JP2017040467A5 - - Google Patents

Download PDF

Info

Publication number
JP2017040467A5
JP2017040467A5 JP2016138010A JP2016138010A JP2017040467A5 JP 2017040467 A5 JP2017040467 A5 JP 2017040467A5 JP 2016138010 A JP2016138010 A JP 2016138010A JP 2016138010 A JP2016138010 A JP 2016138010A JP 2017040467 A5 JP2017040467 A5 JP 2017040467A5
Authority
JP
Japan
Prior art keywords
solid
ice
liquid mixture
solution
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016138010A
Other languages
Japanese (ja)
Other versions
JP6311191B6 (en
JP6311191B2 (en
JP2017040467A (en
JP2017040467A6 (en
Filing date
Publication date
Application filed filed Critical
Publication of JP2017040467A publication Critical patent/JP2017040467A/en
Application granted granted Critical
Publication of JP6311191B2 publication Critical patent/JP6311191B2/en
Publication of JP6311191B6 publication Critical patent/JP6311191B6/en
Publication of JP2017040467A6 publication Critical patent/JP2017040467A6/ja
Publication of JP2017040467A5 publication Critical patent/JP2017040467A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

一定融点温度の固液混合物を生成する方法・システムMethod and system for producing a solid-liquid mixture with a constant melting point temperature 発明の詳細な説明Detailed Description of the Invention

本発明は対象物の温度を一定温度の範囲内に維持するための技術に関する。  The present invention relates to a technique for maintaining the temperature of an object within a certain temperature range.

対象物の温度を一定温度の範囲内に維持することの需要があるであろう。例えば生鮮魚介類、野菜、果樹、細胞及び臓器等(対象物)の氷温による輸送・保存がある。ここで氷温とは上記対象物の凍結温度と0℃の間の温度である(なお、氷温には対象物の凍結温度と0℃は含まれない)。氷温での対象物の輸送、保存は以下の利点を持つ。1)対象物の生存保持、2)微生物の増殖抑制、3)病原性細菌の減少(非特許文献1 p.110)、4)酵素的変化(色調、風味、成分の変質等)及び酸化反応等の抑制(非特許文献1 p.88)。しかし氷温は温度変動の許容度が小さい。例えば生鮮魚介類の凍結温度は−2.25〜−0.75℃とされる(非特許文献1 p.84)。対象物の輸送等において上記氷温等の維持のためにその対象物全てを空間的に温度の変動幅を1℃以内に抑えることは容易ではない。例えば、冷凍機を用いた場合、温度センサの精度、温度測定の位置による温度分布、温度差1℃以内での冷凍機の頻繁なON,OFF作動等の問題がある。この問題の解決方法として氷温の氷(塩水からの氷液混合物等)を用いた対象物の氷蔵が提案されている(非特許文献1 p.36)。  There will be a need to maintain the temperature of the object within a certain temperature range. For example, there is transport / preservation of fresh seafood, vegetables, fruit trees, cells, organs, etc. (objects) depending on the ice temperature. Here, the ice temperature is a temperature between the freezing temperature of the object and 0 ° C (the ice temperature does not include the freezing temperature of the object and 0 ° C). Transportation and storage of objects at ice temperature has the following advantages. 1) Keeping the object alive, 2) Suppressing the growth of microorganisms, 3) Decreasing pathogenic bacteria (Non-patent Document 1, p.110), 4) Enzymatic changes (color tone, flavor, alteration of ingredients, etc.) and oxidation reaction Etc. (Non-patent Document 1 p. 88). However, ice temperature has a low tolerance for temperature fluctuations. For example, the freezing temperature of fresh seafood is set to −2.25 to −0.75 ° C. (Non-patent Document 1, p. 84). In order to maintain the above-mentioned ice temperature or the like during transportation of the object, it is not easy to spatially suppress the temperature fluctuation range within 1 ° C. for all the objects. For example, when a refrigerator is used, there are problems such as temperature sensor accuracy, temperature distribution due to temperature measurement position, and frequent ON / OFF operation of the refrigerator within a temperature difference of 1 ° C. As a solution to this problem, ice storage of an object using ice-temperature ice (such as an ice-cold mixture from salt water) has been proposed (Non-patent Document 1, p. 36).

小嶋秩夫編、魚のスーパーチリング、恒星社厚生閣、東京 1986Edited by Chio Kojima, Fish Super Chilling, Hoshiseisha Kouseikaku, Tokyo 1986

上記の氷蔵のための氷温氷の生成を可能とする装置には、氷と海水を混合する大規模な装置、または円筒槽内に水溶液を満たし、円筒槽内面(冷却面)に氷層を形成し、その氷層を掻き取り、円筒槽内で掻き取られた氷と水溶液を混合し、融点一定の氷液混合物を作る装置もある。しかしこれらの装置は、氷液混合物生成槽全体の氷と液の割合(又は割合分布)を一定にしなければならない。このため氷液混合物の排出が間欠的となったり、また装置の初動に時間がかかり、かつ氷液混合物の融点の変更を必要とする需要(凍結点の異なる複種の魚介類等)に迅速に対応できない。また、液状の氷液混合物(シャーベット 等)は溶け易く(対象物の低温度維持での)長時間の輸送・保存に問題を抱える。 The above-mentioned equipment that enables the generation of warm ice for ice storage is a large-scale device that mixes ice and seawater, or a cylindrical tank filled with an aqueous solution, and an ice layer on the inner surface (cooling surface) of the cylindrical tank There is also an apparatus that scrapes the ice layer and mixes the ice scraped in a cylindrical tank with an aqueous solution to form an ice-liquid mixture having a constant melting point. However, in these apparatuses, the ratio (or ratio distribution) of ice and liquid in the entire ice-liquid mixture production tank must be constant. For this reason, the discharge of the ice liquor mixture is intermittent, the initial operation of the apparatus takes time, and it is necessary to change the melting point of the ice liquor mixture quickly (such as multiple types of seafood with different freezing points). I can not cope. In addition, liquid ice mixture ( such as sherbet ) is easily melted and has a problem in transportation and storage for a long time (while maintaining the low temperature of the object).

また、水産業等においては固定円筒内面(冷却面)へ落水(水道水)し、回転する掻取り刃により氷を生成する装置が広く使われている。この形式の製氷機を用い水道水を海水に変えることにより一定融点温度の氷を生成することが考えられるであろう。  Also, in the fishery industry and the like, a device that drops water (tap water) onto the inner surface (cooling surface) of a fixed cylinder and generates ice with a rotating scraping blade is widely used. It would be possible to generate ice with a constant melting temperature by changing tap water to seawater using this type of ice making machine.

しかし、この落水による製氷は、冷却面に発達する氷層へ溶質が取り込まれ難い(非特許文献2、3)。このため冷却面を落水した原液は、(氷の生成により)溶質よりも水分の除去割合が大きい。また、原液の溶質濃度が低いほど水分の除去割合が大きい(氷層へ溶質が取り込まれ難い)。  However, this ice making by falling water makes it difficult for the solute to be taken into the ice layer developed on the cooling surface (Non-Patent Documents 2 and 3). For this reason, the undiluted solution that has dropped the cooling surface has a higher water removal rate than the solute (due to the formation of ice). Moreover, the lower the solute concentration in the stock solution, the greater the water removal rate (the solute is less likely to be taken into the ice layer).

Chen Ping,Xiao Dong Chen,Kevin W.Free、An experimental study on the spatial uniformity of solute inclusion in ice formed from falling film flows on a sub−cooled surface、Journal of Food Engineering,Vol.39,p.101 1999Chen Ping, Xiao Dong Chen, Kevin W. Free, An experimental study on the spatial uniformity of solid inclusion in ice, forming, fol- lowing, and substituting. 39, p. 101 1999 Muller,M.and I.Sekoulov,Waste water reuse by freeze concentration with a falling film reactor,Wat.Sci.Tech.,Vol.26,No.7−8,p.1475 1992Muller, M.M. and I.I. Sekoulov, Waste water reuse by freeze contention with a falling film reactor, Wat. Sci. Tech. , Vol. 26, no. 7-8, p. 1475 1992

この落水型製氷機において連続的に氷層を生成するために原液を循環するとした場合、上記により氷の溶質濃度の調整が難しいものとなる。さらに氷を海水との混合により融点を調整することもいっそう困難な作業となる。  When the stock solution is circulated in order to continuously generate an ice layer in this falling water type ice making machine, it becomes difficult to adjust the solute concentration of ice. In addition, it is more difficult to adjust the melting point by mixing ice with seawater.

上記問題を避けるためにこの型の製氷機において原液を循環せず、常に新たな一定溶質濃度の原液(海水等)を供給することが考えられる。しかしこの場合、原液を常時新たに(顕熱)冷却し冷却面へ供給しなければならず原液の冷却のためのエネルギが非常に大きなものになる。  In order to avoid the above problems, it is conceivable to always supply a new stock solution (seawater or the like) having a constant solute concentration without circulating the stock solution in this type of ice making machine. However, in this case, the stock solution must be constantly renewed (sensible heat) and supplied to the cooling surface, and the energy for cooling the stock solution becomes very large.

一般的に冷凍機を用い(特に輸送において)対象物(生鮮魚介類、細胞及び臓器等)全てを空間的に温度の変動幅を1℃以内に抑えることは困難である。また、左記目的のための氷蔵による方法がある。しかし氷蔵のための一定融点の氷液混合物を生成する既存装置は以下等の問題点を持つ。・対象物の温度を長時間一定に維持できない。複数の融点 変動需要に迅速に対応できない。・大規模(高イニシャルコスト)となる。Generally, it is difficult to use a refrigerator (especially in transport) to spatially keep the temperature fluctuation range within 1 ° C. for all objects (fresh fish and shellfish, cells, organs, etc.). There is also an ice storage method for the purpose described on the left. However, the existing apparatus for producing an ice liquid mixture having a constant melting point for ice storage has the following problems. ・ The temperature of the object cannot be kept constant for a long time. · Not respond quickly to a plurality of the melting point of demand fluctuations.・ Large scale (high initial cost).

本発明は以下の文献研究を検討することにより考案された。
非特許文献4に次の事が記されている。溶液に対して冷却面からの一方向冷却の場合、氷結晶は冷却面に対して(垂直に交叉した枝を持つ)針状又は棒状の結晶に成長する(p.117)。また、結晶核(微細結晶)の生成速度は過冷却度(冷却面と溶液の温度差)の2乗に比例し(過冷却度が大きい程、微細結晶の量が多くなる)、結晶の成長速度は過冷却度の1乗に比例する(p.121)。さらに結晶核の生成速度が速い程、結晶の成長速度が遅い(p.120)。
上記文献の記述から一方向冷却と大きな過冷却度により冷却面に溶質及び微細気泡を取り込んだ氷層(氷液混合物)を作ることが可能と考えられる。
The present invention was devised by examining the following literature studies.
Non-Patent Document 4 describes the following. When the solution is unidirectionally cooled from the cooling surface, the ice crystal grows into a needle-like or rod-like crystal (with branches intersecting perpendicularly) with respect to the cooling surface (p. 117). In addition, the generation rate of crystal nuclei (fine crystals) is proportional to the square of the degree of supercooling (temperature difference between the cooling surface and the solution) (the larger the degree of supercooling, the larger the amount of fine crystals), and crystal growth The speed is proportional to the first power of the degree of supercooling (p. 121). Furthermore, the faster the crystal nucleus generation rate, the slower the crystal growth rate (p.120).
From the description in the above document, it is considered possible to form an ice layer (ice liquid mixture) in which solute and fine bubbles are taken into the cooling surface by one-way cooling and a large degree of supercooling.

Thijssen,H.A.C.,Advance in Preconcentration and Dehydration of Foods,A.Spicer ed.p.115,Applied Scinence Pub.LTD,London,UK(1974)Thijsssen, H.C. A. C. , Advances in Preconcentration and Dehydration of Foods, A. Spider ed. p. 115, Applied Science Pub. LTD, London, UK (1974)

非特許文献5は、凍結濃縮装置を試作しその装置の経済性について検討している。装置は基本的に真空蒸発装置、遠心分離機及び円筒凍結機(冷却回転円筒氷液混合物生成機)からなり、上記円筒凍結機は冷却回転円筒、円筒溶液槽(冷却回転円筒を溶液に浸す槽)及び冷却回転円筒の表面に接近して設けられた掻き取り刃によって構成されているこの文献は装置の経済性の研究であるが、その中で円筒溶液槽中の海水原液(模擬海水:岩塩水)の初期比重1.0215における円筒凍結機から排出される氷布(氷片)(氷液混合物)の比重の変化が4時間で1.021から1.024であることが知られる。  Non-Patent Document 5 makes a prototype of a freeze concentration apparatus and examines the economics of the apparatus. The apparatus basically consists of a vacuum evaporator, a centrifuge, and a cylindrical freezer (cooled rotating cylindrical ice liquid mixture generator). The cylindrical freezer is a cooling rotating cylinder, a cylindrical solution tank (a tank in which the cooling rotating cylinder is immersed in the solution). ) And a scraping blade provided close to the surface of the cooling rotating cylinder, this document is a study of the economics of the device, in which the seawater stock solution (simulated seawater: rock salt in a cylindrical solution tank) It is known that the change in the specific gravity of the ice cloth (ice piece) (ice liquid mixture) discharged from the cylindrical freezer at an initial specific gravity of 1.0215 of water is 1.021 to 1.024 in 4 hours.

岡部豊彦、酒井真一、食塩水の凍結による濃縮(II)、電気試験所業報,Vol.20,No.11,p.856 1956Okabe Toyohiko, Sakai Shinichi, Concentration by Freezing of Saline (II), Electrical Laboratory Report, Vol. 20, no. 11, p. 856 1956

一方、非特許文献6は、上記非特許文献5と関係を持たない研究であるが海水の比重と塩分濃度の関係が記されている。  On the other hand, Non-Patent Document 6 is a research not related to Non-Patent Document 5 described above, but describes the relationship between the specific gravity of seawater and the salinity concentration.

Figure 2017040467
Figure 2017040467

さらに、非特許文献7は、上記非特許文献5及び特許文献6と関係を持たない研究であるが冷凍海水の塩分濃度と氷点の関係が記されている。  Furthermore, Non-Patent Document 7 is a study that has no relationship with Non-Patent Document 5 and Patent Document 6, but describes the relationship between the salinity of frozen seawater and the freezing point.

馬野周二、川崎成武、海水の冷凍濃縮および海水成分の有効利用に関する研究(第一報)、東工試報,Vol.53,No.11,p.365 1958Shuji Umano, Narutake Kawasaki, Research on freezing and concentration of seawater and effective use of seawater components (1st report), Tokyo Technical Report, Vol. 53, no. 11, p. 365 1958

これらのことから上記非特許文献5の円筒溶液槽中の海水原液の初期比重1.0215(塩分濃度約3wt%)における生成する氷片の氷点の変化は、4時間で−1.49℃(比重1.021)から−1.70℃(比重1.024)までのわずか0.21℃だけであることが知られる。  From these facts, the change in the freezing point of the ice pieces produced at the initial specific gravity of 1.0215 (salinity concentration of about 3 wt%) of the seawater stock solution in the cylindrical solution tank of Non-Patent Document 5 is −1.49 ° C. in 4 hours ( It is known that only 0.21 ° C. from a specific gravity of 1.021) to −1.70 ° C. (specific gravity of 1.024).

非特許文献8は、海水及び海水希釈液からの氷液混合物における氷の含有率(50%以下)による融点の変化を(表として)記している  Non-Patent Document 8 describes (as a table) changes in melting point depending on the ice content (50% or less) in the ice-water mixture from seawater and seawater dilutions.

児玉修、シャーベット海水氷の実力と使用方法、養殖、Vol.42,No.5,p.18 2005Kodama Osamu, Ability and Usage of Sherbet Sea Ice, Aquaculture, Vol. 42, no. 5, p. 18 2005

上記の結果から本発明は、一定融点の固液混合物を生成するための基本的に原液タンク、希釈液タンク、混合タンク及び回転円筒固液混合物生成機から構成され、さらに固液混合物の固体の含有率を一定とするシステムを提案する。  From the above results, the present invention is basically composed of a raw liquid tank, a diluting liquid tank, a mixing tank, and a rotating cylindrical solid-liquid mixture generator for generating a solid-liquid mixture having a constant melting point, and further a solid-liquid mixture of a solid-liquid mixture. A system with a constant content rate is proposed.

その工程は以下となる。原液タンク中の原液(溶質を含んだ液)と希釈液タンク中の希釈液が混合タンクへ送られる。この時、混合タンク中の溶液の溶質濃度が(対象物による)目的の固液混合物の融点(固液混合物の固体の割合)に対応した溶質濃度(左記固液混合物中の固体が融解しその固体の含有率が0となった時の混合物の溶質濃度)となるよう混合タンクへ送られる原液量と希釈液量の割合を(原液タンク及び希釈液タンクに設けられた液位センサ等により)一定割合とする。この時、混合タンク中の混合液を攪拌してもよい。なお、本発明の使用の目的により原液、希釈液、またはその混合液をろ過及び殺菌(紫外線殺菌等)してもよい。上記により溶質濃度の調整された混合タンク中の混合液は、回転円筒固液混合物生成機の円筒溶液槽(冷却回転円筒を混合液に浸す槽)(なお、円筒溶液槽はどのような形状であってもよい)へ送られる。  The process is as follows. The stock solution (solution containing solute) in the stock solution tank and the dilution solution in the dilution solution tank are sent to the mixing tank. At this time, the solute concentration of the solution in the mixing tank (depending on the object) corresponds to the melting point of the target solid-liquid mixture (the ratio of solids in the solid-liquid mixture). The ratio of the amount of stock solution and the amount of dilute solution sent to the mixing tank so that it becomes the solute concentration of the mixture when the solid content becomes 0 (by the liquid level sensor etc. provided in the stock solution tank and the dilute solution tank) Set at a constant rate. At this time, the mixed solution in the mixing tank may be stirred. Depending on the purpose of use of the present invention, the stock solution, the diluted solution, or the mixed solution thereof may be filtered and sterilized (ultraviolet sterilization or the like). The mixed liquid in the mixing tank whose solute concentration has been adjusted as described above is a cylindrical solution tank (tank in which the cooling rotating cylinder is immersed in the mixed liquid) of the rotating cylindrical solid-liquid mixture generator. May be).

回転円筒固液混合物生成機は基本的に冷却回転円筒、円筒溶液槽及び冷却回転円筒の表面に接近して設けられた掻き取り刃によって構成されている。冷却回転円筒はその表面材料の裏面が冷媒(またはブライン)によって冷却されており、また 冷却回転円筒は 円筒溶液槽中の混合液に浸されている。冷却回転円筒は冷却回転円筒表面に混合液から固液混合物を生成し、生成された固液混合物は掻き取り刃によって掻き取られ排出される。  The rotating cylindrical solid-liquid mixture generator is basically composed of a cooling rotating cylinder, a cylindrical solution tank, and a scraping blade provided close to the surface of the cooling rotating cylinder. The back surface of the cooling rotating cylinder is cooled by a refrigerant (or brine), and the cooling rotating cylinder is immersed in the liquid mixture in the cylindrical solution tank. The cooling rotating cylinder generates a solid-liquid mixture from the liquid mixture on the surface of the cooling rotating cylinder, and the generated solid-liquid mixture is scraped off by a scraping blade and discharged.

この時、排出される固液混合物の固体の含有率(融点)を一定とするため冷却回転円筒の冷却温度と回転数を排出される固液混合物の希望する融点(固体の含有率)、混合液の溶質濃度及び外気温度に対応した値とする。なお、冷却回転円筒の回転数はその冷却温度によって(または冷却温度は回転数によって)決めることが出来る。また、ここでの外気温度とは回転円筒固液混合物生成機の雰囲気温度、またはその構成要素によって作られる空間温度である。この時必要であればこの外気温度、または回転円筒固液混合物生成機の構成機器を断熱材及び温度制御システムにより一定温度にしてもよい。さらに対象物(魚介類等)、または用途が限定される場合は、上記冷却回転円筒の回転数、冷却温度、混合液の溶質濃度、外気温度のどれか、または複数、または全てを固定の値としても良い。  At this time, in order to keep the solid content (melting point) of the solid-liquid mixture to be discharged constant, the cooling temperature of the cooling rotating cylinder and the desired melting point (solid content) of the solid-liquid mixture to be discharged are mixed. The value corresponds to the solute concentration of the liquid and the outside air temperature. The rotational speed of the cooling rotating cylinder can be determined by the cooling temperature (or the cooling temperature is determined by the rotational speed). In addition, the outside air temperature here is the atmospheric temperature of the rotating cylindrical solid-liquid mixture generator, or the space temperature created by its components. At this time, if necessary, the temperature of the outside air or the components of the rotating cylindrical solid-liquid mixture generator may be kept constant by a heat insulating material and a temperature control system. Furthermore, when the object (fishery products, etc.) or the application is limited, the rotation number of the cooling rotating cylinder, the cooling temperature, the solute concentration of the mixed liquid, the outside air temperature, or a plurality, or all of them are fixed values. It is also good.

上記冷却回転円筒の回転数及び冷却温度の調整は、回転数がインバータ等を用い、冷却温度が電磁弁等による(冷凍機と冷却回転円筒の間の)冷媒回路の変更、または冷凍機へのインバータの使用等の方法を用いる事が出来る。  Adjustment of the number of rotations and the cooling temperature of the cooling rotating cylinder is performed by changing the refrigerant circuit (between the refrigerator and the cooling rotating cylinder) using a solenoid valve or the like, or by using an inverter or the like. Methods such as using an inverter can be used.

冷却回転円筒により生成する固液混合物の融点の時間による変動幅を小さくするために円筒溶液槽内の溶液を定期的(例えば1〜2時間おき)に排出し、新規に混合タンクからの混合液を円筒溶液槽へ供給してもよい。さらに、この円筒凍結機の円筒溶液槽は冷却回転円筒を溶液に浸すための物である。このため円筒溶液槽中の溶液の液量を多く必要とせず、上記の溶液の排出のための冷熱エネルギの損失は大きなものにならない。  In order to reduce the fluctuation range of the melting point of the solid-liquid mixture generated by the cooling rotating cylinder over time, the solution in the cylindrical solution tank is periodically discharged (for example, every 1 to 2 hours), and a new mixed liquid from the mixing tank May be supplied to the cylindrical solution tank. Furthermore, the cylindrical solution tank of this cylindrical freezing machine is for immersing the cooling rotating cylinder in the solution. For this reason, a large amount of the solution in the cylindrical solution tank is not required, and the loss of the cooling energy for discharging the solution does not become large.

本発明の回転円筒固液混合物生成機は単純な構造で固液混合物を連続的に生成する。また、冷却面からの固液混合物層の掻き取り残し(冷却伝熱抵抗)もない。このため装置単位体積当たりの固液混合物の大量生成が可能である。  The rotating cylindrical solid-liquid mixture generator of the present invention continuously generates a solid-liquid mixture with a simple structure. Further, there is no scraping of the solid-liquid mixture layer from the cooling surface (cooling heat transfer resistance). For this reason, a large amount of solid-liquid mixture per unit volume of the apparatus can be produced.

なお、本発明における一定融点とは一点の温度ではなくわずかな幅を持つ温度であってもよい。例えば、本発明のシステム稼働時間(例えば1時間、又は3時間)中の生成する固液混合物の融点の変動幅が0.25℃以内、0.5℃以内及び1℃以内であってもよい。  The constant melting point in the present invention may be a temperature having a slight width instead of a single point. For example, the fluctuation range of the melting point of the solid-liquid mixture produced during the system operation time (for example, 1 hour or 3 hours) of the present invention may be within 0.25 ° C, within 0.5 ° C, and within 1 ° C. .

本発明の固液混合物の生成方法は、背景技術に記した氷温の維持の他に以下の利点を持つ。
1)本発明は、固液混合物を扁平形状及び固体状(例えば厚さ3mmの扁平氷片)に生成することができる(本発明の固体状の固液混合物は固体の含有率を50%以上としても良い)。このため以下の理由により(シャーベット氷等に比べ)溶けにくく(対象物の低温維持での)長期輸送・保存に適している。
・固液混合物の扁平形状は扁平固液混合物間に空気層を持つ多層を形成する。このため断熱性を持ち溶け難い。
・当然の事であるが、固体状の固液混合物は液状の固液混合物に比べ単位体積当たりの固体の割合が多い。このことは、固体状の固液混合物は融解潜熱量が多く、低温の維持を格段に長時間化することになる。
・固液混合物中の固体の融解速度は、液体の割合が多い程(液体の流動による熱移動速度が速くなり)速くなる。このため固体状の氷液混合物は液状の氷液混合物に比べ氷の融解速度が遅い。
2)本発明は生成する固液混合物の必要融点と混合液の溶質濃度の関係等により固液混合物の固体の含有率を変えることが出来る。このため柔らかな固液混合物(柔らかい氷片等)を得るための混合液の溶質濃度と固液混合物の固体(氷等)の含有率を選択出来る。柔らかな氷片は魚体等の水産物を傷つけることがない。
3)本発明による固体状の氷液混合物(氷片)は離れた場所にある対象物への供給(スクリウコンベア等)が容易となる。一方、(他の技術による)液状の氷液混合物の場合、離れた場所にある対象物への供給は、(氷液の比重差により)供給中に氷液が分離し易い難点を抱える。
4)本発明は短時間(数分等)の簡単な操作(予め作成された表、またはプログラム制御器等による混合液の溶質濃度、冷却回転円筒の回転数及び冷却温度等の設定)で一定融点の固液混合物を生成できる。このため初動の定常運転までの時間が非常に短い。また、固液混合物の融点温度の変更も同様に短時間で行うことが出来、複数の種類の対象物(凍結点の異なる複数の種類の魚介類等)を持つ需要に対しても迅速に対応する。一方、既存のシャーベット氷等の生成方法は、氷生成槽又は氷液混合槽において槽全体の氷と液の割合(又は割合分布)を一定にしなければならない。このため装置の初動に時間がかかり、また氷液混合物の融点の変更に迅速に対応できない。
5)水産物(魚介類及び海草等)は、(その種類により)漁獲時期・期間が限定的であるのが一般的である。また、対象水産物における本発明の一定融点温度固液混合物による鮮度保持の有効性確認のためには現地での漁獲直後のテストが最適であろう。このため本発明のシステムは、必要場所で必要期間稼働する移動式(車、船等)が好まれる場合が多いと思われる。この点において本発明のシステムは装置構造が簡単であるため、移動体(車体及び船体等)への搭載が容易である利点を持つ。
The method for producing a solid-liquid mixture of the present invention has the following advantages in addition to maintaining the ice temperature described in the background art.
1) The present invention can produce a solid-liquid mixture in a flat shape and a solid form (for example, a flat ice piece having a thickness of 3 mm) (the solid solid-liquid mixture of the present invention has a solid content of 50% or more. As good). For this reason, it is difficult to melt (compared to sherbet ice or the like) for the following reasons, and is suitable for long-term transportation and storage (with the object kept at a low temperature).
-The flat shape of the solid-liquid mixture forms a multilayer with an air layer between the flat solid-liquid mixture. For this reason, it has heat insulation and is hard to melt.
Of course, solid solid-liquid mixtures have a higher percentage of solids per unit volume than liquid solid-liquid mixtures. This means that the solid solid-liquid mixture has a large amount of latent heat of fusion, and the maintenance of the low temperature is significantly prolonged.
-The melting rate of the solid in the solid-liquid mixture increases as the proportion of the liquid increases (the heat transfer rate due to the flow of the liquid increases). For this reason, the solid ice-liquid mixture has a slower ice melting rate than the liquid ice-liquid mixture.
2) In the present invention, the solid content of the solid-liquid mixture can be changed depending on the relationship between the required melting point of the solid-liquid mixture to be produced and the solute concentration of the liquid mixture. For this reason, it is possible to select the solute concentration of the mixed solution for obtaining a soft solid-liquid mixture (soft ice pieces or the like) and the solid content (ice or the like) of the solid-liquid mixture. Soft ice pieces do not damage fish and other marine products.
3) The solid ice-liquid mixture (ice piece) according to the present invention can be easily supplied to a target object (such as a scribe conveyor) at a distant place. On the other hand, in the case of a liquid ice liquid mixture (by other techniques), the supply to an object in a remote place has a difficulty in separating the ice liquid during supply (due to the specific gravity difference of the ice liquid).
4) The present invention is constant in a short time (several minutes etc.) simple operation (setting of solute concentration of mixed solution, rotation speed of cooling rotating cylinder, cooling temperature, etc. by a table prepared in advance or a program controller) A melting point solid-liquid mixture can be produced. For this reason, the time to the initial steady operation is very short. In addition, the melting point temperature of the solid-liquid mixture can be changed in a short time as well, and we can respond quickly to demands with multiple types of objects (such as multiple types of seafood with different freezing points). To do. On the other hand, the existing method for producing sherbet ice or the like requires that the ratio (or ratio distribution) of ice and liquid in the entire tank is made constant in an ice generation tank or an ice liquid mixing tank. For this reason, the initial operation of the apparatus takes time, and it is impossible to respond quickly to the change of the melting point of the ice-liquid mixture.
5) It is common for fishery products (seafood, seaweed, etc.) to have a limited catch time and period (depending on their type). Moreover, in order to confirm the effectiveness of maintaining the freshness of the target marine product with the solid-liquid mixture of the constant melting point temperature of the present invention, an on-site test immediately after fishing will be optimal. For this reason, the system of the present invention is often preferred to be mobile (car, ship, etc.) that operates at a required place for a required period. In this respect, the system of the present invention has an advantage that it can be easily mounted on a moving body (a vehicle body, a hull, etc.) because the device structure is simple.

なお、0012に記した様に溶液の凍結においては、過冷却度が大きい程、微細結晶の量が多くなる。このことから凍結濃縮を目的として水溶液を凍結する場合、水溶液の過冷却度が小さい(冷却温度が氷液の融点に近い)程、好ましい。これは凍結濃縮の場合、過冷却度が小さい程、氷の結晶径が大きくなり、氷と濃縮液の分離効率が良くなることによる(凍結濃縮の分離効率は平均結晶径の2乗に比例する:非特許文献4 p.130)。なお、海水(塩分濃度3.5wt%)の融点は−2.2℃である(非特許文献8)。一方、本発明の技術は過冷却度が大きい(冷却温度が低い)程、好ましい。これは冷却温度が低い程、微細結晶が増加し氷層(氷液混合物)に溶質及び微細気泡が取り込まれ易くなるためである。このため本発明技術の水溶液の冷却面温度は(一般的な製氷のための製氷機の冷却面温度である−15〜−10℃程よりもさらに低い)−20℃以下が好ましい。  As described in 0012, in freezing a solution, the amount of fine crystals increases as the degree of supercooling increases. Therefore, when the aqueous solution is frozen for the purpose of freeze concentration, the degree of supercooling of the aqueous solution is preferably small (the cooling temperature is close to the melting point of the ice liquid). This is because, in the case of freeze concentration, the smaller the degree of supercooling, the larger the ice crystal diameter and the better the separation efficiency of ice and concentrate (the freeze-concentration separation efficiency is proportional to the square of the average crystal diameter). : Non-Patent Document 4 p.130). In addition, melting | fusing point of seawater (salt concentration 3.5 wt%) is -2.2 degreeC (nonpatent literature 8). On the other hand, the technology of the present invention is preferable as the degree of supercooling is large (the cooling temperature is low). This is because the lower the cooling temperature, the more fine crystals increase and the solute and fine bubbles are more easily taken into the ice layer (ice liquid mixture). For this reason, the cooling surface temperature of the aqueous solution of the present invention is preferably −20 ° C. or lower (further lower than about −15 to −10 ° C. which is the cooling surface temperature of an ice making machine for general ice making).

また、本発明では氷液混合物を固体状とし、かつその融点を生鮮魚介類の氷温域とするためには、混合液の塩分濃度を2wt%以下とすることが好ましい(0021参照)。
なお、本発明は混合液を海水(塩分濃度3.5wt%)とした場合、氷液混合物の氷の含有率20%以下での冷却面への氷層(氷液混合物)の生成は困難である(この氷の含有率20%以下の氷液混合物は液状であるため氷層を形成できないことによる)。この時、海水(塩分濃度3.5wt%)の氷液混合物の氷の含有率20%以上における融点は−2.8℃以下となる(非特許文献8)。
In the present invention, it is preferable that the salt concentration of the mixed solution is 2 wt% or less in order to make the ice solution mixture in a solid state and the melting point thereof is the ice temperature range of fresh fish and shellfish (see 0021).
In the present invention, when the mixed solution is seawater (salt concentration of 3.5 wt%), it is difficult to generate an ice layer (ice solution mixture) on the cooling surface when the ice content of the ice solution mixture is 20% or less. Yes (because this ice mixture with an ice content of 20% or less is in a liquid state, an ice layer cannot be formed). At this time, the melting point of the ice solution mixture of seawater (salt concentration 3.5 wt%) at an ice content of 20% or more is −2.8 ° C. or less (Non-patent Document 8).

また、本発明は、混合液(ここでの混合液は溶質を含まない液、溶質濃度が調整されていない溶液及びサスペンション液であってもよい)中に浮遊させた微細な気泡(窒素、オゾン等)も生成する固液混合物(氷片等)中に含ませることができる。この時、固液混合物中の固体(氷結晶等)間の液中及び固体間に微細気泡が取り込まれるため固液混合物から気泡が抜け難く、気泡によるその期待効果(酸化抑制、殺菌性等)を持続させることができる。また、固体が氷等の低温物質の場合、低温であることによる固液混合物からの気泡の抜け難さの効果も期待できる。  In addition, the present invention relates to fine bubbles (nitrogen, ozone, etc.) suspended in a mixed solution (the mixed solution here may be a solution containing no solute, a solution in which the solute concentration is not adjusted, and a suspension solution). Etc.) can also be included in the resulting solid-liquid mixture (ice pieces, etc.). At this time, since fine bubbles are taken in between and between solids (ice crystals, etc.) in the solid-liquid mixture, it is difficult for the bubbles to escape from the solid-liquid mixture, and the expected effects of the bubbles (oxidation suppression, bactericidal properties, etc.) Can be sustained. In addition, when the solid is a low-temperature substance such as ice, the effect of difficulty in removing bubbles from the solid-liquid mixture due to the low temperature can be expected.

また、本発明によって生成される固液混合物中の固化物は結晶に限らずアモルファスを含むどのような物であってもよい。  Further, the solidified product in the solid-liquid mixture produced by the present invention is not limited to crystals, and may be any material including amorphous.

また、本発明の装置の大きさは、その用途及び使用に応じてさまざまな大きさがあってもよい。  Also, the size of the device of the present invention may vary depending on its application and use.

また、本発明の技術は食品(生鮮魚介類等)以外の分野へも用いることができる。例えば医学及び医療における細胞、微生物及び臓器の輸送・保存への利用も考えられる。  The technique of the present invention can also be used in fields other than food (fresh fish and shellfish). For example, use for transportation and preservation of cells, microorganisms and organs in medicine and medicine is also conceivable.

本発明により対象物の温度を長時間一定温度の範囲内(氷温等)に維持する固液混合物(氷液混合物等)を簡単な操作、低イニシャルコスト及び大量生成することが可能となる。According to the present invention , it is possible to easily produce a solid-liquid mixture (such as an ice-liquid mixture ) that maintains the temperature of an object within a constant temperature range (such as ice temperature) for a long time with a simple operation, low initial cost, and mass production. .

本発明の実施形態の1例を示すフロー図The flowchart which shows an example of embodiment of this invention 本発明の冷却回転円筒製氷機The cooled rotating cylindrical ice machine of the present invention

図1は本発明の実施形態の1例を示す海水タンク1、水道水タンク2、混合タンク3及び冷却回転円筒製氷機4(図2)から基本的に構成されるシステムである。海水タンク1中の海水1aと水道水タンク2中の水道水2aが、混合タンク3へ送られる。この時、混合タンク中の溶液(混合液3a)の塩分濃度が目的の氷液混合物4aの融点(氷液混合物4aの氷の割合)に対応した塩分濃度(左記氷液混合物中の氷が融解し氷の含有率が0となった時の混合物の塩分濃度)となるよう混合タンクへ送られる海水量と水道水量の割合を海水タンク1と水道水タンク2のそれぞれの水位センサにより一定割合とする。混合タンク3中の混合液3aは冷却回転円筒製氷機4の円筒溶液槽4cへ円筒溶液槽4cの水位を検知することにより供給される。冷却回転円筒4bは、その表面材料の裏面が冷媒によって冷却されており、また冷却回転円筒4bは円筒溶液槽4c中の混合液に浸されている。冷却回転円筒は冷却回転円筒表面に混合液から氷液混合物を生成し、生成された氷液混合物4aは掻き取り刃4dによって掻き取られ排出される。この時、冷却回転円筒製氷機4の雰囲気温度(外気温度)6が計測されており、その信号が制御器5に送られている。制御器5は、上記雰囲気温度6、冷却回転円筒4bの冷却温度、冷却回転円筒製氷機4から排出される氷液混合物4aの希望する融点(氷の含有率)及び混合液3aの塩分濃度に対応した冷却回転円筒4bの回転数となるよう制御信号7を冷却回転円筒製氷機4に送っている。なお、この実施形態では冷却回転円筒の冷却温度は−20℃の固定温度としている。  FIG. 1 is a system basically composed of a seawater tank 1, a tap water tank 2, a mixing tank 3, and a cooling rotary cylindrical ice making machine 4 (FIG. 2) showing an example of an embodiment of the present invention. Seawater 1 a in the seawater tank 1 and tap water 2 a in the tap water tank 2 are sent to the mixing tank 3. At this time, the salt concentration of the solution (mixed solution 3a) in the mixing tank corresponds to the melting point of the target ice solution mixture 4a (the ice ratio of the ice solution mixture 4a) (the ice in the ice solution mixture on the left is melted). The ratio of the amount of seawater sent to the mixing tank and the amount of tap water to be equal to the salinity of the mixture when the content rate of sushi ice becomes 0) is set to a certain ratio by the water level sensors of the seawater tank 1 and the tap water tank 2, respectively. To do. The mixed liquid 3a in the mixing tank 3 is supplied to the cylindrical solution tank 4c of the cooling rotating cylindrical ice making machine 4 by detecting the water level of the cylindrical solution tank 4c. The cooling rotating cylinder 4b is cooled by a refrigerant on the back surface of the surface material, and the cooling rotating cylinder 4b is immersed in the mixed solution in the cylindrical solution tank 4c. The cooling rotating cylinder generates an ice liquid mixture from the mixed liquid on the surface of the cooling rotating cylinder, and the generated ice liquid mixture 4a is scraped and discharged by the scraping blade 4d. At this time, the ambient temperature (outside air temperature) 6 of the cooling rotary cylinder ice making machine 4 is measured, and the signal is sent to the controller 5. The controller 5 adjusts the atmospheric temperature 6, the cooling temperature of the cooling rotating cylinder 4b, the desired melting point (ice content) of the ice liquid mixture 4a discharged from the cooling rotating cylinder ice making machine 4, and the salt concentration of the mixed liquid 3a. A control signal 7 is sent to the cooling rotary cylinder ice making machine 4 so that the rotation speed of the corresponding cooling rotary cylinder 4b is obtained. In this embodiment, the cooling temperature of the cooling rotary cylinder is set to a fixed temperature of −20 ° C.

本発明は対象物の温度を氷温等の一定温度の範囲内に長時間維持するために用いる固液混合物を簡単な操作、低イニシャルコスト及び連続大量生成する方法を提供する。The present invention provides a simple operation, a low initial cost and a continuous mass production method for a solid-liquid mixture used for maintaining the temperature of an object within a certain temperature range such as ice temperature for a long time .

1 海水タンク
1a 海水
2 水道水タンク
2a 水道水
3 混合タンク
3a 混合液
4 冷却回転円筒製氷機
4a 氷液混合物
4b 冷却回転円筒
4c 円筒溶液槽
4d 掻き取り刃
5 制御器
6 外気温度センサー
7 冷却回転円筒の回転数制御信号
DESCRIPTION OF SYMBOLS 1 Seawater tank 1a Seawater 2 Tap water tank 2a Tap water 3 Mixing tank 3a Mixture 4 Cooling rotation cylindrical ice machine 4a Ice liquid mixture 4b Cooling rotation cylinder 4c Cylindrical solution tank 4d Scraping blade 5 Controller 6 Outside air temperature sensor 7 Cooling rotation Cylindrical speed control signal

Claims (3)

対象物の温度を一定に維持するための固液混合物を生産する方法であって、
原液と希釈液を混合し一定溶質濃度の混合液を得る工程と、
冷却回転円筒、該冷却回転円筒を混合液に浸す円筒溶液槽及び該冷却回転円筒に接近して設けられた掻き取り刃で構成され、該混合液を該円筒溶液槽に送り、該冷却回転円筒表面に固液混合物を生成し、生成された固液混合物を該掻き取り刃によって掻き取り排出する 工程からなる、
融点温度一定の扁平形状及び固体状の固液混合物を連続的に生産する方法。
A method for producing a solid-liquid mixture for maintaining a constant temperature of an object,
Mixing the stock solution and the diluted solution to obtain a mixed solution having a constant solute concentration;
Cooling the rotary cylinder, it is composed of a scraping blade arranged close to the cylindrical solution vessel and the cooling rotating cylinder immersing the cooling rotating cylinder to the mixture, feeding the mixture to the cylinder solution bath, the cooling rotating cylinder A step of generating a solid-liquid mixture on the surface, and scraping and discharging the generated solid-liquid mixture by the scraping blade ;
A method of continuously producing a flat and solid solid-liquid mixture having a constant melting point temperature .
混合液に微細気泡が含まれており
微細気泡を含む固液混合物を連続的に生産する請求項1の方法。
Mixture contains fine bubbles,
The process according to claim 1, wherein the solid-liquid mixture containing fine bubbles is continuously produced.
対象物の温度を一定に維持するための固液混合物を生産するシステムであって、A system for producing a solid-liquid mixture for maintaining a constant temperature of an object,
原液と希釈液を混合し一定溶質濃度の混合液を得る混合タンクと、A mixing tank that mixes the undiluted solution and the diluted solution to obtain a mixed solution with a constant solute concentration;
冷却回転円筒、該冷却回転円筒を混合液に浸す円筒溶液槽及び該冷却回転円筒に接近してA cooling rotating cylinder, a cylindrical solution tank in which the cooling rotating cylinder is immersed in the mixed solution, and the cooling rotating cylinder 設けられた掻き取り刃で構成され、該混合液を該円筒溶液槽に送り、該冷却回転円筒表面Consists of a scraping blade provided, the mixed liquid is sent to the cylindrical solution tank, and the cooling rotating cylindrical surface に固液混合物を生成し、生成された固液混合物を該掻き取り刃によって掻き取り排出するA solid-liquid mixture is produced on the surface, and the produced solid-liquid mixture is scraped and discharged by the scraping blade. 回転円筒固液混合物生成機からなる、Consisting of a rotating cylindrical solid-liquid mixture generator,
融点温度一定の扁平形状及び固体状の固液混合物を連続的に生産するシステム。A system that continuously produces flat and solid solid-liquid mixtures with a constant melting point temperature.
JP2016138010A 2015-08-21 2016-06-23 Method and system for producing a solid-liquid mixture of constant melting point temperature Active JP6311191B6 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015177046 2015-08-21
JP2015177046 2015-08-21

Publications (5)

Publication Number Publication Date
JP2017040467A JP2017040467A (en) 2017-02-23
JP6311191B2 JP6311191B2 (en) 2018-04-18
JP6311191B6 JP6311191B6 (en) 2019-05-22
JP2017040467A6 JP2017040467A6 (en) 2019-07-18
JP2017040467A5 true JP2017040467A5 (en) 2019-08-29

Family

ID=58206198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016138010A Active JP6311191B6 (en) 2015-08-21 2016-06-23 Method and system for producing a solid-liquid mixture of constant melting point temperature

Country Status (1)

Country Link
JP (1) JP6311191B6 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092996A (en) * 2015-11-19 2018-08-20 블랑테크 가부시키가이샤 Flake ice making apparatus, flake ice making system, flake ice making method and moving body
JP6713173B2 (en) * 2018-06-04 2020-06-24 株式会社シキシマ Cooling system
JP2020153587A (en) * 2019-03-20 2020-09-24 株式会社MARS Company ice
CN111981738B (en) * 2019-05-24 2022-03-25 青岛海尔电冰箱有限公司 Ice making device, ice making method and refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755439A (en) * 1969-08-29 1971-02-01 Hofer Hans ICE CREAM PRODUCTION APPARATUS, ESPECIALLY OF THE HOUSEHOLD TYPE
JPH03244984A (en) * 1990-02-21 1991-10-31 Akua Pia:Kk Antiseptic ice
JP5025324B2 (en) * 2007-05-11 2012-09-12 三菱電機株式会社 Salt water mixed sherbet ice making equipment

Similar Documents

Publication Publication Date Title
JP6311191B2 (en) Method and system for producing a solid-liquid mixture with a constant melting point temperature
JP2017040467A5 (en)
El Kadi et al. Desalination by freeze crystallization: an overview
JP2019082320A5 (en) How to keep fresh seafood fresh
JP4049221B2 (en) Electrolytic seawater ice generation system, electrolytic seawater generation device, and fresh fish preservation method
JP2012249563A (en) Aging method of fish and shellfish or the like, and production apparatus of sherbet ice used for the same
JP2007040548A (en) Method and device for manufacturing salt water soft ice
Lyu et al. Progress of ice slurry in food industry: application, production, heat and mass transfer
JP5886461B1 (en) Method for producing sherbet ice
Azman et al. Effect of freezing time and shaking speed on the performance of progressive freeze concentration via vertical finned crystallizer
JP5692715B2 (en) Freshness keeping system and freshness keeping method
JP2019024488A (en) Manufacturing method of frozen oyster
JP6618566B2 (en) Slurry ice production method for seafood
JP4909805B2 (en) Method for producing concentrated seawater with storage function and method for preserving marine products using the concentrated seawater
JP3718148B2 (en) Sea ice machine
RU2577068C1 (en) Method for preservation of fish native properties before fish processing beginning
RU2577462C2 (en) Method of producing icy slush
Pamitran et al. A review paper of sea-water ice slurry generator and its application on Indonesian traditional fishing
JP5733888B2 (en) Method and apparatus for freezing object to be frozen
CN110486997B (en) Method for reducing water supercooling degree in fluidized ice preparation process through secondary icing
JP2007309629A (en) Ice crystal forming device
JP2012057919A (en) Salt-containing ice forming apparatus
JP2017138066A (en) Freshness preserving gas storage ice, method for generating freshness preserving gas storage ice, device for generating freshness preserving gas storage ice, and method for utilizing freshness preserving gas storage ice
Zhang et al. Indirect Freeze Desalination Experimental Observation and First Principle Energy Conservation Modeling
JP2020085425A (en) Cooling system