JP2003014373A - Air separator apparatus - Google Patents

Air separator apparatus

Info

Publication number
JP2003014373A
JP2003014373A JP2001200389A JP2001200389A JP2003014373A JP 2003014373 A JP2003014373 A JP 2003014373A JP 2001200389 A JP2001200389 A JP 2001200389A JP 2001200389 A JP2001200389 A JP 2001200389A JP 2003014373 A JP2003014373 A JP 2003014373A
Authority
JP
Japan
Prior art keywords
liquid
storage tank
air separation
air
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001200389A
Other languages
Japanese (ja)
Inventor
Taro Kano
太郎 狩野
Kazunori Tokuyasu
和紀 徳安
Jun Yoshida
純 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001200389A priority Critical patent/JP2003014373A/en
Publication of JP2003014373A publication Critical patent/JP2003014373A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04842Intermittent process, so-called batch process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Abstract

PROBLEM TO BE SOLVED: To shorten starting time for increasing the time of production of an article in an air separator apparatus for collecting liquid article utilizing the midnight electric power having executed conventionally as a link for energy saving. SOLUTION: A storage tank 20 is installed, and communication pipings 21, 22 between a rectifier tower upper tower 10 and the storage tan 20 are installed, and further partition valves 23, 24 are installed. The partition valves 23, 24 are closed before the interruption of a plant, and liquid oxygen with predetermined purity is contained in the storage tank 20 also after the interruption of the plant. Since liquid oxygen with predetermined purity can be contained in the storage tank 20 even after the interruption of the plant, article liquid oxygen can be collected before installing the rectifier tower to shorten starting time upon starting of the plant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気を圧縮、冷
却、液化、精留することにより、酸素、窒素、アルゴン
その他のガス又は液体に分離する空気分離装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation device for separating air into oxygen, nitrogen, argon or other gas or liquid by compressing, cooling, liquefying and rectifying air.

【0002】[0002]

【従来の技術】空気分離装置において、装置を起動させ
る場合、常温状態からの起動においては、装置加温・装
置冷却・装置内への液溜め・製品純度出しの工程に従い
起動している。又、短時間停止後などの低温状態からの
起動では、装置内が既に冷却され液化ガスが蓄積された
状態であるため、装置加温・装置冷却の全工程及び装置
内への液溜め工程の一部を省略することが可能であり、
常温からの起動と比較すると起動時間が短縮される。
尚、起動時間をさらに短縮するため、装置外より液体酸
素又は液体窒素を供給し、装置冷却工程及び液溜め工程
を短縮する方法も採用されている。
2. Description of the Related Art In an air separation apparatus, when the apparatus is started up, it is started up according to the steps of heating the apparatus, cooling the apparatus, storing a liquid in the apparatus, and producing product purity when starting from the room temperature state. Also, when starting from a low temperature state such as after a short stop, the inside of the device has already been cooled and liquefied gas has accumulated, so the entire process of heating and cooling the device and the liquid storage process in the device It is possible to omit some,
The start-up time is shortened compared to the start-up from room temperature.
In order to further shorten the startup time, a method of supplying liquid oxygen or liquid nitrogen from outside the apparatus to shorten the apparatus cooling step and the liquid storage step is also adopted.

【0003】[0003]

【発明が解決しようとする課題】空気分離装置を運転す
る上で、その消費電力を低減することが操業上の重要な
1要因となる。このため定常運転中の消費動力を低減す
ること及び起動時間を短縮することが、従来からの課題
として取り組まれている。この一環として、特に液体酸
素及び液体窒素等を採取する液採りプラントにおいて
は、電力費用が安価な夜間電力を利用する夜間電力利用
型空気分離装置が従来から採用されており、昼間は装置
を停止し、夜間の8〜12時間で装置の起動・運転(液
体製品の生産)・停止操作を行う。このため起動時間を
短縮すれば製品の生産時間が増え効率的な操業ができ
る。装置運転中には精留塔上塔底部に90%以上の高純
度の液体酸素が蓄積されているが、装置を停止すると、
精留塔各部の充填物又は精留皿上から液体空気及び液体
窒素等が精留塔上塔底部へ降下し、精留塔上塔底部での
酸素純度が悪くなる。このため液体チャージ等により装
置の冷却・液溜め時間を短縮した場合でも、必ず純度出
し時間が必要となる。この純度出し工程を含めた装置の
起動時間は、一般に最低でも4〜6時間は必要となり、
夜間電力利用型空気分離装置においては、その運転時間
の約半分を占めている。
When operating an air separation device, reducing the power consumption thereof is one of the important factors in operation. For this reason, reducing the power consumption during steady operation and shortening the startup time have been addressed as conventional problems. As part of this, especially in liquid sampling plants that collect liquid oxygen, liquid nitrogen, etc., nighttime electricity-using air separation devices that use nighttime electricity, which has a low electricity cost, have been conventionally adopted, and the equipment is stopped during the daytime. Then, the equipment is started, operated (production of liquid products), and stopped in 8 to 12 hours at night. Therefore, if the start-up time is shortened, the production time of the product is increased and the efficient operation can be performed. High-purity liquid oxygen of 90% or more is accumulated at the bottom of the rectification column during operation of the device, but when the device is stopped,
Liquid air, liquid nitrogen, and the like fall from the packing in each part of the rectification column or on the rectification dish to the bottom of the rectification column, which deteriorates the oxygen purity at the rectification column. For this reason, even if the cooling time of the device and the liquid storage time are shortened by liquid charge or the like, it is necessary to always obtain the purity. Generally, at least 4 to 6 hours are required for the start-up time of the apparatus including this purity obtaining step,
An air separation device using night power consumes about half of the operating time.

