JP3773841B2 - Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method - Google Patents

Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method Download PDF

Info

Publication number
JP3773841B2
JP3773841B2 JP2001375660A JP2001375660A JP3773841B2 JP 3773841 B2 JP3773841 B2 JP 3773841B2 JP 2001375660 A JP2001375660 A JP 2001375660A JP 2001375660 A JP2001375660 A JP 2001375660A JP 3773841 B2 JP3773841 B2 JP 3773841B2
Authority
JP
Japan
Prior art keywords
fresh food
ozone water
ozone
freezing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001375660A
Other languages
Japanese (ja)
Other versions
JP2003169645A (en
Inventor
茂雄 宮尾
喜之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001375660A priority Critical patent/JP3773841B2/en
Publication of JP2003169645A publication Critical patent/JP2003169645A/en
Application granted granted Critical
Publication of JP3773841B2 publication Critical patent/JP3773841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、魚介類や獣肉類或いは野菜,果物等の生鮮食品の冷凍保存技術に関するもので、特に生鮮食品を冷凍保存するための前処理方法とその装置に関するものである。
【0002】
【従来の技術】
生鮮食品においては、収穫時から消費される迄の間の鮮度維持と細菌汚染の防止は、極めて重要な課題であり、所定の低温条件下に保持して貯蔵及び搬送を行うコールドチェーンが代表的な方法であるが、現実的には、流通コスト面及び低温保持装置の設備コスト面から必ずしも充分な設備が普及しているとは言えないのが現状である。
【0003】
一方、最近では、環境負荷の小さな殺菌手段としてオゾンの利用が広まりつつある。オゾンは、強力な酸化力を有しており、洗浄・殺菌,脱臭,脱色,鮮度保持等に広く利用でき、残留する事もないので安全性も高いが、保存できない欠点がある。オゾンを氷の状態、即ちオゾン氷となす事により、ある程度のオゾンの保存性を確保する技術も開発され、幾つか提案されている。
【0004】
例えば、特開平6−165637号公報には、オゾンガスを溶解した冷水を凍らせてオゾン氷を製造し、これを青果物容器に青果物と共に収容して流通させる方法が提案されている。
【0005】
【発明が解決しようとする課題】
先ず、従来の一般的な冷凍方法においては、魚介類等の生鮮食品を冷凍庫で事前冷凍するものであるので、魚介類等の表面に付着している『ぬめり』や細菌類もそのまま凍結される結果、細菌による活動を停止又は抑制できても、解凍と共に賦活され、特に解凍過程で生じるドリップの変色と臭気の発生は避けられず、同時に、鮮度低下は避けられなかった。又、冷凍保存中の生鮮食品からの水分の放出により、生鮮食品中の含有水分の低下に起因する或る程度の変質は避けられなかった。
【0006】
一方、魚介類や青果物等の容器内にオゾン氷を収容して係る生鮮食品を輸送する方法においては、オゾン氷の融解により生成するオゾン水によって、殺菌と脱臭や脱色が行われるので、鮮度維持は比較的良好であるが、その期間が極めて短く、少なくとも、週単位或いは月単位での保存は不可能であった。
【0007】
特に、体の表面に強固な『ぬめり』を有する魚介類や、エラの部分に多くの雑菌を有し、腐敗し易い魚類については、長期間に亘り、鮮度と品質の保持を行う事のできる効果的な保存手段が存在しないと言っても過言ではない。
【0008】
本発明は、係る現状に鑑み、変質し易い魚介類であっても、オゾンを用いて効果的に変質を防止すると共に、生鮮食品中の水分を維持しつつ、長期保存を可能とする生鮮食品の冷凍保存のための前処理方法及びその装置並びに冷凍保存方法を提供する事を目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、係る観点に立ってなされたもので、その特徴とする処は、生鮮食品を冷凍保存するための処理方法であって、該生鮮食品をオゾン水の氷結温度以下に冷凍する生鮮食品冷凍工程と、得られた冷凍生鮮食品をオゾン水中に浸漬してその表面にオゾン氷被覆層を形成するオゾン氷被覆層形成工程とを有するものであり、これによって、生鮮食品の隅々までもオゾンと接触し易くなすと同時に瞬間的にオゾン氷の被覆層を形成する事により、生鮮食品の鮮度維持と細菌汚染を防止する様にしたものである。
【0010】
使用するオゾン水としては、水の電気分解法によって陽極側にオゾン水を生成する電解式オゾン水製造装置によって製造されたオゾン水が好ましい。これにより、オゾン水濃度を高濃度に保ち且つその濃度や流量の制御が極めて容易となるので、工業的なオゾン水の使用が容易となる。
【0011】
尚、前記生鮮食品冷凍工程の前に、該生鮮食品をオゾン水で洗浄するオゾン水洗浄工程、或いは、前記前記電解式オゾン水製造装置の陰極側に生成するアルカリ水によって洗浄するアルカリ水洗浄工程のいずれか一方又は双方を設ける事により、生鮮食品の表面洗浄と共に殺菌や魚介類の場合には表面の強固なヌメリを除去し、これにより生鮮食品の変質要因を予め除去した後に、前記生鮮食品冷凍工程に移行するのが好ましい方策である。尚、オゾン水洗浄工程とアルカリ水洗浄工程の両方を用いる場合には、アルカリ水洗浄工程を先行させるのが好ましい方法である。
【0012】
又、前記生鮮食品冷凍工程における生鮮食品の冷凍温度は、オゾン水の氷点である0℃から充分に低い温度、即ち−10℃以下を選定するのが良い。好ましくは−20℃以下,更に好ましくは−40℃以下を選定するのが良い。一方、オゾン氷被覆層を形成するオゾン水の温度は、その氷点近傍まで冷却しているのが好ましいが、未氷結状態に保たれている必要がある。尚、このオゾン水の濃度としては、オゾン氷の被覆層を形成した後も、安定したオゾンの効果を発揮させるには、5ppm以上である事が好ましい。
【0013】
更に、上記前処理した生鮮食品を、冷凍庫で保存する生鮮食品の冷凍保存方法も本発明であり、これにより長期に亘って鮮度を維持する事が可能となる。
【0014】
次に、本発明に係る生鮮食品を冷凍保存するための前処理装置は、水の電気分解によって陽極側にオゾン水を生成する電解式オゾン水製造装置と、該電解式オゾン水製造装置で生成したオゾン水を貯蔵するオゾン水槽と、該オゾン水槽内のオゾン水を該オゾン水の氷点近傍で且つ未氷結状態に冷却維持するオゾン水冷却機と、前記生鮮食品を前記オゾン水の氷点以下に冷凍する生鮮食品冷凍装置と、該生鮮食品冷凍装置で冷凍された冷凍生鮮食品を前記オゾン水槽内に浸漬して該冷凍生鮮食品の表面にオゾン氷被覆層を形成する冷凍生鮮食品浸漬装置とを備えてなる事を特徴とするものである。
【0015】
この装置の応用例としては、前記生鮮食品を、前記生鮮食品冷凍装置で冷凍する前に前記電解式オゾン水製造装置の陰極側に生成するアルカリ水によって洗浄するアルカリ水洗浄装置を設けたもの、或いは、オゾン水によって洗浄するオゾン水洗浄装置を設けたもの、及びアルカリ水洗浄装置とオゾン水洗浄装置とを、この順で直列に設けたものがある。これにより、生鮮食品にオゾン氷被覆層を形成する前に該生鮮食品の洗浄と殺菌を行って保存中の変質要因を除去する様にしている。
【0016】
更に、前記オゾン水洗浄装置には、前記電解式オゾン水製造装置から送出されるオゾン水の一部が供給される様に配管されているもの、或いは、前記オゾン水槽のオゾン水の一部が供給される様に配管されているものがある。
【0017】
更に又、前記オゾン水槽のオゾン水の一部を、前記電解式オゾン水製造装置の原料水入口側に還流させて再使用する事により、使用水量の低減とオゾン水濃度の向上を図ったものもある。
【0018】
【発明の実施の形態】
以下、本発明について図面を用いて詳細に説明する。先ず、本発明で使用するオゾン水自体は、基本的には、オゾンガスを水に溶解してオゾン水を生成するガス溶解方式と、水の電気分解によって陽極側にオゾン水を生成する電解式オゾン水製造方式に大別され、本発明の生鮮食品の保存処理方法においては、基本的にはいずれの方式で生成されたオゾン水でも良いが、高濃度オゾン水が瞬時にして得られ且つその濃度制御も容易であり、加えて殺菌作用を有するアルカリ水をも併産する電解式オゾン水製造装置が最適であるので、以下に、この電解式オゾン水製造装置について説明する。
【0019】
図6は、この電解式オゾン水生成装置の主要部を示す要部断面図であり、同図において、耐オゾン性のフッ素系イオン交換膜等の固体高分子電解質膜30(以下単に「電解質膜」と記載する場合がある)の一方の面に、オゾン発生触媒機能を有する貴金属製の金網からなる陽極電極31を該電解質膜30に重ね合わせる様にして配置し、他方の面には、同様に陰極電極32を該電解質膜30に重ね合わせる様にして配置している。両電極31,32の外側面には、夫々ステンレス鋼等の耐蝕性を有する金属製のラス網33,34が全長に亘って配置され、両電極間31,32に直流電圧を印加できる様に各電極は前記直流電源(図示せず)に接続されている。又、各電極31,32とラス網33,34とを内包する様に外側に陽極側ジャケット35と陰極側ジャケット36が夫々配置されている。各ジャケットには、配管L3から分岐した陽極側給水管L3bに接続された陽極側軟水供給口37、前記配管L3から分岐した陰極側給水管L3aに接続された陰極側軟水供給口38及びオゾン水配管L5に接続されたオゾン水送出口39、アルカリ水配管L4に接続されたアルカリ水送出口40が夫々形成されている。
【0020】
係る装置において、両電極31,32間に直流電圧を印加すると共に前記陽極側軟水供給口37及び陰極側軟水供給口38から夫々軟水を供給しつつ電解を行うと、陽極31側には水の電解により生成したOHイオン(OH− )が集まり、このOHイオンは、陽極31のオゾン発生触媒の作用によってオゾンになると共に直ちに水中に溶解してオゾン水が生成する。このオゾン水は、オゾン水送出口39からオゾン水配管L5に送出される。ここで、陽極電極31の外面近傍には千鳥状に金網が互いに接合されているラス網33によって複雑に入り組んだ流路が形成されているので陽極電極外面には多数の小さな渦流が生じ、この結果、電極面で発生したオゾンは渦流に巻き込まれて速やかに水中に溶解するので、オゾンガスとして水流と共に流出するオゾン量は減少し、即ち、溶解オゾン量が増加して20〜30ppm程度の高濃度オゾン水が生成される事が確認されている。
【0021】
同様に、水の電解によって生成した水素イオン(H+)は、陰極電極32側の電極面に集まって水素ガスとなり、水中から放出されるが、陰極面には、軟水器1でイオン交換して水中に微量に含まれているナトリウムイオン(Na+)が集まって濃縮され、陰極側の水をアルカリ水となし、前述の水素ガスと共にアルカリ水排出口40からアルカリ水配管L4に送出される事になる。この様に、陰極側には、水素ガスと共に水中に微量に含まれているアルカリ金属イオンも濃縮される結果、陰極側の水はpH9〜11或いはそれ以上のアルカリ水が生成される事が確認されている。
【0022】
係る電解式オゾン水生成装置2を用いて、オゾン水を製造する場合には、前記オゾン水配管L5に設置されたオゾン水濃度計(図示せず)にて生成オゾン水濃度を常時測定し、その濃度信号に基づいて前記DC電源から電解式オゾン水発生装置への供給直流値を変化させる事により、オゾン水濃度を一定に保持する様に制御する構成となっている。これにより、数ppmから30ppmまでの任意の濃度のオゾン水を安定して発生させる事ができる様になっている。
【0023】
次に、上記電解式オゾン水製造装置を用いた本発明の生鮮食品の保存処理方法について説明する。図1は、本発明に係る生鮮食品の保存処理工程図であり、収穫された生鮮食品1は、先ず洗浄工程に送られる。この洗浄工程には、単に水で洗浄する水洗工程2aと、前記電解式オゾン水製造装置の陽極側に生成したアルカリ水で洗浄するアルカリ水洗浄工程2bと、前記電解式オゾン水製造装置の陽極側に生成するオゾン水で洗浄するオゾン水洗浄工程2cとの3種類の工程がある。対象とする生鮮食品1が、野菜や果物等の場合には、水洗工程2aにより付着しているゴミを洗い流す程度でもよいが、アルカリ水洗浄工程2bにおいてアルカリ水で洗浄する事により、前記ゴミの除去と共にアルカリ水による殺菌洗浄を施す事も可能である。因みに、電解式オゾン水製造装置で生成するアルカリ水は、所謂電解によるアルカリ水イオン水に相当するもので、このアルカリ水が殺菌作用を有する事は良く知られている通りであるから、電解式オゾン水製造装置で副生するアルカリ水を生鮮食品の事前洗浄に利用するのは有効な方策である。更に、オゾン水洗浄工程2cによって、より強力に殺菌洗浄を行う事も可能である。これらの各洗浄工程2a〜2cは、これらの1つの工程のみを選択する事も可能であるが、組み合わせて洗浄する事も可能である。但し、オゾン水洗浄は、極めて強力な殺菌機能を有しているので、複数の洗浄工程を採用する場合には、最終洗浄工程に採用するのが好ましい。
【0024】
生鮮食品1が、魚貝類等の海産物の場合には、水洗工程2aは真水による洗浄ではなく海水により洗浄が行われる事は言うまでもない。又、魚の場合には、表面に強固なヌメリが存在し、多少の水洗程度では完全に除去する事は困難であるので、この場合には、前記アルカリ水洗浄やオゾン水洗浄又はこの両方による洗浄を行って、予めこのヌメリを完全に除去しておくのが好ましく、このヌメリの完全除去には、オゾン水洗浄が有効である。又、魚のエラの部分には雑菌が溜まり易く、この部分から変質が進行するので、アルカリ水洗浄やオゾン水洗浄によって、このエラの部分の洗浄も行っておくのが好ましい。
