JP2013096597A - Cryogenic air separator and control method thereof - Google Patents

Cryogenic air separator and control method thereof Download PDF

Info

Publication number
JP2013096597A
JP2013096597A JP2011237477A JP2011237477A JP2013096597A JP 2013096597 A JP2013096597 A JP 2013096597A JP 2011237477 A JP2011237477 A JP 2011237477A JP 2011237477 A JP2011237477 A JP 2011237477A JP 2013096597 A JP2013096597 A JP 2013096597A
Authority
JP
Japan
Prior art keywords
raw material
air
material air
heat exchanger
liquid oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011237477A
Other languages
Japanese (ja)
Inventor
Masayuki Fujii
正行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011237477A priority Critical patent/JP2013096597A/en
Publication of JP2013096597A publication Critical patent/JP2013096597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Abstract

PROBLEM TO BE SOLVED: To improve the energy efficiency of a device as a whole.SOLUTION: A cryogenic air separator is configured so that heat exchange is performed between liquid oxygen extracted from a rectifying column 7 and raw material air under compression by a raw material air compressor 3. Thereby, it is possible to heat the liquid oxygen for evaporation by the raw material air which is raised in temperature by the compression. For example, as compared with a method in which the liquid oxygen is heated by steam or an electric heater, the energy efficiency of the whole device is improved.

Description

本発明は、深冷空気分離装置、及びその制御方法に関する。   The present invention relates to a cryogenic air separation device and a control method thereof.

従来、深冷空気分離装置としては、例えば、原料空気を原料空気圧縮機で圧縮し、圧縮した原料空気から深冷分離法によって少なくとも液体酸素を生成し、生成した液体酸素を精留塔内部に溜めるものがある(例えば、特許文献1参照)。このような空気分離装置では、一般に、精留塔内部の液体酸素中の炭化水素濃度が予め設定した保安管理上の設定値以下になるように、精留塔内部から深冷空気分離装置の酸素送出量の1%程度の液体酸素を抜き出している。そして、抜き出した液体酸素を蒸気や電熱器によって加熱して蒸発させ、その蒸発によって得た蒸発ガスを、精留塔から送出される製品酸素に導入している。   Conventionally, as a cryogenic air separation device, for example, raw material air is compressed by a raw material air compressor, at least liquid oxygen is generated from the compressed raw material air by a cryogenic separation method, and the generated liquid oxygen is placed inside the rectification column. There is a thing to collect (for example, refer to Patent Document 1). In such an air separation device, in general, the oxygen concentration of the cryogenic air separation device from the inside of the rectification column is set so that the hydrocarbon concentration in the liquid oxygen inside the rectification column is equal to or less than a preset value for safety management. About 1% of liquid oxygen is extracted. The extracted liquid oxygen is heated and evaporated by steam or an electric heater, and the evaporated gas obtained by the evaporation is introduced into the product oxygen sent from the rectification tower.

特許第2782355号公報Japanese Patent No. 2882355

しかしながら、上記従来技術では、精留塔から抜き出した液体酸素を、蒸気や電熱器によって加熱して蒸発させている。それゆえ、蒸気発生用の熱源や電熱器駆動用の電力が別途必要となり、装置全体のエネルギー効率が悪化する可能性があった。
本発明は、上記のような点に着目してなされたもので、装置全体のエネルギー効率を向上可能とすることを目的としている。
However, in the above prior art, the liquid oxygen extracted from the rectification column is heated and evaporated by steam or an electric heater. Therefore, a separate heat source for generating steam and electric power for driving the electric heater are required, which may deteriorate the energy efficiency of the entire apparatus.
The present invention has been made paying attention to the above points, and an object thereof is to improve the energy efficiency of the entire apparatus.

本発明の深冷空気分離装置の一態様は、
原料空気を圧縮する原料空気圧縮機と、前記原料空気圧縮機で圧縮した原料空気から深冷分離法によって少なくとも液体酸素を生成し、生成した液体酸素を内部に溜める精留塔と、前記精留塔内部から液体酸素の一部を抜き出す液酸抜出部と、を備え、前記原料空気圧縮機は、前記液酸抜出部で抜き出した液体酸素と圧縮中の原料空気とに熱交換を行わせる熱交換器である液酸熱交換器を備えたことを特徴とする。
One aspect of the cryogenic air separation device of the present invention is:
A raw material air compressor that compresses raw material air, a rectifying column that generates at least liquid oxygen from the raw material air compressed by the raw material air compressor by a cryogenic separation method, and stores the generated liquid oxygen therein; and A liquid acid extraction unit for extracting a part of liquid oxygen from the inside of the tower, and the raw material air compressor performs heat exchange between the liquid oxygen extracted from the liquid acid extraction unit and the raw material air being compressed. A liquid acid heat exchanger, which is a heat exchanger to be used, is provided.

また、本発明の深冷空気分離装置の制御方法の一態様は、
原料空気を原料空気圧縮機で圧縮し、圧縮した原料空気から深冷分離法によって少なくとも液体酸素を精留塔内部で分離する深冷空気分離装置の制御方法であって、前記精留塔内部から液体酸素の一部を抜き出し、抜き出した液体酸素と前記原料空気圧縮機で圧縮中の原料空気とに熱交換を行わせることを特徴とする。
このように、精留塔から抜き出した液体酸素と、原料空気圧縮機で圧縮中の原料空気とに熱交換を行わせる構成とした。これにより、圧縮によって昇温された原料空気で液体酸素を加熱して蒸発させることができる。それゆえ、例えば、液体酸素を蒸気や電熱器によって加熱して蒸発させる方法に比べ、装置全体のエネルギー効率を向上できる。
In addition, one aspect of the method for controlling the cryogenic air separation device of the present invention is as follows:
A control method of a cryogenic air separation apparatus that compresses raw material air with a raw material air compressor and separates at least liquid oxygen from the compressed raw material air by a cryogenic separation method inside the rectification tower, from the inside of the rectification tower A part of the liquid oxygen is extracted, and heat exchange is performed between the extracted liquid oxygen and the raw material air being compressed by the raw material air compressor.
In this way, the heat exchange is performed between the liquid oxygen extracted from the rectification column and the raw air compressed by the raw air compressor. Thereby, liquid oxygen can be heated and evaporated with the raw material air heated by compression. Therefore, for example, the energy efficiency of the entire apparatus can be improved as compared with a method in which liquid oxygen is heated and evaporated by steam or an electric heater.

さらに、本発明の深冷空気分離装置の他の態様は、
前記原料空気圧縮機は、原料空気を圧縮する複数段の圧縮機と、前記圧縮機間の少なくとも1カ所に配設された冷却装置と、を備え、前記冷却装置は、前記圧縮機で圧縮した原料空気を冷却する水冷式の熱交換器である水冷熱交換器と、前記水冷熱交換器の下流に配設された前記液酸熱交換器と、を備えることを特徴とする。
Furthermore, another aspect of the cryogenic air separation device of the present invention is as follows:
The raw material air compressor includes a plurality of stages of compressors for compressing raw air, and a cooling device disposed at least at one location between the compressors, and the cooling device is compressed by the compressor. A water-cooled heat exchanger that is a water-cooled heat exchanger that cools the raw air, and the liquid acid heat exchanger disposed downstream of the water-cooled heat exchanger.

このように、圧縮機で圧縮された原料空気を水冷熱交換器で冷却し、冷却した原料空気と精留塔から抜き出した液体酸素とに液酸熱交換器で熱交換を行わせる構成とした。これにより、水冷熱交換器によって冷却された原料空気を液酸熱交換器でさらに冷却させることができる。それゆえ、例えば、工場内の気温が上昇し、水冷熱交換器の冷媒の温度が上昇した場合にも、原料空気をより適切に冷却できる。それゆえ、原料空気の体積をより適切に収縮でき、原料空気圧縮機による原料空気の圧縮効率を向上できる。   In this way, the raw material air compressed by the compressor is cooled by the water-cooled heat exchanger, and the cooled raw material air and the liquid oxygen extracted from the rectification tower are subjected to heat exchange by the liquid acid heat exchanger. . Thereby, the raw material air cooled by the water-cooled heat exchanger can be further cooled by the liquid acid heat exchanger. Therefore, for example, even when the temperature in the factory rises and the temperature of the refrigerant of the water-cooled heat exchanger rises, the raw air can be cooled more appropriately. Therefore, the volume of the raw material air can be contracted more appropriately, and the compression efficiency of the raw material air by the raw material air compressor can be improved.

本発明では、精留塔から抜き出した液体酸素と、原料空気圧縮機で圧縮中の原料空気とに熱交換を行わせる構成とした。これにより、圧縮によって昇温された原料空気で液体酸素を加熱して蒸発させることができる。また、液酸蒸発器によって原料空気の圧縮効率を向上させることができる。それゆえ、例えば、液体酸素を蒸気や電熱器によって加熱して蒸発させる方法に比べ、装置全体のエネルギー効率を向上できる。   In this invention, it was set as the structure which performs heat exchange with the liquid oxygen extracted from the rectification column, and the raw material air compressed by the raw material air compressor. Thereby, liquid oxygen can be heated and evaporated with the raw material air heated by compression. Moreover, the compression efficiency of raw material air can be improved with a liquid acid evaporator. Therefore, for example, the energy efficiency of the entire apparatus can be improved as compared with a method in which liquid oxygen is heated and evaporated by steam or an electric heater.

深冷空気分離装置1の構成を模式的に表す構成図である。1 is a configuration diagram schematically showing the configuration of a deep cold air separation device 1. FIG.

次に、本発明の実施形態について図面を参照して説明する。
(構成)
まず、深冷空気分離装置1の構成について説明する。
図1は、深冷空気分離装置1の構成を模式的に表す構成図である。
図1に示すように、深冷空気分離装置1は、原料空気を圧縮し、圧縮した原料空気から深冷分離方式によって酸素、窒素及びアルゴンを生成する装置である。深冷分離方式とは、圧縮した原料空気を液化させ、その液化してなる液体空気を、酸素、窒素及びアルゴンの沸点差を利用して精留し、液体酸素、液体窒素及びアルゴンを生成する方法である。
Next, embodiments of the present invention will be described with reference to the drawings.
(Constitution)
First, the configuration of the cryogenic air separation device 1 will be described.
FIG. 1 is a configuration diagram schematically showing the configuration of the cryogenic air separation device 1.
As shown in FIG. 1, the cryogenic air separation apparatus 1 is an apparatus that compresses raw material air and generates oxygen, nitrogen, and argon from the compressed raw material air by a cryogenic separation method. The cryogenic separation method liquefies the compressed raw material air and rectifies the liquefied liquid air using the difference in boiling points of oxygen, nitrogen and argon to produce liquid oxygen, liquid nitrogen and argon Is the method.

深冷空気分離装置1は、エアフィルタ2、原料空気圧縮機3、水洗冷却塔4、MS吸着ユニット5、熱交換器6、及び精留塔7を備える。
エアフィルタ2は、原料空気圧縮機3が吸引した原料空気から異物を除去する。
原料空気圧縮機3は、複数段の圧縮機3Aを有する多段式空気圧縮機であり、エアフィルタ2を介して原料空気を吸引し、吸引した原料空気を順次圧縮する。
隣り合う圧縮機3Aの間、つまり、原料空気圧縮機3で圧縮中の原料空気が流れる流路上には、冷却装置9が配設されている。
冷却装置9は、インタークーラ3Baと、インタークーラ3Baの下流側に配設された熱交換器3Bbとを有している。インタークーラ3Baの下流側とは、原料空気圧縮機3で圧縮中の原料空気が流れる方向である。インタークーラ3Ba及び熱交換器3Bbのそれぞれは、多管式熱交換器等によって構成されている。
The cryogenic air separation device 1 includes an air filter 2, a raw material air compressor 3, a water-washing cooling tower 4, an MS adsorption unit 5, a heat exchanger 6, and a rectifying tower 7.
The air filter 2 removes foreign matter from the raw air sucked by the raw air compressor 3.
The raw material air compressor 3 is a multi-stage air compressor having a plurality of stages of compressors 3A, and sucks the raw material air through the air filter 2 and sequentially compresses the sucked raw material air.
A cooling device 9 is disposed between the adjacent compressors 3 </ b> A, that is, on the flow path through which the raw air being compressed by the raw air compressor 3 flows.
The cooling device 9 includes an intercooler 3Ba and a heat exchanger 3Bb disposed on the downstream side of the intercooler 3Ba. The downstream side of the intercooler 3Ba is a direction in which the raw material air being compressed by the raw material air compressor 3 flows. Each of intercooler 3Ba and heat exchanger 3Bb is constituted by a multi-tube heat exchanger or the like.

インタークーラ3Baには、循環水用管8が接続されている。循環水用管8は、冷却塔9で冷却された循環水をインタークーラ3Baおよび後述するアフタークーラ3Cに供給し、インタークーラ3Baおよびアフタークーラ3Cから排出される循環水を冷却塔9に再度冷却させる。そして、インタークーラ3Baは、循環水用管8から供給される循環水を内部に導入し、導入した循環水と圧縮機3Aで圧縮された原料空気とに熱交換を行わせて原料空気を冷却するとともに、熱交換によって昇温した循環水を循環水用管8に排出する。すなわち、インタークーラー3Baは、循環水を冷媒とする水冷式の熱交換器となっている。これにより、原料空気は、例えば、35℃程度まで冷却される。   A circulating water pipe 8 is connected to the intercooler 3Ba. The circulating water pipe 8 supplies the circulating water cooled by the cooling tower 9 to the intercooler 3Ba and an aftercooler 3C described later, and the circulating water discharged from the intercooler 3Ba and the aftercooler 3C is cooled again to the cooling tower 9. Let Then, the intercooler 3Ba introduces the circulating water supplied from the circulating water pipe 8 into the interior, and heat-exchanges the introduced circulating water and the raw air compressed by the compressor 3A to cool the raw air. At the same time, the circulating water heated by the heat exchange is discharged to the circulating water pipe 8. That is, the intercooler 3Ba is a water-cooled heat exchanger that uses circulating water as a refrigerant. Thereby, raw material air is cooled to about 35 degreeC, for example.

熱交換器3Bbには、液酸抜出用管10が接続されている。液酸抜出用管10は、後述するように精留塔7から抜き出された液体酸素を熱交換器3Bbに供給し、熱交換器3Bbから排出される、液体酸素が蒸発(気化)してなる酸素を製品酸素の供給路11に導入する。そして、熱交換器3Bbは、液酸抜出用管10から供給される液体酸素を内部に導入し、導入した液体酸素とインタークーラ3Baで冷却された原料空気、つまり、原料空気圧縮機3が圧縮中の原料空気とに熱交換を行わせて原料空気をさらに冷却する。これにより、原料空気は、例えば、34.5〜34.8℃程度まで冷却される。このように、熱交換器3Bbが、インタークーラ3Baによって冷却された原料空気をさらに冷却させる。それゆえ、例えば、気温が上昇し、インタークーラ3Baの冷媒である循環水の温度が上昇した場合にも、原料空気をより適切に冷却できる。そのため、原料空気の体積をより適切に収縮でき、圧縮機3Aによる原料空気の圧縮効率を向上できる。   A liquid acid extraction pipe 10 is connected to the heat exchanger 3Bb. The liquid acid extraction pipe 10 supplies liquid oxygen extracted from the rectifying column 7 to the heat exchanger 3Bb as will be described later, and the liquid oxygen discharged from the heat exchanger 3Bb evaporates (vaporizes). Is introduced into the product oxygen supply channel 11. The heat exchanger 3Bb introduces liquid oxygen supplied from the liquid acid extraction pipe 10 into the inside, and the introduced liquid oxygen and the raw air cooled by the intercooler 3Ba, that is, the raw air compressor 3 Heat exchange is performed with the raw material air being compressed to further cool the raw material air. Thereby, raw material air is cooled to about 34.5-34.8 degreeC, for example. In this way, the heat exchanger 3Bb further cools the raw material air cooled by the intercooler 3Ba. Therefore, for example, even when the temperature rises and the temperature of the circulating water that is the refrigerant of the intercooler 3Ba rises, the raw air can be cooled more appropriately. Therefore, the volume of the raw material air can be more appropriately contracted, and the compression efficiency of the raw material air by the compressor 3A can be improved.

また、熱交換器3Bbは、熱交換によって液体酸素を加熱して蒸発させ、その蒸発によって得た蒸発ガス(酸素)を常温とし、常温とした酸素を液酸抜出用管10に排出する。このように、熱交換器3Bbが、圧縮によって昇温された原料空気で液体酸素を加熱して蒸発させる。それゆえ、例えば、精留塔7から抜き出した液体酸素を蒸気や電熱器によって加熱して蒸発させる方法に比べ、深冷空気分離装置1のエネルギー効率を向上できる。   Further, the heat exchanger 3Bb heats and evaporates liquid oxygen by heat exchange, and evaporates gas (oxygen) obtained by the evaporation to room temperature, and discharges the oxygen at room temperature to the liquid acid extraction pipe 10. In this way, the heat exchanger 3Bb heats and evaporates the liquid oxygen with the raw material air heated by the compression. Therefore, for example, the energy efficiency of the chilled air separation device 1 can be improved as compared with a method in which liquid oxygen extracted from the rectification column 7 is heated and evaporated by steam or an electric heater.

最終段の圧縮機3Aの下流には、アフタークーラ3Cが配設されている。アフタークーラ3Cは、多管式熱交換器等によって構成されている。アフタークーラ3Cには、インタークーラ3Baと同様に、循環水用管8が接続されている。そして、アフタークーラ3Cは、循環水用管8から供給される循環水を内部に導入し、導入した循環水と最終段の圧縮機3Aで圧縮された原料空気とに熱交換を行わせて原料空気を冷却するとともに、熱交換によって昇温した循環水を循環水用管8に排出する。
これにより、原料空気圧縮機3は、圧縮機3Aによる圧縮と、インタークーラ3Ba及び熱交換器3Bbによる冷却とを繰り返しながら、原料空気を昇圧する。
An aftercooler 3C is disposed downstream of the final stage compressor 3A. The aftercooler 3C is configured by a multitubular heat exchanger or the like. A circulating water pipe 8 is connected to the aftercooler 3C in the same manner as the intercooler 3Ba. The aftercooler 3C introduces the circulating water supplied from the circulating water pipe 8 into the interior, and exchanges heat between the introduced circulating water and the raw air compressed by the final stage compressor 3A. While cooling air, the circulating water heated by heat exchange is discharged to the circulating water pipe 8.
Thereby, the raw material air compressor 3 pressurizes the raw material air while repeating the compression by the compressor 3A and the cooling by the intercooler 3Ba and the heat exchanger 3Bb.

水洗冷却塔4は、原料空気圧縮機3が圧縮した原料空気に冷却水を塔上部から散水し、原料空気を水洗及び冷却する。これにより、原料空気は、10℃程度まで冷却される。
MS吸着ユニット5は、水洗冷却塔4が冷却した原料空気から水分や二酸化炭素を除去する。なお、MS吸着ユニット5は、通常2筒式であって、1筒で水分・二酸化炭素を吸着しているときに、もう1筒で吸着した水分・二酸化炭素を大気に放出する。
熱交換器6及び精留塔7は、コールドボックスCB内に配設されている。
熱交換器6は、MS吸着ユニット5が水分や二酸化炭素を除去した原料空気と、後述する供給路11、12、13内の液体酸素、液体窒素及びアルゴンとに熱交換を行わせて原料空気を極低温に冷却する。これにより、原料空気は、−200℃程度まで冷却される。
The washing / cooling tower 4 sprays cooling water from the top of the tower into the raw air compressed by the raw air compressor 3 to wash and cool the raw air. Thereby, raw material air is cooled to about 10 degreeC.
The MS adsorption unit 5 removes moisture and carbon dioxide from the raw air cooled by the washing cooling tower 4. Note that the MS adsorption unit 5 is usually of a two-cylinder type, and when moisture / carbon dioxide is adsorbed by one cylinder, the moisture / carbon dioxide adsorbed by the other cylinder is released to the atmosphere.
The heat exchanger 6 and the rectifying column 7 are disposed in the cold box CB.
The heat exchanger 6 exchanges heat between the raw material air from which the MS adsorption unit 5 has removed moisture and carbon dioxide, and liquid oxygen, liquid nitrogen, and argon in the supply passages 11, 12, and 13, which will be described later. Is cooled to a very low temperature. Thereby, raw material air is cooled to about -200 degreeC.

精留塔7は、熱交換器6が冷却した原料空気から液体空気を生成し、生成した液体空気から液体酸素、液体窒素及びアルゴンを分離する。精留塔7で分離された液体酸素、液体窒素及びアルゴンは、それぞれ個別の供給路11、12、13によって精留塔7から取り出される。各供給路11、12、13は、熱交換器6を介して、それぞれの供給先に向けて延在している。これにより、精留塔7で分離された液体酸素、液体窒素及びアルゴンは、熱交換器6によって原料空気とに熱交換が行われて蒸発し、その蒸発によって得た蒸発ガスが製品ガスである製品酸素、製品窒素、及び製品アルゴンとなる。
なお、精留塔7で分離して取り出した製品酸素は、不図示の酸素供給路を通じて酸素使用設備に供給可能となっている。酸素使用設備としては、例えば、製鉄設備で使用される高炉、転炉、連続鋳造設備等がある。また、符号14は過冷却器、符号15は低温吸着器、符号16は粗アルゴン塔、符号17は主凝縮器、符号18は副凝縮器である。
The rectifying column 7 generates liquid air from the raw air cooled by the heat exchanger 6 and separates liquid oxygen, liquid nitrogen, and argon from the generated liquid air. Liquid oxygen, liquid nitrogen, and argon separated in the rectifying column 7 are taken out from the rectifying column 7 through individual supply paths 11, 12, and 13, respectively. Each supply path 11, 12, 13 extends toward the respective supply destination via the heat exchanger 6. Thereby, the liquid oxygen, liquid nitrogen, and argon separated in the rectifying column 7 are evaporated by heat exchange with the raw material air by the heat exchanger 6, and the evaporation gas obtained by the evaporation is the product gas. Product oxygen, product nitrogen, and product argon.
The product oxygen separated and taken out by the rectification column 7 can be supplied to oxygen-using equipment through an oxygen supply path (not shown). Examples of the equipment using oxygen include blast furnaces, converters, and continuous casting equipment used in steelmaking equipment. Reference numeral 14 is a subcooler, reference numeral 15 is a low-temperature adsorber, reference numeral 16 is a crude argon tower, reference numeral 17 is a main condenser, and reference numeral 18 is a sub-condenser.

また、精留塔7には、液酸抜出用管10が接続されている。液酸抜出用管10は、精留塔7内部の炭化水素の濃度が予め設定した保安管理上の設定閾値以下となるように、精留塔7内部から一部を液体酸素を抜き出し、抜き出した液体酸素を熱交換器3Bbに供給する。これにより、熱交換器3Bbは、液酸抜出用管10から供給される液体酸素と、圧縮機3Aで圧縮された原料空気とに熱交換を行わせる。精留塔7内部から抜き出す液体酸素の抜出量は、深冷空気分離装置1の酸素搬出量の1%程度とする。   The rectifying column 7 is connected with a liquid acid extraction tube 10. The liquid acid extraction pipe 10 extracts a part of liquid oxygen from the rectification column 7 and extracts it so that the hydrocarbon concentration in the rectification column 7 is lower than a preset threshold value for safety management. The liquid oxygen thus supplied is supplied to the heat exchanger 3Bb. As a result, the heat exchanger 3Bb exchanges heat between the liquid oxygen supplied from the liquid acid extraction tube 10 and the raw air compressed by the compressor 3A. The extraction amount of liquid oxygen extracted from the inside of the rectification column 7 is about 1% of the oxygen discharge amount of the cryogenic air separation device 1.

(動作、その他)
次に、深冷空気分離装置1の動作について説明する。
まず、原料空気圧縮機3が、エアフィルタ2を介して原料空気を吸引し、吸引した原料空気を順次圧縮する。続いて、水洗冷却塔4が、圧縮された原料空気を水洗及び冷却する。続いて、MS吸着ユニット5が、冷却された原料空気から水分や二酸化炭素を除去する。続いて、熱交換器6が、水分や二酸化炭素が除去された原料空気と、供給路11、12、13内の液体酸素、液体窒素及びアルゴンとに熱交換を行わせて原料空気を極低温に冷却する。続いて、精留塔7が、熱交換器6が冷却した原料空気から液体空気を生成し、生成した液体空気から液体酸素、液体窒素及びアルゴンを分離する。続いて、供給路11、12、13が、精留塔7から液体酸素、液体窒素及びアルゴンを取り出し、取り出した液体酸素、液体窒素及びアルゴンを熱交換器6で蒸発させ、その蒸発によって得た蒸発ガスを、製品ガスである製品酸素、製品窒素、及び製品アルゴンとして供給する。
(Operation, other)
Next, the operation of the cryogenic air separation device 1 will be described.
First, the raw material air compressor 3 sucks the raw material air through the air filter 2 and sequentially compresses the sucked raw material air. Subsequently, the water cooling tower 4 cleans and cools the compressed raw material air. Subsequently, the MS adsorption unit 5 removes moisture and carbon dioxide from the cooled raw material air. Subsequently, the heat exchanger 6 exchanges heat between the raw material air from which moisture and carbon dioxide have been removed and the liquid oxygen, liquid nitrogen, and argon in the supply paths 11, 12, and 13, thereby converting the raw material air to a cryogenic temperature. Cool down. Subsequently, the rectifying column 7 generates liquid air from the raw air cooled by the heat exchanger 6 and separates liquid oxygen, liquid nitrogen, and argon from the generated liquid air. Subsequently, the supply paths 11, 12, and 13 extract liquid oxygen, liquid nitrogen, and argon from the rectifying column 7, and the extracted liquid oxygen, liquid nitrogen, and argon are evaporated by the heat exchanger 6, and obtained by the evaporation. The evaporative gas is supplied as product oxygen, product nitrogen, and product argon.

その際、液酸抜出用管10が、精留塔7内部から液体酸素の一部を抜き出し、抜き出した液体酸素を熱交換器3Bbに供給する。そして、熱交換器3Bbが、精留塔7から抜き出した液体酸素と、原料空気圧縮機3で圧縮中の原料空気とに熱交換を行わせる。これにより、熱交換器3Bbが、圧縮によって昇温された原料空気で液体酸素を加熱して蒸発させる。それゆえ、深冷空気分離装置1では、例えば、液体酸素を蒸気や電熱器によって加熱して蒸発させる方法に比べ、深冷空気分離装置1のエネルギー効率を向上できる。
ここで、例えば、圧縮機3Aが圧縮した原料空気をインタークーラ3Baのみで冷却する方法(従来技術)では、工場内の気温が上昇し、インタークーラ3Baの冷媒である循環水の温度が上昇した場合、原料空気を十分に冷却できない。それゆえ、原料空気の体積を十分に収縮できず、原料空気の圧縮効率が低下する可能性があった。
At that time, the liquid acid extraction pipe 10 extracts a part of the liquid oxygen from the inside of the rectification column 7, and supplies the extracted liquid oxygen to the heat exchanger 3Bb. Then, the heat exchanger 3Bb exchanges heat between the liquid oxygen extracted from the rectification column 7 and the raw air compressed by the raw air compressor 3. Thereby, the heat exchanger 3Bb heats and evaporates liquid oxygen with the raw material air heated by compression. Therefore, in the chilled air separation apparatus 1, for example, the energy efficiency of the chilled air separation apparatus 1 can be improved as compared with a method in which liquid oxygen is heated and evaporated by steam or an electric heater.
Here, for example, in the method of cooling the raw material air compressed by the compressor 3A only with the intercooler 3Ba (prior art), the temperature in the factory rises and the temperature of the circulating water that is the refrigerant of the intercooler 3Ba rises. In this case, the raw material air cannot be cooled sufficiently. Therefore, the volume of the raw material air cannot be sufficiently contracted, and the compression efficiency of the raw material air may be reduced.

これに対し、本実施形態の深冷空気分離装置1では、インタークーラ3Baが、圧縮機3Aで圧縮された原料空気を冷却する。そして、熱交換器3Bbが、冷却した原料空気と精留塔7から抜き出した液体酸素とに熱交換を行わせる。これにより、インタークーラ3Baによって冷却された原料空気を熱交換器3Bbでさらに冷却させることができる。それゆえ、例えば、工場内の気温が上昇し、インタークーラ3Baの冷媒である循環水の温度が上昇した場合にも、原料空気をより適切に冷却できる。そのため、原料空気の体積をより適切に収縮でき、原料空気圧縮機3による原料空気の圧縮効率を向上できる。   On the other hand, in the cold air separation apparatus 1 of the present embodiment, the intercooler 3Ba cools the raw air compressed by the compressor 3A. The heat exchanger 3Bb exchanges heat between the cooled raw material air and the liquid oxygen extracted from the rectifying tower 7. Thereby, the raw material air cooled by the intercooler 3Ba can be further cooled by the heat exchanger 3Bb. Therefore, for example, even when the temperature in the factory rises and the temperature of the circulating water that is the refrigerant of the intercooler 3Ba rises, the raw material air can be cooled more appropriately. Therefore, the volume of the raw material air can be more appropriately contracted, and the compression efficiency of the raw material air by the raw material air compressor 3 can be improved.

以上、本実施形態では、図1の原料空気圧縮機3が原料空気圧縮機を構成する。以下同様に、図1の精留塔7が精留塔を構成する。また、図1の液酸抜出用管10が液酸抜出部を構成する。さらに、図1の熱交換器3Bbが液酸熱交換器を構成する。また、図1の圧縮機3Aが圧縮機を構成する。さらに、図1の冷却装置3Bが冷却装置を構成する。また、図1のインタークーラ3Baが水冷熱交換器を構成する。   As mentioned above, in this embodiment, the raw material air compressor 3 of FIG. 1 comprises a raw material air compressor. Similarly, the rectification column 7 in FIG. 1 constitutes a rectification column. Moreover, the liquid acid extraction tube 10 in FIG. 1 constitutes a liquid acid extraction portion. Furthermore, the heat exchanger 3Bb in FIG. 1 constitutes a liquid acid heat exchanger. Moreover, the compressor 3A of FIG. 1 comprises a compressor. Furthermore, the cooling device 3B of FIG. 1 constitutes a cooling device. Further, the intercooler 3Ba in FIG. 1 constitutes a water-cooled heat exchanger.

(実施例)
次に、本実施形態の深冷空気分離装置1の実施例を図面に基づき説明する。
本実施例では、深冷空気分離装置1が送出する酸素の送出量を30000Nm3/hとし、精留塔7から抜き出す液体酸素の抜出量を酸素排出量の0.5〜1.5%である150〜450Nm3/hとした。また、原料空気圧縮機3として4段の遠心圧縮機を用いた。さらに、原料空気圧縮機3が吸入する原料空気の吸入量を150000Nm3/hとし、原料空気圧縮機3が圧縮した原料空気の吐出圧力を0.5MPaとした。また、インタークーラ3Baに供給される循環水の温度を、工場内の気温が上昇した場合を想定して32℃とした。
(Example)
Next, an example of the cryogenic air separation device 1 of this embodiment will be described with reference to the drawings.
In this embodiment, the amount of oxygen delivered by the cryogenic air separation device 1 is 30000 Nm 3 / h, and the amount of liquid oxygen extracted from the rectifying column 7 is 0.5 to 1.5% of the amount of oxygen discharged. 150 to 450 Nm 3 / h. Further, a four-stage centrifugal compressor was used as the raw material air compressor 3. Further, the amount of raw material air sucked by the raw material air compressor 3 was set to 150,000 Nm 3 / h, and the discharge pressure of the raw material air compressed by the raw material air compressor 3 was set to 0.5 MPa. Moreover, the temperature of the circulating water supplied to intercooler 3Ba was 32 degreeC supposing the case where the air temperature in a factory rose.

本実施例では、この条件のもと深冷空気分離装置1を動作させ、熱交換器3Bbが、精留塔7から抜き出した液体酸素を加熱して蒸発可能なことを確認できた。それゆえ、液体酸素を蒸気等によって加熱する必要がなく、液体酸素の蒸発用の蒸気を40〜120kg/h削減できた。また、インタークーラ3Baの出口における原料空気の温度が平均35℃となり、熱交換器3Bbの出口における原料空気の温度が平均34.5〜34.8℃となることを確認できた。これにより、インタークーラ3Baによって冷却された原料空気をさらに冷却可能なことが確認できた。それゆえ、原料空気圧縮機3による原料空気の圧縮状態が等温圧縮に近き、原料空気圧縮機3の動力を2.5〜7.4kW削減できた。
なお、本実施例は、酸素の送出量が30000Nm3/hである深冷空気分離装置1に適用する例を示したが、他の深冷空気分離装置1にも適用できる。例えば、酸素の送出量が30000Nm3/h以外の深冷空気分離装置1にも適用できる。
In this example, it was confirmed that the cryogenic air separation device 1 was operated under these conditions, and the heat exchanger 3Bb was able to heat and evaporate the liquid oxygen extracted from the rectification column 7. Therefore, it is not necessary to heat the liquid oxygen with steam or the like, and the vapor for evaporating the liquid oxygen can be reduced by 40 to 120 kg / h. Moreover, it has confirmed that the temperature of the raw material air in the exit of intercooler 3Ba became an average of 35 degreeC, and the temperature of the raw material air in the exit of heat exchanger 3Bb became an average of 34.5-34.8 degreeC. Thereby, it was confirmed that the raw material air cooled by the intercooler 3Ba can be further cooled. Therefore, the compressed state of the raw material air by the raw material air compressor 3 is close to isothermal compression, and the power of the raw material air compressor 3 can be reduced by 2.5 to 7.4 kW.
In addition, although the present Example showed the example applied to the cryogenic air separation apparatus 1 whose oxygen delivery amount is 30000 Nm < 3 > / h, it is applicable also to the other cryogenic air separation apparatus 1. FIG. For example, the present invention can also be applied to a chilled air separation apparatus 1 having an oxygen delivery amount other than 30000 Nm 3 / h.

1 深冷空気分離装置
2 エアフィルタ
3 原料空気圧縮機(原料空気圧縮機)
3A 圧縮機(圧縮機)
3B 冷却措置(冷却装置)
3Ba インタークーラ(水冷熱交換器)
3Bb 熱交換器(液酸熱交換器)
3C アフタークーラ
4 水洗冷却塔
5 吸着ユニット
6 熱交換器
7 精留塔(精留塔)
8 循環水用管
9 冷却塔
10 液酸抜出用管(液酸抜出部)
11、12、13 供給路
14 過冷却器
15 低温吸着器
16 粗アルゴン塔
17 主凝縮器
18 副凝縮器
1 Cryogenic Air Separator 2 Air Filter 3 Raw Material Air Compressor (Raw Material Air Compressor)
3A compressor (compressor)
3B Cooling measures (cooling device)
3Ba intercooler (water-cooled heat exchanger)
3Bb heat exchanger (liquid acid heat exchanger)
3C After cooler 4 Flushing cooling tower 5 Adsorption unit 6 Heat exchanger 7 Rectifying tower (rectifying tower)
8 Pipe for circulating water 9 Cooling tower 10 Pipe for liquid acid extraction (liquid acid extraction section)
11, 12, 13 Supply path 14 Subcooler 15 Low temperature adsorber 16 Coarse argon tower 17 Main condenser 18 Subcondenser

Claims (3)

原料空気を圧縮する原料空気圧縮機と、
前記原料空気圧縮機で圧縮した原料空気から深冷分離法によって少なくとも液体酸素を生成し、生成した液体酸素を内部に溜める精留塔と、
前記精留塔内部から液体酸素の一部を抜き出す液酸抜出部と、を備え、
前記原料空気圧縮機は、前記液酸抜出部で抜き出した液体酸素と圧縮中の原料空気とに熱交換を行わせる熱交換器である液酸熱交換器を備えたことを特徴とする深冷空気分離装置。
A raw material air compressor for compressing the raw material air;
A rectifying column for producing at least liquid oxygen from the raw air compressed by the raw air compressor by a cryogenic separation method, and storing the produced liquid oxygen inside;
A liquid acid extraction part for extracting a part of liquid oxygen from the inside of the rectification column,
The raw material air compressor includes a liquid acid heat exchanger that is a heat exchanger that performs heat exchange between the liquid oxygen extracted by the liquid acid extraction unit and the raw material air being compressed. Cold air separation device.
前記原料空気圧縮機は、
原料空気を圧縮する複数段の圧縮機と、
前記圧縮機間の少なくとも1カ所に配設された冷却装置と、を備え、
前記冷却装置は、
前記圧縮機で圧縮した原料空気を冷却する水冷式の熱交換器である水冷熱交換器と、
前記水冷熱交換器の下流に配設された前記液酸熱交換器と、を備えることを特徴とする請求項1に記載の深冷空気分離装置。
The raw material air compressor is
A multi-stage compressor for compressing raw material air;
A cooling device disposed in at least one place between the compressors,
The cooling device is
A water-cooled heat exchanger that is a water-cooled heat exchanger that cools the raw material air compressed by the compressor;
The chilled air separation device according to claim 1, further comprising: the liquid acid heat exchanger disposed downstream of the water-cooled heat exchanger.
原料空気を原料空気圧縮機で圧縮し、圧縮した原料空気から深冷分離法によって少なくとも液体酸素を精留塔内部で分離する深冷空気分離装置の制御方法であって、
前記精留塔内部から液体酸素の一部を抜き出し、抜き出した液体酸素と前記原料空気圧縮機で圧縮中の原料空気とに熱交換を行わせることを特徴とする深冷空気分離装置の制御方法。
A method for controlling a cryogenic air separation apparatus that compresses raw material air with a raw material air compressor and separates at least liquid oxygen from the compressed raw material air by a cryogenic separation method inside the rectification tower,
A method for controlling a cryogenic air separation apparatus, wherein a part of liquid oxygen is extracted from the inside of the rectifying column, and heat is exchanged between the extracted liquid oxygen and raw air compressed by the raw air compressor. .
JP2011237477A 2011-10-28 2011-10-28 Cryogenic air separator and control method thereof Pending JP2013096597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011237477A JP2013096597A (en) 2011-10-28 2011-10-28 Cryogenic air separator and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011237477A JP2013096597A (en) 2011-10-28 2011-10-28 Cryogenic air separator and control method thereof

Publications (1)

Publication Number Publication Date
JP2013096597A true JP2013096597A (en) 2013-05-20

Family

ID=48618723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011237477A Pending JP2013096597A (en) 2011-10-28 2011-10-28 Cryogenic air separator and control method thereof

Country Status (1)

Country Link
JP (1) JP2013096597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462640A (en) * 2015-12-03 2016-04-06 合肥通用机械研究院 Cryogenic hydrocarbon material denitrification tower top condensation device
KR101951943B1 (en) * 2017-11-16 2019-02-25 주식회사포스코 Air separation plant for ironworks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462640A (en) * 2015-12-03 2016-04-06 合肥通用机械研究院 Cryogenic hydrocarbon material denitrification tower top condensation device
KR101951943B1 (en) * 2017-11-16 2019-02-25 주식회사포스코 Air separation plant for ironworks

Similar Documents

Publication Publication Date Title
KR101484932B1 (en) Method and installation for liquefying flue gas from combustion installations
TW201607599A (en) Method and device for the low-temperature separation of air at variable energy consumption
CN110307694B (en) Nitrogen production method and nitrogen production apparatus
KR101669729B1 (en) Air liquefaction system using lng cold energy with ejector expansion device entraining expanded vapor
TW201637998A (en) Method and apparatus for obtaining a compressed nitrogen product
JP2012533719A (en) Pressurized product generating method and generating apparatus
JP2006525486A (en) Cryogenic distillation method and system for air separation
JP4276520B2 (en) Operation method of air separation device
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP2007147113A (en) Nitrogen manufacturing method and device
JP2013096597A (en) Cryogenic air separator and control method thereof
JP5684058B2 (en) Air separation method and air separation device
US8991209B2 (en) Process and installation for producing high-pressure nitrogen
MX2010011008A (en) Method and device for generating liquid nitrogen from low temperature air separation.
JP5584711B2 (en) Air separation device
JP2022514746A (en) Equipment and methods for separating air by cryogenic distillation
JP2007003097A (en) Nitrogen generating method and device using the same
JP2006349322A (en) Method of manufacturing argon by low-temperature air separator
CN102997617A (en) Method and device for production of pressurized oxygen by low-temperature fractionation of air
JP7291472B2 (en) Nitrogen gas production equipment
KR100694376B1 (en) Sub-zero air separation apparatus and an operating method of the same
JP7032033B2 (en) How to operate the oxygen production equipment
JP6974562B2 (en) How to operate the oxygen production equipment
JP6159242B2 (en) Air separation method and apparatus
JP6431828B2 (en) Air liquefaction separation method and apparatus