【0004】本発明の目的は、液体酸素又はガス酸素を
精留塔の主凝縮器部から直接採取する空気分離装置にお
いて、低温状態から起動する際に、製品純度出し時間を
短縮することで起動時間を短縮することを可能にした空
気分離装置を提供することにある。
An object of the present invention is to start an air separation apparatus for directly collecting liquid oxygen or gas oxygen from a main condenser section of a rectification column by shortening a product purity extraction time when starting from a low temperature state. An object is to provide an air separation device capable of shortening the time.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、液体酸素又はガス酸素を精留塔の主凝縮
器部から直接採取する空気分離装置において、前記精留
塔内の液体酸素の一部を貯蔵するための貯槽を、保冷槽
内若しくは保冷槽外へ設置し、精留塔上塔(精留塔の主
凝縮部)と前記貯槽とをガス及び液体用の連絡配管で接
続し、各連絡配管へ弁を設置して構成したことを特徴す
る。
In order to achieve the above object, the present invention provides an air separation apparatus for directly collecting liquid oxygen or gaseous oxygen from a main condenser section of a rectification column, wherein A storage tank for storing a part of liquid oxygen is installed inside or outside the cold insulation tank, and a rectification tower upper column (main condensation section of the rectification tower) and the storage tank are connected to each other for gas and liquid. It is characterized in that it is configured by connecting with and connecting valves to each communication pipe.

【0006】上記構成によれば、装置運転中は、連絡配
管の弁を開とし、精留塔上塔底部(精留塔の主凝縮器
部)及び貯槽の両方へ液体酸素を溜めながら運転する。
一方、装置を停止する前に、連絡配管へ設置した弁を閉
め、精留塔と貯槽を仕切った後、装置を停止する。これ
により、装置停止工程で、精留塔各部から精留塔上塔底
部へ液体空気及び液体窒素が降下しても貯槽内の液体酸
素の純度へ影響が無いため、貯槽内では、所定純度の液
体酸素を保有することができる。なお、定常運転時には
貯槽を使用せず、停止前に精留塔上塔底部の液体酸素を
貯槽に移送させるだけでも同様な効果が得られる。
According to the above construction, the valve of the connecting pipe is opened during the operation of the apparatus, and the operation is performed while the liquid oxygen is stored in both the upper column bottom section (the main condenser section of the rectification column) and the storage tank. .
On the other hand, before stopping the device, the valve installed in the communication pipe is closed, the rectification tower and the storage tank are partitioned, and then the device is stopped. As a result, even if liquid air and liquid nitrogen fall from each part of the rectification tower to the bottom of the rectification tower in the device stopping step, the purity of liquid oxygen in the storage tank is not affected. It can hold liquid oxygen. The same effect can be obtained by not transferring the liquid oxygen at the bottom of the rectification column to the storage tank before stopping, without using the storage tank during steady operation.

【0007】これにより、装置起動時には、精留塔上塔
底部における液体酸素の純度出しが完了する以前に貯槽
内の液体酸素を製品として送り出すことが可能となり、
装置の起動時間を短縮することができる。
As a result, at the time of starting the apparatus, the liquid oxygen in the storage tank can be sent out as a product before the purification of the liquid oxygen at the bottom of the rectification tower is completed.
The start-up time of the device can be shortened.

【0008】また、貯槽内へ熱交換器を設置した場合に
は、貯槽内の液体酸素純度が悪くなった場合でも、熱交
換器で精留塔下塔の窒素ガスと熱交換させ、液体酸素中
の低沸点成分(窒素)を蒸発させることで貯槽内液体酸
素の純度アップが可能となる。
Further, when a heat exchanger is installed in the storage tank, even if the liquid oxygen purity in the storage tank becomes poor, heat exchange is performed with the nitrogen gas in the lower column of the rectification column by the heat exchanger, and By evaporating the low boiling point component (nitrogen) of, the purity of the liquid oxygen in the storage tank can be increased.

【0009】[0009]

【発明の実施の形態】本発明に係る空気分離装置の実施
の形態について図面を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an air separation device according to the present invention will be described with reference to the drawings.

