JP5692715B2 - Freshness keeping system and freshness keeping method - Google Patents

Freshness keeping system and freshness keeping method Download PDF

Info

Publication number
JP5692715B2
JP5692715B2 JP2010155842A JP2010155842A JP5692715B2 JP 5692715 B2 JP5692715 B2 JP 5692715B2 JP 2010155842 A JP2010155842 A JP 2010155842A JP 2010155842 A JP2010155842 A JP 2010155842A JP 5692715 B2 JP5692715 B2 JP 5692715B2
Authority
JP
Japan
Prior art keywords
ice
electrolyzed water
ice making
water
fresh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010155842A
Other languages
Japanese (ja)
Other versions
JP2012016313A (en
Inventor
柴田 勝紀
勝紀 柴田
幸彦 阿部
幸彦 阿部
Original Assignee
有限会社柴田熔接工作所
株式会社和久魚問屋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社柴田熔接工作所, 株式会社和久魚問屋 filed Critical 有限会社柴田熔接工作所
Priority to JP2010155842A priority Critical patent/JP5692715B2/en
Publication of JP2012016313A publication Critical patent/JP2012016313A/en
Application granted granted Critical
Publication of JP5692715B2 publication Critical patent/JP5692715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鮮魚等の生鮮物を氷等で冷却して鮮度の保持を図る鮮度保持システムに関する。なお、本発明における鮮度保持対象の生鮮物とは、鮮魚に限らず、食用とすることのできる水棲生物一般の、収穫又は捕獲されて間もない未処理・未加工状態のものを示す。   The present invention relates to a freshness maintaining system that maintains freshness by cooling fresh products such as fresh fish with ice or the like. In addition, the fresh thing of the freshness preservation | save object in this invention shows the thing of the unprocessed and unprocessed state of the aquatic organism in general which can be used as an edible not only fresh fish but soon after being harvested or caught.

海で捕れる魚介類については、鮮度の高い状態で食用に供することができるように、こうした魚介類を捕獲してから鮮度を維持しつつ可能な限り長く保存する様々な工夫がなされており、最も一般的な氷を用いる冷却保存(冷蔵)においても、近年では、より魚介類へのダメージが少ない、海水を製氷した氷の使用が提案されている。   As for seafood caught in the sea, various ingenuity has been made to preserve as long as possible while keeping the freshness after catching such seafood so that it can be used for food in a fresh state. Even in general cold storage (refrigeration) using ice, in recent years, it has been proposed to use ice made from seawater that causes less damage to seafood.

こうした海水を製氷した海水氷を用いる保存方法では、冷却に伴う腐敗細菌の増殖抑制だけでなく、魚体等への浸透圧の調整も図れ、通常の真水の氷を用いた場合よりも鮮度の維持が期待できる。   The preservation method using seawater ice made from seawater not only suppresses the growth of spoilage bacteria due to cooling, but also adjusts the osmotic pressure to fish, etc., and maintains freshness compared to when using normal fresh water ice Can be expected.

このような、海水を用いて氷を作る製氷装置の一例として、特開2003−42611号公報や特開2004−150742号公報に開示されるものがある。   As an example of such an ice making device that uses ice to make ice, there are those disclosed in Japanese Patent Application Laid-Open Nos. 2003-42611 and 2004-150742.

特開2003−42611号公報JP 2003-42611 A 特開2004−150742号公報JP 2004-150742 A

従来の魚介類のような生鮮物の冷却保存に際しては、前記特許文献に示される製氷装置で得られるような海水の氷を用いることができるものの、海水を用いて製氷する場合、海水を取水することが必要となる。しかしながら、海水の入手と製氷装置への供給は、直接海から取水できるような海に面した場所以外では非常に困難であり、現実的なコストで、海から離れた場所で海水を導入し、この海水から氷を製造して使用に供することは極めて難しいという課題を有していた。   In the cold storage of fresh products such as conventional seafood, seawater ice as obtained with the ice making apparatus shown in the above-mentioned patent document can be used, but when making ice using seawater, seawater is taken in. It will be necessary. However, it is very difficult to obtain seawater and supply it to ice making equipment except for a place facing the sea where water can be taken directly from the sea. It had the subject that it was very difficult to manufacture ice from this seawater and to use it.

また、海水から氷を作った場合、海水は塩分濃度が高い水であるため、氷の生成温度が低くなり、同時に氷が溶ける際の温度も低くなり、氷で冷却される魚介類の温度が下がりすぎ、魚介類が一部凍結した状態となってその品質を低下させてしまうという課題を有していた。また、氷の生成温度が低い分、強力に冷却する必要があり、製氷の際の投入エネルギーが大きくなることに加え、海水の濾過、殺菌等の前処理も要求され、製氷コストが高くなるという課題も有していた。   In addition, when ice is made from seawater, since the seawater is water with a high salinity, the temperature at which the ice is melted is lowered, and at the same time, the temperature at which the ice melts is lowered. It has fallen too much, and it has the subject that fish and shellfish will be in the state which became partially frozen, and will reduce the quality. In addition to the low ice generation temperature, it is necessary to cool strongly. In addition to increasing the input energy during ice making, pretreatment such as seawater filtration and sterilization is also required, resulting in high ice making costs. He also had problems.

本発明は前記課題を解決するためになされたもので、海水を用いなくても、製造した氷による冷却保存中における生鮮物の鮮度を維持する能力を確保し、生鮮物の鮮度を長期にわたり保持できる鮮度保持システム、及びこれに適用される鮮度保持方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and even without using seawater, the ability to maintain the freshness of fresh produce during cold storage using manufactured ice is ensured, and the freshness of fresh produce is maintained over a long period of time. It is an object of the present invention to provide a freshness maintaining system that can be used and a freshness maintaining method applied to the system.

本発明に係る鮮度保持システムは、真水である水に電解質成分を添加した上で電気分解を行い、アルカリ性電解水と酸性電解水とを生成する電解水生成装置と、冷却された製氷面に前記アルカリ性電解水を散水し、水を瞬間的に凍結させて製氷面に沿って連続する氷を生じさせ、さらに当該氷を割ってフレーク状のアルカリ性電解水氷を製造する製氷装置と、前記製氷装置で得られた氷を、前記電解水生成装置で生成されたアルカリ性電解水と共に所定の収納領域に収納して、当該収納領域の温度を前記氷の氷点温度と略一致させ、さらにアルカリ性電解水に浸透圧調整用の電解質成分を添加した状態で、保存対象の多数の生鮮物をアルカリ性電解水に浸漬させつつ前記収納領域に収納して、生鮮物を冷却保存する保存装置と、前記製氷装置で得られた、前記保存装置に収納されるのとは別の新たなアルカリ性電解水氷と、前記保存装置から小分けで取り出された一又は複数の生鮮物とを収納し、内部を氷の氷点付近の温度に保持して、生鮮物を冷却保存する移送用容器と、前記電解水生成装置で生成された酸性電解水を一時的に貯溜するためのタンクと、当該タンクに一時的に貯溜された酸性電解水を、生鮮物を前記収納領域に収納するまでの取扱い経路、及び/又は生鮮物を前記収納領域から移送用容器に移すまでの取扱い経路上の各場所に供給する手段とを備え、前記取扱い経路の洗浄にあたり、前記酸性電解水が導入されて洗浄、殺菌に供されるものである。 The freshness maintaining system according to the present invention includes an electrolyzed water generating device that performs electrolysis after adding an electrolyte component to fresh water, and generates alkaline electrolyzed water and acidic electrolyzed water. An ice making device for sprinkling alkaline electrolyzed water, instantaneously freezing the water to produce continuous ice along the ice making surface, and further breaking the ice to produce flaky alkaline electrolyzed water ice, and the ice making device The ice obtained in step 1 is stored in a predetermined storage area together with the alkaline electrolyzed water generated by the electrolyzed water generator, the temperature of the storage area is substantially matched with the freezing point temperature of the ice, and the alkaline electrolyzed water is further converted into alkaline electrolyzed water. while adding an electrolyte component for adjusting osmotic pressure, a number of fresh product storage target is accommodated in the housing area while immersed in the alkaline electrolyzed water, a storage device for the fresh material to cold storage, the ice making device The obtained fresh alkaline electrolyzed water ice different from that stored in the storage device and one or a plurality of fresh products taken out in small portions from the storage device are stored, and the inside is near the freezing point of the ice. The container for transfer that keeps the fresh product in a cooled state, the tank for temporarily storing the acidic electrolyzed water generated by the electrolyzed water generating device, and the tank temporarily stored in the tank Means for supplying the acidic electrolyzed water to each place on the handling path until the fresh food is stored in the storage area and / or the handling path until the fresh food is transferred from the storage area to the transfer container; In washing the handling route, the acidic electrolyzed water is introduced to be used for washing and sterilization .

このように本発明によれば、水道水や工業用水等の真水である水を用いて電解水生成装置で電気分解を行い、アルカリ性電解水を生成すると共に、このアルカリ性電解水を製氷装置で製氷して電解水の氷を得、これらアルカリ性電解水と電解水氷とを生鮮物と共に収納して生鮮物の冷却保存に用いることにより、腐敗につながるバクテリアの活動を電解水氷に基づく冷却で抑制できることに加えて、電解水と氷の備える強力な還元力により生鮮物中の酸素による酸化作用を抑制することができ、生鮮物の細胞の酸化に伴う腐敗進行を抑えられ、生食可能な期間を延すなど長期にわたり生鮮物の鮮度を維持でき、同じ時間経過状態での生鮮物の品質を従来保存方式より高められる。また、生鮮物の鮮度を長く維持できることで、冷却保存状態からの取出し時期を適宜選定でき、生鮮物の捕獲又は収穫直後に限らない最適なタイミングで保存装置から取り出して、鮮度を保ったまま市場等に出荷でき、生鮮物の商品価値を高められる。   As described above, according to the present invention, electrolysis is performed with an electrolyzed water generator using fresh water such as tap water or industrial water to generate alkaline electrolyzed water, and the alkaline electrolyzed water is made into ice with an ice making device. Electrolyzed water ice is obtained, and these alkaline electrolyzed water and electrolyzed water ice are stored together with fresh products and used for the cold preservation of fresh products, so that the activity of bacteria leading to spoilage is suppressed by cooling based on electrolyzed water ice. In addition to being able to suppress the oxidative action caused by oxygen in fresh foods due to the strong reducing power of electrolyzed water and ice, it is possible to suppress the progress of decay caused by the oxidation of cells in fresh foods, and to increase the period during which raw food can be eaten. The freshness of fresh products can be maintained over a long period of time, such as by extending the length, and the quality of fresh products in the same time-lapsed state can be improved over conventional storage methods. In addition, because the freshness of fresh products can be maintained for a long time, it is possible to select the timing for taking out from the cold storage state as appropriate, and the freshness can be taken out of the storage device at an optimal timing, not limited to immediately after capturing or harvesting, and the market can remain fresh. The product value of fresh products can be increased.

さらに、アルカリ性電解水氷と生鮮物を収納する移送用容器を用いて、生鮮物を小分けにして移送するような状況でも、生鮮物の冷却状態を維持できることにより、冷却に伴うバクテリアの活動抑制と電解水の性質による生成物の酸化抑制を、保存装置から取り出した後も実現させられ、生鮮物の鮮度を長く維持してその商品性を高められる。また、電解水氷はフレーク状であり、移送用容器内で氷が溶けにくく氷の状態を長時間維持して生鮮物を冷却でき、生鮮物の鮮度を維持しつつその品質を水分で劣化させることがない上、水分が漏出しにくく、移送時の取扱い性にも優れる。 In addition, using a transfer container for storing alkaline electrolyzed water ice and fresh food, it is possible to maintain the cooling state of the fresh food even in the situation where the fresh food is divided and transferred, thereby suppressing the bacterial activity associated with cooling. Oxidation suppression of the product due to the properties of the electrolyzed water can be realized even after the product is taken out from the storage device, and the freshness of the fresh product can be maintained for a long time, thereby increasing its commercial value. In addition, the electrolyzed water ice is in the form of flakes, and it is difficult for the ice to melt in the transfer container, so that the fresh food can be cooled by maintaining the ice condition for a long time, and the quality of the fresh food is deteriorated by moisture while maintaining the freshness of the fresh food. In addition, it is difficult for water to leak out, and it is easy to handle during transportation.

また、本発明に係る鮮度保持システムは必要に応じて、前記製氷装置が、所定の冷却手段で前記製氷面としての内周面を冷却される略円筒状の製氷シリンダと、前記製氷シリンダの内側に配設され、製氷シリンダの円筒中心軸線を中心として回転駆動される可動支持部と、当該可動支持部に支持され、氷とするアルカリ性電解水を、製氷シリンダ内周面に対する散水範囲を移動させつつ製氷シリンダ内周面にもれなく散水供給する散水部と、前記可動支持部に回転自在に支持され、前記製氷シリンダ内周面に沿って可動支持部ごと移動しつつ前記散水部の散水範囲から外れた位置で製氷シリンダ内周面に生じた氷に接触可能となる配置とされ、前記氷を割るリーマと、前記可動支持部に支持され、製氷シリンダ内側の領域を前記散水部の散水範囲と前記リーマが氷を割落す製氷区域とに分ける仕切部とを備えるものである。   Further, the freshness maintaining system according to the present invention includes a substantially cylindrical ice making cylinder in which the ice making device cools an inner peripheral surface as the ice making surface by a predetermined cooling means, and an inner side of the ice making cylinder as required. And a movable support portion that is driven to rotate about the cylinder central axis of the ice making cylinder, and the alkaline electrolyzed water that is supported by the movable support portion and serves as ice is moved within a watering range with respect to the inner peripheral surface of the ice making cylinder. A sprinkler for supplying water to the inner peripheral surface of the ice making cylinder and a movable support portion rotatably supported by the movable support portion, and moving with the movable support portion along the inner peripheral surface of the ice making cylinder, deviating from the sprinkling range of the sprinkler portion. Is arranged so as to be able to come into contact with the ice generated on the inner peripheral surface of the ice making cylinder, and is supported by the reamer that breaks the ice and the movable support part, and the watering part of the water sprinkling part is located inside the ice making cylinder. It surrounds said reamer is one that includes a partition portion separating the ice-making zone drop split ice.

このように本発明によれば、製氷装置のうち、冷却されると共に水の供給を受けて内周側の表面に氷を生じさせる製氷シリンダに対し、その内周面近傍を移動するリーマが配設され、リーマで製氷シリンダ内周面の氷を割り、シリンダ内周面から氷をそのまま落下させられることにより、氷をリーマで割った時点の大きさをほぼ維持しつつ製氷シリンダ内周面から離隔させられ、製氷から氷をフレーク状として外部に送出す過程を連続的に実行でき、確実に氷を供給できることとなり、使い勝手に優れたフレーク状の氷を容易に得られると共に、氷の製造コストも大幅に低減できる。また、氷が極めて短時間で製氷される
と共に、リーマで割られる氷には散水される水が接触しないことで、冷却乾燥状態の氷を確実に得ることができ、氷が他の氷や生鮮物と接触しても溶けにくく、冷却能力を長時間にわたり維持でき、特に移送用容器による生鮮物の移送等に都合がよい。
As described above, according to the present invention, a reamer that moves in the vicinity of the inner peripheral surface of the ice making device that is cooled and receives ice and generates ice on the inner peripheral surface is disposed. The reamer breaks the ice on the inner surface of the ice making cylinder and allows the ice to fall from the inner surface of the cylinder as it is. The process of delivering the ice from the ice making as flakes to the outside can be performed continuously, and the ice can be supplied reliably, making it easy to obtain flaky ice that is easy to use and the cost of producing ice Can be greatly reduced. In addition, ice is made in a very short time, and the water that is sprinkled by the reamer does not come into contact with the water that is sprinkled. It is difficult to melt even if it comes into contact with an object, and the cooling capacity can be maintained for a long time, which is particularly convenient for transferring fresh food by a transfer container.

また、本発明に係る鮮度保持システムは必要に応じて、前記保存装置が、前記収納領域に収納した氷及び電解水を、前記製氷装置で得られた新たなアルカリ性電解水氷、並びに、前記電解水生成装置で生成された新たなアルカリ性電解水と、所定時間間隔で入替えると共に、浸透圧調整用の電解質成分を追加して当該成分の濃度を調整するものである。   In addition, the freshness maintaining system according to the present invention may be configured such that, if necessary, the storage device uses ice and electrolyzed water stored in the storage area, new alkaline electrolyzed water ice obtained by the ice making device, and the electrolyzed water. It is replaced with new alkaline electrolyzed water generated by the water generator at predetermined time intervals, and an electrolyte component for adjusting osmotic pressure is added to adjust the concentration of the component.

このように本発明によれば、保存装置の収納領域に収納された冷却用の氷と電解水を、所定時間間隔で新たな氷と電解水に入替え、収納される氷と電解水に備わるアルカリ性電解水としての還元作用を元の状態に戻すことにより、時間経過と共に低下する氷及び電解水における生成物の酸化を抑制する能力を、一定のレベル以上に維持でき、生鮮物の酸化による腐敗等の進行を氷と電解水の作用で抑制して、収納領域内の生鮮物の鮮度を確実に保持できる。   As described above, according to the present invention, the cooling ice and the electrolyzed water stored in the storage area of the storage device are replaced with new ice and electrolyzed water at predetermined time intervals, and the alkaline property provided in the stored ice and electrolyzed water is provided. By returning the reducing action as electrolyzed water to its original state, the ability to suppress the oxidation of products in ice and electrolyzed water, which decreases with time, can be maintained above a certain level, such as decay due to oxidation of fresh food Is suppressed by the action of ice and electrolyzed water, and the freshness of the fresh food in the storage area can be reliably maintained.

また、本発明に係る鮮度保持方法は、真水である水に電解質成分を添加した上で電気分解を行い、アルカリ性電解水と酸性電解水とを生成し、製氷装置の冷却された製氷面に前記アルカリ性電解水を散水し、水を瞬間的に凍結させて製氷面に沿って連続する氷を生じさせ、さらに当該氷を割ってフレーク状のアルカリ性電解水氷を製造し、当該フレーク状のアルカリ性電解水氷を、前記アルカリ性電解水と共に所定の保温された収納領域に収納して、当該収納領域の温度を前記氷の氷点温度と略一致させ、さらに収納領域内のアルカリ性電解水に浸透圧調整用の電解質成分を添加した状態で、保存対象の多数の生鮮物をアルカリ性電解水に浸漬させつつ前記収納領域に収納して、生鮮物を一時的に冷却保存し、前記収納領域に収納されるものとは別に前記製氷装置で新たに製造された前記アルカリ性電解水氷と、前記収納領域から小分けで取り出された一又は複数の生鮮物とを移送用容器に収納して、生鮮物を用いる移送先までの移送の間、移送用容器内部を氷の氷点付近の温度に保持して、生鮮物を冷却保存し、さらに、前記電気分解で生成した酸性電解水を、タンクに一時的に貯溜してから、生鮮物を前記収納領域に収納するまでの取扱い経路、及び/又は生鮮物を前記収納領域から移送用容器に移すまでの取扱い経路に導入して、生鮮物の取扱い経路を洗浄するものである。 In addition, the freshness maintaining method according to the present invention performs electrolysis after adding an electrolyte component to water that is fresh water to generate alkaline electrolyzed water and acidic electrolyzed water. Sprinkling alkaline electrolyzed water, instantly freezing the water to produce continuous ice along the ice making surface, and further breaking the ice to produce flaky alkaline electrolyzed water ice, the flaky alkaline electrolysis Water ice is stored in a predetermined heat-retaining storage area together with the alkaline electrolyzed water, the temperature of the storage area is substantially matched with the freezing point temperature of the ice, and the osmotic pressure is adjusted to the alkaline electrolyzed water in the storage area. in a state where the electrolyte components were added, the then housed in the housing area many perishable product storage target while immersed in the alkaline electrolyzed water, which temporarily cool store perishable products, is received in the receiving region And housed in a transport container and the alkaline electrolyzed water ice newly manufactured separately in the ice-making device, and one or more perishable products extracted in small portions from the housing area, until transfer destination using the fresh matter During the transfer, the inside of the transfer container is kept at a temperature near the freezing point of ice, the fresh food is stored in a cold state , and the acidic electrolyzed water generated by the electrolysis is temporarily stored in a tank. The fresh food handling path is cleaned by introducing the fresh food into the storage path and / or the handling path until the fresh food is transferred from the storage area to the transfer container. .

このように本発明によれば、水道水や工業用水等の真水である水を用いて電気分解を行い、アルカリ性電解水を生成すると共に、このアルカリ性電解水を製氷装置で製氷して電解水の氷を得、これらアルカリ性電解水と電解水氷とを生鮮物と共に収納領域に収納して生鮮物を冷却保存することにより、腐敗につながるバクテリアの活動を電解水氷に基づく冷却で抑制できることに加えて、電解水とその氷の備える強力な還元力により生鮮物中の酸素による酸化作用を抑制することができ、生鮮物の細胞の酸化に伴う腐敗進行を抑えられ、生食可能な期間を延すなど長期にわたり生鮮物の鮮度を維持でき、同じ時間経過状態での生鮮物の品質を従来保存方式より高められる。また、生鮮物の鮮度を長く維持できることで、冷却保存状態からの取出し時期を適宜選定でき、生鮮物の捕獲又は収穫直後に限らない最適なタイミングで取り出して、鮮度を保ったまま出荷でき、生鮮物の商品価値を高められる。   As described above, according to the present invention, electrolysis is performed using water which is fresh water such as tap water or industrial water to produce alkaline electrolyzed water, and the alkaline electrolyzed water is made by an ice making device to produce electrolyzed water. In addition to being able to suppress the activity of bacteria that lead to spoilage by cooling based on electrolyzed water ice by obtaining ice and storing these alkaline electrolyzed water and electrolyzed water ice together with fresh food in a storage area and cooling the fresh food. In addition, the strong reducing power of the electrolyzed water and its ice can suppress the oxidative action caused by oxygen in the fresh food, suppress the progress of decay due to the oxidation of the cells of the fresh food, and extend the period of eating. The freshness of fresh products can be maintained over a long period of time, and the quality of fresh products over the same time can be improved compared to conventional storage methods. In addition, since the freshness of fresh products can be maintained for a long time, the timing for taking out from the cold storage state can be selected as appropriate, and it can be taken out at an optimal timing not limited to immediately after capturing or harvesting fresh products and shipped while maintaining the freshness. Increase the product value of goods.

さらに、電気分解でアルカリ性電解水と共に生成する酸性電解水を、生鮮物の取扱い経路に導入して洗浄に用い、生鮮物の取扱いに伴って周囲に生じやすい雑菌や臭気の抑制が図れることにより、酸化作用のある酸性電解水を無駄なく有効に活用して生鮮物の取扱い経路を清浄化でき、生鮮物の腐敗や品質劣化につながる雑菌等の付着を未然に防止できると共に、不快な臭気を抑えられることで作業環境を改善でき、作業性を向上させられる。 Furthermore, by introducing acidic electrolyzed water generated together with alkaline electrolyzed water by electrolysis into the fresh food handling route and using it for cleaning, it is possible to control various germs and odors that are likely to occur around the fresh food, Effectively and efficiently use acidic electrolyzed water with oxidizing action to clean the route for handling fresh foods, prevent contamination of fresh foods and other bacteria that lead to quality deterioration, and suppress unpleasant odors Work environment can be improved and workability can be improved.

本発明の一実施形態に係る鮮度保持システムの概略構成説明図である。It is a schematic structure explanatory drawing of the freshness maintenance system concerning one embodiment of the present invention. 本発明の一実施形態に係る鮮度保持システムにおける電解水生成装置の概略構成図である。It is a schematic block diagram of the electrolyzed water generating apparatus in the freshness maintenance system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る鮮度保持システムにおける製氷装置及び貯氷槽の概略正面図である。1 is a schematic front view of an ice making device and an ice storage tank in a freshness keeping system according to an embodiment of the present invention. 本発明の一実施形態に係る鮮度保持システムにおける製氷装置の概略構成断面図である。It is a schematic structure sectional view of the ice making device in the freshness maintenance system concerning one embodiment of the present invention. 本発明の一実施形態に係る鮮度保持システムにおける製氷装置の平面図及び底面図である。It is the top view and bottom view of an ice making device in the freshness keeping system according to one embodiment of the present invention. 本発明の一実施形態に係る鮮度保持システムにおける製氷装置の氷剥落動作説明図である。It is ice removal operation | movement explanatory drawing of the ice making apparatus in the freshness maintenance system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る鮮度保持システムにおける保存容器及び移送用容器への生鮮物収納状態説明図である。It is fresh food accommodation state explanatory drawing to the preservation container and the container for transfer in the freshness maintenance system concerning one embodiment of the present invention. 本発明の鮮度保持システムで冷却保存したウマヅラハギについて得た各測定時期ごとのK値のグラフである。It is a graph of K value for every measurement time obtained about the horseshoe rahagi cooled and preserve | saved with the freshness maintenance system of this invention.

以下、本発明の一実施形態に係る鮮度保持システムを前記図1ないし図7に基づいて説明する。
前記各図に示すように、本実施形態に係る鮮度保持システム1は、取水された水道水又は工業用水等の水を電解助剤を加えた上で電気分解して、アルカリ性電解水と酸性電解水を生成する電解水生成装置10と、アルカリ性電解水を導入して製氷を行い、アルカリ性電解水の氷を製造する製氷装置20と、製氷装置20で製造された氷を一時的に貯留する貯氷槽30と、多数の生鮮物60を氷及び電解水と共に収納して、生鮮物60を冷却保存する前記保存装置としての保存容器40と、この保存容器40から取り出された生鮮物60を氷と共に収納する移送用容器50とを備える構成である。
Hereinafter, a freshness maintaining system according to an embodiment of the present invention will be described with reference to FIGS.
As shown in the respective drawings, the freshness maintenance system 1 according to the present embodiment electrolyzes water such as tap water or industrial water taken with the addition of an electrolysis auxiliary agent, thereby producing alkaline electrolyzed water and acidic electrolysis. An electrolyzed water generating device 10 for generating water, an ice making device 20 for producing ice by introducing alkaline electrolyzed water, and ice storage for temporarily storing ice produced by the ice making device 20 The tank 30, a large number of fresh products 60 are stored together with ice and electrolyzed water, the storage container 40 as the storage device for storing the fresh products 60 in a cooled state, and the fresh products 60 taken out from the storage container 40 together with ice. It is the structure provided with the container 50 for transfer to accommodate.

前記電解水生成装置10は、外部から取り込んだ水道水や工業用水等の水(真水)に電解水生成用の電解助剤を添加する電解補助装置11と、電解助剤が添加された水を電気分解してアルカリ性電解水と酸性電解水を生成する電解セル12とを備える構成である。   The electrolyzed water generating device 10 includes an electrolysis auxiliary device 11 for adding an electrolysis auxiliary for generating electrolyzed water to water (fresh water) such as tap water and industrial water taken from outside, and water to which the electrolysis auxiliary is added. It is the structure provided with the electrolytic cell 12 which electrolyzes and produces | generates alkaline electrolyzed water and acidic electrolyzed water.

前記電解補助装置11は、0.05%〜0.1%程度の電解質成分、例えば食塩等、を含んだ水を、電解助剤として、電解セル12に導入される水に対し添加する装置であり、電解セル12における水の電気分解による電解水の生成を促進させるものである。   The electrolysis auxiliary device 11 is a device that adds water containing about 0.05% to 0.1% of an electrolyte component such as salt to the water introduced into the electrolysis cell 12 as an electrolysis auxiliary. Yes, the generation of electrolyzed water by electrolysis of water in the electrolysis cell 12 is promoted.

前記電解セル12は、内部に陰電極13、陽電極14、及びイオン交換膜15を備えており、電解補助装置11で電解助剤を添加された水を取水管10aを通じて内部に導入し、陰電極13と陽電極14間で通電することにより水を電気分解し、イオン交換膜15で隔てられた一方の陰電極側領域12aではアルカリ性電解水(pH:約8.5〜10.5
)を生じさせ、また他方の陽電極側領域12bでは酸性電解水(pH:約3.5)を生じさせ、各電解水を出水管10c、10dからそれぞれ出水するものである。また、水の電気分解に伴い、陰電極13表面では気体の水素が、陽電極14表面では気体の酸素が、それぞれ発生し、これらの一部は各電解水に溶け込んだ状態となる。
The electrolysis cell 12 includes a negative electrode 13, a positive electrode 14, and an ion exchange membrane 15 inside, and introduces water, to which an electrolysis auxiliary is added by the electrolysis auxiliary device 11, into the inside through a water pipe 10 a. Water is electrolyzed by energizing between the electrode 13 and the positive electrode 14, and alkaline electrolyzed water (pH: about 8.5 to 10.5) is formed in one negative electrode side region 12 a separated by the ion exchange membrane 15.
) And acidic electrolyzed water (pH: about 3.5) is produced in the other positive electrode side region 12b, and the electrolyzed water is discharged from the outlet pipes 10c and 10d, respectively. Further, along with the electrolysis of water, gaseous hydrogen is generated on the surface of the negative electrode 13 and gaseous oxygen is generated on the surface of the positive electrode 14, and a part of these is dissolved in each electrolytic water.

電解セル12の陰電極側領域12aで生じるアルカリ性電解水のORP(酸化還元電位)は−300mV程度となり、高い還元作用を有している。一方、陽電極側領域12bで生じる酸性電解水は、強い酸化作用により殺菌等の効果を備えることとなる。   The ORP (oxidation-reduction potential) of alkaline electrolyzed water generated in the negative electrode side region 12a of the electrolysis cell 12 is about -300 mV, and has a high reducing action. On the other hand, the acidic electrolyzed water generated in the positive electrode side region 12b has an effect such as sterilization due to a strong oxidizing action.

この電解水生成装置10の後段側には、必要に応じて、アルカリ性電解水を一時的に貯溜するためのタンク10eや、酸性電解水を一時的に貯溜するためのタンク10fが設けられる。   A tank 10e for temporarily storing alkaline electrolyzed water and a tank 10f for temporarily storing acidic electrolyzed water are provided on the rear stage side of the electrolyzed water generator 10 as necessary.

前記製氷装置20は、内周面21aを製氷面とされる略円筒状の製氷シリンダ21と、製氷シリンダ21内周面に向けて氷とする水を散水供給する散水部22と、製氷シリンダ21下側に配設されて製氷シリンダ21で凍結せず流下した水を受止めて貯溜する底容器部23と、製氷シリンダ21の内側に回転可能に配設される可動支持部24と、この可動支持部24に回転自在に支持されて製氷シリンダ21内周面に沿って移動しつつ氷を割るリーマ25とを備える構成である。   The ice making device 20 includes a substantially cylindrical ice making cylinder 21 having an inner peripheral surface 21a as an ice making surface, a water sprinkling unit 22 for sprinkling water as ice toward the inner peripheral surface of the ice making cylinder 21, and an ice making cylinder 21. A bottom container portion 23 that receives and stores water that has flown down without being frozen by the ice making cylinder 21, a movable support portion 24 that is rotatably disposed inside the ice making cylinder 21, and this movable A reamer 25 that breaks ice while moving along the inner peripheral surface of the ice making cylinder 21 supported rotatably by the support portion 24.

前記製氷シリンダ21は、伝熱性に優れた内壁と外部に対し断熱状態とされた外壁とを有する二重構造の略円筒体とされ、内壁と外壁の間には製氷用の冷媒通路が内蔵され、冷媒の働きにより冷却される内壁の内周面21aを製氷面とする構成である。内壁と外壁の間の冷媒通路21bは、外部の装置と共に公知の冷凍サイクルを構築しており、この冷媒通路部分が冷凍サイクルの蒸発器として働き、前記冷却手段として内周面21aを冷却する仕組みである。なお、製氷シリンダ21の上側は蓋部21cで覆われている。   The ice making cylinder 21 is a double-structured substantially cylindrical body having an inner wall excellent in heat transfer and an outer wall that is insulative with respect to the outside, and a refrigerant passage for ice making is incorporated between the inner wall and the outer wall. In this configuration, the inner peripheral surface 21a of the inner wall cooled by the action of the refrigerant is an ice making surface. The refrigerant passage 21b between the inner wall and the outer wall constitutes a known refrigeration cycle together with an external device, and this refrigerant passage portion functions as an evaporator of the refrigeration cycle and cools the inner peripheral surface 21a as the cooling means. It is. The upper side of the ice making cylinder 21 is covered with a lid 21c.

製氷シリンダ21の冷媒通路21bに導入される冷媒は、一般的な冷凍サイクルに用いられる公知の媒体であり、その詳細な説明は省略するが、アルカリ性電解水が確実に凍結して氷となり、且つ氷周囲の雰囲気も散水の行われない領域では冷却による乾燥状態にする温度まで、内周面21aを十分冷却可能とする状態で導入されるものである。   The refrigerant introduced into the refrigerant passage 21b of the ice making cylinder 21 is a known medium used in a general refrigeration cycle, and detailed description thereof is omitted, but the alkaline electrolyzed water is reliably frozen into ice, and The atmosphere around the ice is also introduced in a state in which the inner peripheral surface 21a can be sufficiently cooled to a temperature at which it is dried by cooling in an area where watering is not performed.

前記散水部22は、所定量の水を一時的に貯溜可能な容器状として形成され、その外周部分には内部の水を製氷シリンダ21の内周面21a各部に向かわせる散水用の孔22aが多数穿設されてなる構成である。この散水部22は、可動支持部24の上部に一体化させて配設され、製氷シリンダ21の内側の空間のうち、リーマ25による氷の割り落しが行われる領域を除いた所定範囲(散水区域27)において、前記各孔22aから水を散水しつつ、可動支持部24と共に回転することで、氷の割り落し動作と並行して、散水箇所を移動させて製氷シリンダ21の内周面21a各部にもれなく氷を生じさせられる仕組みである。散水された水が製氷シリンダ21の冷却された内周面21aに付着して凍結することで、厚さ2mm前後の薄い氷を生じさせることができる。   The water sprinkling part 22 is formed in a container shape capable of temporarily storing a predetermined amount of water, and a water sprinkling hole 22a for directing internal water to each part of the inner peripheral surface 21a of the ice making cylinder 21 is formed on the outer peripheral part thereof. A structure in which a large number of holes are formed. The water sprinkling part 22 is provided integrally with the upper part of the movable support part 24, and a predetermined range (sprinkling area) excluding an area where ice breaks by the reamer 25 is performed in the space inside the ice making cylinder 21. 27), by sprinkling water from the holes 22a and rotating together with the movable support portion 24, the water spray points are moved in parallel with the ice breaking operation to move each portion of the inner peripheral surface 21a of the ice making cylinder 21. It is a mechanism that can generate ice without leaking. As the sprinkled water adheres to the cooled inner peripheral surface 21a of the ice making cylinder 21 and freezes, thin ice having a thickness of about 2 mm can be generated.

前記底容器部23は、製氷シリンダ21を下から支えつつ、散水されたものの製氷シリンダ21の内周面21aで凍結せずに流下した余剰の水を回収して一時的に貯溜する容器形状とされる構成であり、中央部には製氷シリンダ21内周面から落下した氷を通過させる開放部23aが設けられる。この開放部23aの上側所定範囲には、凍結せず流下した水を周囲の底容器部23へ導く略板状の案内部26が、可動支持部24と一体に回転可能として配設される。   The bottom container portion 23 has a container shape that supports the ice making cylinder 21 from below and collects and temporarily stores surplus water that has been sprinkled but has flowed without freezing on the inner peripheral surface 21a of the ice making cylinder 21. The opening part 23a which allows the ice which fell from the inner peripheral surface of the ice making cylinder 21 to pass through is provided in the center part. A substantially plate-shaped guide portion 26 that guides the water that has flowed down without being frozen to the surrounding bottom container portion 23 is disposed in a predetermined range above the open portion 23 a so as to be rotatable integrally with the movable support portion 24.

前記可動支持部24は、製氷シリンダ21の内側の領域に製氷シリンダ21の円筒中心
軸線を中心として回転可能に配設される中心軸24aと、この中心軸24aに固定されてシリンダ内周面21a側に伸び、リーマ25を回動自在に支持する上下二つのリーマ支持部24b、24cと、このリーマ支持部24b、24cに取付けられて製氷シリンダ21内側の領域を散水区域27と氷を割落させる製氷区域28とに分ける仕切部24dと、製氷シリンダ21上方から前記中心軸24aを製氷シリンダ21に対し所定回転方向に回転駆動する駆動部24eとを備える構成である。
The movable support portion 24 is arranged in a region inside the ice making cylinder 21 so as to be rotatable about the cylindrical central axis of the ice making cylinder 21, and the inner peripheral surface 21a of the cylinder is fixed to the central shaft 24a. The upper and lower reamer support portions 24b and 24c that support the reamer 25 so that the reamer 25 can rotate freely, and the watering area 27 and ice are cut down in the area inside the ice making cylinder 21 that is attached to the reamer support portions 24b and 24c. The partition 24d is divided into an ice making area 28 and a drive unit 24e that rotates the central shaft 24a in a predetermined rotation direction with respect to the ice making cylinder 21 from above the ice making cylinder 21.

前記仕切部24dは、前記散水部22から案内部26にわたる範囲に配置されてリーマ25側へ水が飛散するのを防止するものであり、リーマ25に対し可動支持部24回転方向前方側となる仕切部24dの一端側には、水分除去用のワイパー24fが配置され、また、リーマ25に対し可動支持部24回転方向後方側となる仕切部24dの他端側には残留氷片除去用の他のワイパー24gが配置される。   The partition portion 24d is disposed in a range from the water sprinkling portion 22 to the guide portion 26 and prevents water from splashing to the reamer 25 side, and is on the front side in the rotational direction of the movable support portion 24 with respect to the reamer 25. A wiper 24f for removing moisture is disposed at one end of the partition 24d, and a residual ice piece is removed at the other end of the partition 24d that is behind the reamer 25 in the rotational direction of the movable support 24. Another wiper 24g is arranged.

前記ワイパー24fは、可撓性材で形成され、リーマ25に対し可動支持部24回転方向前方側でシリンダ内周面21aに生じた氷の表面と接触可能として配設される構成である。このワイパー24fが、氷の表面に接触しながら移動して氷の表面に付着した不要な水分を除去すると共に、仕切部24dと連続する配置によって、散水の行われる散水区域27とリーマ25のある製氷区域28とを確実に隔離して、散水区域27からリーマ25側への水分の進入を防ぐ。   The wiper 24f is formed of a flexible material, and is configured to be in contact with the surface of ice generated on the cylinder inner peripheral surface 21a on the front side in the rotational direction of the movable support 24 with respect to the reamer 25. The wiper 24f moves while in contact with the surface of the ice to remove unnecessary water adhering to the surface of the ice, and has a watering area 27 and a reamer 25 where water is sprayed by being arranged continuously with the partition 24d. The ice making area 28 is surely isolated to prevent moisture from entering the reamer 25 from the watering area 27.

前記ワイパー24gは、可撓性材で形成され、リーマ25に対し可動支持部24回転方向後方側でシリンダ内周面21aとの間隔を極めて小さくして配設される構成である。このワイパー24gが、シリンダ内周面21aに沿って移動して、内周面に付着したままの残留氷片を除去すると共に、仕切部24dと連続する配置によって、散水区域27と製氷区域28とを確実に隔離して、散水区域27からリーマ25側への水分の進入を防ぐ。   The wiper 24g is formed of a flexible material, and is disposed with a very small distance from the cylinder inner peripheral surface 21a on the rear side in the rotational direction of the movable support 24 with respect to the reamer 25. The wiper 24g moves along the cylinder inner peripheral surface 21a to remove the residual ice pieces remaining on the inner peripheral surface, and is arranged continuously with the partitioning portion 24d so that the water sprinkling area 27, the ice making area 28, To prevent moisture from entering the reamer 25 side from the sprinkling area 27.

前記リーマ25は、略円柱状の回動軸25aの周囲に刃先を螺旋状配置とされる割氷用の複数の刃25bを一体に取付けられてなり、可動支持部24の中心軸24aから突出するリーマ支持部42に回動自在に支持される構成である。   The reamer 25 is formed by integrally attaching a plurality of ice breaking blades 25b whose blade tips are arranged in a spiral manner around a substantially cylindrical rotating shaft 25a, and projecting from the central shaft 24a of the movable support portion 24. It is the structure supported by the reamer support part 42 to rotate freely.

リーマ25は、回動軸25a周りには回転駆動されていないため、外部から力が加わらない状態では静止状態を維持するが、可動支持部24の製氷シリンダ21に対する回転で製氷シリンダ21に対しリーマ25も中心軸24a周りに回転する公転動作Rを行う際、シリンダ内周面21aの氷と接触して力を受けることにより、リーマ25に対するシリンダ内周面21aの氷の相対移動に追従する形で、リーマ25が回動軸25a周りに回転する自転動作rを行う仕組みである(図6参照)。   Since the reamer 25 is not driven to rotate around the rotation shaft 25 a, the reamer 25 remains stationary when no force is applied from the outside. However, the reamer 25 rotates relative to the ice making cylinder 21 with respect to the ice making cylinder 21. 25 also performs a revolving motion R that rotates about the central axis 24a, and receives a force by contacting the ice on the cylinder inner peripheral surface 21a, thereby following the relative movement of the ice on the cylinder inner peripheral surface 21a with respect to the reamer 25. Thus, the reamer 25 performs a rotation operation r that rotates around the rotation shaft 25a (see FIG. 6).

リーマ25自体の回転(自転)に伴い、リーマ25の刃25bとシリンダ内周面21aの間隔より大きい所定厚さでシリンダ内周面21aに薄く貼付いた状態で結氷した氷に対し、リーマ25の螺旋状の刃25bが食込んで氷を割り、且つ刃25bと氷との接触位置を順次移動させていく一連の氷を割る動作が連続的に進行する。   As the reamer 25 itself rotates (rotates), the reamer 25 has a predetermined thickness larger than the distance between the blade 25b of the reamer 25 and the cylinder inner peripheral surface 21a. A series of operations of breaking the ice that the spiral blade 25b bites into and breaks the ice and that sequentially moves the contact position between the blade 25b and the ice proceeds continuously.

リーマ25の刃25bが螺旋状となっていることで、氷との接触は刃全体でなく最も製氷シリンダ内周面21a寄り位置となった一部に限定される。このリーマ25における刃25bの数を変えて刃の間隔を調整することで、氷の大きさを粒状から塊状まで変化させることができる。   Since the blade 25b of the reamer 25 has a spiral shape, the contact with ice is not limited to the entire blade but limited to a portion closest to the ice making cylinder inner peripheral surface 21a. By changing the number of blades 25b in the reamer 25 and adjusting the interval between the blades, the size of the ice can be changed from granular to lump.

このリーマ25がシリンダ内周面21aに沿って移動することで、シリンダ内周面21aに薄く貼付いた状態で生じた氷が、リーマ25により割られてそのままシリンダ内周面21aから落下していくこととなり、大きさ3〜5cmのフレーク(薄片)状の氷として
落下する状態が継続し、氷を連続的に製造する仕組みが得られる。
As the reamer 25 moves along the cylinder inner peripheral surface 21a, the ice generated while being thinly attached to the cylinder inner peripheral surface 21a is broken by the reamer 25 and falls as it is from the cylinder inner peripheral surface 21a. This means that the state of falling as flake (flakes) ice having a size of 3 to 5 cm continues, and a mechanism for continuously producing ice is obtained.

電解水は時間と共にその性質が原水の性質に戻るため、素早く製氷する必要があるが、この製氷装置20では電解水をシリンダ内周面21aで急冷して速やかに製氷できるため、電解水の特別な性質を有したままの氷(電解水氷)を得ることができる。   Since the properties of the electrolyzed water return to the properties of the raw water over time, it is necessary to make ice quickly. However, in this ice making device 20, the electrolyzed water can be rapidly cooled at the cylinder inner peripheral surface 21a to quickly make ice. Ice (electrolyzed water ice) can be obtained while maintaining the proper properties.

前記貯氷槽30は、内外断熱状態とされる保温構造の略箱状容器で形成され、上部に製氷装置20で生じた氷を通過させる入口部を有すると共に、底部には氷の取出部31を設けられ、製氷装置20下側に配設される構成である。この貯氷槽30は、製氷装置20で製造されたフレーク状の氷を外気との接触を防ぎつつ内部領域に蓄積し、必要に応じて取出部31から氷を外部へ連続的に取出せる仕組みである。貯氷槽30の保温構造については、公知の氷保管装置や冷凍庫等に用いられるものと同様の構成であり、詳細な説明を省略する。   The ice storage tank 30 is formed of a substantially box-shaped container having a heat insulation structure that is insulatively insulated inside and outside, and has an inlet portion through which ice generated by the ice making device 20 passes at the top, and an ice take-out portion 31 at the bottom. It is the structure which is provided and is arrange | positioned under the ice making apparatus 20. FIG. The ice storage tank 30 has a mechanism in which flake-shaped ice produced by the ice making device 20 is accumulated in an internal region while preventing contact with outside air, and the ice can be continuously taken out from the take-out portion 31 as needed. is there. About the heat retention structure of the ice storage tank 30, it is the structure similar to what is used for a well-known ice storage apparatus, a freezer, etc., and detailed description is abbreviate | omitted.

前記保存容器40は、上面開放状態の箱状体で形成される構成であり、開放した上側から生鮮物60や氷、電解水を出し入れする仕組みである。保存容器40は、電解水生成装置10と製氷装置20から電解水や氷を供給可能な箇所に配置されて、電解水生成装置10で得られたアルカリ性電解水と、製氷装置20で製氷され貯氷槽30を経たアルカリ性電解水の氷70と、多数の生鮮物60を内部に収納し、氷の冷却能力に基づいて各生鮮物60を冷却状態で保持し、この生鮮物60を出荷時など必要に応じて外部へ取出し可能とする仕組みである。なお、この保存容器40は、内部への生鮮物や氷の投入が容易な、上面が開放した形態に限られるものではなく、上部を必要に応じ開閉可能な蓋付きの構造として、保温性や雑菌の入りにくさを重視したものとすることもできる。   The storage container 40 is configured as a box-shaped body with an open top surface, and has a mechanism for taking in and out fresh food 60, ice, and electrolyzed water from the opened upper side. The storage container 40 is disposed at a location where electrolytic water or ice can be supplied from the electrolyzed water generating device 10 and the ice making device 20, and the alkaline electrolyzed water obtained by the electrolyzed water generating device 10 and the ice making device 20 are used to make ice and store ice. The ice 70 of alkaline electrolyzed water that has passed through the tank 30 and a large number of fresh products 60 are housed inside, and each fresh product 60 is kept in a cooled state based on the cooling capacity of the ice. It is a mechanism that enables it to be taken out according to the situation. The storage container 40 is not limited to an open top surface that allows easy introduction of fresh food and ice into the inside, and has a structure with a lid that can be opened and closed as necessary. It can also be made important to the difficulty of entering various germs.

前記移送用容器50は、全面にわたって内外断熱状態とされる保温構造の移動可能な箱状体で形成され、上部を取外し可能な蓋部とされる構成であり、製氷装置20で製氷され貯氷槽30を経たアルカリ性電解水の氷と、保存容器40から取り出された一又は複数の生鮮物60を内部に収納し、生鮮物60を冷却状態で保持し、生鮮物60を使用に供する際に蓋部を開放して外部へ取出し可能とする仕組みである。移送用容器50の保温構造については、公知の発泡スチロール箱等の簡略な保温性のある箱と同様の構成であり、詳細な説明を省略する。   The transfer container 50 is formed of a movable box-like body having a heat insulation structure that is insulatively insulated inside and outside the entire surface, and has a configuration in which an upper part can be removed, and is made by the ice making device 20 and is made into an ice storage tank. The ice of alkaline electrolyzed water having passed through 30 and one or a plurality of fresh products 60 taken out from the storage container 40 are stored inside, the fresh products 60 are kept in a cooled state, and a lid is used when the fresh products 60 are used. It is a mechanism that allows the part to be opened and taken out to the outside. The heat retaining structure of the transfer container 50 has the same configuration as that of a simple heat retaining box such as a well-known foamed polystyrene box, and a detailed description thereof will be omitted.

次に、本実施形態に係る鮮度保持システムの使用状態について説明する。まず、電解水の生成について、電解水生成装置10では、取水管10aから取り込んだ水道水又は工業用水等の水に電解補助装置11で電解助剤を添加した後、この電解助剤を添加した水を電解セル12の内部に導入し、イオン交換膜15を介して陰電極13と陽電極14間で通電して電気分解を行うことにより、イオン交換膜15で隔てられた陰電極側領域12aでは、アルカリ性電解水が生成される。また、陽電極側領域12bでは酸性電解水が生成される。電気分解により生成された各電解水はそれぞれ出水管10c、10dを通じて取り出される。アルカリ性電解水は、一部は製氷装置20に送られて製氷され、残りの一部はタンク10eに一時的に貯溜されてから、保存容器40に送られて使用される。また、酸性電解水は、タンク10fに一時的に貯溜されてから、洗浄、殺菌用途として生鮮物60の取扱われる経路上の各場所に供給されることとなる。   Next, the use state of the freshness keeping system according to the present embodiment will be described. First, with respect to the generation of electrolyzed water, in the electrolyzed water generating apparatus 10, the electrolysis auxiliary apparatus 11 added the electrolysis auxiliary to water such as tap water or industrial water taken from the intake pipe 10 a, and then this electrolysis auxiliary was added. Water is introduced into the inside of the electrolysis cell 12, and electrolysis is carried out by conducting current between the negative electrode 13 and the positive electrode 14 via the ion exchange membrane 15, whereby the negative electrode side region 12 a separated by the ion exchange membrane 15. Then, alkaline electrolyzed water is generated. Moreover, acidic electrolyzed water is produced | generated in the positive electrode side area | region 12b. The electrolyzed water generated by the electrolysis is taken out through the water discharge pipes 10c and 10d, respectively. A part of the alkaline electrolyzed water is sent to the ice making device 20 for ice making, and the remaining part is temporarily stored in the tank 10e and then sent to the storage container 40 for use. In addition, the acidic electrolyzed water is temporarily stored in the tank 10f and then supplied to each place on the route where the fresh product 60 is handled for cleaning and sterilization.

続いて、製氷装置20による製氷動作について説明する。あらかじめ、冷媒の供給で製氷シリンダ21の内周面21aは電解水を凍結させられる程度に十分冷却されているものとする。製氷に際して、可動支持部24をはじめとする可動部分を回転させると共に、上部の散水部22に電解水生成装置10からアルカリ性電解水を導入する。水は散水部22の各孔22aを経て製氷シリンダ21の内周面21aに沿って流下する。製氷シリンダ21の内周面21aに接した水の大部分は凍結し、内周面21aに氷70として付着した状
態となる。一方、凍結しなかった残りの水は流下して、製氷シリンダ21下端から案内部26を経由して底容器部23に達する。この底容器部23に一時的に貯溜された水は、ポンプや配管等を介して散水部22に戻ることとなる。
Next, an ice making operation by the ice making device 20 will be described. It is assumed that the inner peripheral surface 21a of the ice making cylinder 21 is sufficiently cooled in advance so that the electrolyzed water can be frozen by supplying the refrigerant. During ice making, the movable part including the movable support 24 is rotated, and alkaline electrolyzed water is introduced from the electrolyzed water generating device 10 into the upper watering part 22. The water flows down along the inner peripheral surface 21 a of the ice making cylinder 21 through each hole 22 a of the water sprinkling portion 22. Most of the water in contact with the inner peripheral surface 21a of the ice making cylinder 21 is frozen and is attached to the inner peripheral surface 21a as ice 70. On the other hand, the remaining water that has not been frozen flows down and reaches the bottom container portion 23 from the lower end of the ice making cylinder 21 via the guide portion 26. The water temporarily stored in this bottom container part 23 will return to the water sprinkling part 22 via a pump, piping, etc.

なお、この底容器部23に貯溜された水を散水部22に戻す代りに、いったん電解水生成装置に還流させてあらためて電気分解を行い、生成されたアルカリ性電解水を散水部22に導入するようにして、アルカリ性電解水を確実に製氷シリンダ21の内周面21aに供給できるようにする構成とすることもできる。   Instead of returning the water stored in the bottom container portion 23 to the sprinkling portion 22, the water is once returned to the electrolyzed water generating device to be electrolyzed, and the generated alkaline electrolyzed water is introduced into the sprinkling portion 22. Thus, the alkaline electrolyzed water can be reliably supplied to the inner peripheral surface 21a of the ice making cylinder 21.

製氷装置20では、散水区域27に位置する製氷シリンダ21の内周面21aに対し、散水部22から散水が継続することで、内周面21aにおける水の凍結が進行し、可動支持部24の回転に伴い移動する散水区域27の終端で、氷70はあらかじめ設定された所定厚さ(約2mm厚)まで成長する。散水が行われる散水区域27とリーマ25のある製氷区域28とを仕切部24dが隔てると共に、散水区域27と製氷区域28の境界にワイパー24f、24gがそれぞれ存在することで、散水された水がリーマ25近傍に向うことはない。   In the ice making device 20, water spraying from the water sprinkling part 22 continues on the inner peripheral surface 21 a of the ice making cylinder 21 located in the water sprinkling area 27, so that water freezing on the inner peripheral face 21 a proceeds and the movable support part 24 The ice 70 grows to a predetermined thickness (about 2 mm thickness) set in advance at the end of the sprinkling area 27 that moves with rotation. The partition 24d separates the watering area 27 where the watering is performed from the ice making area 28 where the reamer 25 is located, and the wipers 24f and 24g exist at the boundary between the watering area 27 and the ice making area 28, respectively, so It does not go to the vicinity of the reamer 25.

製氷シリンダ21の内周面21aに生じた氷70が、可動支持部24の回転に伴う散水区域27の移動で同区域から外れる際は、その表面はワイパー24fで清浄化され、余分な水分を除去される。そして、氷70はリーマ25の刃25bと接触し、リーマ25は回転(自転動作r)して刃25bと氷70との接触位置を変えながら氷70の表面に刃25bを食込ませ、氷70を割っていく(図6参照)。割られた氷70は、水との接触を絶つことで冷却乾燥した氷の性質により、製氷シリンダ21の内周面21aから容易に遊離してフレーク状の氷として落下する。この内周面21aから落下した氷は、底容器部23の開放部23aを通過して製氷装置20下側の貯氷槽30に達する。   When the ice 70 generated on the inner peripheral surface 21a of the ice making cylinder 21 moves out of the sprinkling area 27 due to the rotation of the movable support 24, the surface is cleaned with the wiper 24f to remove excess moisture. Removed. Then, the ice 70 comes into contact with the blade 25b of the reamer 25, and the reamer 25 rotates (spinning operation r) to bite the blade 25b into the surface of the ice 70 while changing the contact position between the blade 25b and the ice 70. 70 is divided (see FIG. 6). The cracked ice 70 is easily released from the inner peripheral surface 21a of the ice making cylinder 21 and falls as flake-like ice due to the nature of the ice that has been cooled and dried by breaking contact with water. The ice falling from the inner peripheral surface 21 a passes through the opening 23 a of the bottom container 23 and reaches the ice storage tank 30 below the ice making device 20.

リーマ25が氷70を連続的に割って落す仕組みであり、オーガ式製氷機のように螺旋刃で削り取って内周面から剥離させつつ出口側へ氷を送出すものではないことから、氷を割るリーマ25と割られた後の氷70が接触することはなく、オーガ式製氷機のように刃と剥がされた後の氷とが連続して接触する状態を避けることができ、氷がさらに割れて細かい粒状になったりせず、フレーク状の形態を維持しやすい。   Since the reamer 25 continuously breaks and drops the ice 70, it does not send out the ice to the outlet side while scraping off from the inner peripheral surface by scraping with a spiral blade like an auger type ice making machine. The split reamer 25 and the split ice 70 do not come into contact with each other, and the state where the blade and the peeled-off ice continuously contact like an auger type ice making machine can be avoided. It is easy to maintain a flake-like form without cracking into fine particles.

一方、製氷シリンダ21の内周面21aにおける氷70が落下して無くなった部分は清浄化しており、可動支持部24の回転に伴って移動するワイパー24gの通り過ぎた後、再び散水区域27に移行し、散水部22からの散水を受けてあらためて表面に氷を生じさせることとなる。こうして、冷却状態の製氷シリンダ21の内周面21aに対する散水部22からの散水と、可動支持部24の回転駆動を継続している限りは、製氷装置20での連続的な氷製造状態が維持される。   On the other hand, the portion of the inner peripheral surface 21a of the ice making cylinder 21 where the ice 70 has fallen and disappeared is cleaned, and after passing through the wiper 24g that moves with the rotation of the movable support 24, it moves again to the watering area 27. In response to the water sprinkling from the water sprinkling unit 22, ice is generated on the surface again. Thus, as long as the water spray from the sprinkler 22 on the inner peripheral surface 21a of the ice making cylinder 21 in the cooled state and the rotational drive of the movable support 24 are continued, the continuous ice production state in the ice making device 20 is maintained. Is done.

リーマ25による割り動作で得られるフレーク状の氷70は、製氷シリンダ21の内周面21aの冷却状態を維持したまま落下させていることで、表面積が大きく且つ表面の湿りの少ないものとなっており、製氷装置20を出た後に貯氷槽30等に大量に投入され蓄積されても、氷70は互いに結合せず、通常の製氷で得られた氷のように一体に固まる状態にはなりにくい性質を有する。   The flaky ice 70 obtained by the splitting operation by the reamer 25 is dropped while maintaining the cooling state of the inner peripheral surface 21a of the ice making cylinder 21, so that the surface area is large and the surface is less wet. Even if the ice storage device 20 exits the ice making apparatus 20 and is stored in a large amount in the ice storage tank 30 or the like, the ice 70 is not coupled to each other and is unlikely to be solidified like the ice obtained by normal ice making. Has properties.

こうして製氷装置20で製造されたアルカリ性電解水の氷70は、貯氷槽30に落下し、ここに一旦貯められてから、後段側の保存容器40で必要となった際に所定量を取り出され、保存容器40に投入される。   The ice 70 of the alkaline electrolyzed water thus produced in the ice making device 20 falls into the ice storage tank 30 and once stored therein, a predetermined amount is taken out when needed in the storage container 40 on the rear stage side, The storage container 40 is charged.

保存容器40では、貯氷槽30から取り出されたアルカリ性電解水の氷70が、電解水
生成装置10から送られた電解水や、浸透圧調整用電解質としての塩分と合わせて内部の収納領域に収納され、さらに、生鮮物60が同じ収納領域に収納されることで、生鮮物60は電解水に浸漬され、氷70及び電解水で周囲を囲まれた状態で冷却保存される(図7参照)。
In the storage container 40, the ice 70 of the alkaline electrolyzed water taken out from the ice storage tank 30 is stored in the internal storage area together with the electrolyzed water sent from the electrolyzed water generating device 10 and the salinity as the osmotic pressure adjusting electrolyte. Further, the fresh product 60 is stored in the same storage area, so that the fresh product 60 is immersed in the electrolyzed water, and is cooled and stored in a state surrounded by the ice 70 and the electrolyzed water (see FIG. 7). .

保存容器40内の収納領域では、生鮮物60の氷70による冷却でバクテリアの活動が抑制されることに加え、アルカリ性電解水の還元作用により酸化が抑えられることで、生鮮物60の鮮度は維持される。また、電解水は、塩分添加で浸透圧を適切に調整されることで、生鮮物60内部への水分浸透が起らず、生鮮物60の品質の劣化もない。なお、保存容器40内の収納領域では、時間経過と共に氷70や水における電解水としての効果が失われるため、電解水と氷は所定時間ごとに新たに生成されたものと入替えられ、塩分も同時に補給される。この保存容器40内の収納領域における電解水と氷の所定時間ごとの入替え、並びに塩分の補給は、電解水生成装置10やタンク10eからの電解水供給、製氷装置20や貯氷槽30からの氷供給等と連係した自動制御により実行するものとして、人手を介さないようにするのが好ましい。   In the storage area within the storage container 40, the freshness of the fresh product 60 is maintained by suppressing the activity of the bacteria by cooling the fresh product 60 with the ice 70 and suppressing the oxidation by the reducing action of the alkaline electrolyzed water. Is done. In addition, since the osmotic pressure of the electrolyzed water is appropriately adjusted by adding salt, moisture permeation into the fresh product 60 does not occur, and the quality of the fresh product 60 is not deteriorated. In addition, in the storage area in the storage container 40, since the effect of electrolytic water in the ice 70 and water is lost with time, the electrolytic water and ice are replaced with newly generated ones every predetermined time, and the salt content is also reduced. It is replenished at the same time. Replacement of the electrolyzed water and ice in the storage area in the storage container 40 every predetermined time and supply of salt are performed by supplying electrolyzed water from the electrolyzed water generating device 10 and the tank 10e, and ice from the ice making device 20 and the ice storage tank 30. It is preferable not to intervene manually as what is executed by automatic control linked with supply or the like.

生鮮物60は、保存容器40内への収納後、出荷すべきと判断された所望の時点で取り出され、製氷装置20で新たに生成された、又は貯氷槽30から新たに取り出された、新しい電解水の氷70と共に、移送用容器50に収納され(図7参照)、冷却状態が保たれたまま移送先に送られる。移送用容器50はその保温能力と氷70の冷却力で、内部を氷の氷点付近の温度に保持でき、移送先で移送用容器50を開封して生鮮物60を取り出すまでの間、電解水の氷70で冷却された生鮮物60は状態をほとんど変化させることなく、鮮度を維持できる。   The fresh product 60 is taken out at a desired time when it is determined to be shipped after being stored in the storage container 40, and is freshly generated by the ice making device 20 or newly taken out from the ice storage tank 30. It is stored in the transfer container 50 together with the ice 70 of the electrolyzed water (see FIG. 7), and is sent to the transfer destination while the cooling state is maintained. The transfer container 50 can keep the inside at a temperature near the freezing point of the ice by its heat retaining ability and the cooling power of the ice 70, and the electrolyzed water until the fresh container 60 is taken out by opening the transfer container 50 at the transfer destination. The fresh product 60 cooled with the ice 70 can maintain its freshness with almost no change in state.

なお、この保存容器40の収納領域に至るまでの生鮮物60の取扱い経路や、生鮮物60を保存容器40の収納領域から移送用容器50へ移すまでの取扱い経路となる各作業場には、電解水生成装置10により生成された酸性電解水が導入され、洗浄されることとなる。酸性電解水には次亜塩素酸(HClO)が多く含まれることから、洗浄、殺菌及び消臭能力に優れ、生鮮物を取扱う箇所の浄化、殺菌状態や臭気抑制状態を確実に維持でき、また、アルカリ性電解水と同時に生成されるものの、生鮮物の鮮度保持に直接関与しない酸性電解水を有効に活用できる。   In addition, in each work place which becomes a handling path | route from the storage area | region of the storage container 40 to the container 50 for transfer to the handling path | route of the fresh food 60 to the storage area | region of this storage container 40, or fresh food 60 is electrolysis. The acidic electrolyzed water generated by the water generator 10 is introduced and washed. Since acidic electrolyzed water contains a lot of hypochlorous acid (HClO), it has excellent cleaning, sterilization and deodorizing ability, can reliably maintain the purification, sterilization and odor control conditions of fresh food handling areas. Acidic electrolyzed water that is generated at the same time as alkaline electrolyzed water but is not directly involved in maintaining the freshness of fresh products can be used effectively.

このように、本実施形態に係る鮮度保持システムにおいては、水道水や工業用水等の真水である水を用いて電解水生成装置10で電気分解を行い、アルカリ性電解水を生成すると共に、このアルカリ性電解水を製氷装置20で製氷して電解水の氷70を得、これらアルカリ性電解水と電解水氷70とを生鮮物60と共に保存容器40に収納して生鮮物60の冷却保存に用いることから、腐敗につながるバクテリアの活動を電解水氷に基づく冷却で抑制できることに加えて、電解水と氷の備える強力な還元力により生鮮物中の酸素による酸化作用を抑制することができ、生鮮物の細胞の酸化に伴う腐敗進行を抑えられ、生食可能な期間を延すなど長期にわたり生鮮物の鮮度を維持でき、同じ時間経過状態での生鮮物の品質を従来保存方式より高められる。また、生鮮物の鮮度を長く維持できることで、保存容器40における冷却保存状態からの取出し時期を適宜選定でき、生鮮物の捕獲又は収穫直後に限らない最適なタイミングで保存容器40から取り出して、鮮度を保ったまま市場への出荷等ができ、生鮮物の商品価値を高められる。   As described above, in the freshness maintaining system according to the present embodiment, electrolysis is performed by the electrolyzed water generating device 10 using water that is fresh water such as tap water or industrial water to generate alkaline electrolyzed water, and this alkaline The electrolyzed water is made by the ice making device 20 to obtain the ice 70 of the electrolyzed water. The alkaline electrolyzed water and the electrolyzed water ice 70 are stored in the storage container 40 together with the fresh product 60 and used for cooling and storing the fresh product 60. In addition to being able to suppress bacterial activity leading to spoilage by cooling based on electrolyzed water ice, the strong reducing power of electrolyzed water and ice can suppress the oxidizing action of oxygen in fresh food, The progress of decay due to cell oxidation can be suppressed, the freshness of fresh food can be maintained over a long period of time, such as extending the period during which raw food can be eaten, and the quality of fresh food over the same time lapse is higher than that of conventional storage methods It is. Further, since the freshness of the fresh product can be maintained for a long time, it is possible to appropriately select the extraction timing from the cold storage state in the storage container 40, and the freshness can be taken out from the storage container 40 at an optimal timing not limited to immediately after capturing or harvesting the fresh product. The product can be shipped to the market while maintaining the quality, and the product value of fresh products can be increased.

なお、前記実施形態に係る鮮度保持システムにおいては、電解水生成装置10の電解セル12で電解質を含む水の電気分解を行って、アルカリ性電解水と酸性電解水をそれぞれ生成する中、同じく電気分解で発生する気体の水素や酸素の一部が各電解水に溶け込み、こうした各電解水の還元作用(抗酸化作用)や酸化作用(殺菌作用)に水素の還元作用や酸素の酸化作用も加わった状態で、各電解水を利用する構成としているが、これに限らず
、アルカリ性電解水への水素の溶存量や、酸性電解水への酸素の溶存量を積極的に増やして、各電解水の還元力や酸化力をさらに高める構成とすることもできる。例えば、陰電極の形状をメッシュ状とするなど電極形状の工夫で、発生する水素気体の気泡の大きさを極めて小さくし、発生した水素をアルカリ性電解水に溶け込みやすくして溶存量を増加させるようにしたり、電解水を生成する電解セルとは別に一又は複数の補助電解セルを設け、この補助電解セルにおける電気分解で発生する気体の水素及び酸素を前記電解セルに流入する水に混入させて、各気体の溶存量を電解セルのみの場合より増大させたり、別の装置で生じさせた気体の水素や酸素を各電解水に吹込んで溶け込ませ、溶存量を増やしたりする構成をそれぞれ採用すれば、各電解水の還元力や酸化力の向上を図ることができる。
In the freshness maintaining system according to the embodiment, electrolysis of water containing an electrolyte is performed in the electrolysis cell 12 of the electrolyzed water generating apparatus 10 to generate alkaline electrolyzed water and acidic electrolyzed water, respectively. Part of the gaseous hydrogen and oxygen generated in the water dissolves in each electrolyzed water, and the reducing action (antioxidant action) and oxidizing action (sterilizing action) of each electrolyzed water are added to the reducing action of hydrogen and the oxidizing action of oxygen. In the state, each electrolyzed water is used, but not limited to this, the amount of dissolved hydrogen in the alkaline electrolyzed water and the amount of oxygen dissolved in the acidic electrolyzed water are positively increased. It can also be set as the structure which raises a reducing power and an oxidizing power further. For example, by devising the electrode shape, such as making the shape of the negative electrode mesh, the size of the generated hydrogen gas bubbles is made extremely small, so that the generated hydrogen can be easily dissolved in alkaline electrolyzed water to increase the dissolved amount. Or by providing one or a plurality of auxiliary electrolysis cells separately from the electrolysis cell for generating electrolyzed water, and mixing gaseous hydrogen and oxygen generated by electrolysis in the auxiliary electrolysis cell into the water flowing into the electrolysis cell. In addition, each gas can be dissolved in a larger amount than in the case of an electrolysis cell alone, or gas hydrogen or oxygen generated by another device can be blown into each electrolyzed water to increase the dissolved amount. For example, the reducing power and oxidizing power of each electrolyzed water can be improved.

本発明の鮮度保持システムを用いて生鮮物である鮮魚を冷却保存し、時間の経過に伴う鮮度変化について測定評価を実施し、比較例としての通常の氷等で冷却保存した場合の鮮魚における鮮度変化と比較した結果について説明する。   Fresh fish as a fresh product is stored by cooling using the freshness keeping system of the present invention, and the measurement evaluation is performed for the change in freshness with the passage of time, and the freshness of fresh fish when stored by cooling with ordinary ice as a comparative example. The result compared with the change will be described.

生鮮物のうち、鮮魚については、一般に鮮度判定の指標としてK値(ATP関連化合物総量に対する分解生成物の割合(%))が知られており、このK値が小さいほど魚は新鮮であるといえる。このK値の上昇を低く抑えるように保存を行えば、魚の鮮度を維持できることとなる。   Among fresh products, for fresh fish, the K value (ratio of decomposition products to the total amount of ATP-related compounds) is generally known as an index for determining freshness, and the smaller the K value, the fresher the fish. I can say that. If preservation is performed so as to keep the increase in K value low, the freshness of the fish can be maintained.

ここで、K値について詳細に説明すると、魚肉に含まれるアデノシン三リン酸(ATP)は、酵素により分解して、アデノシン二リン酸(ADP)、アデニル酸(AMP)、イノシン酸(IMP)、イノシン(HxR)、及びヒポキサンチン(Hx)の順に変化する反応を示す。このような魚肉のATP分解反応は、死後直ちに開始する。このことから、魚類の生きの良さ(鮮度)については、上記のATP分解過程を目安として、下記のように求められる「K値」で表すことができる。   Here, the K value will be described in detail. Adenosine triphosphate (ATP) contained in fish meat is decomposed by an enzyme to produce adenosine diphosphate (ADP), adenylic acid (AMP), inosinic acid (IMP), The reaction changes in the order of inosine (HxR) and hypoxanthine (Hx). Such ATP decomposition reaction of fish meat starts immediately after death. From this, the liveliness (freshness) of fish can be expressed by the “K value” obtained as follows, using the above ATP decomposition process as a guide.

K値(%)=(D1/D2)×100
ただし、
D1=HxR+Hx(イノシンとヒポキサンチンの合計量)
D2=ATP+ADP+AMP+IMP+HxR+Hx(ATP関連化合物総量)
なお、魚類は、イノシンやヒポキサンチンが多くなるにつれて鮮度を低下させることが知られており、K値(%)はこれらイノシンやヒポキサンチンの量を反映したものとなっている。
K value (%) = (D1 / D2) × 100
However,
D1 = HxR + Hx (total amount of inosine and hypoxanthine)
D2 = ATP + ADP + AMP + IMP + HxR + Hx (total amount of ATP-related compounds)
Fish are known to decrease freshness as inosine and hypoxanthine increase, and the K value (%) reflects the amount of inosine and hypoxanthine.

具体的には、K値が20%以下の場合、魚は極めて鮮度良好であり、刺身に適した状態である。K値が20%を超えて30%以下となる場合は、新鮮といえる状態である。K値が30%を超えて40%以下となる場合は、煮焼き用に適した状態である。K値が40%を超えて50%以下となる場合は、加熱調理すれば食べられる状態である。K値が50%を超えて80%以下となる場合は、初期腐敗の状態で鮮度は不良である。   Specifically, when the K value is 20% or less, the fish has a very good freshness and is suitable for sashimi. When the K value exceeds 20% and becomes 30% or less, it can be said to be fresh. When K value exceeds 30% and becomes 40% or less, it is a state suitable for boiling. When K value exceeds 40% and becomes 50% or less, it is in a state where it can be eaten if cooked. When the K value exceeds 50% and becomes 80% or less, the freshness is poor in the initial rotting state.

実際に、ウマヅラハギについてK値を取得した。測定は、ウマヅラハギの肉からATP関連化合物としてイノシンとヒポキサンチンのみ含む試料と、これらイノシンとヒポキサンチンに限られない、他のATP関連化合物も含む試料をそれぞれ作成し、前者からD1、すなわちイノシンとヒポキサンチンの合計量を計測し、後者からD2、すなわちATP関連化合物総量を計測して、K値を算出する公知の手法を用いて行った。   In fact, K values were obtained for horse mackerel Rahagi. In the measurement, samples containing only inosine and hypoxanthine as ATP-related compounds and samples containing other ATP-related compounds, not limited to these inosine and hypoxanthine, were prepared from horse mackerel meat, and D1, ie, inosine, was prepared from the former. The total amount of hypoxanthine was measured, and from the latter, D2, that is, the total amount of ATP-related compounds was measured, and this was performed using a known technique for calculating the K value.

評価は、実施例として、本発明の鮮度保持システムにより得られたアルカリ性電解水とアルカリ性電解水氷での冷却環境で保存したウマヅラハギについて、保存開始時と、1日、2日、3日、4日、及び7日経過時点における試料をそれぞれ作成して各値(D1、D
2)を計測し、各々についてK値を算出して行った。 また、比較例として、従来から一般的なブロック氷と海水を用いた冷却環境で保存した場合について、同様の試料をそれぞれ取得して計測を実行し、各々同様にK値を求めた。
As an example, the evaluation was carried out with respect to equine larvae stored in a cooling environment with alkaline electrolyzed water and alkaline electrolyzed water ice obtained by the freshness keeping system of the present invention at the start of storage, 1, 2, 3, 4 Samples were prepared for each day and 7 days, and each value (D1, D
2) was measured, and the K value was calculated for each. In addition, as a comparative example, for a case where the conventional block ice and seawater were used and stored in a cooling environment, the same sample was obtained and measured, and the K value was similarly determined.

本発明の鮮度保持システムにより得られたアルカリ性電解水とアルカリ性電解水氷で冷却保存した場合におけるウマヅラハギについての各測定で得られた、実施例としての各測定時期ごとのK値(%)を、比較例の場合における値と合わせて表1に示すと共に、各K値をプロットしたグラフを、図8に示す。グラフにおいては、縦軸がK値の大きさである。   The K value (%) for each measurement period as an example, obtained in each measurement for equine larvae when cooled and stored with alkaline electrolyzed water and alkaline electrolyzed water ice obtained by the freshness maintaining system of the present invention, FIG. 8 shows a graph in which the K values are plotted together with the values in the case of the comparative example as well as in Table 1. In the graph, the vertical axis represents the magnitude of the K value.

Figure 0005692715
Figure 0005692715

表1及び図8のグラフより、実施例の電解水と電解水氷で冷却保存したもののK値は、保存開始から4日目で22.1%、7日目で45.4%となっており、比較例の場合、4日目で40.3%、7日目で71.1%と大幅に悪化しているのに対して良好な値を示しており、電解水と電解水氷の作用により、保存開始時からのK値の増加、すなわち鮮度の低下が抑えられ、比較例に対し鮮度を良好に維持していることがわかる。   From the graphs of Table 1 and FIG. 8, the K value of the sample that was cooled and stored with the electrolyzed water and the electrolyzed water ice of the example was 22.1% on the fourth day from the start of storage and 45.4% on the seventh day. In the case of the comparative example, it shows a good value compared with 40.3% on the 4th day and 71.1% on the 7th day. It can be seen that the action suppresses an increase in K value from the start of storage, that is, a decrease in freshness, and maintains good freshness compared to the comparative example.

以上から、本発明の鮮度保持システムを用いることで、生鮮物におけるK値の上昇を低く抑えるように生鮮物の冷却保存を行うことができ、生鮮物の鮮度を長く適切に保持できることは明らかである。   From the above, it is clear that by using the freshness keeping system of the present invention, it is possible to cool and preserve fresh food so as to keep the rise in K value in fresh food low, and to keep freshness of fresh food properly for a long time. is there.

1 鮮度保持システム
10 電解水生成装置
10a 取水管
10c、10d 出水管
10e、10f タンク
11 電解補助装置
12 電解セル
12a 陰電極側領域
12b 陽電極側領域
13 陰電極
14 陽電極
15 イオン交換膜
20 製氷装置
21 製氷シリンダ
21a 内周面
21b 冷媒通路
22 散水部
22a 孔
23 底容器部
23a 開放部
24 可動支持部
24a 中心軸
24b、24c リーマ支持部
24d 仕切部
24e 駆動部
24f、24g ワイパー
25 リーマ
25a 回動軸
25b 刃
26 案内部
27 散水区域
28 製氷区域
30 貯氷槽
31 取出部
40 保存容器
41 出入口部
50 移送用容器
60 生鮮物
70 氷
DESCRIPTION OF SYMBOLS 1 Freshness maintenance system 10 Electrolyzed water production | generation apparatus 10a Intake pipe 10c, 10d Drain pipe 10e, 10f Tank 11 Electrolysis auxiliary apparatus 12 Electrolysis cell 12a Negative electrode side area | region 12b Positive electrode side area | region 13 Negative electrode 14 Positive electrode 15 Ion exchange membrane 20 Ice making Device 21 Ice making cylinder 21a Inner peripheral surface 21b Refrigerant passage 22 Water sprinkling part 22a Hole 23 Bottom container part 23a Opening part 24 Movable support part 24a Central shaft 24b, 24c Reamer support part 24d Partition part 24e Drive part 24f, 24g Wiper 25 Reamer 25a Time Moving shaft 25b Blade 26 Guide part 27 Sprinkling area 28 Ice making area 30 Ice storage tank 31 Extraction part 40 Storage container 41 Entrance / exit part 50 Transfer container 60 Fresh food 70 Ice

Claims (4)

真水である水に電解質成分を添加した上で電気分解を行い、アルカリ性電解水と酸性電解水とを生成する電解水生成装置と、
冷却された製氷面に前記アルカリ性電解水を散水し、水を瞬間的に凍結させて製氷面に沿って連続する氷を生じさせ、さらに当該氷を割ってフレーク状のアルカリ性電解水氷を製造する製氷装置と、
前記製氷装置で得られた氷を、前記電解水生成装置で生成されたアルカリ性電解水と共に所定の収納領域に収納して、当該収納領域の温度を前記氷の氷点温度と略一致させ、さらにアルカリ性電解水に浸透圧調整用の電解質成分を添加した状態で、保存対象の多数の生鮮物をアルカリ性電解水に浸漬させつつ前記収納領域に収納して、生鮮物を冷却保存する保存装置と
前記製氷装置で得られた、前記保存装置に収納されるのとは別の新たなアルカリ性電解水氷と、前記保存装置から小分けで取り出された一又は複数の生鮮物とを収納し、内部を氷の氷点付近の温度に保持して、生鮮物を冷却保存する移送用容器と、
前記電解水生成装置で生成された酸性電解水を一時的に貯溜するためのタンクと、
当該タンクに一時的に貯溜された酸性電解水を、生鮮物を前記収納領域に収納するまでの取扱い経路、及び/又は生鮮物を前記収納領域から移送用容器に移すまでの取扱い経路上の各場所に供給する手段とを備え、
前記取扱い経路の洗浄にあたり、前記酸性電解水が導入されて洗浄、殺菌に供されることを
特徴とする鮮度保持システム。
An electrolyzed water generating device that performs electrolysis after adding an electrolyte component to water that is fresh water to generate alkaline electrolyzed water and acidic electrolyzed water;
The alkaline electrolyzed water is sprinkled on the cooled ice making surface, the water is instantaneously frozen to produce continuous ice along the ice making surface, and the ice is further broken to produce flaky alkaline electrolyzed water ice. An ice making device;
The ice obtained by the ice making device is stored in a predetermined storage area together with the alkaline electrolyzed water generated by the electrolyzed water generating device, and the temperature of the storage area is substantially matched with the freezing point temperature of the ice. In a state where an electrolyte component for adjusting osmotic pressure is added to electrolyzed water, a storage device that stores a large number of fresh products to be stored in alkaline electrolyzed water while storing them in the storage area, and cools and stores fresh products ;
A new alkaline electrolyzed water ice obtained by the ice making device, which is different from the one stored in the storage device, and one or a plurality of fresh products taken out in small portions from the storage device are stored, and the inside is stored. A transfer container that keeps the fresh food in a cold state by maintaining the temperature near the freezing point of the ice;
A tank for temporarily storing acidic electrolyzed water generated by the electrolyzed water generating device;
The acidic electrolyzed water temporarily stored in the tank is handled on the handling path until fresh food is stored in the storage area and / or on the handling path until fresh food is transferred from the storage area to the transfer container. Means for supplying to the place,
In the cleaning of the handling path, the acidic electrolyzed water is introduced and used for cleaning and sterilization .
前記請求項1に記載の鮮度保持システムにおいて、
前記製氷装置が、
所定の冷却手段で前記製氷面としての内周面を冷却される略円筒状の製氷シリンダと、
前記製氷シリンダの内側に配設され、製氷シリンダの円筒中心軸線を中心として回転駆動される可動支持部と、
当該可動支持部に支持され、氷とするアルカリ性電解水を、製氷シリンダ内周面に対する散水範囲を移動させつつ製氷シリンダ内周面にもれなく散水供給する散水部と、
前記可動支持部に回転自在に支持され、前記製氷シリンダ内周面に沿って可動支持部ごと移動しつつ前記散水部の散水範囲から外れた位置で製氷シリンダ内周面に生じた氷に接触可能となる配置とされ、前記氷を割るリーマと、
前記可動支持部に支持され、製氷シリンダ内側の領域を前記散水部の散水範囲と前記リーマが氷を割落す製氷区域とに分ける仕切部とを備えることを
特徴とする鮮度保持システム。
The freshness keeping system according to claim 1,
The ice making device is
A substantially cylindrical ice making cylinder that cools the inner peripheral surface as the ice making surface by a predetermined cooling means;
A movable support that is disposed inside the ice making cylinder and is driven to rotate about a cylindrical central axis of the ice making cylinder;
A water sprinkling section that is supported by the movable support section and supplies alkaline electrolyzed water as ice while sprinkling water to the inner peripheral surface of the ice making cylinder while moving the sprinkling range with respect to the inner peripheral surface of the ice making cylinder,
It is rotatably supported by the movable support portion, and can move along the inner peripheral surface of the ice making cylinder while moving along the inner peripheral surface of the ice making cylinder, and can contact ice generated on the inner peripheral surface of the ice making cylinder at a position outside the water spraying range of the water sprinkling portion. A reamer that breaks the ice,
A freshness maintaining system, comprising: a partition part supported by the movable support part and dividing an area inside the ice making cylinder into a watering range of the watering part and an ice making area where the reamer breaks ice .
前記請求項1又は2に記載の鮮度保持システムにおいて、
前記保存装置が、前記収納領域に収納した氷及び電解水を、前記製氷装置で得られた新たなアルカリ性電解水氷、並びに、前記電解水生成装置で生成された新たなアルカリ性電解水と、所定時間間隔で入替えると共に、浸透圧調整用の電解質成分を追加して当該成分の濃度を調整することを
特徴とする鮮度保持システム。
In the freshness keeping system according to claim 1 or 2,
The storage device stores ice and electrolyzed water stored in the storage area, new alkaline electrolyzed water ice obtained by the ice making device, and new alkaline electrolyzed water generated by the electrolyzed water generating device, and a predetermined amount. A freshness-keeping system characterized by being replaced at time intervals and adding an electrolyte component for adjusting osmotic pressure to adjust the concentration of the component .
真水である水に電解質成分を添加した上で電気分解を行い、アルカリ性電解水と酸性電解水とを生成し、
製氷装置の冷却された製氷面に前記アルカリ性電解水を散水し、水を瞬間的に凍結させて製氷面に沿って連続する氷を生じさせ、さらに当該氷を割ってフレーク状のアルカリ性電解水氷を製造し、
当該フレーク状のアルカリ性電解水氷を、前記アルカリ性電解水と共に所定の保温された収納領域に収納して、当該収納領域の温度を前記氷の氷点温度と略一致させ、さらに収納領域内のアルカリ性電解水に浸透圧調整用の電解質成分を添加した状態で、保存対象の多数の生鮮物をアルカリ性電解水に浸漬させつつ前記収納領域に収納して、生鮮物を一時的に冷却保存し、
前記収納領域に収納されるものとは別に前記製氷装置で新たに製造された前記アルカリ性電解水氷と、前記収納領域から小分けで取り出された一又は複数の生鮮物とを移送用容器に収納して、生鮮物を用いる移送先までの移送の間、移送用容器内部を氷の氷点付近の温度に保持して、生鮮物を冷却保存し、
さらに、前記電気分解で生成した酸性電解水を、タンクに一時的に貯溜してから、生鮮物を前記収納領域に収納するまでの取扱い経路、及び/又は生鮮物を前記収納領域から移送用容器に移すまでの取扱い経路に導入して、生鮮物の取扱い経路を洗浄することを
特徴とする鮮度保持方法
Electrolysis is performed after adding an electrolyte component to fresh water, producing alkaline electrolyzed water and acidic electrolyzed water,
The alkaline electrolyzed water is sprinkled on the cooled ice making surface of the ice making device, the water is instantaneously frozen to form continuous ice along the ice making surface, and the ice is further broken to form flaky alkaline electrolyzed water ice. Manufacture and
The flaky alkaline electrolyzed water ice is stored together with the alkaline electrolyzed water in a predetermined heat-retained storage area, the temperature of the storage area is substantially matched with the freezing point temperature of the ice, and the alkaline electrolysis in the storage area is further performed. With the electrolyte component for adjusting the osmotic pressure added to water, storing a large number of fresh products to be stored in alkaline electrolyzed water while storing them in the storage area, storing the fresh products temporarily in a cold state,
Separately from the one stored in the storage area, the alkaline electrolyzed water ice newly produced by the ice making device and one or a plurality of fresh products taken out from the storage area are stored in a transfer container. During the transfer to the transfer destination using fresh food, the inside of the transfer container is kept at a temperature near the freezing point of the ice, and the fresh food is stored in a cold state.
Furthermore, the acidic electrolyzed water generated by the electrolysis is temporarily stored in a tank and then the handling path from storing fresh food to the storage area and / or the container for transferring fresh food from the storage area. A freshness-maintaining method, wherein the freshness- handling route is washed by introducing it into the handling route until it is transferred to the factory .
JP2010155842A 2010-07-08 2010-07-08 Freshness keeping system and freshness keeping method Active JP5692715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155842A JP5692715B2 (en) 2010-07-08 2010-07-08 Freshness keeping system and freshness keeping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155842A JP5692715B2 (en) 2010-07-08 2010-07-08 Freshness keeping system and freshness keeping method

Publications (2)

Publication Number Publication Date
JP2012016313A JP2012016313A (en) 2012-01-26
JP5692715B2 true JP5692715B2 (en) 2015-04-01

Family

ID=45602045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155842A Active JP5692715B2 (en) 2010-07-08 2010-07-08 Freshness keeping system and freshness keeping method

Country Status (1)

Country Link
JP (1) JP5692715B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103005616B (en) * 2012-12-31 2014-01-29 杨公明 Method for sterilizing, quick-freezing and fresh-keeping prawns by acidic oxidizing electrolyzed water
JP6409921B2 (en) * 2016-08-01 2018-10-24 三菱重工冷熱株式会社 Ice making method and environmental test method
CN107674830B (en) * 2016-08-01 2023-09-12 北京世纪劲得生物技术有限公司 NK cell gathers and uses suit
JP7093946B2 (en) * 2018-07-25 2022-07-01 株式会社日本トリム Freshness keeping device and freshness keeping method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214290A (en) * 2000-01-31 2001-08-07 Kyoei Aqua Tec Kk Method for protecting electrode of electrolytic water generator
JP2003023907A (en) * 2001-05-10 2003-01-28 Hoshizaki Electric Co Ltd Apparatus for egg washing and method for washing the apparatus
JP4049221B2 (en) * 2005-12-02 2008-02-20 中国電機製造株式会社 Electrolytic seawater ice generation system, electrolytic seawater generation device, and fresh fish preservation method
JP4976879B2 (en) * 2007-02-20 2012-07-18 有限会社柴田熔接工作所 Ice making equipment
JP4970132B2 (en) * 2007-05-02 2012-07-04 島崎電機株式会社 Tableware washing machine

Also Published As

Publication number Publication date
JP2012016313A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5692715B2 (en) Freshness keeping system and freshness keeping method
JP4049221B2 (en) Electrolytic seawater ice generation system, electrolytic seawater generation device, and fresh fish preservation method
US11060780B2 (en) Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof
JP4648291B2 (en) Function storage device for fresh products
CN102871200A (en) Method for fresh-keeping of aquatic product by electrolytic ice
KR102272050B1 (en) Low temperature aging apparatus and method using slurry ice
JP3681107B2 (en) Freshness maintenance method of fresh food and freshness maintenance system of fresh food
WO2017086461A1 (en) Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof
JP6311191B2 (en) Method and system for producing a solid-liquid mixture with a constant melting point temperature
KR101883616B1 (en) Manufacturing method of processed fishery products for cryopreserving
JP2018017490A (en) Flake ice manufacturing device, process of manufacture of ice, refrigerant and ice, process of manufacture of object to be cooled, process of manufacture of animal plant or object to be refrigerated for part thereof, process of manufacture of animal plant or its refrigeration agent, fresh animal plant to be frozen or its refrigeration agent, thawing object or its processed product and fresh animal plant or its freezing agent for the part thereof
JP2017040467A5 (en)
JP4240481B2 (en) How to keep freshness of seafood
EP0111590A1 (en) Process for preparing frozen vegetables and fruits with a reduced amount of waste water
JP7093946B2 (en) Freshness keeping device and freshness keeping method
JP2003116460A (en) Method for preserving food and device for the same
JP2011047629A (en) Ozone ice of high content of bubble of air in ice, and method and device of making the ozone ice
JP3773841B2 (en) Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method
JP6044019B1 (en) How to make ice from seawater
US20080072615A1 (en) Ice making machine
US20160332896A1 (en) Method and associated apparatus for process water sanitation
KR100490663B1 (en) Apparatus manufacturing an ice with the deep sea water and method for manufacturing the an ozone-included ice with the deep sea water
KR20240050055A (en) Processing and manufacturing methods of frozen seafood products
JPH10267476A (en) Method for manufacturing ice containing ozone
CN211631605U (en) Vegetable field heat elimination and fresh-keeping system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150127

R150 Certificate of patent or registration of utility model

Ref document number: 5692715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250