JP2017037035A - 測定チップ - Google Patents

測定チップ Download PDF

Info

Publication number
JP2017037035A
JP2017037035A JP2015159560A JP2015159560A JP2017037035A JP 2017037035 A JP2017037035 A JP 2017037035A JP 2015159560 A JP2015159560 A JP 2015159560A JP 2015159560 A JP2015159560 A JP 2015159560A JP 2017037035 A JP2017037035 A JP 2017037035A
Authority
JP
Japan
Prior art keywords
sample
chip
state
take
taking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015159560A
Other languages
English (en)
Inventor
則子 森
Noriko Mori
則子 森
大祐 西内
Daisuke Nishiuchi
大祐 西内
朋応 井尻
Tomomasa Ijiri
朋応 井尻
矢口 喜明
Yoshiaki Yaguchi
喜明 矢口
隆行 杉山
Takayuki Sugiyama
隆行 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2015159560A priority Critical patent/JP2017037035A/ja
Publication of JP2017037035A publication Critical patent/JP2017037035A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】検体を取り込む際の使い易さを向上させた測定チップを提供する。
【解決手段】流体回路を内部に区画するチップ本体部2と、チップ本体部2に対して回動可能に取り付けられ、流体回路に導入する検体を外方から取り込む検体取込部3と、を備え、検体取込部3は、外方から検体を取り込む取込口41が先端部に設けられていると共に、取込口41から取り込まれた検体を保持する保持空間42を取込口41よりも基端側に区画しており、検体取込部3は、チップ本体部2から外方に突出し、保持空間42が流体回路と連通しない第1状態と、第1状態よりもチップ本体部2に向かって傾倒しており、保持空間42が流体回路と連通する第2状態と、の間を回動可能である。
【選択図】図1