【0010】図1には、液体酸素及び液体窒素を製品と
して採取する空気分離装置のフローを示す。原料空気圧
縮機(図示せず)で所定の圧力に昇圧され、吸着塔(図
示せず)で水分及び二酸化炭素を除去された原料空気
は、導管1により空気熱交換器2へ送られ、空気熱交換
器2で飽和温度付近まで冷却された後、導管3により精
留塔下塔4へ送られる。精留塔下塔4では窒素ガスと酸
素分に富んだ液体空気へ精留分離される。
FIG. 1 shows a flow of an air separation device for collecting liquid oxygen and liquid nitrogen as products. The raw material air that has been pressurized to a predetermined pressure by a raw material air compressor (not shown) and has its water content and carbon dioxide removed by an adsorption tower (not shown) is sent to an air heat exchanger 2 by a conduit 1 After being cooled to near the saturation temperature in the heat exchanger 2, it is sent to the lower column 4 of the rectification column through the conduit 3. In the lower column 4 of the rectification column, the rectification is separated into nitrogen gas and liquid air rich in oxygen.

【0011】液体窒素は、精留塔下塔4の頂部より抜出
され、導管5により過冷却器6へ送られ、過冷却器6で
過冷却された後、導管7により製品液体窒素として供給
される。
Liquid nitrogen is withdrawn from the top of the lower column 4 of the rectification column, sent to a subcooler 6 by a conduit 5, supercooled by the subcooler 6, and then supplied as product liquid nitrogen by a conduit 7. It

【0012】一方、液体空気は、精留塔下塔4の底部よ
り抜出され、導管8により過冷却器6へ送られ、過冷却
器6で過冷却された後、導管9により精留塔上塔10へ
送られる。さらに、液体不純窒素は、精留塔下塔4から
抜出され、導管11により過冷却器6へ送られ、過冷却
器6で過冷却された後、導管12により精留塔上塔10
へ送られる。
On the other hand, liquid air is withdrawn from the bottom of the lower column 4 of the rectification column, sent to the subcooler 6 by a conduit 8 and supercooled by the subcooler 6, and then on the upper part of the rectification column by a conduit 9. Sent to tower 10. Further, the liquid impure nitrogen is extracted from the lower column 4 of the rectification column, sent to the subcooler 6 by the conduit 11, and supercooled by the subcooler 6, and then the upper column 10 of the rectification column is supplied by the conduit 12.
Sent to.

【0013】精留塔上塔10では、精留塔下塔4から送
られてきた液体空気及び液体不純窒素が主凝縮器30に
よって精留され、底部より90%以上の高純度を有する
液体酸素を直接取出し、導管13により製品液体酸素と
して供給される。なお、精留塔上塔10における主凝縮
器30が設置されている部分を、主凝縮器部と称する。
In the upper column 10 of the rectification column, the liquid air and the liquid impure nitrogen sent from the lower column 4 of the rectification column are rectified by the main condenser 30 and liquid oxygen having a high purity of 90% or more is obtained from the bottom. It is withdrawn directly and is supplied by conduit 13 as product liquid oxygen. The portion of the upper column 10 of the rectification column where the main condenser 30 is installed is referred to as a main condenser section.

【0014】精留塔上塔10の頂部からは、不純窒素ガ
スが抜出され、導管14により過冷却器6へ送られ、寒
冷の一部を精留塔下塔4からの液体空気、液体窒素及び
液体不純窒素へ渡した後、導管15により空気熱交換器
2へ送られ常温まで温度回復される。その後、不純窒素
ガスの一部は、導管16により吸着塔(図示せず)へ送
られ吸着塔再生ガスとして使用される。一方、残りのガ
スは、導管17により液化装置18へ送られる。液化装
置18では、膨張タービン等を用い、供給された不純窒
素ガスを液化する。液化された液体不純窒素は、導管1
9により精留塔10へ送られ、プラントの寒冷補給源と
して使用される。
Impurity nitrogen gas is extracted from the top of the upper column 10 of the rectification column and sent to the subcooler 6 through the conduit 14, and part of the cold is cooled by liquid air and liquid nitrogen from the lower column 4 of the rectification column. And after passing to liquid impure nitrogen, it is sent to the air heat exchanger 2 by the conduit 15 and the temperature is recovered to room temperature. Then, a part of the impure nitrogen gas is sent to the adsorption tower (not shown) through the conduit 16 and used as an adsorption tower regeneration gas. On the other hand, the remaining gas is sent to the liquefier 18 by the conduit 17. The liquefier 18 uses an expansion turbine or the like to liquefy the supplied impure nitrogen gas. Liquefied liquid impure nitrogen is in conduit 1
9 is sent to the rectification tower 10 and used as a cold supplement source for the plant.

【0015】以上は、通常の製品液体酸素などを取る製
品液採りプラントであるが、本発明においては、起動時
間を短縮させるため、以下の設備を追設した。
The above is a product liquid collecting plant for taking normal product liquid oxygen and the like, but in the present invention, the following equipment is additionally provided in order to shorten the start-up time.

