularly limited as long as it is plastically deformed. For example, a metal plate material such as a steel material, a stainless steel material, or an aluminum material can be formed.

本発明の逐次形成方法は、板材の表面を溶融させて成形するものであり、融点が高い金属材料の板材を成形する場合は、融点が低い金属材料、例えば、亜鉛(融点:420℃)等でメッキされた板材とすることで、板材表面を容易に溶融することができる。   The sequential forming method of the present invention is a method in which the surface of a plate material is melted and formed. When a metal material plate having a high melting point is formed, a metal material having a low melting point, such as zinc (melting point: 420 ° C.), etc. By using the plate material plated with, the surface of the plate material can be easily melted.

また、亜鉛メッキ鋼板は、メッキ層が厚くなるとプレス成形時にメッキ層に割れが生じやすく剥離が生じ易いが、本発明の逐次形成方法はメッキ層を溶融させて少しずつ逐次成形するため、メッキ層の剥離が防止される。   In addition, the galvanized steel sheet, when the plating layer becomes thicker, the plating layer is easily cracked and peeled off at the time of press molding. Is prevented from peeling.

亜鉛メッキ鋼板としては、純亜鉛メッキ鋼板、合金化亜鉛メッキ鋼板のいずれであってもよい。   The galvanized steel sheet may be a pure galvanized steel sheet or an alloyed galvanized steel sheet.

本発明の逐次形成方法において、上記メッキ層のすべてを溶融させる必要ななく、表面から0.5μm〜5μm程度まで溶融させればよい。0.5μm未満では表面粗さが大きくなることがあり、メッキ層の厚さにもよるが5μmを超えると基材が露出し、耐食性が低下することがある。   In the sequential formation method of the present invention, it is not necessary to melt all of the plating layer, and it may be melted from the surface to about 0.5 μm to 5 μm. If the thickness is less than 0.5 μm, the surface roughness may increase. Depending on the thickness of the plating layer, if it exceeds 5 μm, the substrate may be exposed and the corrosion resistance may be lowered.

本発明の逐次形成方法は、摺動摩擦熱(μPV)が3×10W/m以上であることが好ましく、5×10W/m以上であることがより好ましい。摺動摩擦熱(μPV)が3×10W/m以上であることで純亜鉛メッキ層又は合金化亜鉛メッキ層を溶融させることができ表面粗さを小さくすることができる。 In the sequential forming method of the present invention, the sliding frictional heat (μPV) is preferably 3 × 10 8 W / m 2 or more, and more preferably 5 × 10 8 W / m 2 or more. When the sliding frictional heat (μPV) is 3 × 10 8 W / m 2 or more, the pure galvanized layer or the alloyed galvanized layer can be melted and the surface roughness can be reduced.

ここで、摺動摩擦熱(μPV)について説明する。上記摺動摩擦熱(μPV)は、摩擦係数(μ)、接触部の圧力(P)、及びすべり速度(V)から算出される。
そして、上記摩擦係数(μ)は、移動押圧工具に設けられた三分力計で加工抵抗(主分力、背分力、送り分力)を測定することで、摩擦力(F:主分力)及び垂直荷重(W:背分力×SINθ+送り分力COSθ、但し、θは板材と工具の角度)を算出し、摩擦力(F)/垂直荷重(W)から求めることができる。
Here, the sliding frictional heat (μPV) will be described. The sliding frictional heat (μPV) is calculated from the coefficient of friction (μ), the pressure at the contact portion (P), and the sliding speed (V).
The friction coefficient (μ) is determined by measuring the processing resistance (main component force, back component force, feed component force) with a three-component force meter provided on the moving pressing tool, thereby obtaining the friction force (F: main component). Force) and vertical load (W: back component force × SINθ + feed component force COSθ, where θ is the angle between the plate and the tool) and can be obtained from the frictional force (F) / vertical load (W).

以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the following Example.

[実施例1]
超硬基材の表面を、多結晶ダイヤモンドでコーティングした厚さ7μmの硬質層を有する移動押圧工具(先端の曲率半径R:3mm)を、NC工作機械に取り付け、潤滑剤を供給せずに移動押圧工具の摺動速度を変えて、合金化溶融亜鉛メッキ鋼板(GA材、板厚:0.8mm、メッキ厚さ:7μm)を逐次成形した。摺動摩擦熱と成形品の表面粗さとの関係を図6に示す。
[Example 1]
A moving pressing tool (curvature radius of tip: R: 3 mm) having a hard layer with a thickness of 7 μm coated with polycrystalline diamond on the surface of a carbide substrate is mounted on an NC machine tool and moved without supplying a lubricant. An alloyed hot-dip galvanized steel sheet (GA material, plate thickness: 0.8 mm, plating thickness: 7 μm) was sequentially formed by changing the sliding speed of the pressing tool. FIG. 6 shows the relationship between the sliding frictional heat and the surface roughness of the molded product.

