JP2010214468A - Method and device for forming plate material - Google Patents

Method and device for forming plate material Download PDF

Info

Publication number
JP2010214468A
JP2010214468A JP2010035424A JP2010035424A JP2010214468A JP 2010214468 A JP2010214468 A JP 2010214468A JP 2010035424 A JP2010035424 A JP 2010035424A JP 2010035424 A JP2010035424 A JP 2010035424A JP 2010214468 A JP2010214468 A JP 2010214468A
Authority
JP
Japan
Prior art keywords
tool
plate material
plate
forming
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010035424A
Other languages
Japanese (ja)
Inventor
Masaaki Otsu
雅亮 大津
Kazuki Takashima
和希 高島
Tsukasa Ichikawa
司 市川
Hiroki Matsuo
浩紀 松尾
Hiroyuki Amino
網野  廣之
Masashi Mizoguchi
雅士 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Amino Corp
Original Assignee
Kumamoto University NUC
Amino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC, Amino Corp filed Critical Kumamoto University NUC
Priority to JP2010035424A priority Critical patent/JP2010214468A/en
Publication of JP2010214468A publication Critical patent/JP2010214468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a plate material made of alloy such as a magnesium alloy or metal to be formed at room temperature without using dies. <P>SOLUTION: A method for forming the plate material 1 made of alloy or metal into a three-dimensional shape includes pressing a tool 20 to the plate material 1 and moving the tool 20 relatively in the three-dimensional direction with respect to the plate material 1 while rotating it. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は板材の成形方法及び装置に関する。   The present invention relates to a plate material forming method and apparatus.

マグネシウム合金は構造部材に利用される金属の中で比重が最も小さく最軽量であると同時に強度も大きく、リサイクル性、電磁シールド性、美観等に優れていることから、近年、プラスチック代替や省燃費等の点からモバイル機器筐体や自動車部材への採用が拡大している。   Magnesium alloy has the lowest specific gravity among the metals used for structural members, is the lightest and at the same time has high strength, and is excellent in recyclability, electromagnetic shielding properties, aesthetics, etc. In view of the above, the adoption to mobile device casings and automobile members is expanding.

ところが、マグネシウムは、結晶構造においてアルミや鉄のような立方晶金属と異なり、六方晶金属であるため、マグネシウム合金からなる板材の常温での塑性加工が困難であり、温間圧延や温間プレスにより加工される。しかしながら、このような加工では、多品種少量生産の各品種毎に金型を必要としたり、材料温度を200〜300℃に保持、制御するための大掛かりな装置が必要になる。   However, unlike cubic metals such as aluminum and iron in the crystal structure, magnesium is a hexagonal metal, so it is difficult to perform plastic working at room temperature on a plate made of a magnesium alloy. It is processed by. However, such a process requires a mold for each of a variety of products produced in a variety of types and a large-scale apparatus for maintaining and controlling the material temperature at 200 to 300 ° C.

また、アルミニウム合金は、その比強度の高さ、高い耐腐食性から自動車、航空機、鉄道車両、船舶を中心に多くの分野の製品に多く実用化されている。   In addition, aluminum alloys have been put into practical use in products in many fields, mainly automobiles, aircraft, railway vehicles, and ships, because of their high specific strength and high corrosion resistance.

一方で、市場のニーズは少品種多量生産から多品種少量生産に移行しており、これまでのプレス成形では製品のコストが高くなりすぎてしまうという問題がある。従ってアルミニウム合金の多様なニーズに対応しうる新たな薄板の加工法開発が必要となっている。   On the other hand, there is a problem that the market needs have shifted from small-quantity mass production to multi-variety small-quantity production, so that the cost of the product becomes too high in the conventional press molding. Therefore, it is necessary to develop a new thin plate processing method that can meet various needs of aluminum alloys.

他方、金型を必要とせず、常温で金属の板材を加工する成形方法として、特許文献1に記載の逐次成形方法(インクリメンタルフォーミング)がある。この逐次成形方法は、棒状工具を板材に押し付け、該工具を板材に対し3次元方向に相対的に移動させるものである。   On the other hand, there is a sequential forming method (incremental forming) described in Patent Document 1 as a forming method for processing a metal plate at room temperature without requiring a mold. In this sequential forming method, a bar-shaped tool is pressed against a plate material, and the tool is moved relative to the plate material in a three-dimensional direction.

また、マグネシウム合金板やアルミニウム合金板のための溶接技術として、摩擦撹拌接合法(FSW:Friction Stir Welding)がある。これは円筒状の工具先端に突起物を付けたものを突き合わせた板の接合部に挿入しながら工具を回転させ、工具肩部で発生する摩擦熱によって軟化した材料を撹拌し接合する方法である。   Further, as a welding technique for magnesium alloy plates and aluminum alloy plates, there is a friction stir welding method (FSW: Friction Stir Welding). This is a method in which a tool is rotated while being inserted into a joined portion of a plate having a projection attached to a cylindrical tool tip, and the material softened by frictional heat generated at the tool shoulder is agitated and joined. .

特開2004-291066JP2004-291066

特許文献1に記載の逐次成形方法は、工具により板材を少しずつ伸ばしながら成形するため、従来の圧延やプレスでは困難であった複雑な形状や先端の尖った形状に板材を成形できる。   Since the sequential forming method described in Patent Document 1 is formed while the plate material is stretched little by little with a tool, the plate material can be formed into a complicated shape or a pointed shape that is difficult with conventional rolling or pressing.

しかしながら、従来の逐次成形方法でも、マグネシウム合金等の難加工材からなる板材の常温加工には尚困難がある。   However, even with the conventional sequential forming method, there is still difficulty in room temperature processing of a plate material made of a difficult-to-process material such as a magnesium alloy.

尚、従来の逐次成形方法では、工具が成形油を介して材料に接し、板材との摩擦を極力小さくして該板材を成形している。   In the conventional sequential forming method, the tool comes into contact with the material through the forming oil, and the plate material is formed with the friction with the plate material being minimized.

本発明の課題は、マグネシウム合金、アルミニウム合金、チタン合金等の合金又は金属からなる板材を金型を用いないで常温で成形可能にすることにある。   An object of the present invention is to make it possible to form a plate material made of an alloy such as a magnesium alloy, an aluminum alloy, a titanium alloy, or a metal at room temperature without using a mold.

請求項1に係る発明は、合金又は金属からなる板材を立体形状に成形する板材の成形方法において、工具を板材に押付け、該工具を回転させながら板材に対し3次元方向に相対的に移動させるようにしたものである。   The invention according to claim 1 is a plate material forming method for forming a plate material made of an alloy or metal into a three-dimensional shape, and presses the tool against the plate material and moves the tool relative to the plate material in a three-dimensional direction while rotating the tool. It is what I did.

請求項2に係る発明は、請求項1に係る発明において更に、前記板材がマグネシウム合金からなるようにしたものである。   The invention according to claim 2 is the invention according to claim 1, wherein the plate member is made of a magnesium alloy.

請求項3に係る発明は、請求項1に係る発明において更に、前記板材がアルミニウム合金からなるようにしたものである。   The invention according to claim 3 is the invention according to claim 1, wherein the plate material is made of an aluminum alloy.

請求項4に係る発明は、請求項1に係る発明において更に、前記板材がチタン合金からなるようにしたものである。   The invention according to claim 4 is the invention according to claim 1, wherein the plate material is made of a titanium alloy.

請求項5に係る発明は、請求項1〜4のいずれかに係る発明において更に、前記工具が接する板材に、該工具の回転に起因する摩擦攪拌による塑性流動を引き起こして該板材を成形するようにしたものである。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the plate material is formed by causing plastic flow due to frictional stirring caused by rotation of the tool to the plate material in contact with the tool. It is a thing.

請求項6に係る発明は、請求項5に係る発明において更に、前記工具が成形油を介さずに板材に接するようにしたものである。   The invention according to claim 6 is the invention according to claim 5, in which the tool is in contact with the plate material without using molding oil.

請求項7に係る発明は、請求項5又は6に係る発明において更に、前記工具が接する板材の裏側に、該板材を支える受け具を配置するようにしたものである。   The invention according to claim 7 is the invention according to claim 5 or 6, further comprising a support for supporting the plate material on the back side of the plate material in contact with the tool.

請求項8に係る発明は、請求項7に係る発明において更に、前記受け具が板材の成形モデルからなるようにしたものである。   The invention according to claim 8 is the invention according to claim 7, wherein the receiving member is formed of a molded model of a plate material.

請求項9に係る発明は、請求項1〜8のいずれかに係る発明において更に、前記工具を、板材に押付けて該板材の成形すべき立体形状の等高線に沿う一周に渡って相対的に移動させることを、該板材の高さ方向の各所で繰り返すようにしたものである。   The invention according to a ninth aspect is the invention according to any one of the first to eighth aspects, wherein the tool is pressed against a plate material and relatively moved over a circumference along a three-dimensional contour line to be formed of the plate material. This is repeated at various points in the height direction of the plate material.

請求項10に係る発明は、合金又は金属からなる板材を立体形状に成形する板材の成形装置において、板材の外縁部を支持する板材支持装置と、板材に接する工具と、工具を回転させる工具回転装置と、工具と板材を3次元方向に相対的に移動させる移動装置とを有してなるようにしたものである。   The invention according to claim 10 is a plate material forming apparatus for forming a plate material made of an alloy or metal into a three-dimensional shape, a plate material support device for supporting an outer edge portion of the plate material, a tool in contact with the plate material, and a tool rotation for rotating the tool. The apparatus includes a moving device that relatively moves the tool and the plate material in a three-dimensional direction.

請求項11に係る発明は、請求項10に係る発明において更に、前記板材がマグネシウム合金からなるようにしたものである。   The invention according to claim 11 is the invention according to claim 10, wherein the plate material is made of a magnesium alloy.

請求項12に係る発明は、請求項10に係る発明において更に、前記板材がアルミニウム合金からなるようにしたものである。   The invention according to claim 12 is the invention according to claim 10, wherein the plate material is made of an aluminum alloy.

請求項13に係る発明は、請求項10に係る発明において更に、前記板材がチタン合金からなるようにしたものである。   The invention according to claim 13 is the invention according to claim 10, wherein the plate material is made of a titanium alloy.

請求項14に係る発明は、請求項10〜13のいずれかに係る発明において更に、前記移動装置が、板材を直交2軸方向へ移動する板材移動装置と、工具を上記直交2軸方向のそれぞれと直交する方向へ移動する工具移動装置とを有してなるようにしたものである。   The invention according to claim 14 is the invention according to any one of claims 10 to 13, wherein the moving device further includes a plate material moving device for moving the plate material in the orthogonal biaxial direction, and a tool in each of the orthogonal biaxial directions. And a tool moving device that moves in a direction orthogonal to each other.

請求項15に係る発明は、請求項10〜14のいずれかに係る発明において更に、前記工具が接する板材の裏側に配置されて該板材を支える受け具を有するようにしたものである。   According to a fifteenth aspect of the invention, in the invention according to any one of the tenth to fourteenth aspects of the invention, there is further provided a receiving member that is disposed on the back side of the plate material that is in contact with the tool and supports the plate material.

請求項16に係る発明は、請求項15に係る発明において更に、前記受け具が板材の成形モデルからなるようにしたものである。   The invention according to claim 16 is the invention according to claim 15, wherein the receiver is made of a molded model of a plate material.

(請求項1〜4、10〜14)
(a)工具を板材に押付け、該工具を回転させながら板材に対し3次元方向に相対的に移動させることで、板材の成形性を向上できる。これにより、マグネシウム合金、アルミニウム合金、チタン合金等の合金又は金属からなる板材を金型を用いないで(低コストで多品種少量生産に対応可)、かつ加熱なしで常温成形できる。
(Claims 1-4, 10-14)
(a) The formability of the plate material can be improved by pressing the tool against the plate material and moving the tool relative to the plate material in a three-dimensional direction while rotating the tool. Accordingly, a plate material made of an alloy such as a magnesium alloy, an aluminum alloy, a titanium alloy, or a metal can be formed at room temperature without using a mold (applicable to low-cost, high-mix low-volume production) and without heating.

(請求項5)
(b)工具が接する板材に、該工具の回転に起因する摩擦攪拌による塑性流動を引き起こして該板材を成形する。板材を固相状態で攪拌流動させることにより、板材の成形限界深さを大きくし、その成形性を確実に向上できる。同時に、成形された板材の加工部で金属組織が微細化され、各種機械的特性が向上する。例えば、板材の加工後の結晶粒が小さくなり、結果として、転位が移動しずらくなって高強度になり、結晶粒が回転し易くなって延性も向上し、加工後のスプリングバックが小さくなる。
(Claim 5)
(b) Forming the plate material by causing plastic flow due to friction stirring caused by rotation of the tool on the plate material in contact with the tool. By stirring and flowing the plate material in a solid phase, the forming limit depth of the plate material can be increased, and the moldability can be reliably improved. At the same time, the metal structure is refined at the processed portion of the formed plate material, and various mechanical properties are improved. For example, the crystal grains after processing the plate material become smaller, and as a result, dislocations do not move easily and become high strength, the crystal grains are easy to rotate, the ductility is improved, and the spring back after processing is reduced. .

(請求項6)
(c)工具が成形油を介さずに板材に接するものとすることにより、工具の回転に起因する上述(b)の摩擦攪拌による塑性流動を顕著に引き起こすことができる。
(Claim 6)
(c) By making the tool come into contact with the plate material without using the molding oil, the plastic flow due to the frictional stirring described in (b) due to the rotation of the tool can be remarkably caused.

(請求項7、15)
(d)工具が接する板材の裏側に、該板材を支える受け具を配置するとき、工具の回転に起因する上述(b)の摩擦攪拌による塑性流動を顕著に引き起こすことができる。
(Claims 7 and 15)
(d) When the supporter that supports the plate material is disposed on the back side of the plate material that comes into contact with the tool, the plastic flow due to the frictional stirring described in (b) due to the rotation of the tool can be remarkably caused.

(請求項8、16)
(e)受け具を板材の成形モデルとすることにより、成形モデルを上述(d)の受け具として利用できる。
(Claims 8 and 16)
(e) By using the receiving tool as a forming model of the plate material, the forming model can be used as the receiving tool of the above (d).

(請求項9)
(f)工具を、板材に押付けて該板材の成形すべき立体形状の等高線に沿う一周に渡って相対的に移動させることを、該板材の高さ方向の各所で繰り返す。従って、工具により板材を少しずつ延ばしながら成形するものになり、複雑な形状や先端の尖った形状に板材を成形できる。
(Claim 9)
(f) The tool is pressed against the plate material and relatively moved over one circumference along the contour line of the solid shape to be formed of the plate material, and is repeated at various points in the height direction of the plate material. Accordingly, the plate material is formed while being gradually extended with a tool, and the plate material can be formed into a complicated shape or a pointed shape.