Description

本発明は、生化学検査、化学合成又は環境分析等に用いられる測定チップに関する。
近年、医療や健康、食品、創薬等の分野で、DNA、酵素、抗原、抗体、タンパク質、ウィルス若しくは細胞等の生体物質又は化学物質を検知、検出若しくは定量する重要性が増してきており、それらを簡便に測定できる様々なバイオチップ及びマイクロ化学チップ(以下、これらを総称して「測定チップ」と記載する。)が提案されている。
測定チップは、実験室で従来行ってきた一連の検査・分析操作を、小さなチップ内で行えることから、検体及び液体試薬が微量で済み、コストが低く、反応速度が速く、ハイスループットな検査・分析ができ、検体を採取した現場で直ちに検査・分析結果を得ることができるなど多くの利点を有している。
測定チップとしては、「流体回路(又はマイクロ流体回路)」と呼ばれる、該回路内に存在する検体や液体試薬等の液体に対して特定の処理を行うための複数種類の部位(室)と、これらの部位を接続する流路とから構成される流路網をその内部に備えたものが従来公知である(例えば特許文献1)。
また、特許文献2には、表面に設けられ、かつ、流体回路に接続される開口部と、開口部の開閉を行う蓋部と、検体を取り込むための検体取込部と、を含み、検体取込部は、蓋部により開口部を閉じたときに、検体取込部が開口部内に収容されるように蓋部に設置されているマイクロチップが開示されている。
特開2009−258013号公報 特開2014−211349号公報
ところで、特許文献2に開示の測定チップとしてのマイクロチップによれば、小さくて持ち難いキャピラリー単体により検体を採取する工程、及びキャピラリーをマイクロチップに充填する工程が不要となるため、これらの工程を行う医療従事者等の利便性が向上する。
しかしながら、特許文献2に開示された測定チップの検体取込部は、検体としての液体が検体取込部に取り込まれる際に、検体と検体取込部との接触位置が視認し難く、例えば被験者自身が検体の取り込みを行うなどの、医療従事者以外が検体の取り込みを行う場合を想定すると、検体を取り込む際の使い易さという点で改善の余地がある。
そこで、本発明の目的は、検体を取り込む際の使い易さを向上させた測定チップを提供することである。
本発明の第1の態様としての測定チップは、流体回路を区画し、前記流体回路内に存在する液体を遠心力により前記流体回路内で移動させることが可能な測定チップであって、前記流体回路を内部に区画するチップ本体部と、前記チップ本体部に対して回動可能に取り付けられ、前記流体回路に導入する検体を外方から取り込む検体取込部と、を備え、前記検体取込部は、外方から検体を取り込む取込口が先端部に設けられていると共に、前記取込口から取り込まれた検体を保持する保持空間を前記取込口よりも基端側に区画しており、前記検体取込部は、前記チップ本体部から外方に突出し、前記保持空間が前記流体回路と連通しない第1状態と、前記第1状態よりも前記チップ本体部に向かって傾倒しており、前記保持空間が前記流体回路と連通する第2状態と、の間を回動可能であることを特徴とするものである。
本発明の1つの実施形態として、前記チップ本体部は、平面状の外面に前記流体回路と繋がる開口部を区画しており、前記取込口及び前記保持空間は、前記第1状態において、前記平面状の外面よりも外方に位置し、前記第2状態において、前記開口部から入り込み、前記平面状の外面よりも内方に位置することが好ましい。
本発明の1つの実施形態として、前記検体取込部の回動支点は、測定チップを前記平面状の外面側から見た場合に、前記平面状の外面の外縁部の位置に設けられていることが好ましい。
本発明の1つの実施形態として、前記チップ本体部は、前記開口部を一端とし、前記検体取込部が前記第2状態で収容される収容空間を区画しており、前記収容空間を区画する内壁には、前記検体取込部と当接することにより、前記検体取込部が前記第2状態から前記第1状態へと回動することを規制する移動規制部が設けられていることが好ましい。
本発明の1つの実施形態として、前記移動規制部は、前記収容空間の内側に向かって突出する突起部であり、前記平面状の外面のうち前記開口部と隣接する位置には凹部が形成されており、前記検体取込部は、前記凹部の底部まで押し込まれた際に、前記突起部を乗り越えて、前記第2状態となることが好ましい。
本発明の1つの実施形態として、前記移動規制部を第1移動規制部とした場合に、前記チップ本体部は、前記検体取込部と当接することにより、前記検体取込部が前記第1状態から前記チップ本体部に向かって傾倒することを規制する第2移動規制部を備えることが好ましい。
本発明の1つの実施形態として、前記第2移動規制部は、前記検体取込部が前記平面状の外面に対して所定の角度以下とならないように前記検体取込部の傾倒を規制することが好ましい。
本発明の1つの実施形態として、前記検体取込部の少なくとも一部は前記チップ本体部と一体で成形されていることが好ましい。
本発明によれば、検体を取り込む際に使い易い測定チップを提供することができる。
本発明の一実施形態としての測定チップを示す斜視図である。 図1に示す測定チップを厚み方向の一方から見た平面図である。 図2のI−I断面図である。 図1に示す状態よりも検体取込部をチップ本体部に向かって傾倒させた状態での、図3と同位置での測定チップの断面図である。 図1に示す状態よりも検体取込部をチップ本体部から遠ざかるように起立させた状態での、図3と同位置での測定チップの断面図である。 図1に示す測定チップを用いて血液を取り込む際の動作を示す図である。 図6の動作により血液を取り込んだ後に、検体取込部を第1状態から第2状態まで回動させる際の動作を示す図である。
以下、本発明に係る測定チップの実施形態について、図1〜図7を参照して説明する。なお、なお、各図において共通の部材、部位には、同一の符号を付している。
まず、本実施形態としての測定チップの概要について説明する。測定チップは、各種化学合成、検査又は分析等を、それが内部に区画する流体回路(内部に形成された空間)を用いて行うチップであり、流体回路内に存在する液体(検体、検体中の特定成分、液体試薬等の試薬、及び、これらのうちの2種以上の混合物など)を遠心力の印加により流体回路内の所定の部位(室)に移動させることにより、該液体に対して適切な流体処理を行うことができるものである。このために流体回路は、適切な位置に配置された種々の部位(室)を備えており、これらの部位は流路を介して適切に接続されている。上記検査又は分析において上記流体処理は、典型的には、検査又は分析のための前処理である。
「検体」とは、流体回路内に導入される検査・分析の対象となる試料又はそこから取り出された特定成分をいい、典型的には液状である。また、「液体試薬」とは、検体と混合若しくは反応、又は該検体を処理するための試薬である。液体試薬は、通常、測定チップによる検体の検査・分析前に、予め流体回路の液体試薬保持部に内蔵されている。
流体回路が有する上記部位(室)としては、液体試薬を収容する液体試薬保持部;流体回路内に導入された検体から特定成分を取り出すための分離部;検体(上述のように、検体中の特定成分である場合を含む。以下同じ。)を計量するための検体計量部;液体試薬を計量するための液体試薬計量部;検体と液体試薬とを混合する(又は反応させる)ための混合部;得られた混合液についての検査又は分析等(例えば、混合液中の特定成分の検出又は定量)を行うための検出部;特定の液体を一時的に収容しておくための収容部;不要な液体を収容するための廃液収容部等を挙げることができる。
測定チップは通常、その一方の表面に、液体試薬保持部内に液体試薬を注入するための、液体試薬保持部まで貫通する貫通穴である試薬注入口を有する。試薬注入口は、液体試薬が注入された後、封止層(例えば、一方の面に粘着剤層を有するプラスチックフィルム、ラベル、シール等)を測定チップ表面に貼着することにより封止される。
後述するように本実施形態の測定チップには、その平面状の外面に開口部が形成されており、この開口部は、流体回路に接続されている。
検出部に導入された混合液について検査又は分析等を行うための方法は特に制限されず、例えば、上記混合液を収容している検出部に光を照射して透過する光の強度(透過率)を検出する方法、検出部に保持された混合液についての吸収スペクトルを測定する方法等の光学測定を挙げることができる。
本実施形態の測定チップは、上述の例示された部位(室)のすべてを有していてもよく、いずれか1以上を有していなくてもよい。また、これら例示された部位以外の部位を有していてもよい。各部位の数についても特に制限はなく、1又は2以上であることができる。
検体からの特定成分の抽出(不要成分の分離)、検体及び液体試薬の計量、検体と液体試薬との混合、得られた混合液の検出部への導入等のような流体回路内における種々の流体処理は、測定チップに対して適切な方向の遠心力を順次印加して、対象の液体を所定位置に配置された所定の部位に順次移動させることにより行うことができる。例えば、計量部による検体及び液体試薬の計量はそれぞれ、所定の容量(計量すべき量と同じ量)を有する検体計量部又は液体試薬計量部へ、遠心力の印加により計量されるべき検体又は液体試薬を導入し、過剰分の検体又は液体試薬を検体計量部又は液体試薬計量部からオーバーフローさせることにより実施することができる。オーバーフローした検体又は液体試薬は、流路を介して検体計量部又は液体試薬計量部に接続された廃液収容部等に収容させることができる。
測定チップへの遠心力の印加は、遠心力を印加可能な装置(遠心装置)に測定チップを載置して行うことができる。遠心装置は、第1軸を中心に回転自在な第1ステージと、第1ステージ上に配置され、第1ステージ上の第2軸を中心に回転自在な第2ステージとを備えるものであることができる。第2ステージ上に測定チップを載置し、第2ステージを回転させて第1ステージに対する測定チップの角度を任意に設定したうえで第1ステージを回転させることにより、測定チップに対して任意の方向の遠心力を印加することができる。
本実施形態の測定チップは、典型的には、第1基板とその上に積層及び貼合される第2基板とを含んで構成することができ、例えば、第1基板とその上に積層及び貼合される第2基板とからなることができる。この場合、第1基板の表面(第2基板に対向する側の表面)には、流体回路を形成する溝(パターン溝)が設けられ、この溝を内側にして両基板を対向させて貼合することにより、内部空間としての流体回路が構築される。第2基板の表面(第1基板に対向する側の表面)に流体回路を形成する溝がさらに設けられてもよい。
なお、測定チップは、第1基板と第2基板と第3基板とを積層及び貼合したものであってもよい。この場合、第2基板と第3基板との間に配置される第1基板の両面に流体回路を形成する溝が設けられ、測定チップは、第1基板と第2基板とによって構築される第1流体回路と、第1基板と第3基板とによって構築される第2流体回路と、の2層の流体回路を備える。「2層」とは、測定チップの厚み方向に関して異なる2つの位置に流体回路が設けられていることを意味する。かかる2層の流体回路は、第1基板を厚み方向に貫通する1又は2以上の貫通穴によって接続することができる。第2及び第3基板の表面(第1基板に対向する側の表面)に流体回路を形成する溝がさらに設けられてもよい。
なお、測定チップが有する流体回路構造自体は、上述した第1基板及び第2基板からなる構成であっても、第1〜第3基板からなる構成であっても、特に制限されるものではなく、検体の種類、検査項目等に応じて適宜構成することができる。
また、基板同士を貼合する方法は特に限定されず、例えば、貼合する基板のうち、少なくとも一方の基板の貼合面を融解させて溶着する方法(溶着法)、接着剤を用いて接着する方法等を挙げることができる。溶着法としては、基板を加熱して溶着する方法;レーザー等の光を照射して、光吸収により発生する熱によって溶着する方法(レーザー溶着);超音波を用いて溶着する方法等を挙げることができる。なかでもレーザー溶着法が好ましく用いられる。
本実施形態の測定チップの大きさは特に限定されず、例えば縦横数cm〜十cm程度、厚さ数mm〜数cm程度とすることができる。
本実施形態の測定チップを構成する上記各基板の材質は特に制限されず、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアリレート樹脂(PAR)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、塩化ビニル樹脂(PVC)、ポリメチルペンテン樹脂(PMP)、ポリブタジエン樹脂(PBD)、生分解性ポリマー(BP)、シクロオレフィンポリマー(COP)、ポリジメチルシロキサン(PDMS)等の熱可塑性樹脂を用いることができる。
なお、上述した第1基板及び第2基板からなる測定チップにおいて、検出光を利用する光学測定のための検出部を構築するために、少なくともいずれか一方の基板は透明基板とすることが好ましい。他方の基板は、透明基板であっても不透明基板であってもよいが、レーザー溶着を行う場合には、光吸収率を増大できることから、不透明基板とすることが好ましく、基板を上記熱可塑性樹脂から構成し、該熱可塑性樹脂中にカーボンブラック等の黒色顔料を添加することにより黒色基板とすることがより好ましい。
また、上述した第1〜第3基板からなる測定チップにおいて、レーザー溶着の効率性の観点から、第2基板と第3基板との間に配置される第1基板は、不透明基板とすることが好ましく、黒色基板とすることがより好ましい。一方、第2及び第3基板は、上記と同じ理由から透明基板とすることが好ましい。
流体回路を構成する溝(パターン溝)を形成する方法としては、特に制限されず、転写構造を有する金型を用いた射出成形法、インプリント法、切削加工法等を挙げることができる。溝の形状及びパターンは、内部空間の構造が、所望される適切な流体回路構造となるように決定される。
本実施形態の測定チップは、上述した構成を有する測定チップであり、図1はその一例としての測定チップ1を示す斜視図であり、図2は測定チップ1を厚み方向Aの一方から見た平面図である。また、図3は、図2のI−I断面図である。
図1に示すように、測定チップ1は、チップ本体部2と、このチップ本体部2に対して回動可能に取り付けられた検体取込部3と、を備えている。
チップ本体部2は、図3に示すように流体回路10を内部に区画している。具体的に、チップ本体部2は、測定チップ1の厚み方向Aの一方側の面に溝(パターン溝)が形成された第1基板2aと、この第1基板2aの一方側の面に、溝を挟んで対向して取り付けられた第2基板2bと、を備えており、第1基板2aと第2基板2bとに挟まれた空間に流体回路10が区画されている。なお、第1基板2aは上述した樹脂材料で形成された黒色基板であり、第2基板2bは上述した樹脂材料で形成された透明基板である。
チップ本体部2を構成する第1基板2a及び第2基板2bは、図2に示すように、厚み方向Aの一方側(図2は第2基板2b側)から見た場合に、同形状を有している。具体的には、第1基板2a及び第2基板2bは、図2に示す平面視において、略長方形の外形を有している。
より具体的に、第1基板2a及び第2基板2bは、図2に示す平面視において、第1短辺21a、第2短辺21b、第1長辺22a及び第2長辺22bにより外縁が形成されている。図2に示す平面視において、対向する第1短辺21a及び第2短辺21bは平行する直線で形成されている。また、対向する第1長辺22a及び第2長辺22bの一方である第1長辺22aは、第1短辺21a及び第2短辺21bと直交する直線で形成されている。更に、対向する第1長辺22a及び第2長辺22bの他方である第2長辺22bは、両端部に位置し第1長辺22aと平行する直線部23と、この直線部23の間に位置する凹部24と、で形成されている。なお、凹部24の底辺は、外方に向かって突出する弓状の凸型曲線により形成されている。
ここで、第2基板2bは樹脂製の平板により構成されており、第1基板2aと対向する面(以下、「内面」と記載する。)、及びこの内面と反対側の面であり外方に露出する外面70は平面状である。この第2基板2bの平面状の外面70には、後述する検体取込部3が収容される収容空間12を介して流体回路10と繋がる、開口部11が区画されている。
図1、図2に示すように、開口部11は、第2基板2bの平面状の外面70の外縁に沿って、より具体的には、平面状の外面70において第1長辺22aと第1短辺21aとが連続する位置の近傍である角部25から第1長辺22aに沿って延在するスロット状(細長形状)の開口である。また、図3に示すように、収容空間12は、開口部11から厚み方向Aの内方(厚み方向Aの第2基板2bの内面側)に連続して形成されている。より具体的に、収容空間12は、厚み方向Aにおいて第2基板2bを貫通した、開口部11を一端とする貫通長孔12aと、この貫通長孔12aに対して厚み方向Aの内方に連続する第1基板2aの溝と、により区画された長溝状の空間である。また、図3に示すように、収容空間12は、厚み方向Aと直交する方向(以下、「直交方向B」と記載する。)において、流体回路10と連通している。換言すれば、収容空間12は、その厚み方向Aの一端が開口部11により構成されていると共に、厚み方向Aにおいて開口部11よりも内側の位置では、直交方向Bにおいて流体回路10と連通している。つまり、収容空間12は、開口部11を一端とし、流体回路10と連通する空間である。
ここで、収容空間12を区画する内壁には、直交方向Bにおいて収容空間12の内側に向かって突出する第1突起部31及び第2突起部32が設けられている。具体的に、第1突起部31及び第2突起部32は、収容空間12を区画する内壁のうち、第2基板2bの貫通長孔12aを区画する内壁に設けられている。より具体的に、第1突起部31及び第2突起部32は、貫通長孔12aを区画する内壁のうち、貫通長孔12aの長手方向に延在する部分から、長手方向と直交する方向に突出している。詳細は後述するが、この第1突起部31及び第2突起部32は、検体取込部3と当接し、検体取込部3が所定方向に回動移動することを規制する移動規制部を構成している。
また、第2基板2bの平面状の外面70のうち、開口部11と隣接する位置には凹部33が形成されている。具体的に、凹部33は、図2に平面視にて、開口11の長手方向と直交する方向において開口11を挟んで対向する位置に形成されており、その一方は、第図2の平面視において2基板2bの外縁を構成する第1長辺22aまで延在している。
なお、チップ本体部2は、後述するように、検体取込部3の取込口41から検体を取り込む際には、使用者の手により保持される被保持部として用いられる。したがって、使用者が保持し易いように、例えば、チップ本体部2の外面に指が入り込む窪み部などを設けておくことが好ましい。
検体取込部3は、上述したチップ本体部2に対して回動可能に取り付けられており、この検体取込部3を介して、流体回路10に導入する検体を外方から取り込むことができる。図1〜図3に示すように、検体取込部3は、チップ本体部2に対して回動可能に取り付けられた回動アームであり、外方から検体を取り込む取込口41が先端部に設けられている。また、検体取込部3は、取込口41から取り込まれた検体を保持する保持空間42を取込口41よりも基端側に区画している。更に、保持空間42よりも基端側の位置に、検体取込部3をチップ本体部2に対して回動可能とするヒンジ部43が設けられている。
具体的に、図1〜図3に示す検体取込部3は、その基端に位置するヒンジ部43を回動支点として、チップ本体部2に対して回動することができる。ヒンジ部43は、第2基板2bの貫通長孔12aを区画する内壁のうち、長手方向の一端に位置する部分に設けられており、検体取込部3は、チップ本体部2から外方に突出する第1状態と、この第1状態よりチップ本体部2に向かって傾倒した第2状態と、の間を、ヒンジ部43を回動支点として回動することにより移動することができる。第1状態及び第2状態の詳細は後述する(図3〜図5参照)。なお、図1〜図3に示す検体取込部3のヒンジ部43は、樹脂製の板バネにより構成されており、図3に示すヒンジ部43は、弾性変形していない自然状態であり、この状態でヒンジ部43は、貫通長孔12aを区画する内壁から直交方向Bにおいて貫通長孔12aの内側、かつ、厚み方向Aにおいて第1基板2a側に向かうように傾斜して延在している。更に、ヒンジ部43が図3に示す自然状態のときに、検体取込部3は、チップ本体部2から外方に突出する第1状態となっている。
また、回動支点としてのヒンジ部43は、測定チップ1を平面状の外面70側から見た場合(図2の平面視と同じ)、第2基板2bにおける平面状の外面70の外縁近傍である外縁部の位置に設けられている。より具体的に、ヒンジ部43は、平面状の外面70の外縁部うち、第1長辺22aと第1短辺21aとが連続する位置の近傍である角部25の位置に設けられている。なお、図1〜図3に示す検体取込部3は、その基端がチップ本体部2の第2基板2bと一体で成形されており、ヒンジ部43は、検体取込部3と第2基板2bとが一体成形されて連続する接続部分に構成されている。換言すれば、検体取込部3と第2基板2bとは、少なくとも回動支点となるヒンジ部43の位置で連続するように一体成形されている。
更に、図1〜図3に示すように、取込口41は、検体取込部3の先端部、より具体的には先端部における先端面に設けられており、例えば検体としての全血(血液)を指先から取り込む際には、指先に形成された血液滴を取込口41に点着させる。また、検体取込部3は、取込口41に点着させた検体としての血液を毛細管力によって引き込むと共に保持することが可能に構成されている。換言すれば、図1〜図3に示す検体取込部3は、取込口41に点着させた検体を、毛細管力により引き込み、保持する保持空間42を区画している。
なお、図1〜図3に示す検体取込部3は、筒状のキャピラリー3aと、このキャピラリー3aを嵌合支持するキャピラリー支持部3bと、により構成されており、検体取込部3の先端面は、キャピラリー3aの先端面により構成されている。つまり、図1〜図3に示す検体取込部3の取込口41は、キャピラリー3aの先端開口により構成されている。また、キャピラリー3aの先端開口に点着した検体は、毛細管力によりキャピラリー3aの中空部内に引き込まれ、中空部内に保持される。つまり、図1〜図3に示す検体取込部3の保持空間42は、キャピラリー3aの中空部により構成されている。更に、キャピラリー支持部3bの基端が、チップ本体部2の第2基板2bと一体で成形されている。すなわち、図1〜図3に示す検体取込部3のヒンジ部43は、キャピラリー支持部3bの基端部により構成されている。
なお、検体取込部3はキャピラリー3a及びキャピラリー支持部3bを備える構成に限られるものではなく、例えば、キャピラリー3aを用いずに、一対の板状部を所定間隔以下の距離で対向して配置し、その一対の板状部の先端部を取込口とし、先端部よりも基端側に位置する一対の板状部の間の空間を保持空間としてもよい。また、検体取込部3自体を筒状の構成とし、その先端を取込口とし、取込口から連通する中空部を保持空間としてもよい。但し、毛細管力をより効果的に発現させるため、取込口及び保持空間には、親水処理を施しておく必要があるが、この親水処理を施す工程を考慮すると、親水処理を別途施したキャピラリー3aをキャピラリー支持部3bに装着する図1〜図3に示す構成とすることが好ましい。
また、図1〜図3に示す検体取込部3は、チップ本体部2の第2基板2bと一体成形され、その接続部分である検体取込部3の基端にヒンジ部43が形成されているが、検体取込部3がチップ本体部2に対して回動可能に取り付けられていればよく、この構成に限られるものではない。例えば、検体取込部とチップ本体部とをそれぞれ別部材で形成し、ヒンジ部材によりこれらを接合する構成としても良い。但し、図1〜図3に示す検体取込部3のように、検体取込部3をチップ本体部2と一体で成形すれば、測定チップ1を構成する部品点数を減らすことができ、別途ヒンジ部材を取り付ける構成と比較して、構成を簡素化することができる。
更に、図1〜図3に示す検体取込部3のキャピラリー支持部3bは、図2、図3に示すように、チップ本体部2に対向する対向面に、キャピラリー3aの外周面を嵌合支持する長溝部61を備えており、キャピラリー3aはこの長溝部61に嵌め込まれることにより支持されている。換言すれば、キャピラリー支持部3bは、キャピラリー3aのチップ本体部2と対向する面とは反対側を覆っている。したがって、測定チップ1を使用する使用者は、取込口41(本例ではキャピラリー3aの先端開口)から検体を取り込んだ後に、キャピラリー3a自体に触れることなく、キャピラリー支持部3bを操作することにより、検体取込部3を回動させることができる。そのため、医療従事者、被験者本人、薬剤師等が、採取した検体に触れることが抑制され、例えば血液感染や血液汚染などの検体による感染や汚染を抑制することができる。
なお、キャピラリー支持部3bは、ヒンジ部43から取込口41の近傍まで延在しており、検体取込部3の長手方向のほぼ全域に亘って延在しているが、キャピラリー3aを保持する上述の長溝部61は、キャピラリー支持部3bの先端側に設けられているが、基端側には設けられていない。したがって、キャピラリー3aは、その先端側が長溝部61により嵌合支持されるが、その基端側は長溝部61により嵌合支持されておらず、検体取込部3が外方に突出する状態では、キャピラリー3aの基端側が、直交方向Bにおいて直接視認可能となっている。これにより、検体取込部3を後述するような第1状態(図3、図5等参照)とし、取込口41としてのキャピラリー3aの先端開口から検体を取り込んだ際に、保持空間42としてのキャピラリー3aの中空部内に、検査等に必要な十分な量の検体が保持されているか否かを外方から容易に確認することができる。本例では、検体取込部3が第1状態のときに、キャピラリー3aの先端から基端までの全てが、第2基板2bの平面状の外面70よりも外方に露出するようになっており、キャピラリー3aの中空部が全て検体により満たされているか否かにより、検査等に必要な検体量が保持されているか否かを判断することができる。
また更に、図1〜図3に示す検体取込部3のキャピラリー支持部3bには、上述したチップ本体部2の第1突起部31と係合する第1係合部51と、上述したチップ本体部2の第2突起部32と係合する第2係合部52と、が設けられている。第1突起部31と第1係合部51との係合関係、及び第2突起部32と第2係合部52との係合関係についての詳細は後述する(図3〜図5参照)。
なお、検体取込部3の先端部は、横断面外形が検体取込部3の延在方向の位置によらず一様な筒形状で形成されている。そのため、たとえ取込口41を直接視認できない状況であっても、検体の取り込み時に、取込口41としてのキャピラリー3aの先端開口の位置を容易に特定することができる。検体取込部3の先端部を、先端に向かうにつれて細くなる形状としてもよい。かかる構成とすれば、先端面に位置する取込口41の位置をより容易に特定することができる。また、キャピラリー支持部3bは、チップ本体部2の第2基板2bと同様、透明樹脂により形成されているため、検体を取込口41から取り込み際に、透明なキャピラリー支持部3bを通じて取込口41を視通することができる。
以下、検体取込部3の回動動作についての更なる詳細を説明する。
図4は、図1に示す状態よりも検体取込部3をチップ本体部2に向かって傾倒させた状態での、図3と同位置での測定チップ1の断面図である。また図5は、図1に示す状態よりも検体取込部3をチップ本体部2から遠ざかるように起立させた状態での、図3と同位置での測定チップ1の断面図である。
図3及び図5に示す検体取込部3は、チップ本体部2から外方に突出した状態であって、保持空間42が流体回路10と連通しない状態(以下、「第1状態」と記載する。)である。これに対して、図4に示す検体取込部3は、第1状態よりもチップ本体部2に向かって傾倒した状態であって、保持空間42が流体回路10と連通する状態(以下、「第2状態」と記載する。)である。検体取込部3は、この第1状態と第2状態との間を、ヒンジ部43の回りを回動することにより移動することができる。
図3及び図5に示すように、検体取込部3の取込口41及び保持空間42は、第1状態において、チップ本体部2の第2基板2bにおける平面状の外面70よりも外方に位置した状態となる。この第1状態では、検体取込部3の取込口41がチップ本体部2から離間して、取込口41を外部から視認し易い状態とすることができる。特に、図5に示すように、検体取込部3を図3に示す状態から更に起立させるように回動させると、取込口41の視認性をより高くすることができる。特に、検体取込部3を、第2基板2bの平面状の外面70と略直交する方向(厚み方向Aと同じ方向)に延在させるようにすれば、検体取込部3の先端面に形成された取込口41を、第2基板2bの平面状の外面70から最も遠ざけた状態(平面状の外面70からの垂直高さが最も遠い状態)とすることができるため、取込口41の視認性をより一層高くすることができる。
このように、検体取込部3を長尺な回動アームにより構成し、その先端面に取込口41を設ける構成とすれば、検体取込部3をチップ本体部2から外方に向かって突出させた第1状態とするだけで、取込口41の視認性を高くすることができ、取込口41から検体を取り込み易くすることができる。また、図5に示すように、検体取込部3を、その取込口41が第2基板2bの平面状の外面70から遠ざかるように回動させれば(図5の矢印参照)、すなわち、第2基板2bにおける平面状の外面70となす角度θが90度に近づくように回動させれば、取込口41の視認性をより高めることができる。なお、検体取込部3の延在方向と、第2基板2bにおける平面状の外面70とがなす角度θは、60度〜90度とすることが好ましく、70度〜90度とすることがより好ましく、80〜90度とすることが特に好ましい。
また、検体取込部3は、第1状態において、取込口41のみならず、取込口41の基端側に区画されている保持空間42も、第2基板2bの平面状の外面70より外方に露出した状態となっている。つまり、キャピラリー支持部3bに支持されたキャピラリー3a全体が、第2基板2bの平面状の外面70よりも外方に露出した状態となっている。そのため、取込口41としてのキャピラリー3aの先端開口から取り込んだ検体が、検査等に必要な所定量を満たしているか否かを、キャピラリー3aの中空部を外方から視認することにより容易に確認することができる。なお、検体取込部3のキャピラリー支持部3bは透明樹脂で形成されているため、保持空間42としてのキャピラリー3aの中空部の視認性を向上させることができる。
検体取込部3は、図3及び図5に示す第1状態で取込口41から検体が取り込まれると、測定チップ1の使用者によって、チップ本体部2に向かって傾倒するように回動させられ(図4の矢印参照)、図4に示す第2状態へと移動する。図4に示すように、検体取込部3の取込口41及び保持空間42は、第2状態において、第2基板2bの平面状の外面70に形成された開口部11から入り込み、平面状の外面70よりも内方に位置する状態となる。
より具体的に、検体取込部3は、第2状態において、チップ本体部2の収容空間12に収容される。この第2状態では、保持空間42が取込口41を通じて流体回路10と連通した状態となっている。そのため、測定チップ1を遠心装置に載置して遠心力を印加することにより、保持空間42に保持されていた検体を、取込口41を通じて、流体回路10内へと導入することができる。
なお、上述したように、チップ本体部2の収容空間12を区画する内壁には、第1突起部31が設けられており、検体取込部3のキャピラリー支持部3bには、第1突起部31と係合する第1係合部51が設けられている。検体取込部3を第1状態からチップ本体部2に向かって傾倒するように回動させていくと、第1係合部51が第1突起部31と当接する。検体取込部3をこの状態から更にチップ本体部2に向かって傾倒させていくと、第1係合部51は、第1突起部31と摺動した後、第1突起部31を乗り越え、検体取込部3は第2の状態となる(図4参照)。検体取込部3が第2状態にある場合、ヒンジ部43としての板バネは湾曲して弾性変形した状態となるため、第1突起部31と第1係合部51とは、ヒンジ部43の復元力により、当接した状態が維持される。つまり、第1突起部31は、検体取込部3の第1係合部51と当接することにより、検体取込部3が第2状態から第1状態へと戻るように回動することを規制している。換言すれば、第1突起部31は、検体取込部3が第2状態から第1状態に回動移動することを規制する移動規制部を構成している。
なお、図4に示すように、第1突起部31と第1係合部51とは、検体取込部3が第2基板2bの平面状の外面70よりも、厚み方向Aにおいてチップ本体部2の内方に完全に入り込み、外方に露出しない状態で当接している。つまり、検体取込部3を第1状態から第2状態にまで回動移動させる際に、検体取込部3が第2基板2bの平面状の外面70と面一になったとき(検体取込部3が、検体取込部3のうち厚み方向Aにおいて外方に位置する面が、平面状の外面70を含む仮想平面Xに接した状態で、チップ本体部2の収容空間12内に位置するとき)には、第1係合部51は第1突起部31を乗り越えておらず、検体取込部3は第2状態へと移行しない。つまり、この状態で検体取込部3の押し込みを解除すると、検体取込部3は、ヒンジ部43の復元力により、図3に示す第1状態に戻る。
検体取込部3を第1状態から第2状態にまで回動移動させるためには、第2基板2bの平面状の外面70のうち開口部11に隣接した位置に形成された凹部33を利用する。具体的に、検体取込部3は、凹部33の底部33aまで厚み方向Aにおいて内方に押し込まれた際に、第1係合部51が第1突起部31を乗り越え、第2状態となる。つまり、測定チップ1の使用者は、検体取込部3が第1状態にあるときに検体を取り込み、その後、検体取込部3を、例えば指先により凹部33の底部33aまで押し込むことにより、検体取込部3を第2状態にすることができる。
このような構成とすることにより、例えば流通時に測定チップ1同士が厚み方向Aに重ねて配列された場合であっても、検体取込部3が第2状態になり難い。更に、測定チップ1は、例えばアルミ製の袋などの密封容器に包装されて流通されるが、上述の構成とすれば、検体取込部3がチップ本体部2から突出した外形を考慮することなく、第2基板2bの平面状の外面70に沿うような密封容器で包装することができ、包装容器を簡素化及び小型化することができる。更に、密封容器を開封し測定チップ1を取り出すと、検体取込部3は、ヒンジ部43の復元力により、第2基板2bの平面状の外面70よりも外方に露出し、図3に示すような第1状態となる。つまり、測定チップ1を密封容器から取り出す動作によって、検体取込部3を検体の取り込みが可能な第1状態にすることができる。
また、上述したように、チップ本体部2の収容空間12を区画する内壁には、第2突起部32が設けられており、検体取込部3のキャピラリー支持部3bには、第2突起部32と係合する第2係合部52が設けられている。検体取込部3を図3に示すような第1状態からチップ本体部2と遠ざかる方向に向かって起立するように回動させていくと、第2係合部52が第2突起部32と当接する。この状態から更に検体取込部3をチップ本体部2と遠ざかる方向に起立させていくと、第2係合部52は、第2突起部32と摺動した後、第2突起部32を乗り越え、検体取込部3は図5に示す状態となる。なお、図5に示す検体取込部3の状態とは、上述した第1状態であって、かつ、検体取込部3が第2基板2bの平面状の外面70に対して例えば60度など、所定角度以上の角度θで延在する状態を意味している。
検体取込部3が図5に示す状態にある場合、ヒンジ部43としての板バネは湾曲して弾性変形した状態となるため、検体取込部3は、ヒンジ部43の復元力により、図5に示す状態よりもチップ本体部2に向かって傾倒した図3に示す第1状態になるように付勢される。そのため、第2係合部52が第2突起部32を乗り越えた後も、第2突起部32と第2係合部52とは当接した状態が維持される。つまり、第2突起部32は、検体取込部3と当接し、検体取込部3が平面状の外面70に対して60度以上の所定の角度以下とならないように検体取込部3の傾倒を規制している。換言すれば、第2突起部32は、検体取込部3の第2係合部52と当接することにより検体取込部3が第1状態からチップ本体部2に向かって傾斜することを規制する移動規制部を構成している。以下、説明の便宜上、上述した第1突起部31により構成される移動規制部を「第1移動規制部」と記載し、第2突起部32により構成される移動規制部を「第2移動規制部」と記載する。
このような第2移動規制部を備える構成とすれば、検体取込部3の先端面に形成された取込口41を、チップ本体部3から所定距離以上、より具体的には、平面状の外面70から所定高さ以上遠ざけた状態を維持することができるため、検体の取り込み時の取込口41の視認性を向上させることができると共に、検体の取り込み時の取込口41の位置安定性が向上し、使用者にとってより使い易い構成とすることができる。特に、ここで示す検体取込部3は、上述したように、第2基板2bの平面状の外面70の角部25の位置に設けられたヒンジ部43を中心として回動する構成である。そのため、第2移動規制部により、検体取込部3を、平面状の外面70と所定角度以上の角度θで外方に向かって突出させる構成とすれば、検体の取り込み時における外方からの取込口41の視認性をより一層高くすることができる。
なお、第2移動規制部としての第2突起部32は、検体取込部3が第2基板2bの平面状の外面70に対して所定角度以下とならないように検体取込部3の傾倒を規制するものであり、その所定角度は、例えば60度以上とすることが好ましく、70度〜90度で設定することがより好ましく、80度〜90度で設定すること特に好ましい。
以上のように、ここで示す測定チップ1は、第1移動規制部としての第1突起部31及び第2移動規制部としての第2突起部32を備えることにより、検体取込部3を、平面状の外面70に対する角度が60度以上の第1状態、平面状の外面70に対する角度が60未満の第1状態、及び平面状の外面70よりも内側に収容される第2状態、の3つの状態にそれぞれ維持することができる。そのため、利用する状況等に応じて、検体取込部3を最適な状態に維持することができる。例えば、測定チップ1の包装時には、検体取込部3が外面70に対して60度未満の角度で回動可能な第1状態とし、例えば、検体の点着時には、検体取込部3が外面70に対して60度以上の角度で延在した第1状態とし、例えば、測定チップ1を遠心装置にセットする際には、検体取込部3が平面状の外面70よりも内側に収容された第2状態とすることが挙げられる。
最後に、図1〜図5に示す測定チップ1の使用手順について説明する。ここでは、被験者が自身の全血を検体として取り込む際の使用手順を説明する。
上述したように、測定チップ1は、アルミ製等の密封容器に包装されて流通する。そして使用する際には、密封容器を開封し測定チップ1を取り出す。測定チップ1の検体取込部3は、上述したように、板バネのヒンジ部43によりチップ本体部2に対して回動することができ、ヒンジ部43の自然状態は、検体取込部3の先端面の位置が第2基板2bの平面状の外面70から高さ1cm程度浮き上がった状態であり、本例の測定チップ1では、図3に示すような、検体取込部3が第2基板2bの平面状の外面70に対して30度程度で傾斜した第1状態に相当している。
そのため、測定チップ1を密封容器から取り出した後は、検体取込部3の先端部に指をかけ、検体取込部3をチップ本体部2から遠ざかるように起立させ、第2係合部52が第2突起部32を乗り越える。これにより、検体取込部3を図5に示す状態にすることができる。
次いで被験者は、穿刺具を用いて指の腹を穿刺し、指の腹から出血させる。この際に、指の腹に形成された血液滴は、指を傾けると指の腹に沿って流れてしまう。また、指を逆さまにすると滴り落ちてしまう。そのため、指の腹は鉛直方向上方に向けたままとする必要がある。
図6は、指の腹を鉛直方向上方に向けた状態で、測定チップ1の検体取込部3の取込口41から血液を取り込む際の動作を示す図である。図6に示すように、血液滴Yが形成されている一方の手の指の腹を鉛直方向上方に向けたまま、測定チップ1のチップ本体部2を他方の手により保持し、検体取込部3の取込口41の鉛直方向上方が、チップ本体部2により覆われないように、測定チップ1の直交方向B(厚み方向Aと直交する方向)が鉛直方向になるように立てた状態、又は測定チップ1の直交方向Bが鉛直方向に対して若干傾斜した状態で、測定チップ1又は血液滴Yがある指の腹を水平方向に移動させながら、血液滴Yを検体取込部3の先端部に形成された取込口41に点着させる。
取込口41に点着した血液は、毛細管力により引き込まれ、検体取込部3の保持空間42(図3等参照)に保持される。この際に、例えば医療従事者や薬剤師などが、保持空間42に保持されている検体の量が、検査や分析等に必要な所定量を満たしているか否かを判断する。
このように、測定チップ1によれば、検体の点着時に取込口41の位置が視認し易く、血液滴Yが形成された指の腹を鉛直方向上方に向けた状態のまま、検体の点着を容易に行うことができる。更に、検体の保持空間42が、チップ本体部2よりも外方に位置しているため、検体の量が所定量を満たしているか否かを容易に確認することができる。
そして、被験者は、医療従事者や薬剤師によって検体の量が所定量を満たしているとの判断を得た場合には、検体取込部3を図5に示す状態から、チップ本体部2に向かって傾倒させるように押圧する。図7は、被験者が検体取込部3を、第1の状態から第2の状態まで回動させる際の動作を示す図である。図7に示すように、被験者は、検体取込部3のうち、チップ本体部2と対向する対向面とは反対側の非対向面を押圧して、検体取込部3を回動させる。検体取込部3を、図5に示す状態からチップ本体部2に向かって傾倒するように押し込むと、第2係合部52(図3等参照)が第2突起部32(図3等参照)を乗り越える。検体取込部3を更にチップ本体部2に向かって傾倒するように押し込み、検体取込部3を押す指先が、第2基板2bの平面状の外面70に形成された凹部33の底部33a(図3等参照)まで到達すると、第1係合部51(図3等参照)が第1突起部31(図3等参照)を乗り越えて、検体取込部3が第2状態(図4参照)となる。
この状態で測定チップ1を遠心装置に載置し、遠心力を印加することにより、血液検査を実行することができる。そしてこれにより、例えば血糖値やLDLコレステロール等を測定することができる。
本発明に係る測定チップは、上述した実施形態の構成に限られるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、上述した測定チップ1は、第1基板2aと第2基板2bとからなるものであるが、第1基板の厚み方向Aの両面に溝を形成し、第1基板、第2基板及び第3基板からなる測定チップとしてもよい。
本発明は、生化学検査、化学合成又は環境分析等に用いられる測定チップに関する。
1:測定チップ
2:チップ本体部
2a:第1基板
2b:第2基板
3:検体取込部
3a:キャピラリー
3b:キャピラリー支持部
10:流体回路
11:開口部
12:収容空間
12a:貫通長孔
21a:第1短辺
21b:第2短辺
22a:第1長辺
22b:第2長辺
23:第2長辺の直線部
24:第2長辺の凹部
25:角部
31:第1突起部(第1移動規制部)
32:第2突起部(第2移動規制部)
33:凹部
33a:凹部の底部
41:取込口
42:保持空間
43:ヒンジ部(回動支点)
51:第1係合部
52:第2係合部
61:長溝部
70:平面状の外面
A:測定チップの厚み方向
B:測定チップの厚み方向と直交する方向(直交方向)
X:第2基板の平面状の外面を含む仮想平面
Y:血液滴
θ:検体取込部が第2基板の平面状の外面となす角度

Claims (8)

  1. 流体回路を区画し、前記流体回路内に存在する液体を遠心力により前記流体回路内で移動させることが可能な測定チップであって、
    前記流体回路を内部に区画するチップ本体部と、
    前記チップ本体部に対して回動可能に取り付けられ、前記流体回路に導入する検体を外方から取り込む検体取込部と、を備え、
    前記検体取込部は、外方から検体を取り込む取込口が先端部に設けられていると共に、前記取込口から取り込まれた検体を保持する保持空間を前記取込口よりも基端側に区画しており、
    前記検体取込部は、前記チップ本体部から外方に突出し、前記保持空間が前記流体回路と連通しない第1状態と、前記第1状態よりも前記チップ本体部に向かって傾倒しており、前記保持空間が前記流体回路と連通する第2状態と、の間を回動可能であることを特徴とする測定チップ。
  2. 前記チップ本体部は、平面状の外面に前記流体回路と繋がる開口部を区画しており、
    前記取込口及び前記保持空間は、前記第1状態において、前記平面状の外面よりも外方に位置し、前記第2状態において、前記開口部から入り込み、前記平面状の外面よりも内方に位置することを特徴とする、請求項1に記載の測定チップ。
  3. 前記検体取込部の回動支点は、測定チップを前記平面状の外面側から見た場合に、前記平面状の外面の外縁部の位置に設けられていることを特徴とする、請求項2に記載の測定チップ。
  4. 前記チップ本体部は、前記開口部を一端とし、前記検体取込部が前記第2状態で収容される収容空間を区画しており、
    前記収容空間を区画する内壁には、前記検体取込部と当接することにより、前記検体取込部が前記第2状態から前記第1状態へと回動することを規制する移動規制部が設けられていることを特徴とする、請求項2又は3に記載の測定チップ。
  5. 前記移動規制部は、前記収容空間の内側に向かって突出する突起部であり、
    前記平面状の外面のうち前記開口部と隣接する位置には凹部が形成されており、前記検体取込部は、前記凹部の底部まで押し込まれた際に、前記突起部を乗り越えて、前記第2状態となることを特徴とする、請求項4に記載の測定チップ。
  6. 前記移動規制部を第1移動規制部とした場合に、前記チップ本体部は、前記検体取込部と当接することにより、前記検体取込部が前記第1状態から前記チップ本体部に向かって傾倒することを規制する第2移動規制部を備えることを特徴とする、請求項4又は5に記載の測定チップ。
  7. 前記第2移動規制部は、前記検体取込部が前記平面状の外面に対して所定の角度以下とならないように前記検体取込部の傾倒を規制することを特徴とする、請求項6に記載の測定チップ。
  8. 前記検体取込部の少なくとも一部は前記チップ本体部と一体で成形されていることを特徴とする、請求項1乃至7のいずれか1つに記載の測定チップ。
JP2015159560A 2015-08-12 2015-08-12 測定チップ Pending JP2017037035A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159560A JP2017037035A (ja) 2015-08-12 2015-08-12 測定チップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159560A JP2017037035A (ja) 2015-08-12 2015-08-12 測定チップ

Publications (1)

Publication Number Publication Date
JP2017037035A true JP2017037035A (ja) 2017-02-16

Family

ID=58048660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159560A Pending JP2017037035A (ja) 2015-08-12 2015-08-12 測定チップ

Country Status (1)

Country Link
JP (1) JP2017037035A (ja)

Similar Documents

Publication Publication Date Title
US10041942B2 (en) Rotatable fluid sample collection device
US20140275866A1 (en) Rotatable disk-shaped fluid sample collection device
JP5912582B2 (ja) 包材入り液体試薬内蔵型マイクロチップおよびその使用方法
CN106536058B (zh) 样品采集和转移器件
TW201418710A (zh) 反應容器、分析裝置及分析方法
JP5728217B2 (ja) マイクロチップおよびそれを用いた検査または分析方法
US20120275971A1 (en) Microchip
JP5077953B2 (ja) マイクロチップ
TWI476406B (zh) 反應卡匣及檢測裝置
CN102985828B (zh) 用于选择性处理样本的自动化系统
JP6166938B2 (ja) マイクロチップ
JP2017037035A (ja) 測定チップ
JP2009168667A (ja) 液体試薬内蔵型マイクロチップ
JP6986878B2 (ja) 流体分析カートリッジおよびこれを含む流体分析カートリッジアセンブリー
JP5177533B2 (ja) マイクロチップ
US20180195967A1 (en) Test instrument and method of controlling the same
JP2012078094A (ja) 検査対象受体
JP6017793B2 (ja) マイクロチップ
JP2009156682A (ja) 封止用フィルム付きマイクロチップ
JP2009281779A (ja) マイクロチップおよびその使用方法
WO2014072053A1 (en) Microcuvette for biochemical assays
JP5177514B2 (ja) マイクロチップ
JP5294200B2 (ja) マイクロチップ
JP6010967B2 (ja) 検査対象受体、検査装置および検査方法
JP6049463B2 (ja) マイクロチップ