また、成形品の耐食性を以下の条件で評価した。摺動摩擦熱と耐食性との関係を図7に示す。
<耐食性評価条件>
成形した板材を3%の塩化ナトリウム水溶液に浸漬し、試験面積1cmとして、参照極:Ag/AgCl、対極:Ptとして、分極曲線(腐食電流密度計測)と1mA定電流放電(亜鉛担持量計測)とから、Fe溶出までの時間(hr)を求めた。
Fe溶出までの時間(hr)=亜鉛担持量計測(mAh/cm)/腐食電流密度(mA/cm
Moreover, the corrosion resistance of the molded product was evaluated under the following conditions. FIG. 7 shows the relationship between sliding frictional heat and corrosion resistance.
<Corrosion resistance evaluation conditions>
The molded plate is immersed in a 3% sodium chloride aqueous solution, the test area is 1 cm 2 , the reference electrode is Ag / AgCl, the counter electrode is Pt, the polarization curve (corrosion current density measurement) and 1 mA constant current discharge (zinc loading measurement) ) To obtain the time (hr) until Fe elution.
Time to elution of Fe (hr) = Zinc loading measurement (mAh / cm 2 ) / corrosion current density (mA / cm 2 )

また、図8に加工部の断面写真を示す。図8(a)は摺動摩擦熱μPVが5×10で成形したものであり、メッキ溶融組織が形成され、鋼板の表面が溶融したことがわかる。図8(b)は摺動摩擦熱μPVが2×10で成形したものであり、メッキ溶融組織は形成されていない。 FIG. 8 shows a cross-sectional photograph of the processed part. FIG. 8A shows that the sliding frictional heat μPV was formed at 5 × 10 8 , and it can be seen that a plated molten structure was formed and the surface of the steel sheet was melted. FIG. 8B shows a case where the sliding frictional heat μPV is molded at 2 × 10 8 , and no plated molten structure is formed.

図6、図7から、摺動摩擦熱μPVが3×10以上となる摺動速度が0.75m/sec以上で亜鉛メッキ鋼板の表面が溶融し、表面粗さが小さくなると共に、耐食性が向上することがわかる。 6 and 7, the surface of the galvanized steel sheet is melted when the sliding speed at which the sliding friction heat μPV is 3 × 10 8 or more is 0.75 m / sec or more, the surface roughness is reduced, and the corrosion resistance is improved. I understand that

[実施例2]
移動押圧工具の表面粗さを変えて逐次成形を行った。移動押圧工具の表面粗さと成形品の表面粗さとの関係を図9示す。また、移動押圧工具の表面粗さと耐食性との関係を図10に示す。
図9、図10から、移動押圧工具の表面粗さ(Ra)が0.2μ以下であると成形品の表面粗さを1μm以下にできると共に、耐食性が向上することがわかる。
[Example 2]
Sequential molding was performed by changing the surface roughness of the moving pressing tool. FIG. 9 shows the relationship between the surface roughness of the moving pressing tool and the surface roughness of the molded product. FIG. 10 shows the relationship between the surface roughness of the moving pressing tool and the corrosion resistance.
9 and 10, it can be seen that when the surface roughness (Ra) of the moving pressing tool is 0.2 μm or less, the surface roughness of the molded product can be 1 μm or less and the corrosion resistance is improved.

1 逐次成形装置
2 板材
3 支持枠
4 移動押圧工具
5 固定押圧工具
DESCRIPTION OF SYMBOLS 1 Sequential forming apparatus 2 Board | plate material 3 Support frame 4 Moving press tool 5 Fixed press tool

Claims (15)

支持枠で周囲を支持された板材の一方の面側に設けられた移動押圧工具で上記板材を押圧し、上記板材と移動押圧工具を相対移動させ、上記板材を3次元形状に成形する逐次成形方法であって、
上記板材の表面を溶融させて成形することを特徴とする逐次形成方法。
Sequential forming that presses the plate with a moving pressing tool provided on one side of the plate supported around the support frame, moves the plate and the moving pressing tool relative to each other, and forms the plate into a three-dimensional shape A method,
A sequential forming method, wherein the surface of the plate material is melted and molded.
上記板材と上記移動押圧工具との摺動摩擦熱で上記板材の表面を溶融することを特徴とする請求項1に記載の逐次形成方法。   The sequential forming method according to claim 1, wherein the surface of the plate material is melted by sliding frictional heat between the plate material and the moving pressing tool. 上記板材と、加工温度で合金化しない非合金化材料で形成された移動押圧工具を選択使用することを特徴とする請求項1又は2に記載の逐次形成方法。   The sequential forming method according to claim 1 or 2, wherein the plate material and a moving pressing tool formed of a non-alloyed material that is not alloyed at a processing temperature are selectively used. 成形部位が上記板材と加工温度で合金化しない非合金化材料で形成された移動押圧工具を選択使用することを特徴とする請求項1〜3のいずれか1つの項に記載の逐次形成方法。   The sequential forming method according to any one of claims 1 to 3, wherein a moving pressing tool in which a forming part is formed of a non-alloyed material that is not alloyed with the plate material at a processing temperature is selectively used. 上記移動押圧工具の成形部位の表面粗さ(Ra)が、0.2μm以下であることを特徴とする請求項1〜4のいずれか1つの項に記載の逐次形成方法。   5. The sequential forming method according to claim 1, wherein a surface roughness (Ra) of a molding portion of the moving pressing tool is 0.2 μm or less. 上記移動押圧工具が、表面に硬質層を備えるものであることを特徴とする請求項1〜5のいずれか1つの項に記載の逐次形成方法。   The sequential forming method according to any one of claims 1 to 5, wherein the moving pressing tool includes a hard layer on a surface thereof. 上記硬質層が、ダイヤモンド及び/又はダイヤモンドライクカーボンを含むものであることを特徴とする請求項6に記載の逐次形成方法。   The sequential formation method according to claim 6, wherein the hard layer contains diamond and / or diamond-like carbon. 上記板材がメッキ層を有するものであり、
上記メッキ層の融点が加工温度以下であることを特徴とする請求項1〜7のいずれか1つの項に記載の逐次形成方法。
The plate material has a plating layer,
The sequential forming method according to claim 1, wherein the plating layer has a melting point equal to or lower than a processing temperature.
上記板材が、亜鉛メッキされたものであることを特徴とする請求項8に記載の逐次形成方法。   The sequential forming method according to claim 8, wherein the plate material is galvanized. 下記式(1)を満たすことを特徴とする請求項2〜10のいずれか1つの項に記載の逐次形成方法。
摺動摩擦熱(μPV)≧3×10W/m ・・・式(1)
但し、式(1)中、μは摩擦係数、Pは接触部の圧力、Vはすべり速度を表す。
The sequential formation method according to claim 2, wherein the following formula (1) is satisfied.
Sliding friction heat (μPV) ≧ 3 × 10 8 W / m 2 Formula (1)
However, in Formula (1), (micro | micron | mu) represents a friction coefficient, P represents the pressure of a contact part, and V represents a sliding speed.
支持枠で周囲を支持された板材の一方の面側に設けられた移動押圧工具で上記板材を押圧し、上記板材と移動押圧工具を相対移動させ、上記板材の表面を溶融しながら上記板材を3次元形状に成形する逐次成形方法に用いる工具であって、
上記板材を押圧しながら相対移動するものであり、加工温度で上記板材と合金化しない非合金化材料で形成されたものであることを特徴とする逐次成形方法用工具。
The plate material is pressed while moving the plate material and the moving press tool relative to each other by melting the surface of the plate material by pressing the plate material with a moving pressing tool provided on one surface side of the plate material supported around the support frame. A tool used in a sequential forming method for forming a three-dimensional shape,
A tool for a sequential forming method, wherein the tool is formed of a non-alloyed material that is relatively moved while pressing the plate material and does not alloy with the plate material at a processing temperature.
成形部位が上記板材と合金化しない非合金化材料で形成されたものであることを特徴とする請求項11に記載の逐次成形方法用工具。   The tool for the sequential forming method according to claim 11, wherein the forming portion is formed of a non-alloyed material that does not alloy with the plate material. 成形部位の表面粗さ(Ra)が、0.2μm以下であることを特徴とする請求項11又は12に記載の逐次成形方法用工具。   The tool for the sequential forming method according to claim 11 or 12, wherein the surface roughness (Ra) of the forming portion is 0.2 µm or less. 表面に硬質層を備えるものであることを特徴とする請求項11〜13のいずれか1つの項に記載の逐次成形方法用工具。   The tool for the sequential forming method according to any one of claims 11 to 13, wherein a hard layer is provided on the surface. 上記硬質層が、多結晶ダイヤモンドを含むものであることを特徴とする請求項13に記載の逐次成形方法用工具。   The tool for the sequential forming method according to claim 13, wherein the hard layer contains polycrystalline diamond.
JP2015179556A 2015-09-11 2015-09-11 Sequential forming method and tool for the sequential forming method Active JP6493112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015179556A JP6493112B2 (en) 2015-09-11 2015-09-11 Sequential forming method and tool for the sequential forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015179556A JP6493112B2 (en) 2015-09-11 2015-09-11 Sequential forming method and tool for the sequential forming method

Publications (2)

Publication Number Publication Date
JP2017051996A true JP2017051996A (en) 2017-03-16
JP6493112B2 JP6493112B2 (en) 2019-04-03

Family

ID=58320183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179556A Active JP6493112B2 (en) 2015-09-11 2015-09-11 Sequential forming method and tool for the sequential forming method

Country Status (1)

Country Link
JP (1) JP6493112B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176260A (en) * 2017-04-21 2018-11-15 日産自動車株式会社 Sequential forming method
JP2018192487A (en) * 2017-05-15 2018-12-06 日産自動車株式会社 Slide mechanism
CN112222271A (en) * 2020-09-24 2021-01-15 中国航发贵州黎阳航空动力有限公司 Hot stretch forming method of splitter shell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701570B2 (en) * 2016-06-06 2020-05-27 日産自動車株式会社 Sequential molding method and sequential molding apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080359A (en) * 2006-09-27 2008-04-10 Aisin Seiki Co Ltd Incremental forming apparatus
JP2009279607A (en) * 2008-05-21 2009-12-03 Sumitomo Light Metal Ind Ltd Method of forming metallic base material
JP2010214468A (en) * 2009-02-23 2010-09-30 Kumamoto Univ Method and device for forming plate material
KR20110124557A (en) * 2010-05-11 2011-11-17 한국과학기술원 Forming method of metal alloy sheet with low formability using incremental forming process with external heat sources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080359A (en) * 2006-09-27 2008-04-10 Aisin Seiki Co Ltd Incremental forming apparatus
JP2009279607A (en) * 2008-05-21 2009-12-03 Sumitomo Light Metal Ind Ltd Method of forming metallic base material
JP2010214468A (en) * 2009-02-23 2010-09-30 Kumamoto Univ Method and device for forming plate material
KR20110124557A (en) * 2010-05-11 2011-11-17 한국과학기술원 Forming method of metal alloy sheet with low formability using incremental forming process with external heat sources

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176260A (en) * 2017-04-21 2018-11-15 日産自動車株式会社 Sequential forming method
JP2018192487A (en) * 2017-05-15 2018-12-06 日産自動車株式会社 Slide mechanism
JP7033399B2 (en) 2017-05-15 2022-03-10 日産自動車株式会社 Sliding mechanism
CN112222271A (en) * 2020-09-24 2021-01-15 中国航发贵州黎阳航空动力有限公司 Hot stretch forming method of splitter shell
CN112222271B (en) * 2020-09-24 2023-03-24 中国航发贵州黎阳航空动力有限公司 Hot stretch forming method of shunt shell

Also Published As

Publication number Publication date
JP6493112B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6493112B2 (en) Sequential forming method and tool for the sequential forming method
JP6493111B2 (en) Sequential forming method, sequential forming apparatus and sequential forming method tool
US9120139B2 (en) Method of and a device for forming a projection on a metal member and a metal part processed by the method of forming a projection
JP6806984B2 (en) Martensitic stainless steel die for optical parts Elliptical vibration cutting method
EP2700734A1 (en) Press forming die, and method of manufacturing press forming die protection film
JPS6344820B2 (en)
JP3983194B2 (en) Press mold
CN114226734B (en) Copper-containing wear-resistant coating for additive manufacturing titanium alloy surface and preparation process thereof
JP5042871B2 (en) Method for producing metal foil material
JP2007061955A (en) Sliding member and machine tool equipped therewith
JP6701570B2 (en) Sequential molding method and sequential molding apparatus
JPH09253770A (en) Die
CN111411330B (en) Method for manufacturing lithium target assembly
US12051577B2 (en) Sputtering target, method of bonding target material and backing plate, and method of manufacturing sputtering target
US20080250722A1 (en) Electroplated abrasive tools, methods, and molds
WO2021229254A1 (en) Sequential molding tool
WO2013183348A1 (en) Metallic material
JP2819183B2 (en) Solder chip and manufacturing method thereof
JP6677853B1 (en) Sputtering target, method for joining target material and backing plate, and method for manufacturing sputtering target
JP2621010B2 (en) Mold for metal plastic working
JP2000084746A (en) Minute cutting method and minute cutting device
JPS5889370A (en) Ink jet nozzle
JP2017056498A (en) Carbide tool and manufacturing method of the same
JP2017133092A (en) Steel material with low-friction layer
JP5677554B1 (en) Upper or lower eyelid used for rotary press, and method for reforming upper end face of upper or lower eyelid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6493112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151