図1は成形装置の一例を破断して示す斜視図である。FIG. 1 is a cutaway perspective view showing an example of a molding apparatus. 図2は成形装置の他の例を破断して示す斜視図である。FIG. 2 is a perspective view showing another example of the molding apparatus in a cutaway manner. 図3(A)は本発明の実験例における実験装置を示す模式図である。FIG. 3A is a schematic diagram showing an experimental apparatus in an experimental example of the present invention. 図3(B)は本発明の実験例における板材の成形パターンを示す模式図である。FIG. 3B is a schematic diagram showing a forming pattern of a plate material in an experimental example of the present invention. 図4は工具回転速度と板材の成形限界深さを示すグラフである。FIG. 4 is a graph showing the tool rotation speed and the forming limit depth of the plate material. 図5は板材の工具押込側の組織を示す顕微鏡写真である。FIG. 5 is a photomicrograph showing the structure on the tool pushing side of the plate material. 図6は板材の工具押込裏側の組織を示す顕微鏡写真である。FIG. 6 is a photomicrograph showing the structure of the back side of the tool pressing of the plate material. 図7は板材の成形後のスプリングバックを示す説明図である。FIG. 7 is an explanatory view showing the spring back after the plate material is formed. 図8(A)は工具移動速度と板材の成形可能な半頂角の関係を示すグラフである。FIG. 8A is a graph showing the relationship between the tool moving speed and the half apex angle at which the plate material can be formed. 図8(B)は工具の中心軸が板材の成形表面に対してなす角度を示す模式図である。FIG. 8B is a schematic diagram showing an angle formed by the central axis of the tool with respect to the forming surface of the plate material. 図9は板材の加工状態と組織を示す説明図である。FIG. 9 is an explanatory view showing the processing state and structure of the plate material. 図10は工具移動速度と板材の半頂角による板材の加工状態の変化を示すグラフである。FIG. 10 is a graph showing changes in the processing state of the plate material depending on the tool moving speed and the half apex angle of the plate material. 図11は工具移動速度と板材の半頂角による板材の工具押込側の組織の変化を示すグラフである。FIG. 11 is a graph showing a change in the structure of the tool pressing side of the plate material depending on the tool moving speed and the half apex angle of the plate material. 図12は工具移動速度と板材の半頂角による板材の工具押込裏側の組織の変化を示すグラフである。FIG. 12 is a graph showing changes in the structure of the back side of the tool pressing of the plate material according to the tool moving speed and the half apex angle of the plate material. 図13(A)は本発明の受け具適用の成形例における成形条件を示す図表である。FIG. 13A is a chart showing molding conditions in a molding example in which the receiving device of the present invention is applied. 図13(B)は本発明の受け具適用の成形例における成形結果を示す説明図である。FIG. 13B is an explanatory view showing a molding result in a molding example in which the receiving device of the present invention is applied. 図14(A)は本発明の凹み空間成形の成形例における成形条件を示す図表である。FIG. 14A is a chart showing molding conditions in the molding example of the concave space molding of the present invention. 図14(B)は本発明の凹み空間成形の成形例における成形結果を示す説明図である。FIG. 14B is an explanatory view showing a molding result in the molding example of the concave space molding of the present invention. 図15は工具移動速度と板材の成形可能な半頂角の関係を示すグラフである。FIG. 15 is a graph showing the relationship between the tool moving speed and the half apex angle at which the plate material can be formed. 図16は工具移動速度と板材の成形可能な半頂角の関係を示すグラフである。FIG. 16 is a graph showing the relationship between the tool moving speed and the half apex angle at which the plate material can be formed. 図17は工具回転速度と板材の成形可能な半頂角の関係を示すグラフである。FIG. 17 is a graph showing the relationship between the tool rotation speed and the half apex angle at which the plate material can be formed. 図18(A)、(B)は成形時の加工温度を示すグラフである。18A and 18B are graphs showing the processing temperature during molding. 図19は加工温度と成形可能な半頂角の関係を示すグラフである。FIG. 19 is a graph showing the relationship between the processing temperature and the moldable half apex angle. 図20(A)〜(D)は板材の加工状態を示す説明図である。20 (A) to 20 (D) are explanatory views showing the processing state of the plate material. 図21(A)〜(C)は板材の加工状態を示す説明図である。FIGS. 21A to 21C are explanatory views showing the processing state of the plate material. 図22は半頂角と相当ひずみ及び伸びの理論上の関係を示すグラフである。FIG. 22 is a graph showing the theoretical relationship between the half apex angle and the equivalent strain and elongation. 図23は加工部の硬さを示すグラフである。FIG. 23 is a graph showing the hardness of the processed part. 図24は加工部の引張強度を示すグラフである。FIG. 24 is a graph showing the tensile strength of the processed part. 図25は工具移動速度と工具回転速度の関係を示すグラフである。FIG. 25 is a graph showing the relationship between the tool movement speed and the tool rotation speed. 図26は工具回転速度と板材の成形限界深さを示すグラフである。FIG. 26 is a graph showing the tool rotation speed and the forming limit depth of the plate material. 図27(A)、(B)は板材の加工状態を示す説明図である。FIGS. 27A and 27B are explanatory views showing the processed state of the plate material. 図28(A)、(B)は成形時の加工温度を示すグラフである。FIGS. 28A and 28B are graphs showing processing temperatures during molding. 図29は工具回転速度と半頂角の関係を示すグラフである。FIG. 29 is a graph showing the relationship between the tool rotation speed and the half apex angle. 図30は半頂角と相当ひずみ及び伸びの理論上の関係を示すグラフである。FIG. 30 is a graph showing the theoretical relationship between the half apex angle and the equivalent strain and elongation. 図31(A)、(B)は板材の加工状態を示す説明図である。FIGS. 31A and 31B are explanatory views showing the processing state of the plate material. 図32(A)、(B)は板材の加工状態を示す説明図である。FIGS. 32A and 32B are explanatory views showing the processing state of the plate material. 図33は工具移動速度と半頂角の関係を示すグラフである。FIG. 33 is a graph showing the relationship between the tool moving speed and the half apex angle. 図34は板材の組織を示す顕微鏡写真である。FIG. 34 is a photomicrograph showing the structure of the plate material. 図35は成形時の加工温度を示すグラフである。FIG. 35 is a graph showing the processing temperature during molding. 図36は加工部の硬さを示すグラフである。FIG. 36 is a graph showing the hardness of the processed part. 図37は加工部の引張強度を示すグラフである。FIG. 37 is a graph showing the tensile strength of the processed part.

図1に示す摩擦撹拌インクリメンタルフォーミング成形装置100は、マグネシウム合金、アルミニウム合金、チタン合金等の合金又は金属からなる板材1を立体形状に成形するものであり、板材1の外縁部を支持する板材支持装置10と、板材1に接する工具20と、工具20を回転させる工具回転装置30と、工具20と板材1を3次元方向に相対的に移動させる移動装置40とを有する。本実施例の板材支持装置10、工具20、工具回転装置30、移動装置40は以下の如くに構成されている。   A friction stir incremental forming apparatus 100 shown in FIG. 1 forms a plate 1 made of an alloy such as a magnesium alloy, an aluminum alloy, a titanium alloy or a metal into a three-dimensional shape, and supports the outer edge of the plate 1. It has the apparatus 10, the tool 20 which touches the board | plate material 1, the tool rotation apparatus 30 which rotates the tool 20, and the moving apparatus 40 which moves the tool 20 and the board | plate material 1 relatively in a three-dimensional direction. The plate material supporting device 10, the tool 20, the tool rotating device 30, and the moving device 40 of the present embodiment are configured as follows.

板材支持装置10は、テーブル11の上面に取着した四角枠状の支持板12と、支持板12の上面との間で板材1の外縁部を挟圧して支持する四角枠状の材料押え板13とからなる。   The plate material support device 10 is a square frame-shaped material presser plate that supports the outer edge portion of the plate material 1 with the square frame-shaped support plate 12 attached to the upper surface of the table 11 being sandwiched between the upper surface of the support plate 12. 13

工具20は、テーブル11の上面に対して鉛直配置された棒状をなし、例えば先端R面を材料押え板13の枠内にある板材1の表面に押付けられる。   The tool 20 has a rod shape arranged vertically with respect to the upper surface of the table 11. For example, the tip R surface is pressed against the surface of the plate 1 in the frame of the material pressing plate 13.

工具回転装置30は、工具20をその中心軸まわりに例えば2000rpm以上、好適には7000rpm以上で高速回転させる。   The tool rotating device 30 rotates the tool 20 around the central axis at a high speed of, for example, 2000 rpm or more, preferably 7000 rpm or more.

移動装置40は、板材1を直交2軸方向(X軸及びY軸方向)へ移動するようにテーブル11を位置制御する板材移動装置41と、工具20を上記直交2軸方向のそれぞれと直交する方向(Z軸方向)へ移動する工具移動装置42とを有する。   The moving device 40 includes a plate material moving device 41 that controls the position of the table 11 so as to move the plate material 1 in the orthogonal biaxial directions (X-axis and Y-axis directions), and the tool 20 orthogonal to each of the orthogonal biaxial directions. And a tool moving device 42 that moves in the direction (Z-axis direction).

摩擦撹拌インクリメンタルフォーミング成形装置100は、工具20が接する板材1の裏側に配置され、工具20のX軸及びY軸方向位置と同一位置で該板材1を支える受け具50を有する。本実施例の受け具50は、テーブル11に支持され、板材1の成形形状の全部又は要部をかたどった成形モデル51からなる。   The friction stir incremental forming apparatus 100 is disposed on the back side of the plate 1 with which the tool 20 is in contact, and has a support 50 that supports the plate 1 at the same position as the X-axis and Y-axis direction positions of the tool 20. The receiving tool 50 of the present embodiment is supported by the table 11 and includes a forming model 51 that has formed all or a main part of the forming shape of the plate 1.

摩擦撹拌インクリメンタルフォーミング成形装置100は、工具20を板材1に押付け、該工具20を回転させながら板材1に対し、成形モデル51に倣う3次元方向に相対的に移動させ、該板材1を成形モデル51に倣う立体形状に成形するものになる。   The friction stir incremental forming apparatus 100 presses the tool 20 against the plate material 1 and moves the tool 20 relative to the plate material 1 in a three-dimensional direction following the forming model 51 while rotating the tool 20, thereby forming the plate material 1 into the forming model. It is formed into a three-dimensional shape following 51.

このとき、摩擦撹拌インクリメンタルフォーミング成形装置100は、工具20を板材1に押付け(又は押込み)、該工具20を回転させながら、該板材1の成形すべき立体形状の等高線に沿う一周に沿って相対的に移動させることを、該板材1の高さ方向の各所で繰り返す。即ち、板材1の成形すべき立体形状のデータに基づき、工具20を板材1に押付け、該工具20を回転させながら、板材移動装置41によりテーブル11及び板材1をX軸及びY軸方向へ移動し、工具20を決定された軌跡に従う等高線に沿う一周に渡って移動させる1サイクルの加工を行なった後、工具20をZ軸方向に一定の送りピッチ分移動して該工具20を次の等高線上に位置付け、次の1サイクルの加工を行なうことを、板材1の上縁から下縁に渡って繰り返す。   At this time, the friction stir incremental forming apparatus 100 presses (or pushes) the tool 20 against the plate material 1 and rotates the tool 20 while rotating the tool 20 relative to one another along the contour line of the solid shape to be formed. Is moved at various points in the height direction of the plate 1. That is, based on the three-dimensional shape data to be formed of the plate material 1, the table 20 and the plate material 1 are moved in the X-axis and Y-axis directions by the plate material moving device 41 while pressing the tool 20 against the plate material 1 and rotating the tool 20. Then, after one cycle of machining is performed in which the tool 20 is moved along a contour line following the determined locus, the tool 20 is moved by a fixed feed pitch in the Z-axis direction, and the tool 20 is moved to the next contour line. Positioning on top and performing the next cycle of machining is repeated from the upper edge to the lower edge of the plate 1.

摩擦撹拌インクリメンタルフォーミング成形装置100は、板材1の成形すべき立体形状が該板材1の中心軸まわりで対称立体形状をなすものであるとき、成形モデル51に代え、図2に示す如く、テーブル11に支持される天板冶具60を用いることができる。天板冶具60は板材1の成形すべき立体形状の中心軸上の頂部輪郭に合致する平面又は凸面又は凹面を備え、工具20が接する板材1の裏側に配置され、該板材1の中心軸上で該板材1を支える。摩擦撹拌インクリメンタルフォーミング成形装置100は、板材1の中心軸まわりで、工具20を板材1に押付け、該工具20を回転させながら板材1に対し、3次元方向に相対的に移動させ、該板材1を中心軸まわりで対称をなす立体形状に成形するものになる。この場合にも、図1の摩擦撹拌インクリメンタルフォーミング成形装置100と同様に、摩擦撹拌インクリメンタルフォーミング成形装置100は、工具20を板材1に押付け(又は押込み)、該工具20を回転させながら、該板材1の成形すべき立体形状の等高線に沿う一周に渡って相対的に移動させることを、該板材1の高さ方向の各所で繰り返す。   The friction stir incremental forming apparatus 100 uses a table 11 as shown in FIG. 2 instead of the forming model 51 when the three-dimensional shape to be formed of the plate 1 is a symmetrical three-dimensional shape around the central axis of the plate 1. The top plate jig 60 supported by the can be used. The top plate jig 60 has a flat surface, a convex surface, or a concave surface that matches the top contour on the central axis of the three-dimensional shape to be molded of the plate material 1 and is disposed on the back side of the plate material 1 with which the tool 20 is in contact, and on the central axis of the plate material 1 The plate 1 is supported by The friction stir incremental forming apparatus 100 presses the tool 20 against the plate 1 around the central axis of the plate 1 and moves the tool 20 relative to the plate 1 in a three-dimensional direction while rotating the tool 20. Is formed into a three-dimensional shape symmetric about the central axis. Also in this case, like the friction stir incremental forming apparatus 100 of FIG. 1, the friction stir incremental forming apparatus 100 presses (or pushes) the tool 20 against the plate 1 and rotates the tool 20 while rotating the tool 20. The relative movement over one circumference along the contour line of the three-dimensional shape to be molded is repeated at various points in the height direction of the plate 1.

尚、摩擦撹拌インクリメンタルフォーミング成形装置100は、板材1の成形すべき立体形状が該板材1の中心軸まわりで対称立体形状をなすものであり、かつ工具20が材料押え板13の枠内にある板材1を鉛直下方側に凹状成形するときには、該板材1の裏面側に成形モデル51も天板治具60も設けない凹み空間成形とすることができる(例えば図14(A)、図14(B))。   In the friction stir incremental forming apparatus 100, the three-dimensional shape of the plate 1 to be formed is a symmetrical three-dimensional shape around the central axis of the plate 1, and the tool 20 is within the frame of the material pressing plate 13. When the plate material 1 is formed in a concave shape in the vertically lower side, it is possible to form a concave space in which neither the forming model 51 nor the top plate jig 60 is provided on the back surface side of the plate material 1 (for example, FIG. 14 (A), FIG. 14 ( B)).

しかるに、摩擦撹拌インクリメンタルフォーミング成形装置100にあっては、板材1がマグネシウム合金、アルミニウム合金、チタン合金等の合金又は金属からなるものであり、工具20が接する板材1に、工具回転装置30による工具20の前述の高速回転に起因する摩擦攪拌に基づく塑性流動を引き起こして該板材1を成形するものになる。   However, in the friction stir incremental forming apparatus 100, the plate 1 is made of an alloy or metal such as magnesium alloy, aluminum alloy, titanium alloy, etc., and the tool 1 is rotated by the tool rotating device 30 on the plate 1 in contact with the tool 20. The plate material 1 is formed by causing plastic flow based on friction stirring resulting from the above-described high-speed rotation of 20.

工具20が成形油(潤滑油)を介さずに板材1に接して上述の如くに回転するとき、工具20の回転に起因する上述の摩擦攪拌を確実に板材1に引き起こすことができる。   When the tool 20 is in contact with the plate 1 without rotating through the molding oil (lubricating oil) and rotates as described above, the friction stirrer caused by the rotation of the tool 20 can be surely caused in the plate 1.

従って、摩擦撹拌インクリメンタルフォーミング成形装置100によれば以下の作用効果を奏する。尚、以下に記載の効果は、後述する実験結果により裏付けられる。   Therefore, according to the friction stir incremental forming apparatus 100, the following effects can be obtained. The effects described below are supported by the experimental results described later.

(a)工具20を板材1に押付け、該工具20を回転させながら板材1に対し3次元方向に相対的に移動させることで、板材1の成形性を向上できる。これにより、マグネシウム合金、アルミニウム合金、チタン合金等の合金又は金属からなる板材1を金型を用いないで(低コストで多品種少量生産に対応可)、かつ加熱なしで常温成形できる。   (a) The formability of the plate 1 can be improved by pressing the tool 20 against the plate 1 and moving the tool 20 relative to the plate 1 in a three-dimensional direction while rotating the tool 20. Thus, the plate material 1 made of an alloy such as a magnesium alloy, an aluminum alloy, a titanium alloy, or a metal can be formed at room temperature without using a mold (corresponding to low-cost, high-mix low-volume production) and without heating.

(b)工具20が接する板材1に、該工具20の回転に起因する摩擦攪拌による塑性流動を引き起こして該板材1を成形する。板材1を固相状態で攪拌流動させることにより、板材1の成形限界深さを大きくし、その成形性を確実に向上できる。同時に、成形された板材1の加工部で金属組織が微細化され、各種機械的特性が向上する。例えば、板材1の加工後の結晶粒が小さくなり、結果として、転位が移動しずらくなって高強度になり、結晶粒が回転し易くなって延性も向上し、加工後のスプリングバックが小さくなる。   (b) The plate material 1 is formed by causing plastic flow due to frictional stirring caused by the rotation of the tool 20 to the plate material 1 in contact with the tool 20. By stirring and flowing the plate material 1 in a solid phase, the forming limit depth of the plate material 1 can be increased, and the moldability can be reliably improved. At the same time, the metal structure is refined at the processed portion of the molded plate 1 and various mechanical properties are improved. For example, the crystal grains after processing of the plate 1 are reduced, and as a result, dislocations are difficult to move and the strength is increased, the crystal grains are easy to rotate, the ductility is improved, and the spring back after processing is reduced. Become.

(c)工具20が成形油を介さずに板材1に接するものとすることにより、工具20の回転に起因する上述(b)の摩擦攪拌による塑性流動を顕著に引き起こすことができる。   (c) By making the tool 20 contact the plate member 1 without using molding oil, the plastic flow due to the frictional stirring described in (b) due to the rotation of the tool 20 can be remarkably caused.

(d)工具20が接する板材1の裏側に、該板材1を支える受け具50を配置するとき、工具20の回転に起因する上述(b)の摩擦攪拌による塑性流動を顕著に引き起こすことができる。   (d) When the receiving member 50 that supports the plate material 1 is disposed on the back side of the plate material 1 with which the tool 20 is in contact, the plastic flow due to the frictional stirring described in (b) above due to the rotation of the tool 20 can be remarkably caused. .

(e)受け具50を板材1の成形モデル51とすることにより、成形モデル51を上述(d)の受け具50として利用できる。   (e) By using the receiving tool 50 as the forming model 51 of the plate 1, the forming model 51 can be used as the receiving tool 50 of the above (d).

(f)工具20を、板材1に押付けて該板材1の成形すべき立体形状の等高線に沿う一周に渡って相対的に移動させることを、該板材1の高さ方向の各所で繰り返す。従って、工具20により板材1を少しずつ延ばしながら成形するものになり、複雑な形状や先端の尖った形状に板材1を成形できる。   (f) The tool 20 is pressed against the plate material 1 and relatively moved over one circumference along the contour line of the three-dimensional shape to be formed of the plate material 1 at various points in the height direction of the plate material 1. Accordingly, the plate material 1 is formed while being gradually extended by the tool 20, and the plate material 1 can be formed into a complicated shape or a pointed shape.

以下、本発明の実験結果について説明する。本実験は、(I)マグネシウム合金、(II)アルミニウム合金のそれぞれについて、図3(A)、(B)に示す如く、供試材である板材1の外縁部を、支持板12と材料押え板13で挟圧して支持し、棒状工具20の先端R面を板材1に押付け、該工具20を高速回転(工具回転速度ω)させながら、該工具20を所望成形パターンの軌跡Kに従う等高線に沿う一周に渡ってX軸及びY軸方向に移動(工具移動速度v)する1サイクルの加工を行ない、この1サイクルの加工後に工具20をZ軸方向に一定の送りピッチpだけ移動して該工具20を次の等高線上に位置付け、次の1サイクルの加工を行なうことを繰り返し、加工された板材1の成形形状、光学顕微鏡写真を採取し、成形性を調査したものである。   Hereinafter, experimental results of the present invention will be described. In this experiment, for each of (I) magnesium alloy and (II) aluminum alloy, as shown in FIGS. 3 (A) and 3 (B), the outer edge portion of the plate material 1 as the test material is fixed to the support plate 12 and the material presser. The tool 13 is supported by pressing with the plate 13, the tip R surface of the rod-shaped tool 20 is pressed against the plate material 1, and the tool 20 is rotated at a high speed (tool rotation speed ω), while the tool 20 is contoured according to the locus K of the desired forming pattern. One cycle of machining (moving tool speed v) in the X axis and Y axis directions is performed over the entire circumference, and after this one cycle of machining, the tool 20 is moved by a constant feed pitch p in the Z axis direction. The tool 20 is positioned on the next contour line, and the next one cycle of processing is repeated. The molded shape and optical micrograph of the processed plate material 1 are collected, and the moldability is investigated.

本実験では、NC工作機を使用し、NC工作機に取付けて固定した工具20を用いた。工具20はSKH51(高速度工具鋼)からなり、直径6mm、長さ70mm、先端R3mmの半球状面を備えるものにした。工具20の先端を半球状面にすることで、薄板の板材1を多様な形状に成形できる。工具20の回転や移動は、NC工作機に接続したコンピュータに入力するNCコードによって制御した。   In this experiment, an NC machine tool was used, and the tool 20 attached and fixed to the NC machine tool was used. The tool 20 was made of SKH51 (high speed tool steel) and had a hemispherical surface with a diameter of 6 mm, a length of 70 mm, and a tip R3 mm. By making the tip of the tool 20 a hemispherical surface, the thin plate 1 can be formed into various shapes. The rotation and movement of the tool 20 were controlled by an NC code input to a computer connected to the NC machine tool.

本実験では、100mm四方の平板状板材1を、底面が一辺80mmである正方形の正四角錐台の形状に成形した。成形は工具回転速度ω[rpm]と工具移動速度v[mm/min]を変化させ、成形可能な最小の半頂角θを求めることにより成形性を調査した。コンピュータで入力したNCコードに従って工具20を移動させた。初めに正四角錐台の底面部分から成形を開始し、工具20を0.5mm押込んだ後に反時計まわりに1周させた。工具が1周する間にZ方向に0.5mm押込み、設定した半頂角によって任意の長さだけ内側に移動させた。例えば半頂角45度で成形した場合、Z方向の押込み長さである0.5mmと同じだけ内側に移動させた。その後、経路(1)よりも一回り小さい内側の経路(2)を工具が移動し、これを繰り返すことにより最終的に正四角錐台の高さが20mmになるまで成形した。成形中に試料に亀裂が生じた場合は成形を中断し、破断する直前の経路における押込み長さを成形限界高さ(破断することなく成形できる限界の高さ)とした。   In this experiment, a 100 mm square flat plate 1 was formed in the shape of a square regular square pyramid with a bottom of 80 mm on one side. Forming was investigated by changing the tool rotation speed ω [rpm] and the tool moving speed v [mm / min] and obtaining the minimum half apex angle θ that can be formed. The tool 20 was moved according to the NC code input by the computer. First, molding was started from the bottom surface of the regular quadrangular pyramid, and the tool 20 was pushed 0.5 mm, and then turned once counterclockwise. The tool was pushed 0.5 mm in the Z direction during one revolution of the tool and moved inward by an arbitrary length according to the set half apex angle. For example, in the case of molding with a half apex angle of 45 degrees, it was moved inward by the same length as 0.5 mm, which is the pushing length in the Z direction. Thereafter, the tool moved along the inner path (2) that was slightly smaller than the path (1), and this was repeated until the height of the regular quadrangular pyramid reached 20 mm. When cracks occurred in the sample during molding, the molding was interrupted, and the indentation length in the path immediately before fracture was defined as the molding limit height (the limit height at which molding can be performed without fracture).

[I]マグネシウム合金
供試材には、展伸用マグネシウム合金である厚さ0.5、0.7mmのAZ31焼鈍材、厚さ0.5mmのAZ61焼鈍材、そして厚さ0.8mmのAZ80押出材を用い、100mm四方の板材を用いた。表1に供試材の化学組成を、表2に供試材の物理的性質をそれぞれ示す。
[I] Magnesium alloy For the test material, 0.5 and 0.7 mm thick AZ31 annealed material, 0.5 mm thick AZ61 annealed material, and 0.8 mm thick AZ80 extruded material are used as test materials. A 100 mm square plate was used. Table 1 shows the chemical composition of the test material, and Table 2 shows the physical properties of the test material.

(A)工具回転速度ωと板材1の成形限界高さの関係(図4)
図4は、板厚t=0.5mmのAZ31について、工具移動速度v=3000mm/min、半頂角θ=45度としたとき、工具回転速度ωと板材1の成形限界高さの関係を示すものである。
(A) Relationship between tool rotation speed ω and forming limit height of plate 1 (Fig. 4)
FIG. 4 shows the relationship between the tool rotational speed ω and the forming limit height of the plate 1 when the tool moving speed v = 3000 mm / min and the half apex angle θ = 45 degrees for AZ31 having a thickness t = 0.5 mm. Is.

図4によれば、工具20の工具回転速度ωを7000rpm以上にするときに板材1の成形限界高さを急激に向上でき、8000rpm以上にするときに板材1の成形限界高さを大幅に向上できることが認められる。   According to FIG. 4, when the tool rotation speed ω of the tool 20 is set to 7000 rpm or more, the forming limit height of the plate material 1 can be drastically improved, and when the tool rotation speed ω is set to 8000 rpm or more, the forming limit height of the plate material 1 is greatly improved. It is recognized that it can be done.

図4より、室温下でのマグネシウム合金板の成形において,従来のインクリメンタルフォーミング(ω=0rpm)よりも本発明成形法を用いることで成形性が向上し、工具を回転させるほど成形限界高さは向上した。これは、成形時に工具をある程度回転させることで材料が摩擦熱によって軟化し、成形限界高さが向上したと考えられる。しかし、工具回転速度と入熱量は比例関係にあることから、単純に工具回転速度と成形限界高さについても比例すると思われたが、工具回転速度が8000rpm未満では工具回転速度を増加させてもあまり成形限界高さは変わらず、工具回転速度が8000rpm以上で急激に成形限界高さが向上し、本実験装置の成形限界高さにまで達している。このことから摩擦撹拌による塑性流動が発生するための工具回転速度に閾値があると思われ、また単純に工具との摩擦熱によるものではなく、撹拌によって塑性流動を起こすことで成形性が向上したのではないかと考えられる。   As shown in FIG. 4, in forming a magnesium alloy plate at room temperature, the forming method is improved by using the forming method of the present invention rather than the conventional incremental forming (ω = 0 rpm), and the forming limit height increases as the tool is rotated. Improved. This is probably because the material was softened by frictional heat by rotating the tool to some extent during molding, and the molding limit height was improved. However, since the tool rotation speed and the amount of heat input are in a proportional relationship, it seemed that the tool rotation speed and the forming limit height were simply proportional, but if the tool rotation speed was less than 8000 rpm, the tool rotation speed could be increased. The forming limit height does not change much, and the forming limit height is rapidly improved when the tool rotation speed is 8000 rpm or more, and the forming limit height of the experimental apparatus is reached. From this, it seems that there is a threshold in the tool rotation speed for plastic flow due to friction stirring, and it is not simply due to frictional heat with the tool, but formability is improved by causing plastic flow by stirring. It is thought that.

(B)板材1の組織の変化(図5、図6)
図5、図6は、板厚t=0.5mmのAZ31について、工具移動速度v=3000mm/min、半頂角θ=45度とし、工具20の工具回転速度ωを0rpm、7000rpm、8000rpmとするとき、工具20により加工された板材1の工具押込側の組織(図5)、該板材1の工具押込裏側の組織(図6)を示すものである。
(B) Changes in the structure of the plate 1 (FIGS. 5 and 6)
5 and 6, for AZ31 having a plate thickness t = 0.5 mm, the tool moving speed v = 3000 mm / min, the half apex angle θ = 45 degrees, and the tool rotation speed ω of the tool 20 is 0 rpm, 7000 rpm, and 8000 rpm. FIG. 5 shows a structure on the tool pressing side of the plate 1 processed by the tool 20 (FIG. 5) and a structure on the back side of the tool pressing of the plate 1 (FIG. 6).

図5、図6によれば、加工により板材1の結晶粒が工具回転速度ωを高速化させるほど微細化すること、板材1の工具押込側の方がより微細化することが認められる。加工前の板材1の結晶粒の大きさは表層で圧延時の10μm以下、表層以外では10μm程度であった。加工後の板材1の結晶粒の大きさは表層では確認困難なほどの微細粒、表層から100μmまでは1μm以下であり、この微細な結晶粒は摩擦攪拌により生じたものと認められる。また、板材1の表層から100μmより下でも微細な結晶粒の混在がみられることから、板材1の押込裏側にまで摩擦攪拌された組織が混在していると考えられる。   According to FIGS. 5 and 6, it is recognized that the crystal grains of the plate material 1 become finer as the tool rotation speed ω is increased by processing, and that the tool push side of the plate material 1 becomes finer. The size of the crystal grains of the plate 1 before processing was about 10 μm or less at the time of rolling in the surface layer, and about 10 μm in other than the surface layer. The size of the crystal grains of the plate material 1 after processing is so fine that it is difficult to confirm in the surface layer, and it is 1 μm or less from the surface layer to 100 μm, and it is recognized that these fine crystal grains are generated by friction stirring. Further, since fine crystal grains are mixed even from the surface layer of the plate material 1 below 100 μm, it is considered that the structure subjected to frictional stirring is mixed to the back side of the plate material 1.

(C)板材1の成形後のスプリングバック(図7)
図7は、板厚t=0.5mmのAZ31について、工具移動速度v=3000mm/min、半頂角θ=45度とし、工具20の工具回転速度ωを0rpm、7000rpm、8000rpmとするとき、工具20により加工された板材1の成形後のスプリングバックの状態を示すものである。
(C) Spring back after forming plate 1 (Fig. 7)
FIG. 7 shows a case where the tool movement speed v = 3000 mm / min, the half apex angle θ = 45 degrees, and the tool rotation speed ω of the tool 20 is 0 rpm, 7000 rpm, and 8000 rpm for AZ31 having a thickness t = 0.5 mm. 20 shows a state of the spring back after the plate material 1 processed by 20 is formed.

図7によれば、工具20の工具回転速度ωを高速化して板材1を摩擦攪拌することにより、板材1の成形後のスプリングバックを抑制できることが認められる。   According to FIG. 7, it is recognized that the spring back after the plate 1 is formed can be suppressed by increasing the tool rotation speed ω of the tool 20 and frictionally stirring the plate 1.

(D)工具移動速度vと板材1の成形可能な半頂角θの関係(図8〜図12、図15、図16)
図8(A)は、板厚t=0.5mmのAZ31について、工具20の工具回転速度ωを10000rpmとするとき、工具20の工具移動速度vと板材1の成形可能な半頂角θ(図8(B))の関係を示すものである。
(D) Relationship between the tool moving speed v and the half apex angle θ in which the plate 1 can be formed (FIGS. 8 to 12, FIG. 15 and FIG. 16)
FIG. 8A shows the tool moving speed v of the tool 20 and the half apex angle θ (see FIG. 8) when the tool rotational speed ω of the tool 20 is 10,000 rpm for AZ31 having a plate thickness t = 0.5 mm. 8 (B)) is shown.

図8(A)によれば、工具移動速度を遅くするにつれて、より小さい半頂角を成形することが可能であり、移動速度v=1000〜2000mm/minにおいて、成形可能な最小半頂角θmin=25度になる。θ≧55度であれば全ての条件で成形できることが認められる。θが小さい範囲では、工具移動速度vを遅くすることで成形可能になる。各半頂角θにおいて適切な工具移動速度vを選択する必要があることが認められる。   According to FIG. 8A, it is possible to form a smaller half apex angle as the tool moving speed is reduced, and the minimum half apex angle θmin that can be formed at the moving speed v = 1000 to 2000 mm / min. = 25 degrees. It can be seen that if θ ≧ 55 degrees, molding can be performed under all conditions. In a range where θ is small, forming is possible by slowing down the tool moving speed v. It will be appreciated that it is necessary to select an appropriate tool moving speed v at each half apex angle θ.

図9は、板厚t=0.5mmのAZ31について、工具20の工具回転速度ωを10000rpmとし、工具20の工具移動速度vを1500mm/min、θを25度とするときの板材1の成形状態を示すものであり、工具20に材料が焼付くことがなく、加工面の状態も良かった。また、板材1の工具押込側、工具押込裏側とも、結晶粒が微細化することが認められる。   FIG. 9 shows a state of forming the plate 1 for AZ31 having a thickness t = 0.5 mm when the tool rotation speed ω of the tool 20 is 10,000 rpm, the tool moving speed v of the tool 20 is 1500 mm / min, and θ is 25 degrees. The material was not seized on the tool 20 and the state of the processed surface was good. Further, it is recognized that the crystal grains are refined on both the tool pressing side and the tool pressing back side of the plate 1.

図10は図8(A)に対応する工具移動速度vと半頂角θの成形条件範囲で、加工された板材1の形状を示したものである。   FIG. 10 shows the shape of the processed plate 1 in the forming condition range of the tool moving speed v and the half apex angle θ corresponding to FIG.

図11、図12は図8(A)に対応する工具移動速度vと半頂角θの成形条件範囲で、加工された板材1の工具押込側の組織(図11)、該板材1の工具押込裏側の組織(図12)を示すものである。成形可能な条件下では、板材1の結晶粒が微細化することが認められる。   FIGS. 11 and 12 show the tool pressing side structure of the processed plate 1 (FIG. 11) and the tool of the plate 1 in the molding condition range of the tool moving speed v and the half apex angle θ corresponding to FIG. The structure | tissue (FIG. 12) of an indentation back side is shown. It is recognized that the crystal grains of the plate 1 are refined under conditions where molding is possible.

図10〜図12において、まず工具移動速度vに着目してみると、v=500mm/minで成形した試料は、あまりに移動速度が遅いため、撹拌過多により上手く成形ができなかった。組織写真を見てみると、工具押込側の表面が非常に粗くなっていることがわかり、移動速度v=3000mm/minの試料と比較しても、工具押込側及び工具押込裏側ともに組織は微細化していなかった。また、成形後の工具をみてみると、撹拌過多による特徴的な工具の焼付きがみられた。このため、板材1も精度よく成形することができなかったと思われる。一方、移動速度v=6000mm/minで成形した板材1は、移動速度が速すぎたため、撹拌不足により途中で破断してしまった。結晶粒の微細化も工具押込側の極わずかな領域に限って確認され、このことからも撹拌不足であることがわかる。   In FIGS. 10 to 12, when attention is paid to the tool moving speed v, the sample molded at v = 500 mm / min was too slow to move, so that it could not be formed well due to excessive stirring. Looking at the structure photograph, it can be seen that the surface on the tool indentation side is very rough, and the structure on both the tool indentation side and the tool indentation back side is fine compared to the sample with a moving speed of v = 3000 mm / min. It was not converted. In addition, looking at the tool after molding, characteristic tool seizure due to excessive stirring was observed. For this reason, it seems that the board | plate material 1 was also not able to be shape | molded accurately. On the other hand, the plate 1 molded at the moving speed v = 6000 mm / min was broken in the middle due to insufficient stirring because the moving speed was too fast. The refinement of crystal grains was also confirmed only in a very small region on the tool pushing side, which also indicates that stirring is insufficient.

次に半頂角に着目してみると、半頂角θ=60度で成形した板材1は、実験装置の成形限界高さに至るまで成形が可能であった。しかし半頂角が大きいことから、相対的に工具が通過する間隔が広くなり結果的に粗い成形となってしまった。このため大きい半頂角で成形する場合は、それに伴って工具20の押込量を細かく刻んで成形しなければならない。加工部の組織も、移動速度v=3000mm/minほどではないが、工具押込裏側の一部を除いて組織の微細化が認められた。また、半頂角θ=30度で成形した板材1をみてみると、工具20の焼付きがみられたことから、これが原因となり途中で破断してしまったと思われる。しかし加工部の組織をみてみると、結晶粒は微細化しており、十分撹拌されていることがわかる。このことから、工具20の焼付きを防ぐために、成形中の工具の交換やクリーンアップ、工具押込量の調整などを行なう必要があると考える。特に半頂角θを変えて成形する場合、工具押込量の選定が重要になってくると思われる。   Next, when paying attention to the half apex angle, the plate material 1 molded with the half apex angle θ = 60 degrees could be formed up to the forming limit height of the experimental apparatus. However, since the half apex angle is large, the interval through which the tool passes is relatively wide, resulting in rough forming. For this reason, when forming with a large half apex angle, the pressing amount of the tool 20 must be finely cut accordingly. Although the structure of the processed part was not as fast as the moving speed v = 3000 mm / min, the structure was refined except for a part on the back side of the tool press. Further, when looking at the plate 1 formed with a half apex angle θ = 30 degrees, seizure of the tool 20 was observed. However, looking at the structure of the processed part, it can be seen that the crystal grains are finer and sufficiently stirred. From this, in order to prevent seizure of the tool 20, it is considered necessary to perform exchange and cleanup of the tool during molding, adjustment of the tool pressing amount, and the like. In particular, when forming by changing the half apex angle θ, the selection of the tool push-in amount seems to be important.

同様にAZ61(板厚t=0.5mm)、AZ80(板厚t=0.8mm)板についても成形可能な半頂角θの範囲を調査した結果を図15、図16に示す。成形可能な最小の半頂角は、AZ61で最小の半頂角θmin=30度まで、AZ80で最小の半頂角θmin=40度まで成形が可能であった。 Similarly, FIG. 15 and FIG. 16 show the results of examining the range of the half apex angle θ that can be formed for AZ61 (plate thickness t = 0.5 mm) and AZ80 (plate thickness t = 0.8 mm) plates. The minimum half apex angle that can be molded was AZ61, and the minimum half apex angle θ min was 30 degrees, and AZ80 was the minimum half apex angle θ min = 40 degrees.

(E)工具回転速度ωと板材1の成形可能な半頂角θの関係(図17)
図17に板厚t=0.5mmのAZ31板を用いて、工具移動速度をv=1500mm/minに固定し、工具回転速度を変化させて成形可能な半頂角θの範囲を調査した結果を示す。工具回転速度を増加させるにつれて、より小さい半頂角を成形することが可能であり、工具回転速度ω=10000rpmにおいて、最小の半頂角θmin=25度まで成形が可能であった。このことから、より小さい半頂角を成形するためには、より多くの入熱が必要であり、入熱量の増加とともに材料の温度が上昇し、材料の流動応力が低下することで塑性流動し易くなるものと考えられる。
(E) Relationship between the tool rotation speed ω and the half apex angle θ of the plate 1 that can be formed (FIG. 17)
Fig. 17 shows the result of investigating the range of the half apex angle θ that can be formed by using a AZ31 plate with a thickness t = 0.5 mm, fixing the tool movement speed to v = 1500 mm / min, and changing the tool rotation speed. Show. As the tool rotation speed was increased, a smaller half apex angle could be formed, and at the tool rotation speed ω = 10000 rpm, formation was possible up to the minimum half apex angle θ min = 25 degrees. For this reason, more heat input is required to form a smaller half apex angle, and as the heat input increases, the temperature of the material increases and the flow stress of the material decreases, causing plastic flow. It is thought that it becomes easy.

(F)成形時の加工温度(図18)
図18にAZ31板(板厚t=0.5mm)を成形した時の加工部の温度変化を示す、図18(A)、(B)ともに工具回転速度ω=10000rpmで成形したときのものであり、図18(A)が工具移動速度v=3000mm/min、半頂角θ=45度で成形したとき、図18(B)が工具移動速度v=1500mm/min、半頂角θ=30度で成形したときの温度変化を示している。両条件とも最高で215℃、343℃まで達しており、再結晶温度以上まで上昇していた。更に、加工部は撹拌によって大きなひずみが与えられており、動的再結晶が起こっていると思われる。
(F) Processing temperature during molding (Figure 18)
FIG. 18 shows the temperature change of the processed part when an AZ31 plate (plate thickness t = 0.5 mm) is formed. FIGS. 18 (A) and 18 (B) are both formed when the tool rotational speed ω = 10000 rpm. 18A shows a tool moving speed v = 3000 mm / min and a half apex angle θ = 45 degrees, and FIG. 18B shows a tool moving speed v = 1500 mm / min and a half apex angle θ = 30 degrees. It shows the temperature change when molding with. Under both conditions, the maximum reached 215 ° C and 343 ° C, and increased to above the recrystallization temperature. Furthermore, the processed part is greatly strained by stirring, and dynamic recrystallization seems to have occurred.

(G)温間・熱間成形との比較(図19、図20)
図19にAZ31板(板厚t=0.5mm)を用いて、温間・熱間でインクリメンタルフォーミングを行ったときの加工温度と成形可能な半頂角の関係を示す。温間・熱間でのインクリメンタルフォーミングは、本発明成形法と比較するために、成形可能な最小の半頂角θmin=25度のときの成形条件である工具移動速度v=1500mm/minとし、インクリメンタルフォーミングは工具回転速度ω=0rpmで行なった。図18をみてみると、AZ31合金板の再結晶温度である180℃以上において、成形可能な最小の半頂角θmin=35度まで成形が可能であった。このことから、特に成形する板やブランクホルダ、ダイスを予熱する必要のない、本発明成形法が非常に有効な方法であることがわかった。また、温間・熱間でのインクリメンタルフォーミングにおいて、再結晶温度以上に加熱することで急激に成形性が向上することからも、マグネシウムが高温域では成形性が良いことがわかる。AZ31の深絞り、張出成形においても高温域で成形性が向上することが既に報告されている。
(G) Comparison with warm and hot forming (Figs. 19 and 20)
FIG. 19 shows the relationship between the processing temperature and the moldable half apex angle when incremental forming is performed warm and hot using an AZ31 plate (plate thickness t = 0.5 mm). In order to compare the warm and hot incremental forming with the molding method of the present invention, the tool moving speed v = 1500 mm / min which is the molding condition when the minimum half apex angle θ min = 25 degrees can be formed. Incremental forming was performed at a tool rotation speed ω = 0 rpm. As can be seen from FIG. 18, at the recrystallization temperature of 180 ° C. or higher, which is the recrystallization temperature of the AZ31 alloy plate, molding was possible up to the minimum half vertex angle θ min = 35 degrees. From this, it was found that the molding method of the present invention is a very effective method that does not require preheating of the plate, blank holder, or die to be molded. In addition, in the warm and hot incremental forming, the moldability is rapidly improved by heating to a temperature higher than the recrystallization temperature, which indicates that the moldability of magnesium is good at high temperatures. It has already been reported that the formability of AZ31 is improved at high temperatures even in deep drawing and stretch forming.

図19に温間・熱間でインクリメンタルフォーミングによって成形した試料の外観写真を示す。また、比較として本発明成形法によって成形した試料の外観写真を併せて示す。加工温度T=180度で成形した図20(B)、(C)をみると、半頂角θ=45度で成形した図20(B)については上手く成形できているが、成形可能な最小の半頂角θmin=35度で成形した図20(C)については、本発明成形法によって成形が可能である最小の半頂角θ=25度で成形した図20(A)と比較して、加工部の肌荒れが多くみられた。特に成形の終盤においては、大きな音をたてながら加工していたため、この段階での肌荒れが顕著である。半頂角θmin=35度が得られたものの、厳しい成形であったといえる。最後に加工温度T=250℃、半頂角θ=30度で成形した図20(D)をみると、成形途中で破断してしまった。同じ半頂角で加工温度T=180℃で成形した場合も同様に成形途中で破断に至ってしまった。 FIG. 19 shows a photograph of the appearance of a sample molded by incremental forming between warm and hot. Moreover, the external appearance photograph of the sample shape | molded by this invention shaping | molding method is also shown as a comparison. Looking at FIGS. 20B and 20C formed at a processing temperature T = 180 degrees, FIG. 20B formed at a half apex angle θ = 45 degrees is successfully formed. 20C formed with a half apex angle θ min = 35 degrees in comparison with FIG. 20A formed with the minimum half apex angle θ = 25 degrees that can be formed by the forming method of the present invention. In addition, many rough skins were observed in the processed parts. In particular, in the final stage of molding, since the processing was performed while making a loud sound, rough skin at this stage is remarkable. Although a half apex angle θ min = 35 degrees was obtained, it can be said that the molding was severe. Finally, looking at FIG. 20D, which was molded at a processing temperature T = 250 ° C. and a half apex angle θ = 30 degrees, it broke during the molding. In the case of molding at the processing temperature T = 180 ° C. with the same half apex angle, breakage occurred in the middle of the molding.

(H)加工部の伸び・相当ひずみ(図21、図22)
図21にAZ31板(板厚t=0.5mm)、AZ61板(板厚t=0.5mm)及びAZ80板(板厚t=0.8mm)を成形可能な最小の半頂角まで成形した試料の外観写真を示す。写真に示した試料の成形条件はAZ31が工具回転速度ω=10000rpm、移動速度v=1500mm/minで最小の半頂角θ=25度、AZ61が工具回転速度ω=10000rpm、移動速度v=3000mm/minで最小の半頂角θ=30度、AZ80が工具回転速度ω=10000rpm、移動速度v=4500mm/minで最小の半頂角θ=35度まで成形が可能であった。外観写真をみると、AZ61、AZ80において加工部表面の肌荒れが顕著であるが、試料にゆがみもなく成形できていることがわかる。
(H) Elongation / equivalent strain of machined part (Figs. 21 and 22)
Fig. 21 shows the appearance of a sample formed from AZ31 plate (thickness t = 0.5mm), AZ61 plate (thickness t = 0.5mm) and AZ80 plate (thickness t = 0.8mm) to the smallest half apex angle that can be formed. Show photos. The molding conditions of the sample shown in the photo are AZ31 for tool rotation speed ω = 10000 rpm, moving speed v = 1500 mm / min, minimum half apex angle θ = 25 degrees, AZ61 for tool rotation speed ω = 10000 rpm, moving speed v = 3000 mm The minimum half apex angle θ = 30 degrees at / min, AZ80 could be molded to the minimum half apex angle θ = 35 degrees at a tool rotation speed ω = 10000 rpm, moving speed v = 4500 mm / min. From the appearance photograph, it can be seen that in AZ61 and AZ80, the surface roughness of the processed part is remarkable, but the sample can be molded without distortion.

図22に半頂角と相当ひずみ、及び伸びの理論上の関係を示す。図22は、本成形法により加工部がどのくらいのひずみが与えられたのか、またどのくらい伸びたのかを計算したものである。例えば半頂角θ=30度で成形した場合、三角関数によって成形後の錐面の長さは成形前の2倍になることから、加工部の伸びは100%になる。半頂角θが小さくなるほど角度の急な錐面となることから、図22に示すように加工部の伸びも増加し、与えられる相当ひずみも増加する。   FIG. 22 shows the theoretical relationship between the half apex angle, the equivalent strain, and the elongation. FIG. 22 shows how much strain is applied to the processed part and how much stretched by this forming method. For example, when forming with a half apex angle θ = 30 degrees, the length of the conical surface after forming is doubled before forming by the trigonometric function, so that the elongation of the processed portion becomes 100%. As the half apex angle θ becomes smaller, the conical surface has a steeper angle. Therefore, as shown in FIG. 22, the elongation of the processed portion also increases, and the applied equivalent strain also increases.

表3にそれぞれの試料を半頂角θ=45度及び成形可能な最小の半頂角θminで試料を成形したときの伸びの値を示す。AZ31の引張試験による室温での伸びは26%であるが、半頂角25度で成形した場合の加工部の伸びは137%であり、著しい伸びの向上が確認された。同様にAZ61、AZ80についても室温での伸びが17%、24%のものが本成形法によって加工部の伸びはそれぞれ100%、56%に至り、こちらも大幅な伸びの向上が確認された。 Table 3 shows the elongation values when the samples were molded with a half apex angle θ = 45 degrees and the minimum moldable half apex angle θ min . The elongation at room temperature according to the tensile test of AZ31 was 26%, but the elongation of the processed part when molded at a half apex angle of 25 degrees was 137%, confirming a marked improvement in elongation. Similarly, for AZ61 and AZ80, the elongation at room temperature was 17% and 24%, respectively, and the elongation of the processed part reached 100% and 56% by this molding method, respectively.

ところで、本発明成形法による成形中の加工部は300℃以上にまで達している。そこで、高温域での伸びを比較してみると、本実験で用いたAZ31-Oの展伸材の伸びは300℃において80%以上まで伸びることが報告されている。本発明成形法は試料を予熱することなく加工部の伸び137%(AZ31-0.5mm)まで成形できることからも、マグネシウム合金板の成形性を大幅に向上させる方法であることがわかる。マグネシウムは高温においては非底面すべりの活動が活発になると同時に、粒界すべりも塑性変形に寄与するようになると考えられている。このことから、単に高温にするだけでなく本発明成形法により結晶粒を微細化させ、より多くの粒界すべりが活動することで成形性の大幅な向上につながるものと考えられる。   By the way, the processed part during molding by the molding method of the present invention has reached 300 ° C. or higher. Therefore, comparing the elongation in the high temperature range, it has been reported that the elongation of the AZ31-O wrought material used in this experiment extends to over 80% at 300 ° C. Since the forming method of the present invention can be formed up to 137% (AZ31-0.5 mm) of the processed part without preheating the sample, it can be seen that the forming method of the magnesium alloy plate is greatly improved. Magnesium is considered to be active in non-bottom slip at high temperatures, and at the same time, grain boundary slip contributes to plastic deformation. From this, it is considered that not only the high temperature but also the grain size is refined by the molding method of the present invention, and more grain boundary sliding is activated, leading to a significant improvement in moldability.

表4にそれぞれの試料を半頂角θ=45度及び成形可能な最小の半頂角θminで試料を成形したときの相当ひずみの値を示す。更に各試料の引張試験から求められた相当ひずみも併せて示し、成形時と引張試験時に与えられるひずみの量を計算した。尚、成形時に加工部に与えられる相当ひずみは、工具回転方向のひずみは無視し、単純に加工部の厚さが減少し、一軸方向に伸びたと仮定した場合の相当ひずみである。その結果、全ての試料において成形時に与えられたひずみ量のほうが未成形材を引っ張ったときの破断ひずみよりも大きいことがわかった。つまり、加工部の引張試験を行なう前の段階で既に破断に至るほどのひずみが与えられており、その後更に引張試験によって0.1〜0.2mmのひずみが与えられて破断に至ったことになる。特にAZ31板を半頂角25度で成形し、引張試験を行った試料のひずみ量は1mm以上になる。このことからも、開発した成形法により成形性が大幅に向上していることがわかる。 Table 4 shows the value of the equivalent strain when each sample was molded with a half apex angle θ = 45 degrees and a minimum moldable half apex angle θ min . Further, the equivalent strain obtained from the tensile test of each sample was also shown, and the amount of strain applied during the molding and the tensile test was calculated. Note that the equivalent strain applied to the machined part at the time of forming is equivalent to the case where it is assumed that the thickness of the machined part is simply reduced and extended in a uniaxial direction, ignoring the distortion in the tool rotation direction. As a result, it was found that the strain applied at the time of molding in all the samples was larger than the breaking strain when the green material was pulled. In other words, the strain to the extent of breaking was already given before the tensile test of the processed part, and then the strain was further given a strain of 0.1 to 0.2 mm by the tensile test, leading to the breaking. In particular, the amount of strain of a sample that was formed by molding a AZ31 plate with a half apex angle of 25 degrees and performing a tensile test is 1 mm or more. This also shows that the moldability is greatly improved by the developed molding method.

(I)加工部の硬さと組織の変化
板厚t=0.5mm、0.7mmのAZ31板、板厚t=0.5mmのAZ61板および板厚t=0.8mmのAZ80板を用いて、成形した加工部断面の硬さ試験を行った。半頂角θ=45度で成形した試料の成形条件は全て工具回転速度ω=10000rpm、工具移動速度v=3000mm/minに統一し、半頂角θ=25度で成形した試料のみ工具回転速度ω=10000rpm、工具移動速度v=1500mm/minとした。それぞれの試料のビッカース硬さを図23に示す。
(I) Changes in the hardness and structure of the processed part Formed using AZ31 plate with thickness t = 0.5mm, 0.7mm, AZ61 plate with thickness t = 0.5mm, and AZ80 plate with thickness t = 0.8mm A cross section hardness test was performed. All the molding conditions of the sample molded with a half apex angle θ = 45 degrees are unified to the tool rotation speed ω = 10000 rpm and the tool movement speed v = 3000 mm / min. Only the sample molded with the half apex angle θ = 25 degrees is the tool rotation speed. ω = 10000 rpm and tool moving speed v = 1500 mm / min. The Vickers hardness of each sample is shown in FIG.

(1)AZ31板(板厚t=0.5mm)
未加工材の硬さは70.8HV0.1であり、半頂角θ=45度で成形すると硬さは77.9HV0.1と成形前に比べて約10%向上した。このときの加工部の組織をみてみると、成形前に比べ表側・裏側ともに微細化していた。しかし半頂角θ=25度で成形すると65.6HV0.1に低下した。このときの加工部の組織は、成形前に比べ半頂角θ=45度で成形したときのように微細化していなかった。しかも成形前に比べ硬さが低下していることから、おそらくは半頂角θ=45度で成形した場合に比べて入熱量が多いため、再結晶後に結晶粒が粗大化したため硬さが低下したと思われる。また半頂角θ=45度で成形した場合に比べて、加工部はより撹拌されていることから、撹拌による集合組織の形成によって硬さが低下したのではないかと考えられる。撹拌による集合組織の形成については、FSWの接合部においても報告されており、集合組織の形成が半頂角θ=45度で成形した場合に比べて顕著に起こったため硬さが低下したと思われる。
(1) AZ31 plate (thickness t = 0.5mm)
The hardness of the raw material was 70.8HV0.1, and when molded with a half apex angle θ = 45 degrees, the hardness was 77.9HV0.1, an increase of about 10% compared to before molding. Looking at the structure of the processed part at this time, both the front side and the back side were made finer than before molding. However, when it was molded with a half apex angle θ = 25 degrees, it decreased to 65.6HV0.1. At this time, the structure of the processed part was not refined as in the case of forming at a half apex angle θ = 45 degrees compared to before forming. Moreover, since the hardness has decreased compared to before molding, the amount of heat input is probably larger than when molded with a half apex angle θ = 45 degrees, and the hardness decreased because the crystal grains became coarse after recrystallization. I think that the. In addition, since the processed part is more stirred as compared with the case of molding at a half apex angle θ = 45 degrees, it is considered that the hardness has decreased due to formation of a texture by stirring. The formation of texture by agitation has also been reported in the joints of FSW, and it seems that the hardness decreased because the formation of the texture occurred significantly compared to the case of forming with a half apex angle θ = 45 degrees. It is.

(2)AZ31板(板厚t=0.7mm)
未加工材の硬さは73.7HV0.1であったが、半頂角がθ=45度で成形すると硬さは77.6HV0.1と板厚t=0.5mmの場合と同様に成形前に比べて向上した。加工部の組織をみてみると、成形後の組織は工具押込表側が微細化しているが、板厚t=0.5mmのように裏側までは微細化していなかった。しかし、成形前より組織は微細化していることから、結果的に硬さが上昇したものと考えられる。
(2) AZ31 plate (thickness t = 0.7mm)
The hardness of the raw material was 73.7HV0.1, but when the half apex angle was formed at θ = 45 degrees, the hardness was 77.6HV0.1 and the thickness t = 0.5mm compared to before molding. Improved. Looking at the structure of the processed part, the structure after molding was refined on the front side of the tool press, but was not refined up to the back side as the plate thickness t = 0.5 mm. However, since the structure has become finer than before molding, it is considered that the hardness has increased as a result.

(3)AZ61板(板厚t=0.5mm)
未加工材の硬さは93.2HV0.1であったが、半頂角がθ=45度で成形すると硬さは80.7HV0.1と硬さの低下がみられた。また加工部組織は、加工によって工具押込側、工具押込裏側ともに析出物が確認された。しかしAZ61で析出するとされるMg17Al12は、硬さには影響を及ぼさないと報告されていることからも、先ほど述べたように撹拌による集合組織の形成が原因ではないかと思われる。
(3) AZ61 plate (thickness t = 0.5mm)
The hardness of the raw material was 93.2HV0.1, but when the half apex angle was formed at θ = 45 degrees, the hardness decreased to 80.7HV0.1. In the processed part structure, precipitates were confirmed on the tool indentation side and the tool indentation back side by machining. However, it is reported that Mg 17 Al 12 that is precipitated by AZ61 does not affect the hardness, and as described above, it is thought that this is due to the formation of texture by stirring.

(4)AZ80板(板厚t=0.8mm)
未加工材の硬さは84.5HV0.1であったが、半頂角がθ=45oで成形すると硬さはAZ31の2つの試料でみられたように96.6HV0.1まで硬さが上昇した。加工部の組織は工具押込側、工具押込裏側ともに結晶粒の微細化が確認され、工具押込側においては非常に顕著であった。このことから、結晶粒の微細化が硬さの上昇につながったものと思われる。ちなみに本実験で用いたAZ80は押出材であるが、押出方向に組織の違いはなく、硬さも違いはみられなかった。
(4) AZ80 board (thickness t = 0.8mm)
Hardness of the raw material was the 84.5HV0.1, hardness the half apex angle is formed at theta = 45 o has to 96.6HV0.1 as seen in two samples hardness of AZ31 rise did. The microstructure of the machined part was confirmed to be refined on both the tool indentation side and the tool indentation back side, and was very remarkable on the tool indentation side. From this, it seems that the refinement of crystal grains led to an increase in hardness. Incidentally, AZ80 used in this experiment was an extruded material, but there was no difference in structure in the direction of extrusion and no difference in hardness.

(J)加工部の引張強度と組織の変化(図24)
成形した試料の錐面から試験片を切り出し、加工部の引張試験を行なった。試験を行なった試料は硬さ試験と同様の試料を用いた。図24に各試料の引張強度を示す。また加工部の試料の厚さも表5に示す。
(J) Tensile strength of the processed part and change in structure (Fig. 24)
A test piece was cut out from the conical surface of the molded sample, and a tensile test of the processed part was performed. The sample used for the test was the same sample as in the hardness test. FIG. 24 shows the tensile strength of each sample. Table 5 also shows the thickness of the sample of the processed part.

(1)AZ31板(板厚t=0.5mm)
未加工材の引張強度は260MPaであり、半頂角θ=45度で成形すると引張強度は289MPaと成形前に比べて約10%向上した。このときの加工部の組織をみてみると、成形前に比べ表側・裏側ともに微細化していた。しかし半頂角θ=25度で成形すると216MPaに低下した。このときの加工部の組織は、成形前に比べ半頂角θ=45度で成形したときのように微細化していなかった。しかも成形前に比べ強度が低下していることから、おそらくは加工による試験片表面の凹凸や撹拌による集合組織の形成により強度が低下したのではないかと考えられる。加工による試験片表面の凹凸については表5からもわかるように、成形前に比べて加工部の厚さは半分以下になっており、わずかな表面の凹凸が破断に影響してくると考えられる。撹拌による集合組織の形成については、前項で述べた通りである。本実験では工具送り方向を引張軸として試験片を切り出しているため、報告されているように底面すべりを起こし易くなることから、引張強度が低下したものと考えられる。
(1) AZ31 plate (thickness t = 0.5mm)
The tensile strength of the raw material was 260 MPa, and when it was molded at a half apex angle θ = 45 degrees, the tensile strength was 289 MPa, an increase of about 10% compared to before molding. Looking at the structure of the processed part at this time, both the front side and the back side were made finer than before molding. However, when it was molded at a half apex angle of θ = 25 degrees, it decreased to 216 MPa. At this time, the structure of the processed part was not refined as in the case of forming at a half apex angle θ = 45 degrees compared to before forming. Moreover, since the strength is lower than that before molding, it is considered that the strength is probably reduced by the formation of texture on the surface of the test piece by processing and the formation of texture by stirring. As can be seen from Table 5, the unevenness of the test piece surface by processing is less than half the thickness of the processed part compared to before molding, and it is considered that the slight unevenness of the surface affects the fracture. . The formation of texture by agitation is as described in the previous section. In this experiment, since the test piece was cut out with the tool feed direction as the tensile axis, the bottom surface slip easily occurred as reported, and it is considered that the tensile strength was lowered.

(2)AZ31板(板厚t=0.7mm)
未加工材の引張強度は264MPaであったが、半頂角がθ=45度で成形すると引張強度は242MPaと成形前に比べてわずかに低下した。同様に加工部の組織をみてみると、成形後の組織は工具押込表側が微細化しているが、裏側までは微細化していなかった。表5からもわかるように、板厚t=0.5mmの試料よりも厚みがあることから、裏側までは微細化しておらず、強度の上昇には至らなかったと思われる。その上、加工による試験片表面の凹凸や撹拌による集合組織の形成により強度が低下したのではないかと考えられる。
(2) AZ31 plate (thickness t = 0.7mm)
The tensile strength of the unprocessed material was 264 MPa, but when the half apex angle was molded at θ = 45 degrees, the tensile strength was slightly reduced to 242 MPa compared to before molding. Similarly, looking at the structure of the processed part, the structure after molding was refined on the front side of the tool press, but was not refined up to the back side. As can be seen from Table 5, since it is thicker than the sample with a plate thickness t = 0.5 mm, the back side is not miniaturized, and it seems that the strength has not been increased. In addition, it is thought that the strength was lowered due to the unevenness of the test piece surface by processing and the formation of texture by stirring.

(3)AZ61板(板厚t=0.5mm)
未加工材の引張強度は301MPaであったが、半頂角がθ=45度で成形すると引張強度は299MPaとほとんど変わらなかった。加工部組織は、加工によって工具押込側、工具押込裏側ともに析出物が確認された。
(3) AZ61 plate (thickness t = 0.5mm)
The raw material had a tensile strength of 301 MPa, but when molded with a half apex angle of θ = 45 degrees, the tensile strength was almost the same as 299 MPa. In the processed part structure, precipitates were confirmed on the tool indentation side and the tool indentation back side by machining.

(4)AZ80板(板厚t=0.8mm)
未加工材の引張強度は335MPaであったが、半頂角がθ=45度で成形すると引張強度は306MPaと成形前に比べて低下した。加工部の組織は工具押込側、工具押込裏側ともに結晶粒の微細化が確認され、工具押込側においては非常に顕著であった。しかし成形前に比べ強度が低下しているのは、AZ31の2つの試料同様、加工部表面の凹凸や撹拌による集合組織の形成が考えられる。また、押出方向よる引張強度の違いはみられなかった。
(4) AZ80 board (thickness t = 0.8mm)
The tensile strength of the unprocessed material was 335 MPa, but when the half apex angle was molded at θ = 45 degrees, the tensile strength was 306 MPa, which was lower than before molding. The microstructure of the machined part was confirmed to be refined on both the tool indentation side and the tool indentation back side, and was very remarkable on the tool indentation side. However, the strength is lower than before molding, as in the case of the two samples of AZ31. Further, there was no difference in tensile strength depending on the extrusion direction.

(結論)
室温では成形が難しいマグネシウム合金板を室温で成形する摩擦撹拌インクリメンタルフォーミング法の開発に成功し、本発明成形法によるAZ31、AZ61、AZ80マグネシウム合金板の成形加工条件や加工時の温度、温間・熱間でのインクリメンタルフォーミング成形との比較、板材加工部の引張強度や硬さを調査した。その結果、以下のことがわかった。
(Conclusion)
Succeeded in developing a friction stir incremental forming method that forms magnesium alloy sheets that are difficult to form at room temperature at room temperature, forming conditions of AZ31, AZ61, and AZ80 magnesium alloy sheets according to the present forming method, temperature during processing, Comparison with hot incremental forming, and the tensile strength and hardness of the processed plate material were investigated. As a result, the following was found.

・工具回転速度に閾値があり、閾値を超えると成形限界高さが急激に上昇した。   ・ There is a threshold value for the tool rotation speed, and when the threshold value is exceeded, the forming limit height increases rapidly.

・成形する半頂角に対応する最適な成形条件が存在した。   -Optimum molding conditions corresponding to the half apex angle to be molded existed.

・成形時の加工部の温度は最高で350℃くらいまで上昇し、再結晶温度以上まで達していた。   ・ The temperature of the processed part at the time of molding rose to a maximum of about 350 ° C and reached the recrystallization temperature or higher.

・従来の温間・熱間でのインクリメンタルフォーミングでは半頂角θ=35度までしか成形できなかったものが、開発した成形法によって最小でθ=25度まで成形できるようになり、成形性が大幅に向上した。   ・ Conventional warm and hot incremental forming can only mold up to half apex angle θ = 35 degrees, but the developed molding method can form up to θ = 25 degrees at the minimum, and moldability is improved. Greatly improved.

・AZ31合金板は室温での引張試験において破断伸びが26%だったが、半頂角θ=25度に成形した場合の加工部の伸びは137%に相当し、開発した加工法によって成形性が飛躍的に向上することがわかった。同様に、AZ61、AZ80についても室温では成形できない伸び・ひずみ量まで成形が可能であった。   ・ Although the AZ31 alloy sheet had an elongation at break of 26% in a tensile test at room temperature, the elongation of the processed part when forming at a half apex angle of θ = 25 degrees is equivalent to 137%. Was found to improve dramatically. Similarly, AZ61 and AZ80 were able to be molded to an amount of elongation and strain that could not be molded at room temperature.

・成形後の加工部の硬さは、AZ31、AZ80板を半頂角θ=45度で成形した場合、成形前よりも硬さは向上した。しかし、AZ31板を半頂角θ=25度で成形した場合、およびAZ61板を半頂角θ=45度で成形した場合は硬さの低下がみられた。   ・ The hardness of the processed part after molding was improved when the AZ31 and AZ80 plates were molded at a half apex angle θ = 45 degrees compared to before molding. However, when the AZ31 plate was molded with a half apex angle θ = 25 degrees, and when the AZ61 plate was formed with a half apex angle θ = 45 degrees, a decrease in hardness was observed.

AZ31合金板を半頂角θ=45度で成形した場合の引張強度は、未加工材よりも約10%向上することがわかった。AZ61、AZ80合金板についても半頂角θ=45度で成形した場合、引張強度は最低でも未加工材の80%以上は保っていることから、加工部の引張強度も十分であった。   It was found that the tensile strength when the AZ31 alloy plate was formed at a half apex angle θ = 45 degrees was improved by about 10% compared to the unprocessed material. When the AZ61 and AZ80 alloy plates were formed at a half apex angle of θ = 45 degrees, the tensile strength was kept at least 80% of the unprocessed material, so the tensile strength of the processed part was sufficient.

[II]アルミニウム合金
供試材には、アルミニウム合金である厚さ0.5mmのA5052-H34材を用い、100mm四方の板材を用いた。表6に供試材の化学組成を、表7に供試材の物理的性質及び機械的性質を示す。
[II] Aluminum Alloy As a test material, an aluminum alloy A5052-H34 having a thickness of 0.5 mm was used, and a 100 mm square plate was used. Table 6 shows the chemical composition of the test material, and Table 7 shows the physical properties and mechanical properties of the test material.

(A)工具移動速度と工具回転速度の関係(図25)
図25に成形条件は半頂角θ=45度で固定し、工具移動速度、工具回転速度を変えて成形可能条件を調査した結果を示す。成形できたものを○、成形できなかったものを×、成形ができたりできなかったりと不安定な条件は△で表した。工具移動速度v=4000mm/min以下のとき工具回転速度を上げていくと工具移動速度を高くしても成形は可能であった。しかし、v=500mm/minでは加工部が入熱・撹拌過多となり成形ができなかった。工具移動速度v=5000mm/min以上では工具回転速度が高いにも関わらず成形はできなくなり、工具回転速度ω=10000rpmでは完全に成形できなかった。
(A) Relationship between tool movement speed and tool rotation speed (Fig. 25)
FIG. 25 shows the results of investigating the forming conditions by fixing the forming condition at the half apex angle θ = 45 degrees and changing the tool moving speed and the tool rotating speed. Unstable conditions such as ◯ for those that could be molded, x for those that could not be molded, and Δ for those that could not be molded. If the tool rotation speed was increased when the tool moving speed v was 4000 mm / min or less, molding was possible even if the tool moving speed was increased. However, at v = 500 mm / min, the processed part was excessively heated and stirred, and could not be molded. When the tool moving speed was v = 5000 mm / min or higher, forming was impossible despite the high tool rotating speed, and when the tool rotating speed ω = 10000 rpm, forming was impossible.

(B)工具回転速度ωと板材1の成形限界高さの関係(図26〜図28)
図26に成形条件は工具移動速度v=3000mm/min、半頂角θ=30度で固定し、工具回転速度を変化させ成形可能な高さを調査した結果を示す。工具回転速度ω=0rpmでは過剰に負荷がかかったためNC工作機が止まって成形はできなかった。ω=2000rpmからは成形途中に加工部が破断してしまい、成形高さh=5mm程度までしか成形ができなかった。しかし、ω=7000rpm以上になると成形高さは飛躍的に向上し、使用したプログラムで設定できる成形高さの限界値であるh=20mmまで加工ができた。このことから工具回転速度が成形性に大きく関係していることが分かり、工具回転速度を大きくすることで成形性が向上するものと考えられる。
(B) Relationship between the tool rotational speed ω and the forming limit height of the plate 1 (FIGS. 26 to 28)
FIG. 26 shows the results of investigating the formable height by changing the tool rotation speed while fixing the tool moving speed v = 3000 mm / min and the half apex angle θ = 30 degrees. At the tool rotation speed ω = 0rpm, the NC machine tool stopped and could not be molded because of excessive load. From ω = 2000 rpm, the processed part was broken during the molding, and the molding could only be performed up to a molding height h of about 5 mm. However, when ω = 7000rpm or higher, the molding height improved dramatically, and processing was possible up to h = 20mm, the limit value of the molding height that can be set by the program used. From this, it is understood that the tool rotation speed is greatly related to the moldability, and it is considered that the moldability is improved by increasing the tool rotation speed.

そこで工具回転による摩擦熱に注目し、成形性が飛躍的に向上するω=7000rpmとその直前のω=6000rpmの加工条件で加工部の温度測定を行った結果を図28に示す。するとω=6000rpm、ω=7000rpmともに加工時の最高温度はそれぞれ273.3℃、284.9℃と両条件ともに再結晶温度(330℃)には至っていなかった。   Therefore, paying attention to the frictional heat due to tool rotation, FIG. 28 shows the results of measuring the temperature of the machined part under the machining conditions of ω = 7000 rpm where the formability is dramatically improved and ω = 6000 rpm just before that. As a result, the maximum temperature during processing at ω = 6000 rpm and ω = 7000 rpm was 273.3 ° C. and 284.9 ° C., respectively, which did not reach the recrystallization temperature (330 ° C.).

(C)工具回転速度ωと板材1の成形可能な半頂角θの関係(図29〜図32)
図29に成形条件は工具移動速度v=3000mm/minで固定し、工具回転速度、半頂角を変えて成形可能条件を調査した結果を示す。過去の実験でA5052-H34材、厚さ0.6mmのインクリメンタルフォーミングでは半頂角θ=30度まで成形可能であることが報告されている。本実験でも潤滑油は使用していないが工具回転速度ω=0rpmをインクリメンタルフォーミングと仮定して成形を行うと半頂角θ=45度まで成形ができた。工具回転速度を上げていくとω=6000rpmまでは成形できる半頂角の値はほぼ変わらなかったが、ω=7000rpm以上になると半頂角の値はθ=25度と小さな値まで成形可能となり、ω=10000rpmではθ=20度まで成形可能となった。このことからも工具回転速度は成形性に大きく関係していることがわかる。
(C) Relationship between the tool rotation speed ω and the half apex angle θ at which the plate 1 can be formed (FIGS. 29 to 32)
FIG. 29 shows the results of investigating the forming conditions by fixing the tool moving speed v = 3000 mm / min and changing the tool rotation speed and the half apex angle. In past experiments, it has been reported that A5052-H34 material and 0.6 mm thick incremental forming can be molded up to half apex angle θ = 30 degrees. In this experiment, no lubricating oil was used, but when forming was performed assuming that the tool rotational speed ω = 0rpm was incremental forming, the half apex angle θ was 45 °. When the tool rotation speed is increased, the half apex angle value that can be molded up to ω = 6000 rpm did not change substantially, but when ω = 7000 rpm or more, the half apex angle value can be molded to a small value of θ = 25 degrees. At ω = 10000 rpm, molding was possible up to θ = 20 degrees. This also shows that the tool rotation speed is greatly related to the formability.

半頂角と相当ひずみ、及び伸びの理論上の関係を図30に示す。このグラフは、本発明成形法により加工部がどのくらいのひすみが与えられたのか、またどのくらい伸びたのかを計算したものである。θ=45度成形の加工部の伸びはおよそ41%に相当、θ=20度成形の加工部の伸びはおよそ192%に相当することからも工具回転速度を大きくすることは成形性の向上につながると考えられる。また、インクリメンタルフォーミングによる成形後の試料(ω=0rpm、θ=45度)及び、本発明加工法による成形後の試料(ω=10000rpm、θ=20度)の写真をそれぞれ図31、図32に示す。成形面に大きな違いが見られ、本発明加工法は成形面がインクリメンタルフォーミングに比べてきれいであった。これらのことから本発明加工法はインクリメンタルフォーミングに比べ成形面がきれいであることに加え、成形性を飛躍的に向上させることが分かった。   The theoretical relationship between the half apex angle, equivalent strain, and elongation is shown in FIG. This graph shows how much strain is given to the processed part by the molding method of the present invention and how much it is extended. The elongation of the machined part with θ = 45 ° forming is equivalent to approximately 41%, and the elongation of the machined part with θ = 20 ° forming is equivalent to about 192%. It seems to be connected. In addition, photographs of the sample after molding by incremental forming (ω = 0 rpm, θ = 45 degrees) and the sample after molding by the processing method of the present invention (ω = 10000 rpm, θ = 20 degrees) are shown in FIGS. 31 and 32, respectively. Show. A large difference was observed in the molding surface, and the processing method of the present invention was clean compared to the incremental forming. From these facts, it has been found that the processing method of the present invention dramatically improves the moldability in addition to a clean molding surface as compared with the incremental forming.

(D)工具移動速度vと板材1の成形可能な半頂角θの関係(図33)
図33に成形条件は工具回転速度ω=10000rpmで固定し、工具移動速度、半頂角を変え成形可能条件について調査した結果を示す。工具移動速度v=5000mm/min以上になると成形は全くできなくなった。また、v=2000-4000mm/minでは成形可能な半頂角に違いはなく、v=1000mm/min以下になると半頂角に関係なく、工具移動速度が遅すぎるために加工部の入熱・撹拌過多となり成形はできなかった。工具移動速度は成形の可否の要因にはなるものの、成形性との関係は薄いと考えられる。
(D) Relationship between the tool moving speed v and the half apex angle θ in which the plate 1 can be formed (FIG. 33)
FIG. 33 shows the results of investigating the molding conditions with the molding conditions fixed at a tool rotational speed ω = 10000 rpm, the tool moving speed and the half apex angle being changed. When the tool moving speed v = 5000 mm / min or more, molding was not possible at all. Also, there is no difference in the moldable half apex angle at v = 2000-4000mm / min. When v = 1000mm / min or less, the tool moving speed is too slow regardless of the half apex angle, so the heat input / Molding was not possible due to excessive stirring. Although the tool moving speed is a factor in whether or not forming is possible, it is considered that the relationship with formability is weak.

(E)加工部の組織観察及び加工温度(図34、図35)
図34に工具移動速度v=3000mm/min、工具回転速度ω=7000rpm、半頂角θ=45度で成形した断面組織のSIM像を示す。表面から5μmは粒径500nm程度の等軸粒となっており、それ以降は内部に向かうに従い結晶粒は1-2μm程度の等軸粒となっていた。未加工材に見られたような結晶粒内に転位集積によるひずみは見られなかった。工具を回転させなかったインクリメンタルフォーミング成形に比べると結晶粒は比較的大きく、内部は伸張した粒ではなく等軸粒であった。このような違いは工具回転における摩擦熱の違いであると考えられる。摩擦撹拌インクリメンタルフォーミングの加工時の加工部温度測定結果を図35に示す。最高温度は233℃と再結晶温度(330℃)には至っていないものの非常に高い状態であることが分かる。また成形時には多くのひずみが導入されるため動的再結晶が起こりやすい環境であると考えられる。微細化の過程はインクリメンタルフォーミングと同様であるが、内部の粒が伸張せずに等軸粒になっているのは加工部表面だけでなく内部温度も十分高いため、ひずみが導入されるたびに動的再結晶が起こったためであると考えられる。インクリメンタルフォーミング材に比べ表面の微細結晶粒の領域が狭くなったのは加工域の温度が高いため粒成長したためである可能性が高い。また、近傍で白いコントラストで示される結晶粒ではないものが観察された。おそらく酸化皮膜が撹拌によって内部に侵入したものではないかと考えられるが詳細は不明である。
(E) Microstructure observation and processing temperature (Figs. 34 and 35)
FIG. 34 shows a SIM image of a cross-sectional structure formed at a tool moving speed v = 3000 mm / min, a tool rotation speed ω = 7000 rpm, and a half apex angle θ = 45 degrees. 5 μm from the surface became equiaxed grains with a grain size of about 500 nm, and thereafter, the crystal grains became equiaxed grains with a grain size of about 1-2 μm toward the inside. No distortion due to dislocation accumulation was observed in the crystal grains as seen in the raw material. Compared to incremental forming without rotating the tool, the crystal grains were relatively large and the interior was equiaxed grains rather than elongated grains. Such a difference is considered to be a difference in frictional heat during tool rotation. FIG. 35 shows the measurement result of the processing part temperature during processing of the friction stir incremental forming. It can be seen that although the maximum temperature is 233 ° C and has not reached the recrystallization temperature (330 ° C), it is very high. Moreover, since many strains are introduced during molding, it is considered that the environment is likely to cause dynamic recrystallization. The process of miniaturization is the same as incremental forming, but the internal grains do not stretch and become equiaxed grains, not only the surface of the processed part but also the internal temperature is sufficiently high, so every time strain is introduced This is probably because dynamic recrystallization occurred. It is highly possible that the fine crystal grain region on the surface is narrower than the incremental forming material because the grain is grown due to the high temperature of the processing region. Moreover, the thing which was not the crystal grain shown by the white contrast in the vicinity was observed. Probably, the oxide film may have penetrated into the interior by stirring, but the details are unknown.

(F)加工部の硬さと組織の変化(図36)
試料には比較材として未加工材、インクリメンタル成形材(v=3000mm/min、ω=0rpm、θ=45度)、本発明加工法の中でもインクリメンタル成形条件に工具回転を加えたもの(v=3000mm/min、ω=7000rpm、θ=45度)、本発明加工法でもっとも半頂角が小さかったもの(v=3000mm/min、ω=10000rpm、θ=20度)の4種で測定を行ない、その結果は図36に示す。
(F) Change in hardness and structure of machined part (Fig. 36)
The sample is a raw material as a comparative material, an incremental molding material (v = 3000 mm / min, ω = 0 rpm, θ = 45 degrees), and a tool rotation added to the incremental molding conditions (v = 3000 mm) in the processing method of the present invention. / min, ω = 7000 rpm, θ = 45 degrees), and the measurement method of the present invention processing method with the smallest half apex angle (v = 3000 mm / min, ω = 10000 rpm, θ = 20 degrees) The result is shown in FIG.

インクリメンタル成形を行ったものは未加工材に比べ硬度が高くなっていた。加工部は動的再結晶により微細化するも内部は加工の際に変形し、結晶粒が伸張していることから多量のひずみが残っていると考えられる。このことからインクリメンタル成形後の加工部は加工硬化により硬度は高くなったと考えられる。   The material subjected to incremental molding had a higher hardness than the raw material. Although the processed part is refined by dynamic recrystallization, the inside is deformed during processing and the crystal grains are stretched, so that a large amount of strain remains. From this, it is considered that the hardness of the processed part after the incremental molding was increased by work hardening.

摩擦撹拌インクリメンタルフォーミングで成形したものはどちらも未加工材に比べ硬度は下がっていた。摩擦撹拌接合でも同様に加工部の硬度低下は確認されている。未加工材であるA5052、H34処理は圧延後安定化処理を施したものであるため多量の転位を含んでおり、加工硬化している。組織写真からも粒内のコントラストに違いがあることから多量のひずみがあることがわかり、このことからも未加工材は加工硬化していることがわかる。摩擦撹拌インクリメンタルフォーミングではインクリメンタルフォーミングと異なり工具を高速回転させていることから成形時の工具と素材間の摩擦熱は高くなる。表面近傍は粒径数500nm程度の等軸粒となっており、それ以降は表面近傍よりも大きい1-3μm程度の等軸粒となっていた。表面近傍をはじめ素材全体で連続的に動的再結晶が起こり結晶粒は微細化したことが示唆される。これらのことより摩擦撹拌インクリメンタルフォーミングを行うことで加工部では動的再結晶が起こり、未加工材に含まれていたひずみが緩和され硬度は下がったと考えられる。   Both molded with friction stir incremental forming had a lower hardness than the raw material. In the friction stir welding as well, a decrease in the hardness of the processed part has been confirmed. Since the unprocessed materials A5052 and H34 have undergone stabilization after rolling, they contain a large amount of dislocations and are work hardened. From the structure photograph, it can be seen that there is a large amount of strain due to the difference in the intragranular contrast, which also indicates that the raw material is work-hardened. In the friction stir incremental forming, unlike the incremental forming, the tool is rotated at a high speed, so that the frictional heat between the tool and the material during molding increases. In the vicinity of the surface, equiaxed grains having a particle size of about 500 nm were formed, and thereafter, equiaxed grains of about 1-3 μm, which were larger than the vicinity of the surface. It is suggested that dynamic recrystallization occurred continuously in the whole material including the vicinity of the surface, and the crystal grains were refined. From these facts, it is considered that by performing friction stir incremental forming, dynamic recrystallization occurred in the processed part, the strain contained in the unprocessed material was relaxed, and the hardness was lowered.

(G)加工部の引張強度と組織の変化(図37)
試料として未加工材、インクリメンタル成形材(v=3000mm/min、ω=0rpm、θ=45度)、本発明加工法(インクリメンタル成形条件に工具回転を加えたもの(v=3000mm/min、ω=7000rpm、θ=45度))の3種で試験を行ない、その結果は図37に示す。
(G) Tensile strength of the processed part and change in structure (Fig. 37)
Samples as raw material, incremental molding material (v = 3000 mm / min, ω = 0 rpm, θ = 45 degrees), processing method of the present invention (incremental molding conditions plus tool rotation (v = 3000 mm / min, ω = 7000 rpm, θ = 45 degrees)), and the results are shown in FIG.

未加工材は最大引張強度286.2MPaに対してインクリメンタル成形を行なったものは232.2MPaと強度は低下していた。一方、摩擦撹拌加工法を行ったものは239.0MPaと未加工材よりも強度は劣るもののインクリメンタル成形と同程度となった。   The unprocessed material had a maximum tensile strength of 286.2 MPa, and the one that had been incrementally molded had a reduced strength of 232.2 MPa. On the other hand, the friction stir processing method was 239.0 MPa, which was comparable to the incremental molding, although the strength was inferior to that of the raw material.

インクリメンタルフォーミング材は加工硬化および結晶粒微細化から強度は上がると予想されたが未加工材よりも低下していた。これは試料加工部の表面形状が非常に悪いため、表面の一部に応力集中が起こり、そこから破断したため強度は真の値よりも下がったと考えられる。加工部表面近傍では結晶粒が微細化しているため組織を変化させないよう引張試験片作成の際に表面の研磨は行なわなかった。   Incremental forming material was expected to increase in strength due to work hardening and grain refinement, but was lower than that of unprocessed material. This is because the surface shape of the sample processing part is very bad, stress concentration occurs on a part of the surface, and the strength is lowered from the true value because it breaks from the stress. In the vicinity of the surface of the processed part, since the crystal grains were made fine, the surface was not polished when the tensile test piece was prepared so as not to change the structure.

摩擦撹拌インクリメンタルフォーミング材(v=3000mm/min、ω=7000rpm、θ=45度)で成形したものは未加工材と比較して強度は低下していた。加工部の結晶粒は微細化していたため強度の上昇が考えられたが、逆の挙動を示していた。摩擦撹拌インクリメンタルフォーミング時に動的再結晶によりひずみの緩和と結晶粒の微細化が起こる。引張強度の低下は結晶粒微細化による強度上昇より、ひずみの緩和による強度低下の影響が顕著に現れているからであると考えられる。   The strength of the material formed with the friction stir incremental forming material (v = 3000 mm / min, ω = 7000 rpm, θ = 45 degrees) was lower than that of the unprocessed material. Although the crystal grain in the processed part was refined, an increase in strength was considered, but the reverse behavior was exhibited. During friction stir incremental forming, dynamic recrystallization causes strain relaxation and crystal grain refinement. The decrease in the tensile strength is considered to be due to the effect of the decrease in strength due to the relaxation of strain more prominently than the increase in strength due to crystal grain refinement.

(結論)
本実験では摩擦撹拌接合とインクリメンタルフォーミングを組み合わせた新しい加工法である摩擦撹拌インクリメンタルフォーミングによりアルミニウム合金A5052-H34薄板の成形を行った。加工条件、加工時の温度測定、そして成形後の加工部における硬度試験、引張試験および組織観察を行なった。その結果明らかになったことを以下に示す。
(Conclusion)
In this experiment, aluminum alloy A5052-H34 sheet was formed by friction stir incremental forming, which is a new processing method combining friction stir welding and incremental forming. Processing conditions, temperature measurement during processing, and a hardness test, a tensile test, and a structure observation in the processed part after molding were performed. The results are as follows.

・工具移動速度と工具回転速度の間には成形を可能にするバランスの良い条件が存在する。   -There is a well-balanced condition between the tool movement speed and the tool rotation speed that enables forming.

・工具回転数により成形性が決まっており、一定の回転数を超えると成形限界が急激に上昇し、工具回転速度を上げることで成形可能な半頂角は小さくなった。   -Formability is determined by the tool rotation speed. When the rotation speed exceeds a certain rotation speed, the forming limit increases rapidly, and the moldable half apex angle becomes smaller by increasing the tool rotation speed.

・成形時の加工部温度は測定した条件の中も工具移動速度v=3000mm/min、工具回転数ω=10000rpm、半頂角θ=20度時の最高温度284.9℃が最も高かったが、再結晶温度(330℃)には到達していなかった。   ・ The machining part temperature at the time of forming was the highest at the maximum temperature of 284.9 ° C when the tool moving speed v = 3000mm / min, the tool rotation speed ω = 10000rpm, and the half apex angle θ = 20 degrees among the measured conditions. The crystallization temperature (330 ° C) was not reached.

・工具移動速度v=3000mm/minで固定した場合、インクリメンタルフォーミングでは室温で半頂角45度までが成形可能であったが摩擦撹拌インクリメンタルフォーミングでは最小で半頂角20度まで成形可能であった。加工部の伸びは45度で41%、 20度は192%相当であり、摩擦撹拌インクリメンタルフォーミングにより成形性はインクリメンタルフォーミングに比べ飛躍的に向上した。   ・ When fixed at a tool moving speed of v = 3000 mm / min, incremental forming can form up to a half apex angle of 45 degrees at room temperature, but friction stir incremental forming can form up to a minimum half apex angle of 20 degrees. . The elongation of the processed part was 41% at 45 degrees and 192% at 20 degrees, and formability was dramatically improved by friction stir incremental forming compared to incremental forming.

・摩擦撹拌インクリメンタルフォーミングによる成形後の加工部の硬度および引張強度は成形前に比べて低下していたが、最低でも硬度は成形前の75%以上、引張強度は80%以上保っていたため加工部の硬度、引張強度は十分であると考えられる。   ・ The hardness and tensile strength of the processed part after molding by friction stir incremental forming were lower than before molding, but at least the hardness was 75% or more before molding, and the tensile strength was kept 80% or more. It is considered that the hardness and tensile strength are sufficient.

・摩擦撹拌インクリメンタルフォーミングにより素材の結晶粒は微細化しており、形状は等軸粒を呈していた。中でも表面近傍は粒径500nm程度にまで微細化しており、これら結晶粒の微細化は加工時の動的再結晶によるものと考えられる。   -The crystal grains of the material were refined by friction stir incremental forming, and the shape was equiaxed grains. In particular, the vicinity of the surface is refined to a grain size of about 500 nm, and the refinement of these crystal grains is thought to be due to dynamic recrystallization during processing.

次に、摩擦撹拌インクリメンタルフォーミング100の工具20による板材1の成形に際し、工具20が接する板材1の裏側に、板材1を支える受け具50(成形モデル51)を配置することが板材1の成形深さに及ぼす影響について調査した結果を示す。   Next, when the plate 1 is formed by the tool 20 of the friction stir incremental forming 100, the receiving member 50 (the forming model 51) for supporting the plate 1 is arranged on the back side of the plate 1 in contact with the tool 20, and the forming depth of the plate 1 is increased. The result of investigating the influence on the thickness is shown.

図13(A)(図13(B))は板材1の裏側に受け具50(成形モデル51)を配置した成形例であり、図14(A)(図14(B))は板材1の裏側に受け具50を配置しない前述の凹み空間成形の成形例である。各成形例では、板材1をマグネシウム合金AZ31、成形油なし、工具20の工具回転速度ω、工具移動速度v、Z軸方向の送りピッチp、半頂角θのそれぞれを図13(A)、図14(A)に記載した通りにした。図13(A)(図13(B))、図14(A)(図14(B))によれば、板材1の裏側に受け具50(成形モデル51)を配置することにより、板材1の成形深さを10mmから23mmに2.3倍にまで拡大でき、成形性を向上できることが認められる。   FIG. 13A (FIG. 13B) is a molding example in which the receiving member 50 (molding model 51) is arranged on the back side of the plate material 1, and FIG. 14A (FIG. 14B) shows the plate material 1. It is a shaping | molding example of the above-mentioned dent space shaping | molding which does not arrange | position the receptacle 50 on a back side. In each forming example, the plate material 1 is made of magnesium alloy AZ31, no forming oil, the tool rotational speed ω, the tool moving speed v, the feed pitch p in the Z-axis direction, and the half apex angle θ are shown in FIG. As described in FIG. 14 (A). According to FIG. 13 (A) (FIG. 13 (B)) and FIG. 14 (A) (FIG. 14 (B)), by arranging the receiving tool 50 (molded model 51) on the back side of the plate 1, the plate 1 It can be seen that the molding depth can be increased from 10 mm to 23 mm up to 2.3 times, and the moldability can be improved.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention.

本発明は、マグネシウム合金、アルミニウム合金、チタン合金等の合金又は金属からなる板材を金型を用いないで常温で成形可能にすることができる。   The present invention can form a plate material made of an alloy such as a magnesium alloy, an aluminum alloy, a titanium alloy, or a metal at room temperature without using a mold.

1 板材
10 板材支持装置
20 工具
30 工具回転装置
40 移動装置
41 板材移動装置
42 工具移動装置
50 受け具
51 成形モデル
DESCRIPTION OF SYMBOLS 1 Board | plate material 10 Board | plate material support apparatus 20 Tool 30 Tool rotation apparatus 40 Movement apparatus 41 Board | plate material movement apparatus 42 Tool movement apparatus 50 Receptacle 51 Molding model

Claims (16)

合金又は金属からなる板材を立体形状に成形する板材の成形方法において、
工具を板材に押付け、該工具を回転させながら板材に対し3次元方向に相対的に移動させることを特徴とする板材の成形方法。
In a method for forming a plate material in which a plate material made of an alloy or metal is formed into a three-dimensional shape,
A method for forming a plate material, wherein the tool is pressed against the plate material and moved relative to the plate material in a three-dimensional direction while rotating the tool.
前記板材がマグネシウム合金からなる請求項1に記載の板材の成形方法。   The plate material forming method according to claim 1, wherein the plate material is made of a magnesium alloy. 前記板材がアルミニウム合金からなる請求項1に記載の板材の成形方法。   The plate material forming method according to claim 1, wherein the plate material is made of an aluminum alloy. 前記板材がチタン合金からなる請求項1に記載の板材の成形方法。   The plate material forming method according to claim 1, wherein the plate material is made of a titanium alloy. 前記工具が接する板材に、該工具の回転に起因する摩擦攪拌による塑性流動を引き起こして該板材を成形する請求項1〜4のいずれかに記載の板材の成形方法。   The method for forming a plate material according to any one of claims 1 to 4, wherein the plate material is formed by causing plastic flow due to frictional stirring caused by rotation of the tool to the plate material in contact with the tool. 前記工具が成形油を介さずに板材に接する請求項5に記載の板材の成形方法。   The plate material forming method according to claim 5, wherein the tool is in contact with the plate material without forming oil. 前記工具が接する板材の裏側に、該板材を支える受け具を配置する請求項5又は6に記載の板材の成形方法。   The method for forming a plate material according to claim 5 or 6, wherein a receiving tool for supporting the plate material is disposed on the back side of the plate material in contact with the tool. 前記受け具が板材の成形モデルからなる請求項7に記載の板材の成形方法。   The plate material forming method according to claim 7, wherein the receiving member is formed of a plate material forming model. 前記工具を、板材に押付けて該板材の成形すべき立体形状の等高線に沿う一周に渡って相対的に移動させることを、該板材の高さ方向の各所で繰り返す請求項1〜8のいずれかに記載の板材の成形方法。   9. The method according to claim 1, wherein the tool is pressed against the plate material and relatively moved over one circumference along the contour line of the three-dimensional shape to be formed of the plate material at various points in the height direction of the plate material. 2. A method for forming a plate material according to 1. 合金又は金属からなる板材を立体形状に成形する板材の成形装置において、
板材の外縁部を支持する板材支持装置と、
板材に接する工具と、
工具を回転させる工具回転装置と、
工具と板材を3次元方向に相対的に移動させる移動装置とを有してなることを特徴とする板材の成形装置。
In a plate material forming apparatus for forming a plate material made of an alloy or metal into a three-dimensional shape,
A plate material support device for supporting the outer edge of the plate material;
A tool in contact with the plate,
A tool rotating device for rotating the tool;
A plate forming apparatus comprising a tool and a moving device for relatively moving a plate in a three-dimensional direction.
前記板材がマグネシウム合金からなる請求項10に記載の板材の成形装置。   The plate forming apparatus according to claim 10, wherein the plate is made of a magnesium alloy. 前記板材がアルミニウム合金からなる請求項10に記載の板材の成形装置。   The plate forming apparatus according to claim 10, wherein the plate is made of an aluminum alloy. 前記板材がチタン合金からなる請求項10に記載の板材の成形装置。   The plate forming apparatus according to claim 10, wherein the plate is made of a titanium alloy. 前記移動装置が、板材を直交2軸方向へ移動する板材移動装置と、工具を上記直交2軸方向のそれぞれと直交する方向へ移動する工具移動装置とを有してなる請求項10〜13のいずれかに記載の板材の成形装置。   The said movement apparatus has the board | plate material movement apparatus which moves a board | plate material to orthogonal two-axis direction, and the tool movement apparatus which moves a tool to the direction orthogonal to each of the said orthogonal two-axis direction of Claims 10-13 The board | plate material shaping | molding apparatus in any one. 前記工具が接する板材の裏側に配置されて該板材を支える受け具を有する請求項10〜14のいずれかに記載の板材の成形装置。   The board | plate material shaping | molding apparatus in any one of Claims 10-14 which has a receptacle which is arrange | positioned on the back side of the board | plate material which the said tool contacts, and supports this board | plate material. 前記受け具が板材の成形モデルからなる請求項15に記載の板材の成形装置。   The plate material forming apparatus according to claim 15, wherein the receiving member is a plate material forming model.
JP2010035424A 2009-02-23 2010-02-19 Method and device for forming plate material Pending JP2010214468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035424A JP2010214468A (en) 2009-02-23 2010-02-19 Method and device for forming plate material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009040018 2009-02-23
JP2010035424A JP2010214468A (en) 2009-02-23 2010-02-19 Method and device for forming plate material

Publications (1)

Publication Number Publication Date
JP2010214468A true JP2010214468A (en) 2010-09-30

Family

ID=42973869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035424A Pending JP2010214468A (en) 2009-02-23 2010-02-19 Method and device for forming plate material

Country Status (1)

Country Link
JP (1) JP2010214468A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132121B1 (en) 2009-10-16 2012-04-05 경북대학교 산학협력단 Rotational incremental forming method for magnesium alloy sheets in a room temperature
WO2014054527A1 (en) * 2012-10-02 2014-04-10 三菱重工業株式会社 Plate forming method and plate forming device
US9511415B2 (en) 2012-04-05 2016-12-06 Toyota Jidosha Kabushiki Kaisha Metal plate forming method
JP2017051995A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Sequential molding method, sequential molding apparatus, and tool for sequential molding method
JP2017051996A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Sequential molding method, and tool for sequential molding method
CN112338051A (en) * 2020-09-11 2021-02-09 山东科技大学 Ultrasonic-assisted incremental forming device and process for aluminum alloy ribbed thin-wall component
JP2021183344A (en) * 2020-05-21 2021-12-02 株式会社高桑製作所 Method for manufacturing titanium metal container by spinning, and titanium metal container obtained by method for manufacturing titanium metal container by spinning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314855A (en) * 1997-05-22 1998-12-02 Toyota Motor Corp Male die forming method of metal sheet
JPH11285741A (en) * 1998-04-03 1999-10-19 Hitachi Ltd Formation of metallic plate and forming tool
JP2005059101A (en) * 2003-08-12 2005-03-10 Boeing Co:The Method for forming desired non-planar configuration by friction stir forming tool, and method and apparatus for forming workpiece to desired non-planar configuration
JP2008126245A (en) * 2006-11-17 2008-06-05 Niigata Prefecture Plastic working method of magnesium alloy sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314855A (en) * 1997-05-22 1998-12-02 Toyota Motor Corp Male die forming method of metal sheet
JPH11285741A (en) * 1998-04-03 1999-10-19 Hitachi Ltd Formation of metallic plate and forming tool
JP2005059101A (en) * 2003-08-12 2005-03-10 Boeing Co:The Method for forming desired non-planar configuration by friction stir forming tool, and method and apparatus for forming workpiece to desired non-planar configuration
JP2008126245A (en) * 2006-11-17 2008-06-05 Niigata Prefecture Plastic working method of magnesium alloy sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132121B1 (en) 2009-10-16 2012-04-05 경북대학교 산학협력단 Rotational incremental forming method for magnesium alloy sheets in a room temperature
US9511415B2 (en) 2012-04-05 2016-12-06 Toyota Jidosha Kabushiki Kaisha Metal plate forming method
WO2014054527A1 (en) * 2012-10-02 2014-04-10 三菱重工業株式会社 Plate forming method and plate forming device
JP2017051995A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Sequential molding method, sequential molding apparatus, and tool for sequential molding method
JP2017051996A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Sequential molding method, and tool for sequential molding method
JP2021183344A (en) * 2020-05-21 2021-12-02 株式会社高桑製作所 Method for manufacturing titanium metal container by spinning, and titanium metal container obtained by method for manufacturing titanium metal container by spinning
CN112338051A (en) * 2020-09-11 2021-02-09 山东科技大学 Ultrasonic-assisted incremental forming device and process for aluminum alloy ribbed thin-wall component
CN112338051B (en) * 2020-09-11 2022-06-24 山东科技大学 Ultrasonic-assisted incremental forming device and process for aluminum alloy ribbed thin-wall component

Similar Documents

Publication Publication Date Title
JP2010214468A (en) Method and device for forming plate material
Sabirov et al. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development
Hamad et al. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys
JP5515167B2 (en) Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same
JP2014043601A (en) Magnesium alloy rolled material and method for manufacturing the same
US20120277007A1 (en) Magnesium-based alloy screw and producing method thereof
JP2007291488A (en) Method and device for producing magnesium alloy material, and magnesium alloy material
Zhang et al. Deep drawability and deformation behavior of AZ31 magnesium alloy sheets at 473 K
Huang et al. Influence of initial texture on cold deep drawability of Mg–3Al–1Zn alloy sheets
Shrivastava et al. Investigation of the effect of grain size on forming forces in single point incremental sheet forming
JP2021514426A (en) Improved magnesium alloy and its manufacturing method
Lee et al. Enhanced yield symmetry and strength-ductility balance of caliber-rolled Mg–6Zn-0.5 Zr with ultrafine-grained structure and bulk dimension
Liu et al. Influence of different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheet
Riaz et al. An investigation on the effects of tool rotational speed and material temper on post-ISF tensile properties of Al2219 alloy
JP5252363B2 (en) Magnesium alloy press-molded body and method for producing the same
Kim et al. Accelerating globularization in additively manufactured Ti-6Al-4V by exploiting martensitic laths
Hamad et al. Continuous differential speed rolling for grain refinement of metals: processing, microstructure, and properties
Wei et al. Effect of heat treatment on microstructures and mechanical properties of extruded-rolled AZ31 Mg alloys
Zhang et al. Influence of anisotropy of the magnesium alloy AZ31 sheets on warm negative incremental forming
Xie et al. Microstructure and mechanical properties of Mg–Li alloys fabricated by wire arc additive manufacturing
JP2007083261A (en) Press-formed body using magnesium alloy large cross-rolled material
JP7168210B2 (en) Manufacturing method of pure titanium metal material thin plate and manufacturing method of speaker diaphragm
JP2009024219A (en) High strength and formable aluminum alloy cold-rolled sheet
Chang et al. Influence of grain size and temperature on micro upsetting of copper
JP2001200349A (en) METHOD OF HOT FINISH ROLLING FOR Mg-Al ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910