【0016】即ち、本発明は、液体酸素又はガス酸素を精
留塔上塔10の主凝縮器部から直接採取する空気分離装
置において、前記精留塔内の液体酸素の一部を貯蔵する
ための貯槽20を、保冷槽(コールドボックス)50内
若しくは保冷槽50外へ設置し、精留塔上塔(精留塔の
主凝縮部)10と前記貯槽20とをガス及び液体用の連
絡配管21、22で接続し、各連絡配管21、22へ弁
23、24を設置して構成したことを特徴する。
That is, according to the present invention, in an air separation apparatus for directly collecting liquid oxygen or gas oxygen from the main condenser section of the upper column 10 of the rectification tower, a part of the liquid oxygen in the rectification tower is stored. The storage tank 20 is installed inside the cold storage tank (cold box) 50 or outside the cold storage tank 50, and the rectification tower upper tower (main condensing part of the rectification tower) 10 and the storage tank 20 are connected to each other for gas and liquid. 21 and 22 are connected, and valves 23 and 24 are installed in the connecting pipes 21 and 22, respectively.

【0017】即ち、精留塔内の液体酸素の一部を貯蔵す
るための貯槽20を、保冷槽50内若しくは保冷槽50
外へ設置し、該貯槽20と精留塔10との連絡配管とし
て、ガス酸素用配管21及び液体酸素用配管22を設置
し、仕切用の弁23、24をそれぞれ設置した。さら
に、貯槽20内には熱交換器25を内蔵し、該熱交換器
25と精留塔下塔4とはそれぞれ窒素ガス用配管26及
び液体窒素用配管27で接続した。
That is, the storage tank 20 for storing a part of the liquid oxygen in the rectification tower is provided in the cold storage tank 50 or the cold storage tank 50.
Installed outside, a gas oxygen pipe 21 and a liquid oxygen pipe 22 were installed as connecting pipes between the storage tank 20 and the rectification tower 10, and partition valves 23 and 24 were installed, respectively. Further, a heat exchanger 25 was built in the storage tank 20, and the heat exchanger 25 and the lower rectification column 4 were connected by a nitrogen gas pipe 26 and a liquid nitrogen pipe 27, respectively.

【0018】プラントの運転中は、仕切弁23及び24
を開とする。その結果、精留塔上塔10と貯槽20は配
管21及び配管22でつながれているため、高純度の液
体酸素は、精留塔上塔10より液体酸素用配管22を通
して直接貯槽20へ供給され、又、精留塔上塔10と貯
槽20とはガス酸素用配管21で接続されているため同
圧となる。
The sluice valves 23 and 24 are operated during the operation of the plant.
To open. As a result, since the upper column 10 of the rectification column and the storage tank 20 are connected by the pipe 21 and the pipe 22, high-purity liquid oxygen is directly supplied from the upper column 10 of the rectification column to the storage tank 20 through the liquid oxygen pipe 22. Further, since the upper column 10 of the rectification column and the storage tank 20 are connected by the pipe 21 for gas oxygen, they have the same pressure.

【0019】一方、プラントを停止する場合には、停止
工程に入る前に仕切弁23及び24を閉として精留塔上
塔10と貯槽20とを仕切る。但し、貯槽20の圧力上
昇を防ぐため仕切弁23を開閉させて貯槽20の圧力を
調整する。この状態で、プラントの停止操作を行い、プ
ラントを停止させ、寒冷待機状態とし、プラント内の液
は抜かず、加温(昇温操作)も行なわない。なお、精留
塔上塔10と貯槽20との間の連絡配管21、22に
は、少なくとも1ヶの手動弁若しくは自動弁23、24
を設置して構成した。また、精留塔下塔4と熱交換器2
5との連結配管26、27にも、少なくとも1ヶの手動
弁若しくは自動弁(図示せず)を設置して構成した。こ
の手動弁や自動弁は、貯槽20内で熱交換が不要になっ
たとき、閉じればよい。
On the other hand, when the plant is shut down, the sluice valves 23 and 24 are closed to partition the rectification tower upper column 10 from the storage tank 20 before the shutdown process. However, in order to prevent the pressure in the storage tank 20 from rising, the gate valve 23 is opened and closed to adjust the pressure in the storage tank 20. In this state, the plant is stopped, the plant is stopped and put in a cold standby state, the liquid in the plant is not drained, and heating (heating operation) is not performed. At least one manual valve or automatic valve 23, 24 is provided in the connecting pipes 21, 22 between the upper column 10 of the rectification tower and the storage tank 20.
Was installed and configured. In addition, the rectification tower lower tower 4 and the heat exchanger 2
At least one manual valve or automatic valve (not shown) was also installed in the connecting pipes 26 and 27 for connection with 5. The manual valve and the automatic valve may be closed when heat exchange in the storage tank 20 becomes unnecessary.

【0020】以上の操作により、プラント停止中にも貯
槽20内には高純度の液体酸素を保有することができ
る。
By the above operation, high-purity liquid oxygen can be retained in the storage tank 20 even when the plant is stopped.

【0021】プラントを起動する際には、まず、液化装
置18を起動し、導管19により保冷槽へ寒冷源となる
液体不純窒素又は液体空気を供給するとともに、導管3
より精留塔下塔4へ原料空気を送り、精留塔上塔10の
底部の液体空気を液体酸素まで徐々に精留する。この精
留中にも、貯槽20内の液体酸素を導管13より抜出す
ことができるため、精留塔下塔4及び精留塔上塔10が
整定していない状態でも高純度の液体酸素を採取するこ
とが可能となった。又、貯槽20内の液体酸素純度がな
んらかの原因により悪くなった場合は、導管26より窒
素ガスを熱交換器25へ供給し、貯槽内の液体酸素と熱
交換させることで、液体酸素内の低沸点成分を蒸発さ
せ、貯槽20内の液体酸素を純度アップさせて配管22
から高純度の製品液体酸素13を抜き出すことが可能で
ある。
When the plant is started, first, the liquefaction device 18 is started, and liquid impure nitrogen or liquid air as a cold source is supplied to the cold storage tank by the conduit 19 and the conduit 3 is used.
The raw material air is sent to the lower column 4 of the rectification column, and the liquid air at the bottom of the upper column 10 of the rectification column is gradually rectified to liquid oxygen. Since liquid oxygen in the storage tank 20 can be withdrawn from the conduit 13 during this rectification, high-purity liquid oxygen can be collected even when the lower rectification tower 4 and the upper rectification tower 10 are not settled. It became possible to do. When the purity of liquid oxygen in the storage tank 20 is deteriorated due to some reason, nitrogen gas is supplied to the heat exchanger 25 through the conduit 26 to exchange heat with the liquid oxygen in the storage tank, thereby reducing the amount of liquid oxygen in the storage tank. The boiling point component is evaporated, the liquid oxygen in the storage tank 20 is purified, and the piping 22
It is possible to extract high-purity product liquid oxygen 13 from.

【0022】なお、上記窒素ガスは液体酸素と熱交換し
た後、液体窒素となり、導管27により精留塔下塔4へ
送られる。
After the nitrogen gas is heat-exchanged with liquid oxygen, it becomes liquid nitrogen and is sent to the lower rectification column 4 through a conduit 27.

【0023】本実施の形態におけるプラントでは、製品
液体酸素採取量1000m3/h(N)に対して、停止
中の蒸発損失等を考慮し、8m3程度の貯槽20を設け
た。この結果、昼間15時間停止、夜間9時間運転の運
転計画において、従来では、プラント起動より製品液体
酸素採取まで6時間必要であったのに対し、本発明の実
施の形態によれば、2時間まで短縮することができた。
In the plant according to the present embodiment, a storage tank 20 of about 8 m 3 is provided for the product liquid oxygen sampling amount of 1000 m 3 / h (N) in consideration of the evaporation loss during the stop. As a result, in the operation plan of a 15-hour daytime stop and a 9-hour nighttime operation, conventionally, it took 6 hours from starting the plant to collecting the product liquid oxygen, but according to the embodiment of the present invention, 2 hours. Could be shortened to.

【0024】上記実施の形態では、熱交換器25を貯槽
20内に設置した場合について説明したが、図2に示す
ように、熱交換器25を貯槽20の外に設け、貯槽20
と配管35、36で接続することも可能である。
In the above embodiment, the case where the heat exchanger 25 is installed in the storage tank 20 has been described. However, as shown in FIG. 2, the heat exchanger 25 is provided outside the storage tank 20, and the storage tank 20 is provided.
It is also possible to connect with the pipes 35 and 36.

【0025】また、製品として高純度のガス酸素40を
採取する場合には、図3に示すように、精留塔上塔10
では、精留塔下塔4から送られてきた液体空気及び液体
不純窒素が主凝縮器30によって精留され、90%以上
の高純度を有する液体酸素が底部から得られることにな
る。その結果、運転時には、図3に示すように、液体酸
素の液面上部(主凝縮器30の上部近傍:主凝縮器部)
からは、配管43を通して高純度のガス酸素40が供給
されることになる。そして、プラントの運転中は、仕切
弁23及び24を開とする。その結果、精留塔上塔10
と貯槽20は配管21及び配管22でつながれているた
め、高純度の液体酸素は、精留塔上塔10より液体酸素
用配管22を通して直接貯槽20へ供給され、又、精留
塔上塔10と貯槽20とはガス酸素用配管21で接続さ
れているため同圧となる。
When high-purity gaseous oxygen 40 is sampled as a product, as shown in FIG.
Then, the liquid air and liquid impure nitrogen sent from the lower column 4 of the rectification column are rectified by the main condenser 30, and liquid oxygen having a high purity of 90% or more is obtained from the bottom. As a result, at the time of operation, as shown in FIG. 3, the upper part of the liquid oxygen level (near the upper part of the main condenser 30: the main condenser part).
From this, high-purity gaseous oxygen 40 is supplied through the pipe 43. Then, the sluice valves 23 and 24 are opened during the operation of the plant. As a result, the rectification tower upper tower 10
Since the storage tank 20 and the storage tank 20 are connected by a pipe 21 and a pipe 22, high-purity liquid oxygen is directly supplied from the rectification tower upper tower 10 to the storage tank 20 through the liquid oxygen pipe 22 and the rectification tower upper tower 10 The storage tank 20 and the storage tank 20 are connected to each other by the gas oxygen pipe 21, so that the pressure is the same.

【0026】一方、プラントを停止する場合には、停止
工程に入る前に仕切弁23、24及び41を閉として精
留塔上塔10と貯槽20とを仕切る。但し、貯槽20の
圧力上昇を防ぐため仕切弁23を開閉させて貯槽20の
圧力を調整する。この状態で、プラントの停止操作を行
いプラントを停止させ、寒冷待機状態とし、プラント内
の液は抜かず、加温(昇温操作)も行なわない。
On the other hand, when the plant is to be stopped, the sluice valves 23, 24 and 41 are closed before the rectification tower upper column 10 and the storage tank 20 are separated from each other before starting the stopping step. However, in order to prevent the pressure in the storage tank 20 from rising, the gate valve 23 is opened and closed to adjust the pressure in the storage tank 20. In this state, the plant stop operation is performed to stop the plant, put it in a cold standby state, do not drain the liquid in the plant, and do not perform heating (temperature raising operation).

【0027】以上の操作により、図3に示す実施の形態
でも、プラント停止中にも貯槽20内には高純度の液体
酸素を保有することができる。
With the above operation, even in the embodiment shown in FIG. 3, it is possible to retain high-purity liquid oxygen in the storage tank 20 even while the plant is stopped.

【0028】プラントを起動する際には、まず、液化装
置18を起動し、導管19により保冷槽へ寒冷源となる
液体不純窒素又は液体空気を供給するとともに、導管3
より精留塔下塔4へ原料空気を送り、精留塔上塔10の
底部の液体空気を液体酸素まで徐々に精留する。この精
留中にも、貯槽20内の高純度のガス酸素を、バルブ4
2を開くことによって導管40より抜出すことができる
ため、精留塔下塔4及び精留塔上塔10が整定していな
い状態でも高純度の酸素ガスを採取することが可能とな
った。
When the plant is started up, first, the liquefaction device 18 is started up, and liquid impure nitrogen or liquid air as a cold source is supplied to the cold storage tank through the conduit 19 and the conduit 3
The raw material air is sent to the lower column 4 of the rectification column, and the liquid air at the bottom of the upper column 10 of the rectification column is gradually rectified to liquid oxygen. During this rectification, the high-purity gaseous oxygen in the storage tank 20 is kept in the valve 4
Since it can be extracted from the conduit 40 by opening 2, the high-purity oxygen gas can be collected even when the lower rectification tower 4 and the upper rectification tower 10 are not settled.

【0029】又、貯槽20内の液体酸素純度がなんらか
の原因により悪くなった場合は、導管26より窒素ガス
を熱交換器25へ供給し、貯槽20内の液体酸素と熱交
換させることで、液体酸素内の低沸点成分を蒸発させ、
貯槽20内の液体酸素を純度アップさせて配管44から
高純度の製品ガス酸素40を抜き出すことが可能であ
る。
If the purity of liquid oxygen in the storage tank 20 becomes poor due to some reason, nitrogen gas is supplied to the heat exchanger 25 through the conduit 26 to exchange heat with the liquid oxygen in the storage tank 20. Evaporate low boiling point components in oxygen,
It is possible to increase the purity of the liquid oxygen in the storage tank 20 and extract the high-purity product gas oxygen 40 from the pipe 44.

【0030】[0030]

【発明の効果】本発明によれば、起動時の精留塔内の状
態にかかわらず、高純度の液体酸素または酸素ガスを採
取することができ、この結果、空気分離装置の起動時間
を短縮することが可能となる。
According to the present invention, high-purity liquid oxygen or oxygen gas can be collected regardless of the state of the inside of the rectification column at the time of startup, and as a result, the startup time of the air separation device can be shortened. It becomes possible to do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高純度の液体酸素等を直接精留塔
の主凝縮器部から製品として採取する空気分離装置の系
統図である。
FIG. 1 is a system diagram of an air separation device according to the present invention for directly collecting high-purity liquid oxygen or the like as a product from a main condenser section of a rectification column.

【図2】図1とは異なり、本発明に係る貯槽の外部に熱
交換器を設置した実施例を示す図である。
FIG. 2 is a view showing an embodiment in which a heat exchanger is installed outside the storage tank according to the present invention, which is different from FIG.

【図3】本発明に係る酸素ガス等を直接精留塔の主凝縮
器から製品として採取する空気分離装置の系統図であ
る。
FIG. 3 is a system diagram of an air separation device according to the present invention for directly collecting oxygen gas and the like as a product from the main condenser of the rectification column.