【0025】
上述の要領で洗浄された生鮮食品は、次の生鮮食品冷凍工程3に送られ、ここでオゾン水の氷結温度(略0℃)よりも低い温度に冷凍される。この冷凍工程の目的は、次工程のオゾン水浸漬工程4において生鮮食品に付着したオゾン水を瞬時に凍らせるためのオゾン水氷結能力を付与するためのものであるので、オゾン水氷結温度よりも充分に低い温度にまで冷却して冷凍状態となす必要がある。この冷凍温度としては、−10℃以下が好ましく、特に、後述するオゾン氷被覆層中のオゾン濃度を長期間に亘って高く保持するには、−20℃以下が好ましく、更に、−40℃以下に冷却冷凍できれば好適である。
【0026】
次に、得られた冷凍生鮮食品は、次工程のオゾン氷被覆層形成工程4に送られる。ここでは、オゾン水の氷点以下の低温に冷却されて冷凍状態にある前記冷凍生鮮食品がオゾン水中に浸漬される事により、該冷凍生鮮食品の周りのオゾン水を瞬時に凍らせて、冷凍生鮮食品の外周面にオゾン氷被覆層を形成するものである。従って、オゾン水は、氷点以上の温度で液体状態に保たれている事が必須であるが、可及的に氷点に近い温度、即ち、0℃以上で0℃近傍の温度に保たれているのが好ましい。この様に0℃近傍の温度に保たれたオゾン水中に前記冷凍生鮮食品を浸漬すると、該冷凍生鮮食品の表面は、その冷凍状態が保持されたまま瞬時に表面にオゾン氷被覆層が形成される事になる。尚、魚類の場合には、エラの部分に雑菌が溜まり易く、この部分から変質が進行する事になるが、生鮮食品をオゾン水に浸漬する事により、開いているエラの部分や口の中までオゾン水が侵入して凍結するので、解凍時には、この部分でもオゾン氷がオゾン水となり、変質を確実に防止する事が可能となる。
【0027】
次に、上述の要領で外面をオゾン氷で被覆された冷凍生鮮食品は、冷凍保存工程5に移る。尚、本発明に言う冷凍保存工程5とは、冷凍倉庫に入れられて冷凍状態のままで貯蔵されたり、輸送用の冷凍コンテナ或いは保冷容器内に入れられて冷凍状態を保持したまま消費地に移送する工程を意味している。この様に生鮮食品は、その表面をオゾン氷で被覆された状態で冷凍保持される事になるので、冷凍による鮮度維持効果と前記オゾン氷被覆層による生鮮食品中の水分保持効果及びオゾンによる殺菌効果と相まって、生鮮食品は長期間に亘って鮮度と品質が安定して保持される事になる。
【0028】
次に、上記本発明に係る生鮮食品の冷凍保存のための前処理方法を実施する装置の構成について説明する。図2は、本発明に係る生鮮食品の前処理装置の第1実施例を示すフロー図であり、同図において、オゾン水製造の原水となる常温の水道水等の上水は、配管L1から冷却器10に供給され、付設の冷却装置(図示せず)によって10℃以下、好ましくは3〜6℃程度に冷却されて配管L2を経て軟水器11に供給される。該軟水器11では、上水中に含有されているカルシウムイオンやマグネシウムイオン等の硬水成分がナトリウムイオンに置換されて軟水化され、配管L3を経て2分されて一方は配管L3aから電解式オゾン水製造装置12の陰極側流路12aに、他方は配管L3bから電解式オゾン水製造装置12の陽極側流路12bに夫々供給される。該電解式オゾン水生成装置12内の陽極側流路12bでは、前述の通りオゾン濃度が10〜30ppm程度の高濃度のオゾン水が生成し、配管L5からオゾン水となって送出され、その一部は、配管L6を経てオゾン水槽13に供給され、残部は、配管L7を経て生鮮食品1のオゾン水洗浄装置20に供給される。又、陰極側流路12aでは、前述の通りアルカリ水が生成し、配管L4からアルカリ水として送出される。
【0029】
一方、生鮮食品1は、オゾン水洗浄装置20に送られて配管L7から散布されるオゾン水によって洗浄され、該生鮮食品1が魚類の場合には、その表面に存在するヌメリもオゾン水によって分解除去される。尚、このオゾン水洗浄装置20を散布型ではなく浸漬型となす事も可能であり、この場合には、該オゾン水洗浄装置20は洗浄槽となり、生鮮食品1を該洗浄槽内に浸漬して殺菌洗浄する事になる。従って、生鮮食品が魚類の場合には、散布方式では充分にオゾン水の浸透が図れないエラや腔内部にもオゾン水が接触して、外部の殺菌洗浄を充分に行う事が可能となる。尚、洗浄後のオゾン水は、配管L8から系外に排出される。
【0030】
オゾン水による洗浄殺菌を受けた生鮮食品1は、次に生鮮食品冷凍装置21に送られ、付設の冷凍機22によってオゾン水の氷点(約0℃)よりも低い温度で冷凍されて冷凍生鮮食品1aとなる。この時の冷凍温度は、後工程のオゾン氷被覆層形成時において、オゾン氷被覆層が瞬時に形成される程度に充分に冷却されている事が必要であるので、通常は−10℃以下、好ましくは−20℃以下、更に好ましくは−40℃以下の低温で冷凍されている。
【0031】
この冷凍生鮮食品1aは、前記オゾン水槽13に供給されて浸漬される。該オゾン水槽13内のオゾン水14は、付設の冷却機18によって該オゾン水14の氷点(約0℃)近傍で且つ氷結しない程度の温度にまで冷却されているのが好ましい。このオゾン水14内に前記冷凍生鮮食品1aが浸漬されると、該冷凍生鮮食品1aに接触したオゾン水14は直ちに凍結して該冷凍生鮮食品1aの表面にオゾン氷の被覆層17を形成する。この被覆層17の厚さは、該冷凍生鮮食品1aのオゾン水中への浸漬時間によって変わるが、少なくとも0.5mm程度、好ましくは1〜3mm程度のオゾン氷被覆層17が形成される様に浸漬時間を調整するのが望ましい。係るオゾン氷被覆層17が形成された冷凍生鮮食品1aは、その状態が保持される環境下、即ち、該冷凍生鮮食品1aの冷凍温度以下の温度に調整された冷凍室内で保持される事になる。
【0032】
尚、前記オゾン水槽13には、配管L5から継続して新鮮な高濃度のオゾン水が供給され、冷凍生鮮食品1aの表面でオゾン氷となって搬出されるが、一般的にはオゾン水供給量の方が多いので、過剰のオゾン水は、排出部15から槽外に排出される事になる。
【0033】
次に、図3は、本発明に係る生鮮食品の前処理装置の第2実施例を示すフロー図であり、前記第1実施例と異なる点は、第1実施例では、生鮮食品1を生鮮食品冷凍装置21に送給刷る前にオゾン水で洗浄していたが、本例では、アルカリ水で洗浄している点である。即ち、本例では、電解式オゾン水製造装置12の陰極側流路12aから配管L4を経て送出されるアルカリ水を、アルカリ水洗浄装置24に供給し、ここで生鮮食品1をアルカリ水洗浄する様に構成している。洗浄に使用したアルカリ水は、配管L15から、適宜排出される。尚、その他の構成は前記図2の第1実施例と同一であるので、同一構成は同一符号を付して重複説明を省略する。
【0034】
電解式オゾン水製造装置12で生成したアルカリ水は、所謂電解アルカリ水イオン水に相当するものであり、殺菌機能と油性分の分解機能を有しているので、成果物、特に柑橘類の冷凍保存の様な場合には、表面に付着したゴミや汚れ及び油脂類を除去する程度で良いのでアルカリ水洗浄で充分である。
【0035】
次に、図4は、本発明に係る生鮮食品の前処理装置の第3実施例を示すフロー図であり、前記第1実施例とは次の2点で異なっている。第1の相違点は、前記第1実施例では、電解式オゾン水製造装置12から送出されるオゾン水の一部をオゾン水槽13に供給し、残部を生鮮食品1のオゾン水洗浄装置20に供給しているが、本例では、電解式オゾン水製造装置12から送出されるオゾン水の全量をオゾン水槽13に供給し、該オゾン水槽13から配管L9を経てオゾン水を抜き出し、ポンプP1、配管L10を経てこれを2分して一部を配管L12を通して前記オゾン水洗浄装置20に供給すると共に、残部は配管L11を経て電解式オゾン水製造装置12のオゾン水生成流路である陽極側流路12bに配管L3bを通して還流させる様に構成している点である。又、第2の相違点は、前記第1実施例では、上水を冷却器10によって、予め冷却して前記電解式オゾン水製造装置12に供給する様にしているが、本例では、係る冷却器10を省略している点である。その他の構成は同一であるので、同一符号を付して重複説明は省略する。
【0036】
先ず、第1の相違点について説明する。前記オゾン水槽13内のオゾン水は、洗浄された冷凍生鮮食品1aが浸漬されて、その表面にオゾン氷を生成させるものであるので、生鮮食品から溶出する成分は殆どなく、新鮮な状態のオゾン水の状態が保たれており、しかも氷点近傍の温度に冷却されている低温オゾン水である。従って、この新鮮な低温オゾン水を電解式オゾン水製造装置12のオゾン水生成流路である陽極側流路12bに供給すれば、該流路内の水温も低くなり、該流路で生成したオゾンの溶解度も高まり、高濃度オゾン水が得やすくなる。しかも、陽極側流路12bに供給される原料水自体もオゾン水であるから、更に高濃度のオゾン水が生成すると共に、配管L1から供給される原料水の供給量の節減にも繋がり、省資源化の効果もある。
【0037】
又、前記第2の相違点について説明すると、前記オゾン水洗浄装置20に供給されるオゾン水を前記オゾン水槽13内の冷却オゾン水となす事により、この冷却オゾン水と接触する生鮮食品1も洗浄殺菌と同時に冷却され、その結果、次工程の生鮮食品冷凍装置21での冷凍時間が短縮される効果がある。
【0038】
次に、図5は、本発明に係る生鮮食品の前処理装置の第4実施例を示すフロー図であり、前記第1実施例とは次の2点で異なっている。第1の点は、前記第1実施例ではアルカリ水の使用を考慮していないが、本例では、配管L4からのアルカリ水を、一旦アルカリ水タンク23に貯蔵し、該アルカリ水タンク23内のアルカリ水を配管L13,ポンプP2及び配管L14を経てアルカリ水洗浄装置24に供給する様にしている点である。又、第2の相違点は、前記第1実施例では、生鮮食品1は、生鮮食品冷凍装置21に供給される前に、オゾン水洗浄装置20のみで洗浄される様になっているが、本例では、先ずアルカリ水洗浄装置24でアルカリ水洗浄を行い、続いてオゾン水洗浄装置20でオゾン水洗浄を行う様にしている点である。
【0039】
先ず、第1の相違点について説明する。電解式オゾン水製造装置12の陰極側から送出されるアルカリ水には、経時的変質は殆どなく、長期保存が可能であるが、オゾン水は保存困難である。そこで、保存性の低いオゾン水は使用される量に見合う量の生産が必要であるが、保存性の高いアルカリ水は使用しない時は貯蔵できる事になるので、これを貯蔵してアルカリ水洗浄装置24において使用する様にしている。又、第2の相違点であるアルカリ水洗浄とオゾン水洗浄とを併用する事により、洗浄に使用するオゾン水量を削減し、その削減分をアルカリ水で補う様にすれば、電解式オゾン水製造装置12におけるオゾン水生成負荷の軽減が図られ、運転コストの低減が可能となる。更に、オゾン水の生産量を一定にしておくと共に、通常はアルカリ水洗浄装置24は停止又は低負荷運転としてアルカリ水をアルカリ水タンク23に貯蔵しておき、オゾン水槽13内への冷凍生鮮食品1aの投入量が増大してオゾン氷被覆層17としてオゾン水が該オゾン水層13から持ち出される量が増大すると、配管L6から該オゾン水槽13へのオゾン水供給量は増大するので、オゾン水洗浄装置20へのオゾン水供給量は低下する事になるが、この時点で、アルカリ水タンク23に貯蔵しているアルカリ水によって、アルカリ水洗浄装置24を稼働又は高負荷運転にしてアルカリ水洗浄を強化し、オゾン水洗浄の負荷を軽減させる様な運転も可能となる。
【0040】
以上に本発明の装置の構成について説明したが、本発明の装置は、上記実施例に限定されるものではなく、種々の変形例が存在する。例えば、図2又は図3或いは図5に示した装置において、オゾン水水槽13内のオゾン水を図4に示した如く電解式オゾン水製造装置12の陽極側流路12bに還流させる事により、オゾン水濃度の更なる高濃度化と使用水量の低減を図る事も可能である。又、生鮮食品1を生鮮食品冷凍装置21で充分に冷却しておけば、オゾン水槽13内に浸漬される冷凍生鮮食品1aによってオゾン水も冷却されるので、該オゾン水槽13のオゾン水冷却機18を省略して機器点数の削減とメンテナンスの容易化を図る事も可能である。同様に、図2,図3及び図5に示した上水の冷却器10を省略する事も可能である。又、図5に示したアルカリ水タンク23を、図2〜4の装置にも設置する事も可能であり、更に、このアルカリ水を他の用途に使用する事も可能である。その他、特許請求の範囲に記載した発明思想を逸脱しない範囲で、種々の変形例が存在し得る事は言うまでもない。
【0041】
次に、本発明方法の実証試験について説明する。先ず、オゾン氷中にどの程度の期間オゾンが保存されるかを確認するため、次の要領でオゾン保持確認試験を行った。
【0042】
〔オゾン氷の製造〕
オゾン濃度10ppm,15ppm,20ppmの3種類のオゾン水を、図6に示した電解式オゾン水製造装置で製造し、これらの各オゾン水を厚さ75μmのナイロン・ポリエチレン製の袋に夫々封入して夫々オゾン濃度の異なるオゾン水を封入した密閉袋を形成した。次に、これらのオゾン水密閉袋を、−40℃に冷却された59%エタノール水中に浸漬して凍結させ、オゾン濃度の異なるオゾン氷を製造した。
【0043】
〔オゾン保持試験〕
これらオゾン氷を封入した密閉袋を破って、中からオゾン氷のみを取り出し、各オゾン氷を−20℃と−40℃にて保存し、定期的にサンプリングして残留オゾン量を測定した。
【0044】
〔試験結果〕
この残留オゾン濃度の経時変化を図7に示す。同図から明らかな様に、−20℃で保存した場合の180日(約半年間)経過後の残留オゾン濃度は、初期濃度10ppmのオゾン氷で約0.8ppm,初期濃度15ppm及び20ppmのオゾン氷で約1.2〜1.4ppmであり、オゾンによる必要な殺菌効果が期待できる0.3ppm以上の値を保持していた。この事実から、通常の殺菌効果が期待できる0.3ppm程度のオゾン濃度を、少なくとも半年間程度は維持させるには、初期オゾン水は、5ppm程度が要求される事が分かる。一方、−40℃で保存した場合の180日経過後の残留オゾン濃度は、初期濃度10ppmのオゾン氷で約5.8ppm,初期濃度15ppmのオゾン氷で約6.8ppm,初期濃度20ppmのオゾン氷で約7.7ppmであり、−20℃で保存した場合に比して遙かに高い残留オゾン値を示している。この事実から、生鮮食品をオゾン氷で被覆した状態で保存しておけば、少なくとも半年程度はオゾンによる殺菌効果を持続させつつ保存が可能である事が分かる。又、保存温度の低い方がオゾン濃度が高い値に保持されるので一層の長期保存に適している事が分かる。
【0045】
次に、実際の生鮮食品として、市販の無頭生エビを用いた本発明方法による冷凍保存方法と従来の冷凍保存方法との比較試験を行ったので、その内容について以下に説明する。
【0046】
〔実施例1〕
(1)オゾン水洗浄工程
電解式オゾン水製造装置で生成した10ppmのオゾン水5リットルと、同オゾン水を凍らせて製造したオゾン氷1kgとをバケツに入れてオゾン氷を含む冷却オゾン水を調整し、この冷却オゾン水中に生エビ15匹を投入して1分間攪拌し、オゾン水による生エビの予備洗浄を行って、オゾン水洗浄エビを調整した。尚、オゾン水洗浄前の生エビ(ブランク)とオゾン水洗浄後の生エビ各1匹の生菌数を測定した。
(2)冷凍工程
前記オゾン水洗浄エビを、カゴに10匹並べて−40℃の冷凍庫に入れ、3時間後に、完全に冷凍されて冷凍エビとなっている事を確認して取り出した。
(3)オゾン氷被覆層形成工程
前記10ppmのオゾン水(常温)をトレーに溜め、このオゾン水中に、上記冷凍庫から取り出した冷凍エビを5秒間浸漬して、該冷凍エビの表面にオゾン氷被覆層の形成を行った。
(4)冷凍保存工程
上記オゾン氷被覆層の形成された冷凍エビを、−40℃の冷凍庫に入れて冷凍保存した。
(5)解凍工程
上記冷凍庫に装入後、3時間が経過した時点でオゾン氷被覆層の形成された冷凍エビを冷凍庫から取り出し、35℃のウオーターバスに入れて解凍した。解凍後の生エビ表面の生菌数及びドリップ中の生菌数を測定した。
【0047】
〔比較例1〕
(1)真水洗浄工程
水道水5リットルと、同水道水を凍らせて製造した真水氷1kgとをバケツに入れて冷却水を調整し、この冷却水中に生エビ15匹を投入して1分間攪拌し、水による生エビの予備洗浄を行って、真水洗浄エビを調整した。この真水洗浄後の生エビ1匹の生菌数を測定した。
(2)冷凍工程
前記真水洗浄エビを、カゴに10匹並べて−40℃の冷凍庫に入れ、3時間後に、完全に冷凍されて冷凍エビとなっている事を確認して取り出した。
(3)真水被覆層形成工程
水道水(常温)をトレーに溜め、この水道水中に上記冷凍庫から取り出した冷凍エビを5秒間浸漬して、該冷凍エビの表面に真水氷被覆層の形成を行った。
(4)冷凍保存工程
上記真水氷被覆層の形成された冷凍エビを、−40℃の冷凍庫に入れて冷凍保存した。
(5)解凍工程
上記冷凍庫に装入後、3時間が経過した時点で真水氷被覆層の形成された冷凍エビを冷凍庫から取り出し、35℃のウオーターバスに入れて解凍した。解凍後の生エビ表面の生菌数及びドリップ中の生菌数を測定した。
【0048】
〔対 比〕
上記本発明のにおけるオゾン水洗浄後の生エビ(試料A1)と、比較例1における真水洗浄後の生エビ(試料B1)と、未洗浄のブランク材(試料C0)の各生菌数の測定値の結果は、表−1に示す通りである。尚、生菌数の測定は、各試料をストマッカーにて破砕後、標準寒天培地(3%塩分)に塗布して37.5℃のインキュベーター内で48時間培養した後の菌数測定により行った。又、相対比率は、試料A1の生菌数を100としたときに値である。
【0049】
【表1】

Figure 0003773841
【0050】
又、上記本発明方法の解凍後の生エビ(試料A5)とそのドリップ(試料A5D)と、比較例における解凍後の生エビ(試料B5)とそのドリップ(試料B5D)の各生菌数の測定値の結果は、表−2及び表−3の通りである。尚、生菌数の測定は、前述の通りである。
【0051】
【表2】
Figure 0003773841
【0052】
【表3】
Figure 0003773841
【0053】
上記表−1から明らかな様に、本発明におけるオゾン水洗浄試料(試料A)の生菌数は、無洗浄のブランク材(試料C)に比して、約1/6に低下しており、又、比較例として上げた真水(水道水)洗浄試料(試料B)と比べても約1/3に低下している。この事から、オゾン水洗浄処理を施す事は、その後の保存工程に有効である事が理解される。特に、この試験は、比較例においても細菌の繁殖の抑制される冷凍保存されたものであり、従来の冷凍保存物に比しても、細菌の繁殖が著しく抑制されている事が窺える。
【0054】
又、上記表−2から明らかな様に、本発明方法により処理された試料(試料A5)の解凍後の生菌数は、真水洗浄と真水氷の被覆層を形成された比較試料(試料B5)の解凍後の生菌数に比して約1/4弱に低下している。同様に、そのドリップも、本発明方法によるもの(試料A5D)の生菌数は比較例のもの(試料B5D)に比して約1/2に低下している。尚、上記試験は、短期間(3時間)で且つ細菌の繁殖が抑制される冷凍保存における試験であるが、長期保存の場合や冷蔵保存の場合には、その差異は一層顕著になるものと推定される。
【0055】
【発明の効果】
以上説明した如く、本発明によると、オゾン水の氷点以下の低温下で冷凍された冷凍生鮮食品をオゾン水中に浸漬する事により、該冷凍生鮮食品の表面にオゾン氷を生成させてオゾン氷被覆層を形成する様にしており、しかも、このオゾン氷は、冷凍下では、保存温度と初期濃度にもよるが、少なくとも数ケ月、長ければ1年以上も有効なオゾン濃度を保持する事が可能となるので、生鮮食品の品質を維持しつつ長期保存が可能となる。
【0056】
又、前記生鮮食品を冷凍する前に、殺菌作用を有するオゾン水洗浄しておく事により、事前殺菌がなされるので、生鮮食品の変質防止に一層の効果が期待できる。特にオゾン水製造装置として電解式オゾン水製造装置を用いると、陰極側にアルカリ水が生成し、このアルカリ水自体も殺菌作用を有するものであるから、このアルカリ水を用いて生鮮食品の事前洗浄を行う事も可能であり、この場合には、オゾン水生成量の低減化と設備費及び運転コストの低減を図る事が可能となる。又、事前洗浄を、オゾン水とアルカリ水とを併用可能とする事により、オゾン氷被覆層形成に多量のオゾン水が消費される場合にはアルカリ水による事前洗浄を強化してオゾン水による洗浄負荷を軽減する等の設備の運転負荷に自由度を持たせる事も可能となる。
【0057】
更に、オゾン氷被覆形成用のオゾン水槽内のオゾン水を電解式オゾン水製造装置の陽極側流路に還流させる事により、オゾン水濃度を一層高める事も可能となると共に、水資源の有効利用にも寄与する事になる。
【0058】
又、本発明の設備は、極めて簡便な構造のものであるから、遠洋漁業の漁船に搭載しておけば、収穫した魚類に、その場でオゾン氷被覆層を形成して冷凍保存する事が可能となるので、出漁期間が長期にわたる場合でも、魚類の新鮮さを失う事なく持ち帰る事が可能となるので、大型漁船による長期間の遠洋漁業を可能にする等の、漁業自体に与える効果も大なるものが期待させる。
【図面の簡単な説明】
【図1】本発明に係る生鮮食品の保存処理工程図である。
【図2】本発明に係る生鮮食品の保存処理装置の第1実施例を示すフロー図である。
【図3】本発明に係る生鮮食品の保存処理装置の第2実施例を示すフロー図である。
【図4】本発明に係る生鮮食品の保存処理装置の第3実施例を示すフロー図である。
【図5】本発明に係る生鮮食品の保存処理装置の第4実施例を示すフロー図である。
【図6】本発明で使用する電解式オゾン水生成装置の要部構造を示す断面図である。
【図7】オゾン氷の残留オゾン濃度の経時変化を示すグラフである。
【符号の説明】
1 生鮮食品
1a 冷凍生鮮食品
2a 水洗工程
2b アルカリ水洗浄工程
2c オゾン水洗浄工程
3 生鮮食品冷凍工程
4 オゾン氷被覆層形成工程
5 冷凍保存工程
10 冷却器
11 軟水器
12 電解式オゾン水製造装置
12a 陰極側流路
12b 陽極側流路
13 オゾン水槽
14 オゾン水
15 オゾン水排水
17 オゾン氷被覆層
20 オゾン水洗浄装置
21 生鮮食品冷凍装置
24 アルカリ水洗浄装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for freezing and storing fresh foods such as seafood, animal meat, vegetables and fruits, and more particularly to a pretreatment method and apparatus for preserving fresh foods in a frozen state.
[0002]
[Prior art]
In fresh foods, maintaining freshness from harvest to consumption and preventing bacterial contamination are extremely important issues, and cold chains are typically stored and transported under specified low-temperature conditions. In reality, however, in reality, sufficient facilities are not always widespread from the viewpoints of distribution costs and facility costs of the low-temperature holding apparatus.
[0003]
On the other hand, recently, the use of ozone is spreading as a sterilizing means with a small environmental load. Ozone has a strong oxidizing power and can be widely used for cleaning, sterilization, deodorization, decolorization, freshness maintenance, and the like. Since ozone does not remain, the safety is high, but there is a drawback that it cannot be stored. Several technologies have been developed and proposed to ensure a certain degree of ozone preservation by making ozone into ice, that is, ozone ice.
[0004]
For example, Japanese Patent Laid-Open No. 6-165637 proposes a method in which cold water in which ozone gas is dissolved is frozen to produce ozone ice, and this is stored in fruit and vegetables containers together with fruits and vegetables and distributed.
[0005]
[Problems to be solved by the invention]
First, in the conventional general freezing method, fresh food such as seafood is pre-frozen in a freezer, so that "slime" and bacteria attached to the surface of seafood and the like are also frozen as they are. As a result, even if the activity by the bacteria could be stopped or suppressed, it was activated with thawing, and in particular, drip discoloration and odor generation that occurred during the thawing process were unavoidable, and at the same time, a decrease in freshness was unavoidable. In addition, due to the release of moisture from fresh food during frozen storage, a certain degree of alteration due to a decrease in water content in the fresh food was inevitable.
[0006]
On the other hand, in the method of transporting perishable food by storing ozone ice in containers such as seafood and fruits and vegetables, sterilization, deodorization and decolorization are performed by ozone water generated by melting ozone ice, so the freshness is maintained. Is relatively good, but its period is very short, and at least it cannot be stored weekly or monthly.
[0007]
Especially for fish and shellfish that have a strong “slim” on the surface of the body, and fish that have many bacteria in the area of the gill and are easily spoiled, it can maintain freshness and quality over a long period of time. It is no exaggeration to say that there is no effective means of preservation.
[0008]
In view of the present situation, the present invention is a perishable food that can prevent long-term preservation while maintaining moisture in fresh food while effectively preventing alteration using ozone even for fish and shellfish that are easily altered. It is an object of the present invention to provide a pretreatment method and apparatus for cryopreservation, and a cryopreservation method.
[0009]
[Means for Solving the Problems]
The present invention has been made from such a viewpoint, and a feature thereof is a processing method for freezing and storing fresh food, and the fresh food is frozen at a freezing temperature of ozone water or lower. It has a freezing step and an ozone ice coating layer forming step of immersing the obtained frozen fresh food in ozone water to form an ozone ice coating layer on the surface thereof. Maintaining the freshness of fresh food and preventing bacterial contamination by forming a coating layer of ozone ice instantaneously while making it easy to come into contact with ozone.
[0010]
As the ozone water to be used, ozone water produced by an electrolytic ozone water production apparatus that produces ozone water on the anode side by water electrolysis is preferable. As a result, the ozone water concentration is kept at a high concentration and the control of the concentration and flow rate becomes extremely easy, so that the industrial use of ozone water is facilitated.
[0011]
In addition, before the said fresh food freezing process, the ozone water washing process which wash | cleans this fresh food with ozone water, or the alkaline water washing | cleaning process wash | cleaned with the alkaline water produced | generated on the cathode side of the said electrolytic ozone water manufacturing apparatus In the case of sterilization and fish and shellfish, the surface of the fresh food is removed, and in the case of seafood, the solid surface of the surface is removed, thereby removing the alteration factor of the fresh food in advance, and then the fresh food. The preferred strategy is to move to the freezing process. In addition, when using both an ozone water washing | cleaning process and an alkaline water washing | cleaning process, it is a preferable method to precede an alkaline water washing | cleaning process.
[0012]
The freezing temperature of the fresh food in the fresh food freezing step is preferably selected to be a temperature sufficiently low from 0 ° C., which is the freezing point of ozone water, that is, −10 ° C. or lower. Preferably it is −20 ° C. or lower, more preferably −40 ° C. or lower. On the other hand, the temperature of the ozone water forming the ozone ice coating layer is preferably cooled to near the freezing point, but it needs to be kept in an unfrozen state. The concentration of ozone water is preferably 5 ppm or more in order to exert a stable ozone effect even after the formation of the ozone ice coating layer.
[0013]
Furthermore, the frozen storage method of the fresh food which preserve | saves the said pre-processed fresh food with a freezer is also this invention, and it becomes possible to maintain freshness over a long term by this.
[0014]
Next, the pretreatment device for freezing and preserving fresh food according to the present invention is produced by an electrolytic ozone water production device that produces ozone water on the anode side by electrolysis of water, and the electrolytic ozone water production device. An ozone water tank for storing the ozone water, an ozone water cooler that maintains the ozone water in the ozone water tank in the vicinity of the freezing point of the ozone water and in an unfrozen state, and the fresh food below the freezing point of the ozone water. A frozen fresh food freezing apparatus for freezing, and a frozen fresh food immersion apparatus for forming an ozone ice coating layer on the surface of the frozen fresh food by immersing the frozen fresh food frozen in the fresh food freezing apparatus in the ozone water tank. It is characterized by being prepared.
[0015]
As an application example of this apparatus, the fresh food is provided with an alkaline water washing device for washing with alkaline water generated on the cathode side of the electrolytic ozone water production device before freezing with the fresh food freezing device, Alternatively, there are a device provided with an ozone water cleaning device for cleaning with ozone water and a device provided with an alkaline water cleaning device and an ozone water cleaning device in series in this order. Thereby, before forming the ozone ice coating layer on the fresh food, the fresh food is washed and sterilized to remove the alteration factor during storage.
[0016]
Further, the ozone water cleaning device has a pipe that is supplied with a part of the ozone water sent from the electrolytic ozone water production device, or a part of the ozone water in the ozone water tank. Some are piped as supplied.
[0017]
Furthermore, a part of the ozone water in the ozone water tank is recirculated to the raw water inlet side of the electrolytic ozone water production device and reused to reduce the amount of water used and improve the concentration of ozone water. There is also.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. First, the ozone water itself used in the present invention is basically a gas dissolution method in which ozone gas is dissolved in water to generate ozone water, and electrolytic ozone in which ozone water is generated on the anode side by electrolysis of water. In the method for preserving fresh food according to the present invention, which is roughly classified into water production methods, basically, ozone water generated by any method may be used, but high-concentration ozone water can be obtained instantaneously and its concentration An electrolytic ozone water production apparatus that is easy to control and additionally produces alkaline water having a bactericidal action is optimal, so this electrolytic ozone water production apparatus will be described below.
[0019]
FIG. 6 is a cross-sectional view showing the main part of the electrolytic ozone water generator, in which a solid polymer electrolyte membrane 30 (hereinafter simply referred to as “electrolyte membrane”) such as an ozone-resistant fluorine ion exchange membrane. ”Is disposed on one surface of the metal film so that the anode electrode 31 made of a noble metal wire mesh having an ozone generation catalytic function is superimposed on the electrolyte membrane 30, and The cathode electrode 32 is arranged so as to overlap the electrolyte membrane 30. On both outer surfaces of the electrodes 31 and 32, metal lath nets 33 and 34 having corrosion resistance such as stainless steel are disposed over the entire length so that a DC voltage can be applied between the electrodes 31 and 32. Each electrode is connected to the DC power source (not shown). Further, an anode side jacket 35 and a cathode side jacket 36 are respectively arranged on the outside so as to enclose the electrodes 31 and 32 and the lath nets 33 and 34. Each jacket includes an anode-side soft water supply port 37 connected to the anode-side water supply pipe L3b branched from the pipe L3, a cathode-side soft water supply port 38 connected to the cathode-side water supply pipe L3a branched from the pipe L3, and ozone water. An ozone water outlet 39 connected to the pipe L5 and an alkaline water outlet 40 connected to the alkaline water pipe L4 are formed.
[0020]
In such an apparatus, when a direct current voltage is applied between the electrodes 31 and 32 and electrolysis is performed while supplying soft water from the anode-side soft water supply port 37 and the cathode-side soft water supply port 38, water is supplied to the anode 31 side. OH ions (OH −) generated by electrolysis gather, and these OH ions are converted into ozone by the action of the ozone generating catalyst of the anode 31 and immediately dissolved in water to generate ozone water. This ozone water is sent from the ozone water outlet 39 to the ozone water pipe L5. Here, in the vicinity of the outer surface of the anode electrode 31, a complicated intricate flow path is formed by a lath net 33 in which wire meshes are joined together in a staggered manner, so that a large number of small vortex flows are generated on the outer surface of the anode electrode. As a result, the ozone generated on the electrode surface is engulfed in the vortex and quickly dissolved in the water, so that the amount of ozone flowing out with the water flow as ozone gas decreases, that is, the amount of dissolved ozone increases and a high concentration of about 20-30 ppm. It has been confirmed that ozone water is generated.
[0021]
Similarly, hydrogen ions (H +) generated by electrolysis of water collect on the electrode surface on the cathode electrode 32 side and become hydrogen gas, and are released from water. On the cathode surface, the water softener 1 performs ion exchange. Sodium ions (Na +) contained in trace amounts in water are collected and concentrated, and water on the cathode side is made into alkaline water, which is sent together with the hydrogen gas from the alkaline water discharge port 40 to the alkaline water pipe L4. Become. In this way, it is confirmed that alkaline water ions contained in trace amounts in the water together with hydrogen gas are concentrated on the cathode side, and as a result, alkaline water having a pH of 9 to 11 or more is generated as water on the cathode side. Has been.
[0022]
When producing ozone water using the electrolytic ozone water generator 2, the generated ozone water concentration is constantly measured with an ozone water concentration meter (not shown) installed in the ozone water pipe L5. Based on the concentration signal, the supply DC value from the DC power source to the electrolytic ozone water generator is changed to control the ozone water concentration to be kept constant. As a result, ozone water having an arbitrary concentration from several ppm to 30 ppm can be stably generated.
[0023]
Next, the method for preserving fresh food of the present invention using the electrolytic ozone water production apparatus will be described. FIG. 1 is a process chart for storing fresh food according to the present invention. The harvested fresh food 1 is first sent to a washing process. This washing process includes a washing process 2a that is simply washed with water, an alkaline water washing process 2b that is washed with alkaline water generated on the anode side of the electrolytic ozone water production apparatus, and an anode of the electrolytic ozone water production apparatus. There are three types of processes including an ozone water cleaning process 2c for cleaning with ozone water generated on the side. In the case where the target fresh food 1 is vegetables, fruits, etc., it may be sufficient to wash away the dust adhering to the water washing step 2a, but by washing with alkaline water in the alkaline water washing step 2b, It is also possible to perform sterilization washing with alkaline water together with the removal. Incidentally, the alkaline water produced by the electrolytic ozone water production device is equivalent to so-called alkaline water ionized by electrolysis, and it is well known that this alkaline water has a bactericidal action. It is an effective measure to use alkaline water produced as a by-product in the ozone water production device for pre-cleaning of fresh food. Furthermore, it is possible to perform sterilization cleaning more strongly by the ozone water cleaning step 2c. Each of these washing steps 2a to 2c can select only one of these steps, but can also be washed in combination. However, ozone water cleaning has an extremely strong sterilization function, and therefore, when a plurality of cleaning steps are employed, it is preferably employed in the final cleaning step.
[0024]
Needless to say, when the fresh food 1 is a marine product such as fish and shellfish, the water washing step 2a is not performed with fresh water but with seawater. In addition, in the case of fish, there is a strong slime on the surface, and it is difficult to remove completely with some water washing. In this case, washing with the alkaline water washing, ozone water washing or both It is preferable to completely remove the slime in advance, and ozone water cleaning is effective for the complete removal of the slime. In addition, various bacteria are likely to accumulate in the portion of the fish, and the deterioration proceeds from this portion. Therefore, it is preferable to clean the portion of the shell by alkaline water cleaning or ozone water cleaning.
[0025]
The fresh food cleaned in the above-described manner is sent to the next fresh food freezing step 3 where it is frozen to a temperature lower than the freezing temperature of ozone water (approximately 0 ° C.). The purpose of this freezing step is to provide ozone water freezing ability for instantly freezing ozone water adhering to fresh food in the ozone water soaking step 4 of the next step, so it is more than the ozone water freezing temperature. It is necessary to cool it down to a sufficiently low temperature to be frozen. The freezing temperature is preferably −10 ° C. or lower, and in particular, −20 ° C. or lower is preferable, and −40 ° C. or lower is preferable in order to keep the ozone concentration in the ozone ice coating layer described later high over a long period of time. It is preferable if it can be cooled and frozen.
[0026]
Next, the obtained frozen fresh food is sent to the ozone ice coating layer forming step 4 in the next step. Here, the frozen fresh food in a frozen state that is cooled to a low temperature below the freezing point of ozone water is immersed in ozone water to instantly freeze the ozone water around the frozen fresh food, An ozone ice coating layer is formed on the outer peripheral surface of the food. Accordingly, it is essential that the ozone water is kept in a liquid state at a temperature above the freezing point, but it is kept at a temperature as close to the freezing point as possible, that is, at a temperature above 0 ° C and near 0 ° C. Is preferred. When the frozen fresh food is immersed in ozone water maintained at a temperature close to 0 ° C. in this way, an ozone ice coating layer is instantaneously formed on the surface of the frozen fresh food while the frozen state is maintained. It will be. In the case of fish, miscellaneous bacteria are likely to accumulate in the area of the gills, and the quality changes from this area. However, by immersing fresh food in ozone water, Since ozone water enters and freezes, ozone ice becomes ozone water even at this point when thawing, and alteration can be reliably prevented.
[0027]
Next, the frozen fresh food whose outer surface is coated with ozone ice as described above moves to the frozen storage step 5. The frozen storage step 5 referred to in the present invention means that it is stored in a frozen warehouse and kept in a frozen state, or placed in a frozen container for transport or a cold storage container and kept in a frozen state in a consumption area. It means the process of transferring. In this way, the fresh food is frozen and held with its surface covered with ozone ice, so the freshness maintenance effect by freezing, the moisture retention effect in fresh food by the ozone ice coating layer, and the sterilization by ozone Combined with the effect, the fresh food is stably maintained in freshness and quality over a long period of time.
[0028]
Next, the structure of the apparatus which implements the pre-processing method for the freezing preservation | save of the fresh food which concerns on the said invention is demonstrated. FIG. 2 is a flowchart showing a first embodiment of a fresh food pretreatment apparatus according to the present invention. In the figure, clean water such as room temperature tap water used as raw water for ozone water production is supplied from a pipe L1. It is supplied to the cooler 10, cooled to 10 ° C. or less, preferably about 3 to 6 ° C. by an attached cooling device (not shown), and supplied to the water softener 11 through the pipe L 2. In the water softener 11, hard water components such as calcium ions and magnesium ions contained in the clean water are replaced with sodium ions to be softened and divided into two through a pipe L3, one of which is electrolytic ozone water from the pipe L3a. The other side is supplied to the cathode side flow path 12a of the manufacturing apparatus 12, and the other is supplied from the pipe L3b to the anode side flow path 12b of the electrolytic ozone water manufacturing apparatus 12. In the anode side flow path 12b in the electrolytic ozone water generator 12, ozone water having a high concentration of about 10 to 30 ppm is generated as described above, and is sent out as ozone water from the pipe L5. The part is supplied to the ozone water tank 13 via the pipe L6, and the remaining part is supplied to the ozone water cleaning apparatus 20 for the fresh food 1 via the pipe L7. In the cathode side flow path 12a, alkaline water is generated as described above, and is sent out from the pipe L4 as alkaline water.
[0029]
On the other hand, the fresh food 1 is washed with ozone water sent to the ozone water cleaning device 20 and sprayed from the pipe L7. When the fresh food 1 is fish, the slime present on the surface is also decomposed by the ozone water. Removed. In addition, it is also possible to make this ozone water washing | cleaning apparatus 20 into a immersion type instead of a spraying type, In this case, this ozone water washing | cleaning apparatus 20 becomes a washing tank, and the fresh food 1 is immersed in this washing tank. It will be sterilized and washed. Therefore, when the fresh food is a fish, the ozone water comes into contact with the inside of the cavity and the cavity where the penetration of the ozone water cannot be sufficiently achieved by the spraying method, and the external sterilization washing can be sufficiently performed. In addition, the ozone water after washing | cleaning is discharged | emitted out of the system from the piping L8.
[0030]
The fresh food 1 that has been washed and sterilized with ozone water is then sent to a fresh food freezing device 21 where it is frozen at a temperature lower than the freezing point of ozone water (about 0 ° C.) by the attached freezer 22 and frozen fresh food. 1a. The freezing temperature at this time is required to be sufficiently cooled so that the ozone ice coating layer is instantaneously formed at the time of forming the ozone ice coating layer in the subsequent step. It is preferably frozen at a low temperature of -20 ° C or lower, more preferably -40 ° C or lower.
[0031]
This frozen fresh food 1a is supplied to the ozone water tank 13 and immersed therein. The ozone water 14 in the ozone water tank 13 is preferably cooled to a temperature near the freezing point (about 0 ° C.) of the ozone water 14 and freezing by an attached cooler 18. When the frozen fresh food 1a is immersed in the ozone water 14, the ozone water 14 in contact with the frozen fresh food 1a is immediately frozen to form a coating layer 17 of ozone ice on the surface of the frozen fresh food 1a. . The thickness of the coating layer 17 varies depending on the immersion time of the frozen fresh food 1a in ozone water, but is immersed so that the ozone ice coating layer 17 of at least about 0.5 mm, preferably about 1 to 3 mm is formed. It is desirable to adjust the time. The frozen fresh food 1a on which the ozone ice coating layer 17 is formed is held in an environment where the state is maintained, that is, in a freezing room adjusted to a temperature equal to or lower than the freezing temperature of the frozen fresh food 1a. Become.
[0032]
The ozone water tank 13 is continuously supplied with fresh high-concentration ozone water from the pipe L5 and is carried out as ozone ice on the surface of the frozen fresh food 1a. Since the amount is larger, excess ozone water is discharged from the discharge unit 15 to the outside of the tank.
[0033]
Next, FIG. 3 is a flowchart showing a second embodiment of the fresh food pretreatment apparatus according to the present invention. The difference from the first embodiment is that the fresh food 1 is a fresh food in the first embodiment. Although it was washed with ozone water before being fed to the food freezer 21, it is washed with alkaline water in this example. That is, in this example, the alkaline water sent from the cathode side flow path 12a of the electrolytic ozone water production apparatus 12 through the pipe L4 is supplied to the alkaline water washing apparatus 24, and the fresh food 1 is washed with the alkaline water here. It is configured like this. The alkaline water used for cleaning is appropriately discharged from the pipe L15. Since the other configuration is the same as that of the first embodiment of FIG. 2, the same configuration is denoted by the same reference numeral, and redundant description is omitted.
[0034]
Alkaline water generated by the electrolytic ozone water production apparatus 12 corresponds to so-called electrolytic alkaline water ionized water, and has a sterilizing function and a function of decomposing oily components. In such a case, it is sufficient to remove dust, dirt and oils and fats adhering to the surface, so that alkaline water washing is sufficient.
[0035]
Next, FIG. 4 is a flowchart showing a third embodiment of the fresh food pretreatment apparatus according to the present invention, which differs from the first embodiment in the following two points. The first difference is that, in the first embodiment, a part of the ozone water sent from the electrolytic ozone water production device 12 is supplied to the ozone water tank 13, and the rest is supplied to the ozone water cleaning device 20 for the fresh food 1. In this example, the entire amount of ozone water sent from the electrolytic ozone water production apparatus 12 is supplied to the ozone water tank 13, and the ozone water is extracted from the ozone water tank 13 through the pipe L9. This is divided into two through the pipe L10 and a part is supplied to the ozone water cleaning apparatus 20 through the pipe L12, and the remaining part is the anode side that is the ozone water generation flow path of the electrolytic ozone water production apparatus 12 through the pipe L11. This is the point that the flow path 12b is refluxed through the pipe L3b. The second difference is that in the first embodiment, the water is cooled in advance by the cooler 10 and supplied to the electrolytic ozone water production apparatus 12. The cooler 10 is omitted. Since the other configurations are the same, the same reference numerals are given and the duplicate description is omitted.
[0036]
First, the first difference will be described. The ozone water in the ozone water tank 13 immerses the washed frozen fresh food 1a and generates ozone ice on the surface thereof, so there is almost no component eluted from the fresh food, and the ozone in a fresh state It is low-temperature ozone water that is kept in a water state and is cooled to a temperature near the freezing point. Therefore, if this fresh low-temperature ozone water is supplied to the anode-side flow path 12b which is the ozone water generation flow path of the electrolytic ozone water production apparatus 12, the water temperature in the flow path becomes low and the water is generated in the flow path. The solubility of ozone is also increased, and high-concentration ozone water is easily obtained. In addition, since the raw water itself supplied to the anode-side flow path 12b is also ozone water, higher-concentration ozone water is generated, leading to a reduction in the supply amount of the raw water supplied from the pipe L1, thereby saving There is also an effect of recycling.
[0037]
Further, the second difference will be described. By using ozone water supplied to the ozone water cleaning device 20 as cooling ozone water in the ozone water tank 13, the fresh food 1 that comes into contact with the cooling ozone water is also cleaned. Cooling is performed simultaneously with the sterilization, and as a result, there is an effect that the freezing time in the fresh food freezing device 21 in the next process is shortened.
[0038]
Next, FIG. 5 is a flowchart showing a fourth embodiment of the fresh food pretreatment apparatus according to the present invention, which differs from the first embodiment in the following two points. The first point is that the use of alkaline water is not considered in the first embodiment, but in this example, the alkaline water from the pipe L4 is temporarily stored in the alkaline water tank 23, and the inside of the alkaline water tank 23 is used. The alkaline water is supplied to the alkaline water cleaning device 24 through the pipe L13, the pump P2, and the pipe L14. Further, the second difference is that in the first embodiment, the fresh food 1 is cleaned only by the ozone water cleaning device 20 before being supplied to the fresh food freezing device 21. In this example, the alkaline water cleaning device 24 first performs the alkaline water cleaning, and the ozone water cleaning device 20 then performs the ozone water cleaning.
[0039]
First, the first difference will be described. Alkaline water delivered from the cathode side of the electrolytic ozone water production apparatus 12 has little change over time and can be stored for a long time, but ozone water is difficult to store. Therefore, it is necessary to produce ozone water with low storage stability in an amount corresponding to the amount used, but alkaline water with high storage stability can be stored when not in use. It is intended to be used in the device 24. In addition, by using both alkaline water cleaning and ozone water cleaning, which are the second difference, if the amount of ozone water used for cleaning is reduced and the reduced amount is supplemented with alkaline water, electrolytic ozone water The ozone water generation load in the manufacturing apparatus 12 can be reduced, and the operating cost can be reduced. Furthermore, while keeping the production amount of ozone water constant, the alkaline water washing device 24 normally stops or operates at a low load so that the alkaline water is stored in the alkaline water tank 23 and the frozen fresh food in the ozone water tank 13 is stored. As the amount of ozone 1a increases and the amount of ozone water taken out from the ozone water layer 13 as the ozone ice coating layer 17 increases, the amount of ozone water supplied from the pipe L6 to the ozone water tank 13 increases. The amount of ozone water supplied to the cleaning device 20 will decrease. At this point, the alkaline water cleaning device 24 is operated or operated at a high load with the alkaline water stored in the alkaline water tank 23 to perform alkaline water cleaning. Operation that reduces the load of ozone water cleaning is also possible.
[0040]
Although the configuration of the apparatus of the present invention has been described above, the apparatus of the present invention is not limited to the above embodiment, and there are various modifications. For example, in the apparatus shown in FIG. 2, FIG. 3 or FIG. 5, the ozone water in the ozone water tank 13 is returned to the anode-side flow path 12b of the electrolytic ozone water production apparatus 12 as shown in FIG. It is possible to further increase the ozone water concentration and reduce the amount of water used. In addition, if the fresh food 1 is sufficiently cooled by the fresh food freezing device 21, the ozone water is also cooled by the frozen fresh food 1 a immersed in the ozone water tank 13. It is possible to reduce the number of devices and facilitate maintenance by omitting 18. Similarly, the cooler 10 for clean water shown in FIGS. 2, 3 and 5 can be omitted. The alkaline water tank 23 shown in FIG. 5 can also be installed in the apparatus shown in FIGS. 2 to 4, and the alkaline water can be used for other purposes. In addition, it goes without saying that various modifications can be made without departing from the inventive concept described in the claims.
[0041]
Next, the verification test of the method of the present invention will be described. First, in order to confirm how long ozone is stored in ozone ice, an ozone retention confirmation test was performed in the following manner.
[0042]
[Manufacture of ozone ice]
Three types of ozone water with ozone concentrations of 10 ppm, 15 ppm, and 20 ppm are produced by the electrolytic ozone water production apparatus shown in FIG. 6, and each of these ozone waters is sealed in a 75 μm thick nylon / polyethylene bag. A sealed bag containing ozone water with different ozone concentrations was formed. Next, these ozone water sealed bags were immersed in 59% ethanol water cooled to −40 ° C. and frozen to produce ozone ice having different ozone concentrations.
[0043]
[Ozone retention test]
The sealed bags enclosing these ozone ices were broken, and only the ozone ice was taken out from them. Each ozone ice was stored at −20 ° C. and −40 ° C., and periodically sampled to measure the residual ozone amount.
[0044]
〔Test results〕
FIG. 7 shows the change over time in the residual ozone concentration. As is clear from the figure, the residual ozone concentration after 180 days (about half a year) when stored at −20 ° C. is about 0.8 ppm for ozone ice with an initial concentration of 10 ppm, ozone with an initial concentration of 15 ppm and 20 ppm. It was about 1.2-1.4 ppm with ice, and the value of 0.3 ppm or more at which the necessary bactericidal effect by ozone can be expected. From this fact, it can be seen that the initial ozone water is required to be about 5 ppm in order to maintain the ozone concentration of about 0.3 ppm at which a normal bactericidal effect can be expected for at least about half a year. On the other hand, the residual ozone concentration after 180 days when stored at −40 ° C. is about 5.8 ppm for ozone ice with an initial concentration of 10 ppm, about 6.8 ppm for ozone ice with an initial concentration of 15 ppm, and ozone ice with an initial concentration of 20 ppm. The residual ozone value is about 7.7 ppm, which is much higher than that stored at −20 ° C. From this fact, it can be seen that if the fresh food is stored in a state covered with ozone ice, it can be stored while maintaining the bactericidal effect by ozone for at least half a year. It can also be seen that the lower storage temperature is suitable for further long-term storage because the ozone concentration is maintained at a higher value.
[0045]
Next, as an actual fresh food, a comparative test between a frozen storage method according to the method of the present invention using commercially available headless shrimp and a conventional frozen storage method was performed, and the contents thereof will be described below.
[0046]
[Example 1]
(1) Ozone water cleaning process
5 liters of 10 ppm ozone water produced by the electrolytic ozone water production device and 1 kg of ozone ice produced by freezing the ozone water are put in a bucket to adjust the cooling ozone water containing ozone ice, and this cooling ozone water The raw shrimp was prepared by adding 15 raw shrimps to the mixture and stirring for 1 minute, pre-cleaning the raw shrimp with ozone water. In addition, the number of viable bacteria of each raw shrimp (blank) before washing with ozone water and fresh shrimp after washing with ozone water was measured.
(2) Freezing process
Ten ozone-washed shrimps were placed in a basket and placed in a −40 ° C. freezer. After 3 hours, it was confirmed that the shrimps were completely frozen and frozen.
(3) Ozone ice coating layer formation process
The 10 ppm ozone water (room temperature) was stored in a tray, and the frozen shrimp taken out from the freezer was immersed in this ozone water for 5 seconds to form an ozone ice coating layer on the surface of the frozen shrimp.
(4) frozen storage process
The frozen shrimp on which the ozone ice coating layer was formed was placed in a freezer at −40 ° C. and stored frozen.
(5) Defrosting process
When 3 hours had passed after charging in the freezer, the frozen shrimp with the ozone ice coating layer formed was taken out of the freezer and thawed in a 35 ° C. water bath. The viable cell count on the surface of the raw shrimp after thawing and the viable cell count in the drip were measured.
[0047]
[Comparative Example 1]
(1) Fresh water cleaning process
5 liters of tap water and 1 kg of fresh water ice produced by freezing the tap water are put in a bucket to adjust the cooling water, and 15 fresh shrimps are put into this cooling water and stirred for 1 minute. Shrimp preliminary washing was performed to prepare fresh water washing shrimp. The viable cell count of one live shrimp after washing with fresh water was measured.
(2) Freezing process
Ten fresh water-washed shrimps were placed in a basket and placed in a freezer at −40 ° C. After 3 hours, it was confirmed that they were completely frozen and frozen.
(3) Fresh water coating layer forming step
Tap water (room temperature) was stored in a tray, and the frozen shrimp taken out from the freezer was immersed in the tap water for 5 seconds to form a fresh water ice coating layer on the surface of the frozen shrimp.
(4) frozen storage process
The frozen shrimp on which the fresh water ice coating layer was formed was placed in a freezer at −40 ° C. and stored frozen.
(5) Defrosting process
When 3 hours had passed after charging in the freezer, the frozen shrimp with the fresh water ice coating layer was taken out of the freezer and thawed in a 35 ° C. water bath. The viable cell count on the surface of the raw shrimp after thawing and the viable cell count in the drip were measured.
[0048]
[Contrast]
Measurement of the number of viable bacteria in the raw shrimp (sample A1) after cleaning with ozone water in the present invention, raw shrimp after cleaning with fresh water (sample B1) in comparative example 1, and unwashed blank material (sample C0) The result of the value is as shown in Table-1. The number of viable bacteria was measured by measuring the number of bacteria after each sample was crushed with a stomacher, applied to a standard agar medium (3% salinity), and cultured in a 37.5 ° C. incubator for 48 hours. . The relative ratio is a value when the viable count of sample A1 is 100.
[0049]
[Table 1]
Figure 0003773841
[0050]
In addition, the raw shrimp (sample A5) and its drip (sample A5D) after thawing by the method of the present invention, and the number of viable bacteria of the raw shrimp (sample B5) and its drip (sample B5D) after thawing in the comparative example The results of the measurement values are as shown in Table-2 and Table-3. In addition, the measurement of viable count is as above-mentioned.
[0051]
[Table 2]
Figure 0003773841
[0052]
[Table 3]
Figure 0003773841
[0053]
As is clear from Table 1 above, the viable count of the ozone water cleaning sample (sample A) in the present invention is reduced to about 1/6 compared to the uncleaned blank material (sample C). Moreover, it is reduced to about 1/3 compared with the fresh water (tap water) cleaning sample (sample B) raised as a comparative example. From this, it is understood that the ozone water cleaning treatment is effective for the subsequent storage process. In particular, this test was also stored in the comparative example in which the propagation of bacteria was suppressed, and it can be seen that the growth of bacteria was remarkably suppressed as compared with the conventional frozen storage.
[0054]
Further, as apparent from Table 2 above, the viable count after thawing of the sample (sample A5) treated by the method of the present invention is the comparison sample (sample B5) in which a coating layer of fresh water washed and fresh water ice is formed. ) And the number of viable cells after thawing is reduced to about ¼. Similarly, the number of viable bacteria of the drip produced by the method of the present invention (sample A5D) is reduced to about ½ compared to that of the comparative example (sample B5D). In addition, although the said test is a test in the freezing preservation | save in which reproduction of bacteria is suppressed for a short period (3 hours), in the case of long-term preservation | save and refrigeration preservation | save, the difference will become more remarkable. Presumed.
[0055]
【The invention's effect】
As described above, according to the present invention, by immersing frozen fresh food frozen at a low temperature below the freezing point of ozone water in ozone water, ozone ice is generated on the surface of the frozen fresh food to cover the ozone ice. In addition, this ozone ice can maintain an effective ozone concentration for at least a few months or more than a year under freezing, depending on the storage temperature and initial concentration. Therefore, long-term storage is possible while maintaining the quality of fresh food.
[0056]
In addition, by preliminarily sterilizing by washing with ozone water having a sterilizing action before freezing the fresh food, a further effect can be expected for preventing the quality of the fresh food from being altered. In particular, when an electrolytic ozone water production device is used as the ozone water production device, alkaline water is generated on the cathode side, and the alkaline water itself has a bactericidal action. In this case, it is possible to reduce the generation amount of ozone water and reduce the equipment cost and the operating cost. In addition, by making it possible to use ozone water and alkaline water in advance, when a large amount of ozone water is consumed to form the ozone ice coating layer, the pre-cleaning with alkaline water is strengthened and cleaning with ozone water is performed. It is also possible to give a degree of freedom to the operation load of the equipment such as reducing the load.
[0057]
Furthermore, the ozone water concentration in the ozone water tank for forming the ozone ice coating can be recirculated to the anode-side flow path of the electrolytic ozone water production device, so that the concentration of ozone water can be further increased and water resources can be used effectively. Will also contribute.
[0058]
In addition, since the equipment of the present invention has an extremely simple structure, if it is mounted on a fishing boat of a pelagic fishery, an ozone ice coating layer can be formed on the spot and stored frozen. Therefore, even if the fishing period is long, it can be taken home without losing the freshness of the fish, so it has the effect on the fishery itself, such as enabling long-term ocean fishing with a large fishing boat. Expect something great.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a process chart for preservation processing of fresh food according to the present invention.
FIG. 2 is a flowchart showing a first embodiment of the apparatus for preserving fresh food according to the present invention.
FIG. 3 is a flowchart showing a second embodiment of the apparatus for processing and storing fresh food according to the present invention.
FIG. 4 is a flowchart showing a third embodiment of the apparatus for processing and storing fresh food according to the present invention.
FIG. 5 is a flowchart showing a fourth embodiment of the apparatus for processing and storing fresh food according to the present invention.
FIG. 6 is a cross-sectional view showing the main structure of an electrolytic ozone water generator used in the present invention.
FIG. 7 is a graph showing temporal changes in residual ozone concentration of ozone ice.
[Explanation of symbols]
1 Fresh food
1a Frozen fresh food
2a Water washing process
2b Alkaline water washing process
2c Ozone water cleaning process
3 Fresh food freezing process
4 Ozone ice coating layer formation process
5 frozen storage process
10 Cooler
11 Water softener
12 Electrolytic ozone water production equipment
12a Cathode side flow path
12b Anode-side flow path
13 Ozone water tank
14 Ozone water
15 Ozone water drainage
17 Ozone ice coating layer
20 Ozone water cleaning device
21 Fresh food freezer
24 Alkaline water cleaning device

Claims (23)

生鮮食品を冷凍保存するための前処理方法であって、
生鮮食品(1)をオゾン水の氷結温度以下に冷凍する生鮮食品冷凍工程(3)と、
得られた冷凍生鮮食品(1a)をオゾン水中に浸漬して該冷凍生鮮食品の表面にオゾン氷被覆層(17)を形成するオゾン氷被覆層形成工程(4)と
を有する事を特徴とする生鮮食品の冷凍保存のための前処理方法。
A pretreatment method for freezing fresh food,
Fresh food freezing step (3) for freezing fresh food (1) below the freezing temperature of ozone water;
It is characterized by having an ozone ice coating layer forming step (4) in which the obtained frozen fresh food (1a) is immersed in ozone water to form an ozone ice coating layer (17) on the surface of the frozen fresh food. A pretreatment method for freezing fresh food.
前記オゾン水が、水の電気分解法によって陽極側にオゾン水を生成する電解式オゾン水製造装置によって製造されたオゾン水である請求項1に記載の生鮮食品の冷凍保存のための前処理方法。The pretreatment method for fresh preservation of fresh food according to claim 1, wherein the ozone water is ozone water produced by an electrolytic ozone water production device that generates ozone water on the anode side by electrolysis of water. . 前記生鮮食品冷凍工程(3)の前に、前記生鮮食品(1)をオゾン水で洗浄するオゾン水洗浄工程(2c)が設けられている請求項1又は2に記載の生鮮食品の冷凍保存のための前処理方法。The fresh food frozen storage according to claim 1 or 2, wherein an ozone water washing step (2c) for washing the fresh food (1) with ozone water is provided before the fresh food freezing step (3). Pre-processing method for. 前記生鮮食品冷凍工程(3)の前に、前記前記電解式オゾン水製造装置の陰極側に生成するアルカリ水によって前記生鮮食品(1)を洗浄するアルカリ水洗浄工程(2b)が設けられている請求項2に記載の生鮮食品の冷凍保存のための前処理方法。Before the fresh food freezing step (3), an alkaline water washing step (2b) for washing the fresh food (1) with alkaline water generated on the cathode side of the electrolytic ozone water production apparatus is provided. The pre-processing method for the freezing preservation | save of the fresh food of Claim 2. 前記生鮮食品冷凍工程(3)の前に、前記前記電解式オゾン水製造装置の陰極側に生成するアルカリ水によって前記生鮮食品(1)を洗浄するアルカリ水洗浄工程(2b)と、該アルカリ水洗浄工程(2b)に引き続いてオゾン水で洗浄するオゾン水洗浄工程(2c)とが設けられている請求項2に記載の生鮮食品の冷凍保存のための前処理方法。Before the fresh food freezing step (3), an alkaline water washing step (2b) for washing the fresh food (1) with alkaline water generated on the cathode side of the electrolytic ozone water production apparatus, and the alkaline water The pretreatment method for the freezing preservation | save of the fresh food of Claim 2 provided with the ozone water washing | cleaning process (2c) wash | cleaned with ozone water following the washing | cleaning process (2b). 前記冷凍生鮮食品(1a)は、前記生鮮食品冷凍工程(3)において−10℃以下に冷凍されたものであり、前記オゾン氷被覆層形成工程(4)におけるオゾン水は、その氷点近傍の未氷結温度に保たれている請求項1乃至5のいずれかに記載の生鮮食品の冷凍保存のための前処理方法。The frozen fresh food (1a) is frozen at −10 ° C. or lower in the fresh food freezing step (3), and the ozone water in the ozone ice coating layer forming step (4) is not near the freezing point. The pre-processing method for the freezing preservation | save of the fresh food in any one of Claims 1 thru | or 5 currently maintained at freezing temperature. 前記冷凍生鮮食品(1a)は、前記生鮮食品冷凍工程(3)において−20℃以下に冷凍されるものである請求項6に記載の生鮮食品の冷凍保存のための前処理方法。The said frozen fresh food (1a) is a pre-processing method for the freezing preservation | save of the fresh food of Claim 6 which is frozen to -20 degrees C or less in the said fresh food freezing process (3). 前記冷凍生鮮食品(1a)は、前記生鮮食品冷凍工程(3)において−40℃以下に冷凍されるものである請求項6に記載の生鮮食品の冷凍保存のための前処理方法。The said frozen fresh food (1a) is a pre-processing method for the freezing preservation | save of the fresh food of Claim 6 which is frozen to -40 degrees C or less in the said fresh food freezing process (3). 前記オゾン水被覆層形成工程(4)におけるオゾン水濃度が5ppm以上である請求項1乃至8のいずれかに記載の生鮮食品の冷凍保存のための前処理方法。The pretreatment method for frozen storage of fresh food according to any one of claims 1 to 8, wherein the ozone water concentration in the ozone water coating layer forming step (4) is 5 ppm or more. 生鮮食品の冷凍保存方法であって、
生鮮食品(1)をオゾン水の氷結温度以下に冷凍して冷凍生鮮食品(1a)となし、これをオゾン水中に浸漬して、該冷凍生鮮食品(1a)の表面にオゾン氷被覆層(17)を形成し、このオゾン氷被覆層を有する冷凍生鮮食品(1a)を冷凍保存する事を特徴とする生鮮食品の冷凍保存方法。
A method for freezing fresh food,
The fresh food (1) is frozen below the freezing temperature of ozone water to form frozen fresh food (1a), which is immersed in ozone water, and the surface of the frozen fresh food (1a) is coated with an ozone ice coating layer (17 ) And the frozen fresh food (1a) having this ozone ice coating layer is stored frozen.
前記オゾン水が、水の電気分解法によって陽極側にオゾン水を生成する電解式オゾン水製造装置によって製造されたオゾン水である請求項10に記載の生鮮食品の冷凍保存方法。The method for freezing and storing fresh food according to claim 10, wherein the ozone water is ozone water produced by an electrolytic ozone water production apparatus that produces ozone water on the anode side by electrolysis of water. 前記生鮮食品(1)を、予めオゾン水で洗浄した後に冷凍し、しかる後に、前記オゾン水に浸漬して、その表面にオゾン氷被覆層(17)を形成する請求項10に記載の生鮮食品の冷凍保存方法。The fresh food (1) according to claim 10, wherein the fresh food (1) is preliminarily washed with ozone water and then frozen, and then immersed in the ozone water to form an ozone ice coating layer (17) on the surface thereof. Frozen storage method. 前記生鮮食品(1)を、前記前記電解式オゾン水製造装置(12)の陰極側に生成するアルカリ水によって洗浄し、しかる後に、前記オゾン水に浸漬してその表面にオゾン氷被覆層(17)を形成する請求項11に記載の生鮮食品の冷凍保存方法。The fresh food (1) is washed with alkaline water generated on the cathode side of the electrolytic ozone water production apparatus (12), and then immersed in the ozone water to form an ozone ice coating layer (17 The frozen storage method of the fresh food of Claim 11 which forms). 前記生鮮食品(1)を、前記前記電解式オゾン水製造装置(12)の陰極側に生成するアルカリ水によって洗浄し、続いてオゾン水で洗浄し、しかる後に、前記オゾン水に浸漬してその表面にオゾン氷被覆層(17)を形成する請求項11に記載の生鮮食品の冷凍保存方法。The fresh food (1) is washed with alkaline water generated on the cathode side of the electrolytic ozone water production device (12), then washed with ozone water, and then immersed in the ozone water to The method for freezing and storing fresh food according to claim 11, wherein an ozone ice coating layer (17) is formed on the surface. 前記生鮮食品(1)を−20℃以下に冷凍し、これを前記オゾン水に浸漬する請求項10乃至14のいずれかに記載の生鮮食品の冷凍保存方法。The method for freezing and storing fresh food according to any one of claims 10 to 14, wherein the fresh food (1) is frozen at -20 ° C or lower and immersed in the ozone water. 前記冷凍生鮮食品(1a)を浸漬するオゾン水のオゾン濃度を、5ppm以上に調整してなる請求項10乃至15のいずれかに記載の生鮮食品の冷凍保存方法。The method for freezing and preserving fresh food according to any one of claims 10 to 15, wherein the ozone concentration of ozone water in which the frozen fresh food (1a) is immersed is adjusted to 5 ppm or more. 生鮮食品を冷凍保存するための前処理装置であって、
水の電気分解によって陽極側にオゾン水を生成する電解式オゾン水製造装置(12)と、
該電解式オゾン水製造装置(12)で生成したオゾン水を貯蔵するオゾン水槽(13)と、
該オゾン水槽(13)内のオゾン水を、該オゾン水の氷点近傍で且つ未氷結状態に冷却維持するオゾン水冷却機(18)と、
前記生鮮食品(1)を、前記オゾン水の氷点以下に冷凍する生鮮食品冷凍装置(21)と、
該生鮮食品冷凍装置(21)で冷凍された冷凍生鮮食品(1a)を、前記オゾン水槽(13)内に浸漬して、該冷凍生鮮食品(1a)の表面にオゾン氷被覆層(17)を形成する冷凍生鮮食品浸漬装置と
を備えてなる事を特徴とする生鮮食品の冷凍保存のための前処理装置。
A pretreatment device for freezing and storing fresh food,
An electrolytic ozone water producing device (12) for generating ozone water on the anode side by electrolysis of water;
An ozone water tank (13) for storing ozone water generated by the electrolytic ozone water production apparatus (12);
An ozone water cooler (18) that maintains the ozone water in the ozone water tank (13) in the vicinity of the freezing point of the ozone water and in an unfrozen state;
A fresh food freezing device (21) for freezing the fresh food (1) below the freezing point of the ozone water;
The frozen fresh food (1a) frozen in the fresh food freezing device (21) is immersed in the ozone water tank (13), and an ozone ice coating layer (17) is formed on the surface of the frozen fresh food (1a). A pretreatment apparatus for frozen storage of fresh food, characterized by comprising a frozen fresh food immersion apparatus to be formed.
前記生鮮食品(1)を、前記生鮮食品冷凍装置(21)で冷凍する前に、前記電解式オゾン水製造装置(12)の陰極側に生成するアルカリ水によって洗浄するアルカリ水洗浄装置(24)が設けられている請求項17に記載の生鮮食品の冷凍保存のための前処理装置。An alkaline water cleaning device (24) for cleaning the fresh food (1) with alkaline water generated on the cathode side of the electrolytic ozone water production device (12) before freezing in the fresh food freezing device (21). The pre-processing apparatus for the freezing preservation | save of the fresh food of Claim 17 provided. 前記生鮮食品(1)を、前記生鮮食品冷凍装置(21)で冷凍する前に、オゾン水によって洗浄するオゾン水洗浄装置(20)が設けられている請求項17に記載の生鮮食品の冷凍保存のための前処理装置。18. Fresh food frozen storage according to claim 17, further comprising an ozone water cleaning device (20) for cleaning the fresh food (1) with ozone water before freezing the fresh food freezing device (21). Pre-treatment device for. 前記生鮮食品(1)を、前記生鮮食品冷凍装置(21)で冷凍する前に、前記電解式オゾン水製造装置(12)の陰極側に生成するアルカリ水によって洗浄するアルカリ水洗浄装置(24)と、これに続いてオゾン水によって洗浄するオゾン水洗浄装置(20)が設けられている請求項17に記載の生鮮食品の冷凍保存のための前処理装置。An alkaline water cleaning device (24) for cleaning the fresh food (1) with alkaline water generated on the cathode side of the electrolytic ozone water production device (12) before freezing in the fresh food freezing device (21). The pretreatment apparatus for the freezing preservation | save of the fresh food of Claim 17 with which the ozone water washing | cleaning apparatus (20) wash | cleaned by ozone water is provided following this. 前記オゾン水洗浄装置(20)には、前記電解式オゾン水製造装置(12)から送出されるオゾン水の一部が供給される様に配管されている請求項19又は20に記載の生鮮食品の冷凍保存のための前処理装置。The fresh food according to claim 19 or 20, wherein the ozone water cleaning device (20) is piped so as to be supplied with a part of ozone water sent from the electrolytic ozone water production device (12). Pretreatment equipment for cryopreservation. 前記オゾン水洗浄装置(20)には、前記オゾン水槽(13)のオゾン水の一部が供給される様に配管されている請求項19又は20に記載の生鮮食品の冷凍保存のための前処理装置。The ozone water cleaning device (20) is piped so as to be supplied with a part of the ozone water in the ozone water tank (13). Processing equipment. 前記オゾン水槽(13)のオゾン水の一部を、前記電解式オゾン水製造装置(12)の原料水入口側に還流させてなる請求項17乃至22のいずれかに記載の生鮮食品の冷凍保存のための前処理装置。A part of the ozone water in the ozone water tank (13) is refluxed to the raw water inlet side of the electrolytic ozone water production device (12), and the fresh food is stored frozen. Pre-treatment device for.
JP2001375660A 2001-12-10 2001-12-10 Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method Expired - Fee Related JP3773841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375660A JP3773841B2 (en) 2001-12-10 2001-12-10 Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375660A JP3773841B2 (en) 2001-12-10 2001-12-10 Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method

Publications (2)

Publication Number Publication Date
JP2003169645A JP2003169645A (en) 2003-06-17
JP3773841B2 true JP3773841B2 (en) 2006-05-10

Family

ID=19183989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375660A Expired - Fee Related JP3773841B2 (en) 2001-12-10 2001-12-10 Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method

Country Status (1)

Country Link
JP (1) JP3773841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102972501A (en) * 2012-12-13 2013-03-20 浙江海洋学院 Ice-temperature fresh-keeping insulation can for large yellow croaker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102511538B (en) * 2012-01-13 2013-03-13 福建省宁德市华洋水产有限公司 Pseudosciaena crocea ice temperature fresh-keeping method
KR101722504B1 (en) * 2014-11-18 2017-04-11 주식회사 에코프로텍 Ozone water cleaning apparatus having manufacturing function of ozone ice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102972501A (en) * 2012-12-13 2013-03-20 浙江海洋学院 Ice-temperature fresh-keeping insulation can for large yellow croaker

Also Published As

Publication number Publication date
JP2003169645A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
CN102871200B (en) Method for fresh-keeping of aquatic product by electrolytic ice
JP4049221B2 (en) Electrolytic seawater ice generation system, electrolytic seawater generation device, and fresh fish preservation method
Gómez-López et al. A novel electrochemical device as a disinfection system to maintain water quality during washing of ready to eat fresh produce
JP3681107B2 (en) Freshness maintenance method of fresh food and freshness maintenance system of fresh food
US4667370A (en) Salt-water butchering process for poultry and other fowl
JP2003250436A (en) Method and system for washing and sterilizing perishables or the like
US20080171117A1 (en) Methods for reducing microbial contamination in seafood processing
JP3773841B2 (en) Pretreatment method for frozen storage of fresh food, apparatus therefor, and frozen storage method
JP5692715B2 (en) Freshness keeping system and freshness keeping method
Colangelo et al. Electrolysed water in the food industry as supporting of environmental sustainability
KR101883616B1 (en) Manufacturing method of processed fishery products for cryopreserving
JP2003050068A (en) Ice composition containing hydrogen peroxide, and method of preserving perishable food
JP4240481B2 (en) How to keep freshness of seafood
JP2622646B2 (en) Fruit and vegetable ozonation equipment
JP3349810B2 (en) Apparatus and method for sterilizing food and maintaining freshness
JP2018029508A (en) Seafood processing method, method for producing seafood product and seafood processing device
JP3990518B2 (en) Vegetable low-temperature processing method and low-temperature processing system
US6814984B2 (en) Frozen biocidal compositions and methods of use thereof
JP2007068406A (en) Fungal-eliminating/bacteriostatic agent for raw processed food, and raw processed food
KR20210127039A (en) Method for processing fresh sashimy with nano oxygen bubble enrichment
US20160332896A1 (en) Method and associated apparatus for process water sanitation
JP2011021866A (en) Disinfectant water ice production method
JPH10267476A (en) Method for manufacturing ice containing ozone
JPH11137168A (en) Preservation of raw fish in electrolyzed water
JPH11159925A (en) Ice made of electrolysis water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees