JP2017036898A - Method for operating an oxygen production device - Google Patents

Method for operating an oxygen production device Download PDF

Info

Publication number
JP2017036898A
JP2017036898A JP2015159890A JP2015159890A JP2017036898A JP 2017036898 A JP2017036898 A JP 2017036898A JP 2015159890 A JP2015159890 A JP 2015159890A JP 2015159890 A JP2015159890 A JP 2015159890A JP 2017036898 A JP2017036898 A JP 2017036898A
Authority
JP
Japan
Prior art keywords
oxygen
liquid oxygen
oxygen production
production apparatus
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015159890A
Other languages
Japanese (ja)
Other versions
JP7032033B2 (en
Inventor
雄祐 菅
Yusuke Suga
雄祐 菅
隆弘 土屋
Takahiro Tsuchiya
隆弘 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2015159890A priority Critical patent/JP7032033B2/en
Publication of JP2017036898A publication Critical patent/JP2017036898A/en
Priority to JP2020151055A priority patent/JP6974562B2/en
Application granted granted Critical
Publication of JP7032033B2 publication Critical patent/JP7032033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating an oxygen production device which can shorten the time required for operating an oxygen production device.SOLUTION: A method for operating an oxygen production device is for operating an oxygen production device stopping at room temperature, characterized in that a liquid oxygen production container for producing liquid oxygen by cooling is supplied with liquid oxygen from outside, thereby cooling the liquid oxygen production container.SELECTED DRAWING: Figure 1

Description

本発明は酸素製造装置の稼動方法に関する。   The present invention relates to an operation method of an oxygen production apparatus.

工業レベルでの酸素の製造は、空気を加圧冷却することで液化し、沸点の違いを利用して酸素のみを取り出すことにより達成されている。例えば、空気ろ過装置にて除塵された空気は、原料空気圧縮機にて0.4〜0.5MPaまで昇圧され、水洗冷却後に二酸化炭素と水蒸気が除去される。その後、酸素の沸点が−183℃、窒素の沸点が−196℃であることを利用し、断熱膨張により液化された空気から、蒸留分離によって窒素を気体として除去し、酸素を液体として取り出す。本方法は深冷分離式と呼ばれる(例えば、特許文献1参照)。深冷分離式で得られる酸素の純度は90体積%前後である。   Production of oxygen at an industrial level is achieved by liquefying air by pressurizing and cooling, and taking out only oxygen using a difference in boiling points. For example, air that has been dust-removed by an air filtration device is pressurized to 0.4 to 0.5 MPa by a raw material air compressor, and carbon dioxide and water vapor are removed after cooling with water. Thereafter, utilizing the fact that the boiling point of oxygen is −183 ° C. and the boiling point of nitrogen is −196 ° C., nitrogen is removed from the air liquefied by adiabatic expansion as a gas by distillation separation, and oxygen is taken out as a liquid. This method is called a cryogenic separation type (for example, refer to Patent Document 1). The purity of oxygen obtained by the cryogenic separation method is around 90% by volume.

銅製錬自熔炉において、単位時間当たりの硫化銅精鉱処理量を増加させる際に重要なことは未反応精鉱を極力抑えることである。そのためには、炉内温度を維持し、精鉱中の硫黄分を完全に酸化することが要求される。この要求を満たすには、供給酸素量を増やせばよい。熱は硫黄の燃焼で供給され、硫黄に対して十分な酸素があれば精鉱は十分に反応するからである。   In a copper smelting flash furnace, when increasing the amount of copper sulfide concentrate processed per unit time, it is important to suppress unreacted concentrate as much as possible. For that purpose, it is required to maintain the furnace temperature and to completely oxidize the sulfur content in the concentrate. In order to satisfy this requirement, the amount of supplied oxygen may be increased. This is because heat is supplied by combustion of sulfur, and if there is sufficient oxygen for sulfur, the concentrate will react sufficiently.

硫化銅精鉱と同時に自熔炉に添加する空気の絶対量は、少ないほど良い。空気の量が多いと炉内温度が低下すること、自熔炉排出ガスから硫酸を製造する際に二酸化硫黄濃度が高い方が良いこと、窒素酸化物をなるべく生成させないことなどがその理由である。   The smaller the absolute amount of air added to the flash furnace simultaneously with the copper sulfide concentrate, the better. The reason is that if the amount of air is large, the temperature in the furnace decreases, the sulfur dioxide concentration is better when producing sulfuric acid from the self-melting furnace exhaust gas, and nitrogen oxides are not generated as much as possible.

以上の要求から、深冷分離式で得られるような純度90体積%程度の酸素は、銅製錬の熔錬工程に必要である。逆に、これ以上純度の高い酸素は、酸素製造コスト上昇を招く。そのため、多くの銅製錬所では、大容量深冷分離式酸素製造装置が設置されている。   From the above requirements, oxygen having a purity of about 90% by volume as obtained by the cryogenic separation type is necessary for the smelting process of copper smelting. On the other hand, oxygen with higher purity leads to an increase in oxygen production cost. For this reason, many copper smelters have installed large-capacity cryogenic separation type oxygen production equipment.

特開2004−144386号公報JP 2004-144386 A

酸素製造装置は、定期的にメンテナンスを行うことが必要である。また、銅製錬工程などの、製造される酸素を使用する設備が定期修繕等で長期にわたって休停止する場合は、酸素製造装置の稼働も停止する。   The oxygen production apparatus needs to be regularly maintained. In addition, when equipment that uses oxygen to be produced, such as a copper smelting process, is suspended for a long time due to regular repairs, etc., the operation of the oxygen production apparatus is also stopped.

一度、酸素製造装置を停止した場合は、まず装置内部の液体酸素が放出される。次に外気の吸い込みによる凍結防止のために加温用乾燥空気を流して温度を外気近くまで上昇させる。そして再び稼働状態に戻す際には、再度極低温の−180℃程度まで冷却する必要が生じる。   Once the oxygen production apparatus is stopped, the liquid oxygen inside the apparatus is first released. Next, in order to prevent freezing due to inhalation of outside air, warming dry air is flowed to raise the temperature to near the outside air. And when returning to an operation state again, it will be necessary to cool to about -180 degreeC of cryogenic temperature again.

この温度まで再び冷却して装置を稼働状態に戻すには、装置の規模にもよるが48時間以上要する。外部空気を徐々に取り込み圧縮・冷却するのであるから、電力の消費量も大きい。この時間を短縮する適当な方法は知られていない。   Depending on the scale of the apparatus, it takes 48 hours or more to cool it down to this temperature and return the apparatus to the operating state. Since external air is gradually taken in and compressed and cooled, power consumption is also large. No suitable method is known to reduce this time.

本発明は上記の課題に鑑み、酸素製造装置の稼動に要する時間を短縮することができる、酸素製造装置の稼動方法を提供すること目的とする。   In view of the above problems, an object of the present invention is to provide an operation method of an oxygen production apparatus that can shorten the time required for the operation of the oxygen production apparatus.

本発明に係る酸素製造装置の稼動方法は、常温停止した酸素製造装置の稼動方法であって、冷却によって液体酸素を生成するための液体酸素生成容器に外部から液体酸素を供給することによって、前記液体酸素生成容器を冷却することを特徴とする。前記液体酸素生成容器は、深冷分離式酸素製造装置の蒸留塔としてもよい。前記蒸留塔の主凝縮部に前記液体酸素を供給してもよい。前記酸素製造装置は、酸素製造能力が20000Nm/h以上としてもよい。前記液体酸素生成容器に供給される液体酸素は、純度90体積%以上としてもよい。前記液体酸素生成容器において液体酸素が生成された後に、前記液体酸素生成容器に外部から液体酸素を供給してもよい。 An operation method of an oxygen production apparatus according to the present invention is an operation method of an oxygen production apparatus stopped at room temperature, and by supplying liquid oxygen from the outside to a liquid oxygen production container for producing liquid oxygen by cooling, The liquid oxygen generation container is cooled. The liquid oxygen generation container may be a distillation column of a cryogenic separation type oxygen production apparatus. The liquid oxygen may be supplied to the main condensing part of the distillation column. The oxygen production apparatus may have an oxygen production capacity of 20000 Nm 3 / h or more. The liquid oxygen supplied to the liquid oxygen generation container may have a purity of 90% by volume or more. After liquid oxygen is generated in the liquid oxygen generation container, liquid oxygen may be supplied from the outside to the liquid oxygen generation container.

本発明によれば、酸素製造装置の稼動に要する時間を短縮することができる。   According to the present invention, the time required for operating the oxygen production apparatus can be shortened.

実施形態に係る稼動方法が対象とする酸素製造装置を例示する概略図である。It is the schematic which illustrates the oxygen production apparatus which the operation method which concerns on embodiment makes object.

以下、本発明を実施するための実施形態について説明する。   Hereinafter, an embodiment for carrying out the present invention will be described.

(実施形態)
図1は、本実施形態に係る稼動方法が対象とする酸素製造装置100を例示する概略図である。図1で例示するように、酸素製造装置100は、複数の空気圧縮機10a,10b、水洗冷却塔20、複数の吸着塔30a,30b、熱交換器40、蒸留塔50、膨張タービン60、LO(Liquid Oxygen:液体酸素)分離器70などを備える。蒸留塔50は、断熱された保冷槽80内に配置されている。本実施形態においては、熱交換器40およびLO分離器70も、保冷槽80内に配置されている。蒸留塔50は、下塔51、上塔52、および主凝縮器53を備える。
(Embodiment)
FIG. 1 is a schematic view illustrating an oxygen production apparatus 100 targeted by an operation method according to this embodiment. As illustrated in FIG. 1, the oxygen production apparatus 100 includes a plurality of air compressors 10a and 10b, a water-washing cooling tower 20, a plurality of adsorption towers 30a and 30b, a heat exchanger 40, a distillation tower 50, an expansion turbine 60, a LO. (Liquid Oxygen: liquid oxygen) separator 70 and the like. The distillation column 50 is disposed in a heat-insulated cold storage tank 80. In the present embodiment, the heat exchanger 40 and the LO separator 70 are also disposed in the cold storage tank 80. The distillation column 50 includes a lower column 51, an upper column 52, and a main condenser 53.

空気圧縮機10a,10bは、空気ろ過装置などによって除塵された空気を圧縮する圧縮装置である。空気圧縮機の数は特に限定されるわけではないが、本実施形態においては、一例として2つの空気圧縮機が設けられている。例えば、空気圧縮機10a,10bは、空気を0.4MPa〜0.5MPa程度まで昇圧する。空気圧縮機10a,10bによって得られた圧縮空気は、水洗冷却塔20に供給される。   The air compressors 10a and 10b are compression devices that compress air removed by an air filtration device or the like. The number of air compressors is not particularly limited, but in the present embodiment, two air compressors are provided as an example. For example, the air compressors 10a and 10b increase the pressure of air to about 0.4 MPa to 0.5 MPa. The compressed air obtained by the air compressors 10 a and 10 b is supplied to the water-washing cooling tower 20.

水洗冷却塔20では、圧縮空気が水洗され、水洗によって冷却される。それにより、空気圧縮機10a,10bで生じる圧縮熱が除去される。水洗・冷却後の圧縮空気は、吸着塔30a,30bのいずれかに供給される。圧縮空気の供給先は、バルブなどによって制御することができる。吸着塔30a,30bは、圧縮空気中の水蒸気、二酸化炭素などを吸着によって除去する。それにより、精製空気が得られる。吸着塔30a,30bのうち圧縮空気が供給されていない方には、加熱ガスなどの再生ガスが供給される。それにより、吸着能力を再生することができる。   In the washing / cooling tower 20, the compressed air is washed with water and cooled by washing with water. Thereby, the compression heat generated in the air compressors 10a and 10b is removed. The compressed air after washing and cooling is supplied to one of the adsorption towers 30a and 30b. The supply destination of the compressed air can be controlled by a valve or the like. The adsorption towers 30a and 30b remove water vapor, carbon dioxide and the like in the compressed air by adsorption. Thereby, purified air is obtained. A regeneration gas such as a heating gas is supplied to one of the adsorption towers 30a and 30b to which compressed air is not supplied. Thereby, the adsorption capacity can be regenerated.

吸着塔30a,30bによって得られた精製空気の一部は、熱交換器40に供給される。熱交換器40は、例えば断熱保冷されたアルミプレートなどであり、精製空気と、LO分離器70から供給される酸素ガスとの間で熱交換を行うことによって、精製空気を飽和温度付近まで冷却する。熱交換器40によって冷却された精製空気は、下塔51に供給される。   Part of the purified air obtained by the adsorption towers 30a and 30b is supplied to the heat exchanger 40. The heat exchanger 40 is, for example, an aluminum plate that is insulated and refrigerated, and cools the purified air to near the saturation temperature by exchanging heat between the purified air and the oxygen gas supplied from the LO separator 70. To do. The purified air cooled by the heat exchanger 40 is supplied to the lower tower 51.

膨張タービン60は、寒冷発生用のタービンである。膨張タービン60は、熱交換器40に供給されなかった精製空気を断熱膨張させることによって精製空気を冷却する。冷却された精製空気は、上塔52に供給される。膨張タービン60は、侵入熱などに起因する熱交換器の熱損失を補償するための寒冷発生源として機能する。   The expansion turbine 60 is a turbine for generating cold. The expansion turbine 60 cools the purified air by adiabatically expanding the purified air that has not been supplied to the heat exchanger 40. The cooled purified air is supplied to the upper tower 52. The expansion turbine 60 functions as a cold source for compensating for heat loss of the heat exchanger due to intrusion heat or the like.

蒸留塔50は、冷却によって液体酸素を生成するための液体酸素生成容器としての機能を有する。下塔51は、上塔52よりも高い内部圧力を有する高圧塔である。下塔51では、蒸留によって窒素ガスと、酸素濃度約40%(volume)の酸素富化液体空気とに分離する。酸素富化液体空気は、上塔52に供給される。上塔52は、下塔51よりも低い内部圧力を有する低圧塔である。上塔52では、酸素富化液体空気が、窒素ガスと液体酸素とに分離する。   The distillation column 50 has a function as a liquid oxygen generation container for generating liquid oxygen by cooling. The lower tower 51 is a high-pressure tower having an internal pressure higher than that of the upper tower 52. In the lower tower 51, nitrogen gas and oxygen-enriched liquid air having an oxygen concentration of about 40% (volume) are separated by distillation. Oxygen-enriched liquid air is supplied to the upper column 52. The upper column 52 is a low pressure column having an internal pressure lower than that of the lower column 51. In the upper tower 52, the oxygen-enriched liquid air is separated into nitrogen gas and liquid oxygen.

なお、上塔52の底部および下塔51の頂部は、主凝縮器53によって熱的に接続されている。主凝縮器53では、下塔51から上塔52への潜熱での熱供給により、上塔52の液体酸素の蒸発によって上昇ガスが生成され、同時に下塔51の窒素ガスの凝縮によって還流液体窒素が生成される。したがって、下塔51の内部圧力は、下塔51の頂部の窒素の飽和温度が上塔52の底部の酸素の飽和温度よりも高くなるような圧力に設定される。   The bottom of the upper tower 52 and the top of the lower tower 51 are thermally connected by a main condenser 53. In the main condenser 53, ascending gas is generated by the evaporation of liquid oxygen in the upper tower 52 due to the latent heat supply from the lower tower 51 to the upper tower 52, and at the same time, the reflux liquid nitrogen is condensed by the nitrogen gas in the lower tower 51. Is generated. Accordingly, the internal pressure of the lower column 51 is set to a pressure at which the saturation temperature of nitrogen at the top of the lower column 51 is higher than the saturation temperature of oxygen at the bottom of the upper column 52.

主凝縮器53で得られた液体酸素は、LO分離器70に供給される。LO分離器70では、蒸発によって、液体酸素から酸素ガスが得られる。例えば、LO分離器70に貯留する液体酸素と、熱交換器40によって冷却された精製空気とを熱交換することによって、液体酸素を蒸発させることができる。なお、上述したように、LO分離器70で得られる低温の酸素ガスを熱交換器40に供給することによって、吸着塔30a,30bで得られた精製空気を冷却することができる。LO分離器70から得られた酸素ガスは、銅製錬の自溶炉などに供給される。   The liquid oxygen obtained in the main condenser 53 is supplied to the LO separator 70. In the LO separator 70, oxygen gas is obtained from liquid oxygen by evaporation. For example, liquid oxygen can be evaporated by exchanging heat between liquid oxygen stored in the LO separator 70 and purified air cooled by the heat exchanger 40. As described above, by supplying the low-temperature oxygen gas obtained by the LO separator 70 to the heat exchanger 40, the purified air obtained by the adsorption towers 30a and 30b can be cooled. The oxygen gas obtained from the LO separator 70 is supplied to a copper smelting flash furnace or the like.

酸素製造装置100は、定期的にメンテナンスを行うことが必要である。また、銅製錬工程などの、製造される酸素を使用する設備が定期修繕等で長期にわたって休停止する場合は、酸素製造装置100の稼働も停止する。一度、酸素製造装置100を停止した場合は、装置内部の液体酸素は放出され、加温用乾燥空気を流して温度を外気近くまで上昇させる。すなわち、酸素製造装置100は、常温停止することになる。酸素製造装置100を再び稼働状態に戻す際には、保冷槽80の内部を再度極低温の−180℃程度まで冷却する必要が生じる。この温度まで再び冷却して酸素製造装置100を稼働状態に戻すには、装置の規模にもよるが48時間以上を要する。その間、冷却に必要な電力、オペレータの人件費等が必要となる。さらに、銅製錬自熔炉に併設されている酸素製造装置の場合では、銅精鉱の投入前には酸素製造装置が稼働可能な状態であることが要求されるため、稼動の遅れは生産効率の低下につながる。   The oxygen production apparatus 100 needs to be regularly maintained. In addition, when equipment that uses produced oxygen, such as a copper smelting process, is suspended for a long time due to regular repairs, the operation of the oxygen production apparatus 100 is also stopped. Once the oxygen production apparatus 100 is stopped, the liquid oxygen inside the apparatus is released, and the temperature is raised to near the outside air by flowing warming dry air. That is, the oxygen production apparatus 100 stops at room temperature. When the oxygen production apparatus 100 is returned to the operating state again, it is necessary to cool the inside of the cold insulation tank 80 again to a cryogenic temperature of about −180 ° C. Depending on the scale of the apparatus, it takes 48 hours or more to cool it again to this temperature and return the oxygen producing apparatus 100 to the operating state. Meanwhile, electric power necessary for cooling, operator labor costs, etc. are required. Furthermore, in the case of the oxygen production equipment installed in the copper smelting furnace, it is required that the oxygen production equipment be ready before the copper concentrate is charged. Leading to a decline.

そこで、本実施形態においては、酸素製造装置100の稼動時に、液体酸素を保冷槽80内に供給する。それにより、保冷槽80内部の冷却に要する時間を短縮化することができる。例えば、酸素製造能力が20000Nm/h以上の酸素製造装置100において、液体酸素を用いない場合と比較して冷却時間を0.5倍〜0.8倍とすることができる。その結果、酸素製造装置100の稼動に要する時間を短縮化することができる。また、保冷槽80の内部を冷却するための電力を削減することができる。 Therefore, in the present embodiment, liquid oxygen is supplied into the cold storage tank 80 when the oxygen production apparatus 100 is in operation. Thereby, the time required for cooling the inside of the cold insulation tank 80 can be shortened. For example, in the oxygen production apparatus 100 having an oxygen production capacity of 20000 Nm 3 / h or more, the cooling time can be 0.5 to 0.8 times compared to the case where liquid oxygen is not used. As a result, the time required for the operation of the oxygen production apparatus 100 can be shortened. Moreover, the electric power for cooling the inside of the cold storage tank 80 can be reduced.

液体酸素の供給先は、熱交換器40、蒸留塔50、配管などであり、保冷槽80内であれば特に限定されないが、主凝縮器53であることが好ましい。主凝縮器53は、液体酸素を生成する空間(容器)であり、極低温が要求されるためである。なお、酸素以外の他の極低温の液体を投入しても冷却効果は認められるが、本実施形態においては、供給した液体酸素をプラントで製造した酸素と同等に扱えることに加え、入手の容易さ、価格の面から液体酸素を用いる。また、液体酸素の純度は、90体積%以上であることが好ましい。   The supply destination of liquid oxygen is the heat exchanger 40, the distillation tower 50, piping, and the like, and is not particularly limited as long as it is in the cold storage tank 80, but is preferably the main condenser 53. This is because the main condenser 53 is a space (container) for generating liquid oxygen and requires extremely low temperatures. Although a cooling effect can be recognized even when a cryogenic liquid other than oxygen is added, in this embodiment, the supplied liquid oxygen can be handled in the same manner as oxygen produced in a plant, and is easily available. In terms of price, liquid oxygen is used. Moreover, it is preferable that the purity of liquid oxygen is 90 volume% or more.

液体酸素は、主凝縮器53の液体酸素の生成段階から通常運転レベルまで供給することができる。主凝縮器53に冷却剤を供給する供給口を設置しておき、当該注入口から液体酸素を供給してもよい。供給口を設置していない場合には、主凝縮器53の液体酸素の排出口から逆流する形で供給してもよい。液体酸素の供給は、主凝縮器53での急激な蒸発を防止するために液体酸素の生成後に開始することが望ましい。   Liquid oxygen can be supplied from the production stage of liquid oxygen in the main condenser 53 to the normal operating level. A supply port for supplying the coolant to the main condenser 53 may be installed, and liquid oxygen may be supplied from the injection port. When the supply port is not installed, it may be supplied in the form of backflow from the liquid oxygen discharge port of the main condenser 53. The supply of liquid oxygen is preferably started after the production of liquid oxygen in order to prevent rapid evaporation in the main condenser 53.

本実施形態に係る稼動方法が対象とする酸素製造装置は、酸素製造能力が高い方が好ましい。酸素製造能力が高い酸素製造装置は、稼動時に要する冷却時間が長くなるからである。例えば、酸素製造能力が20000Nm/h以上の酸素製造装置に対して本実施形態に係る稼動方法を適用することが好ましい。 The oxygen production apparatus targeted by the operation method according to this embodiment preferably has a high oxygen production capacity. This is because an oxygen production apparatus having a high oxygen production capacity requires a long cooling time during operation. For example, it is preferable to apply the operation method according to the present embodiment to an oxygen production apparatus having an oxygen production capacity of 20000 Nm 3 / h or more.

以下、上記実施形態に従って酸素製造装置を再稼動させた。   Hereinafter, the oxygen production apparatus was restarted according to the above embodiment.

(実施例1)
常温停止状態にある深冷分離式酸素製造装置(日立製作所製、酸素製造能力:24,000Nm−100%O/h、原料空気圧縮機定格電力:8,350kW)を起動後、主凝縮器に液体酸素が生成された後に、当該主凝縮器に液体酸素(大陽日酸社製、純度99.5%)を供給した。液体酸素の供給は、主凝縮器の液抜き部に付設した注入口から主凝縮器容積の45%〜58%になるまで行った。稼働の目安となる主凝縮器の内に占める液体空気体積は90%であり、この値に達するまで時間は38時間であった。
Example 1
Room temperature in a stopped state is the cryogenic separation type oxygen production system (manufactured by Hitachi, Ltd., the oxygen production capacity: 24,000Nm 3 -100% O 2 / h, feed air compressor rated power: 8,350kW) after the start, the main condenser After liquid oxygen was generated in the vessel, liquid oxygen (manufactured by Taiyo Nippon Sanso, purity 99.5%) was supplied to the main condenser. The supply of liquid oxygen was performed from the inlet provided in the drain part of the main condenser until it reached 45% to 58% of the main condenser volume. The volume of liquid air occupying the main condenser as a guide for operation was 90%, and it took 38 hours to reach this value.

(比較例1)
常温停止状態にある実施例1と同じ装置に対して除塵された圧縮空気の深冷部への吹込みを開始した。装置の冷却は断熱膨張による冷熱補加のみで行った。稼働の目安となる主凝縮器の内に占める液化空気体積が90%に達するまで、57時間を要した。
(Comparative Example 1)
Blowing of the compressed air, from which dust was removed, into the deep cooling section of the same apparatus as in Example 1 in the cold stop state was started. The apparatus was cooled only by supplementing the heat by adiabatic expansion. It took 57 hours to reach 90% of the liquefied air volume in the main condenser, which is a guideline for operation.

以上の結果から、深冷分離式の酸素製造装置に液体酸素を供給して主凝縮器を冷却すれば、常温から再稼働までに要する時間が大きく短縮できることがわかる。   From the above results, it can be seen that if the main condenser is cooled by supplying liquid oxygen to the cryogenic separation type oxygen production apparatus, the time required from normal temperature to re-operation can be greatly reduced.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10a,10b 空気圧縮機
20 水洗冷却塔
30a,30b 吸着塔
40 熱交換器
50 蒸留塔
51 下塔
52 上塔
53 主凝縮器
60 膨張タービン
70 LO分離器
80 保冷槽
100 酸素製造装置
10a, 10b Air compressor 20 Flushing cooling tower 30a, 30b Adsorption tower 40 Heat exchanger 50 Distillation tower 51 Lower tower 52 Upper tower 53 Main condenser 60 Expansion turbine 70 LO separator 80 Cold storage tank 100 Oxygen production equipment

Claims (6)

常温停止した酸素製造装置の稼動方法であって、
冷却によって液体酸素を生成するための液体酸素生成容器に外部から液体酸素を供給することによって、前記液体酸素生成容器を冷却することを特徴とする酸素製造装置の稼動方法。
An operation method of the oxygen production apparatus stopped at room temperature,
An operating method of an oxygen production apparatus, wherein the liquid oxygen generation container is cooled by supplying liquid oxygen from the outside to the liquid oxygen generation container for generating liquid oxygen by cooling.
前記液体酸素生成容器は、深冷分離式酸素製造装置の蒸留塔であることを特徴とする請求項1記載の酸素製造装置の稼動方法。   2. The operation method of an oxygen production apparatus according to claim 1, wherein the liquid oxygen generation container is a distillation column of a cryogenic separation type oxygen production apparatus. 前記蒸留塔の主凝縮部に前記液体酸素を供給することを特徴とする請求項2記載の酸素製造装置の稼動方法。   The operation method of the oxygen production apparatus according to claim 2, wherein the liquid oxygen is supplied to a main condensing part of the distillation column. 前記酸素製造装置は、酸素製造能力が20000Nm/h以上であることを特徴とする請求項1〜3のいずれか一項に記載の酸素製造装置の稼動方法。 The method for operating an oxygen production apparatus according to claim 1, wherein the oxygen production apparatus has an oxygen production capacity of 20000 Nm 3 / h or more. 前記液体酸素生成容器に供給される液体酸素は、純度90体積%以上であることを特徴とする請求項1〜4のいずれか一項に記載の酸素製造装置の稼動方法。   The operation method of the oxygen production apparatus according to any one of claims 1 to 4, wherein the liquid oxygen supplied to the liquid oxygen generation container has a purity of 90% by volume or more. 前記液体酸素生成容器において液体酸素が生成された後に、前記液体酸素生成容器に外部から液体酸素を供給することを特徴とする請求項1〜5のいずれか一項に記載の酸素製造装置の稼動方法。   The operation of the oxygen production apparatus according to claim 1, wherein liquid oxygen is supplied from the outside to the liquid oxygen generation container after liquid oxygen is generated in the liquid oxygen generation container. Method.
JP2015159890A 2015-08-13 2015-08-13 How to operate the oxygen production equipment Active JP7032033B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015159890A JP7032033B2 (en) 2015-08-13 2015-08-13 How to operate the oxygen production equipment
JP2020151055A JP6974562B2 (en) 2015-08-13 2020-09-09 How to operate the oxygen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159890A JP7032033B2 (en) 2015-08-13 2015-08-13 How to operate the oxygen production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020151055A Division JP6974562B2 (en) 2015-08-13 2020-09-09 How to operate the oxygen production equipment

Publications (2)

Publication Number Publication Date
JP2017036898A true JP2017036898A (en) 2017-02-16
JP7032033B2 JP7032033B2 (en) 2022-03-08

Family

ID=58049321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159890A Active JP7032033B2 (en) 2015-08-13 2015-08-13 How to operate the oxygen production equipment

Country Status (1)

Country Link
JP (1) JP7032033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159639A1 (en) 2017-02-28 2018-09-07 武田薬品工業株式会社 Method for producing heterocyclic compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788646A (en) * 1953-03-24 1957-04-16 Union Carbide & Carbon Corp Process of and apparatus for lowtemperature separation of air
JPS6073286A (en) * 1983-09-30 1985-04-25 川崎製鉄株式会社 Operation method on starting of air separator
JPH07139873A (en) * 1993-11-12 1995-06-02 Daido Hoxan Inc Manufacture of oxygen gas
JPH08218128A (en) * 1995-02-14 1996-08-27 Nikko Kinzoku Kk Method for smelting copper
JP2002168561A (en) * 2000-11-30 2002-06-14 Kobe Steel Ltd Method and system for separating air
JP2003014373A (en) * 2001-07-02 2003-01-15 Hitachi Ltd Air separator apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788646A (en) * 1953-03-24 1957-04-16 Union Carbide & Carbon Corp Process of and apparatus for lowtemperature separation of air
JPS6073286A (en) * 1983-09-30 1985-04-25 川崎製鉄株式会社 Operation method on starting of air separator
JPH07139873A (en) * 1993-11-12 1995-06-02 Daido Hoxan Inc Manufacture of oxygen gas
JPH08218128A (en) * 1995-02-14 1996-08-27 Nikko Kinzoku Kk Method for smelting copper
JP2002168561A (en) * 2000-11-30 2002-06-14 Kobe Steel Ltd Method and system for separating air
JP2003014373A (en) * 2001-07-02 2003-01-15 Hitachi Ltd Air separator apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159639A1 (en) 2017-02-28 2018-09-07 武田薬品工業株式会社 Method for producing heterocyclic compound

Also Published As

Publication number Publication date
JP7032033B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP5226457B2 (en) Air flow compression method and air flow compression device
KR20200015905A (en) Gas production system
JP4276520B2 (en) Operation method of air separation device
US9557102B2 (en) Systems and methods for natural gas liquefaction capacity augmentation
CN110803689A (en) Argon recovery method and device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
US3058315A (en) Process for supplying a gaseous product to meet a fluctuating demand
JP2007147113A (en) Nitrogen manufacturing method and device
JP6354517B2 (en) Cryogenic air separation device and cryogenic air separation method
JP2017036898A (en) Method for operating an oxygen production device
US20120279255A1 (en) Method and apparatus for compressing and cooling air
JP6974562B2 (en) How to operate the oxygen production equipment
JP2007003097A (en) Nitrogen generating method and device using the same
JP4594360B2 (en) Cryogenic air liquefaction separation device and operation method thereof
JP7291472B2 (en) Nitrogen gas production equipment
JP6464399B2 (en) Air separation device
JP2013007512A (en) Air separation method and air separator
JP5910349B2 (en) Raw material air cooling method and apparatus for air liquefaction separation equipment
JP5997105B2 (en) Air separation method
RU2647297C2 (en) Method and plant for producing liquid and gaseous oxygenates by low-temperature air separation
CN104976862B (en) A kind of cryogenic refrigeration technique in ethene storage process
KR102139990B1 (en) Method for operating air separation plant
KR102485122B1 (en) Air separation equipment
CN211198611U (en) Argon recovery device for removing carbon monoxide by rectification method
JP2000180051A (en) Manufacture of ultrahigh purity nitrogen
JP2013096597A (en) Cryogenic air separator and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200917

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200923

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201204

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211026

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211221

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220118

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220222

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220224

R151 Written notification of patent or utility model registration

Ref document number: 7032033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350