【符号の説明】[Explanation of symbols]

1、3、5、7、8、9、11、12、13、14、1
5、16、17、19、21、22…導管、2…空気熱
交換器、4…精留塔下塔、6…過冷却器、10…精留塔
上塔、18…液化装置、20…貯槽、23…仕切弁、2
4…仕切弁、25…熱交換器、26、27…連絡配管、
30…主凝縮器、50…保冷槽(コールドボックス)。
1, 3, 5, 7, 8, 9, 11, 12, 13, 14, 1
5, 16, 17, 19, 21, 21, 22 ... Conduit, 2 ... Air heat exchanger, 4 ... Fractionation tower lower tower, 6 ... Supercooler, 10 ... Fractionation tower upper tower, 18 ... Liquefaction apparatus, 20 ... Storage tank , 23 ... Gate valve, 2
4 ... Gate valve, 25 ... Heat exchanger, 26, 27 ... Communication piping,
30 ... Main condenser, 50 ... Cooling tank (cold box).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 純 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸事業所内 Fターム(参考) 4D047 AA08 AB01 AB02 AB04 DA12 DA14 DA17 DB01 EA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Jun Yoshida             Yamaguchi Prefecture Kudamatsu City Oita Toyoi 794 Stock Association             Inside Hitachi Kasado Works F term (reference) 4D047 AA08 AB01 AB02 AB04 DA12                       DA14 DA17 DB01 EA01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、液体酸素又はガス酸素を精留
塔の主凝縮器部から直接採取する空気分離装置におい
て、 前記精留塔内の液体の一部を貯蔵するために前記精留塔
の主凝縮器部と配管でつながれた貯槽を設置したことを
特徴とする空気分離装置。
1. An air separation device for directly collecting at least liquid oxygen or gas oxygen from a main condenser section of a rectification column, wherein the rectification column has a storage unit for storing a part of the liquid in the rectification column. An air separation device characterized by having a storage tank connected to the main condenser section by piping.
【請求項2】請求項1記載の空気分離装置において、前
記貯槽内の液体を蒸発させるために、前記貯槽内若しく
は前記貯槽外に熱交換器を設置したことを特徴とする空
気分離装置。
2. The air separation apparatus according to claim 1, wherein a heat exchanger is installed inside or outside the storage tank in order to evaporate the liquid inside the storage tank.
【請求項3】請求項1記載の空気分離装置において、前
記精留塔から取出したガスを前記貯槽内の液体を蒸発さ
せるために設置された熱交換器へ供給し、該熱交換器か
ら熱交換された液体を前記精留塔へ供給するように構成
したことを特徴とする空気分離装置。
3. The air separation apparatus according to claim 1, wherein the gas taken out from the rectification column is supplied to a heat exchanger installed to evaporate the liquid in the storage tank, and the heat is removed from the heat exchanger. An air separation device configured to supply the exchanged liquid to the rectification column.
【請求項4】請求項1、2または3記載の空気分離装置
において、前記精留塔と前記貯槽との間を連絡する連絡
配管に少なくとも1ヶの手動弁もしくは自動弁を設置し
たことを特徴とする空気分離装置。
4. The air separation apparatus according to claim 1, 2 or 3, wherein at least one manual valve or automatic valve is installed in a connecting pipe connecting the rectification tower and the storage tank. Air separation device.
【請求項5】請求項4記載の空気分離装置において、空
気分離装置が起動工程もしくは停止工程もしくは停止中
の際、前記手動弁または自動弁を閉とし、空気分離装置
を起動後前記精留塔が整定した後に、前記手動弁または
自動弁を開として運転することを特徴とする空気分離装
置。
5. The air separation device according to claim 4, wherein the manual valve or the automatic valve is closed when the air separation device is in a starting step, a stopping step or a stopping state, and after the air separation device is started, the rectification column The air separation device is operated by opening the manual valve or the automatic valve after settling.
【請求項6】請求項3または4記載の空気分離装置にお
いて、前記精留塔と前記熱交換器との間を連結する連絡
配管に少なくとも1ヶの手動弁もしくは自動弁を設置し
たことを特徴とする空気分離装置。
6. The air separation device according to claim 3 or 4, wherein at least one manual valve or automatic valve is installed in a connecting pipe connecting between the rectification column and the heat exchanger. Air separation device.
【請求項7】送られた水分及び二酸化炭素が除去された
原料空気を飽和温度付近まで冷却する空気熱交換器と、 該空気熱交換器から送られてくる冷却された原料空気を
窒素ガスと酸素分に富んだ液体空気に精留分離する精留
塔下塔と、 該精留塔下塔の底部より抜出された液体空気および前記
精留塔下塔から抜出された液体不純窒素を過冷却する過
冷却器と、 主凝縮器を有し、前記過冷却器で過冷却されて送られて
きた液体空気および液体不純窒素を精留して液体酸素又
はガス酸素を直接採取する精留塔上塔と、 該精留塔上塔の底部から直接採取された液体酸素の少な
くとも一部を貯蔵する貯槽とを備えたことを特徴とする
空気分離装置。
7. An air heat exchanger that cools the feed air from which moisture and carbon dioxide have been sent to near saturation temperature, and the cooled feed air sent from the air heat exchanger is nitrogen gas. A rectification lower tower for rectifying and separating into liquid air rich in oxygen content, liquid air withdrawn from the bottom of the rectification lower tower, and liquid impure nitrogen withdrawn from the rectification lower tower are supercooled. An upper column of a rectification column which has a subcooler and a main condenser, and rectifies liquid air and liquid impure nitrogen sent after being supercooled by the subcooler to directly collect liquid oxygen or gaseous oxygen. An air separation device comprising: a storage tank for storing at least a part of liquid oxygen directly collected from the bottom of the upper column of the rectification column.
【請求項8】請求項7記載の空気分離装置において、前
記貯槽内の液体を蒸発させるために、前記貯槽内若しく
は前記貯槽外に熱交換器を設置したことを特徴とする空
気分離装置。
8. The air separation apparatus according to claim 7, wherein a heat exchanger is installed inside or outside the storage tank in order to evaporate the liquid in the storage tank.
JP2001200389A 2001-07-02 2001-07-02 Air separator apparatus Pending JP2003014373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200389A JP2003014373A (en) 2001-07-02 2001-07-02 Air separator apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200389A JP2003014373A (en) 2001-07-02 2001-07-02 Air separator apparatus

Publications (1)

Publication Number Publication Date
JP2003014373A true JP2003014373A (en) 2003-01-15

Family

ID=19037521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200389A Pending JP2003014373A (en) 2001-07-02 2001-07-02 Air separator apparatus

Country Status (1)

Country Link
JP (1) JP2003014373A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070257A1 (en) * 2009-12-11 2011-06-16 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and unit for the separation of air by cryogenic distillation
KR101051306B1 (en) * 2010-10-05 2011-07-22 한국기계연구원 Compressed air energy storage generation system
CN105758119A (en) * 2014-12-19 2016-07-13 常熟市永安工业气体制造有限公司 Liquid oxygen preparation device
JP2017036898A (en) * 2015-08-13 2017-02-16 パンパシフィック・カッパー株式会社 Method for operating an oxygen production device
JP2020204458A (en) * 2015-08-13 2020-12-24 パンパシフィック・カッパー株式会社 Operation method for oxygen producing device
CN113063263A (en) * 2021-04-29 2021-07-02 开封迪尔空分实业有限公司 Air separation method for preparing liquid oxygen by using liquid nitrogen
CN113091401A (en) * 2021-04-29 2021-07-09 开封迪尔空分实业有限公司 Liquid air separation device for preparing liquid oxygen by using liquid nitrogen

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070257A1 (en) * 2009-12-11 2011-06-16 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and unit for the separation of air by cryogenic distillation
FR2953915A1 (en) * 2009-12-11 2011-06-17 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
CN102652247A (en) * 2009-12-11 2012-08-29 乔治洛德方法研究和开发液化空气有限公司 Process and unit for the separation of air by cryogenic distillation
AU2010329766B2 (en) * 2009-12-11 2014-06-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and unit for the separation of air by cryogenic distillation
CN102652247B (en) * 2009-12-11 2014-09-24 乔治洛德方法研究和开发液化空气有限公司 Process and unit for the separation of air by cryogenic distillation
KR101051306B1 (en) * 2010-10-05 2011-07-22 한국기계연구원 Compressed air energy storage generation system
CN105758119A (en) * 2014-12-19 2016-07-13 常熟市永安工业气体制造有限公司 Liquid oxygen preparation device
JP2017036898A (en) * 2015-08-13 2017-02-16 パンパシフィック・カッパー株式会社 Method for operating an oxygen production device
JP2020204458A (en) * 2015-08-13 2020-12-24 パンパシフィック・カッパー株式会社 Operation method for oxygen producing device
JP7032033B2 (en) 2015-08-13 2022-03-08 パンパシフィック・カッパー株式会社 How to operate the oxygen production equipment
CN113063263A (en) * 2021-04-29 2021-07-02 开封迪尔空分实业有限公司 Air separation method for preparing liquid oxygen by using liquid nitrogen
CN113091401A (en) * 2021-04-29 2021-07-09 开封迪尔空分实业有限公司 Liquid air separation device for preparing liquid oxygen by using liquid nitrogen

Similar Documents

Publication Publication Date Title
CN100394132C (en) Process and device for the production of at least one gaseous high pressure fluid such as oxygen, nitrogen or argon
US4192662A (en) Process for liquefying and rectifying air
JP6354516B2 (en) Cryogenic air separation device and cryogenic air separation method
JP2003014373A (en) Air separator apparatus
JPH0587446A (en) Method and device to manufacture nitrogen gas and feeding system for said nitrogen gas
KR101238063B1 (en) Nitrogen generating device and apparatus for use therefor
US2180715A (en) Liquefaction and separation of gases
JP3644918B2 (en) Air separation device and air separation method
JP2002168561A (en) Method and system for separating air
JP4688843B2 (en) Air separation device
JP3667875B2 (en) Air liquefaction separation method
JP3738213B2 (en) Nitrogen production method and apparatus
JP7105085B2 (en) Air-to-liquid separation device and method for stopping operation of air-to-liquid separation device
JP3976188B2 (en) Product gas production method using air separation device
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator
JP2003021458A (en) Low-temperature air separation equipment
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP2873382B2 (en) Air liquefaction separator and liquefied gas injection method
JP3056979B2 (en) Quick start air separation equipment
KR101964331B1 (en) Air separation plant
JP3026098B2 (en) Air liquefaction separation method and apparatus suitable for fluctuations in demand
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JP2022156743A (en) Air liquefaction separation device and standby method of the same
KR100193515B1 (en) Manufacturing apparatus and method for separating nitrogen from air by deep cooling method
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank