JP2017036766A - スライド式切換弁及び冷凍サイクルシステム - Google Patents

スライド式切換弁及び冷凍サイクルシステム Download PDF

Info

Publication number
JP2017036766A
JP2017036766A JP2015157389A JP2015157389A JP2017036766A JP 2017036766 A JP2017036766 A JP 2017036766A JP 2015157389 A JP2015157389 A JP 2015157389A JP 2015157389 A JP2015157389 A JP 2015157389A JP 2017036766 A JP2017036766 A JP 2017036766A
Authority
JP
Japan
Prior art keywords
port
valve body
valve
inflow port
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015157389A
Other languages
English (en)
Other versions
JP6254980B2 (ja
Inventor
宏光 木村
Hiromitsu Kimura
宏光 木村
知之 上野
Tomoyuki Ueno
知之 上野
岡田 聡
Satoshi Okada
岡田  聡
怜 小泉
Rei Koizumi
怜 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2015157389A priority Critical patent/JP6254980B2/ja
Priority to CN201610639181.1A priority patent/CN106440550B/zh
Publication of JP2017036766A publication Critical patent/JP2017036766A/ja
Application granted granted Critical
Publication of JP6254980B2 publication Critical patent/JP6254980B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/0655Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with flat slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multiple-Way Valves (AREA)
  • Valve Housings (AREA)

Abstract

【課題】流体の流量低下を極力抑制してエネルギー消費効率の向上を図ることができるスライド式切換弁及び冷凍サイクルシステムを提供する。
【解決手段】四方切換弁10は、円筒状の弁本体11と、この弁本体11の内部にスライド自在に設けられた弁体12と、を備え、弁本体11には、冷媒を流入させる流入ポート11Aと、この流入ポート11Aに対して弁本体11の径方向反対側の第一ポート11B、第二ポート11C、及び、第三ポート11Dと、が設けられ、流入ポート11Aと第二ポート11Cとが互いに弁本体11の径方向に略対向して設けられ、流入ポート11Aは、第二ポート11Cよりも内径が小さく形成されるとともに、第二ポート11Cよりも中心が一方側に偏心して設けられている。
【選択図】図2

Description

本発明は、スライド式切換弁及び冷凍サイクルシステムに関する。
従来、ルームエアコン等の空気調和機で利用される冷凍サイクルとして、冷却モード(冷房)運転時に圧縮機、室外熱交換器、膨張弁、及び室内熱交換器を経由して冷媒を圧縮機に環流させ、加温モード(暖房)運転時に圧縮機、室内熱交換器、膨張弁、及び室外熱交換器を経由して冷媒を圧縮機に環流させるように、冷媒の環流方向を逆転させるものが利用されている。このような冷凍サイクルにおける冷媒の環流経路を逆転させる流路切換弁(所謂、四方切換弁)として、弁本体の内部にスライド自在に設けられた弁体を備えたスライド式切換弁が広く用いられている。
スライド式切換弁の弁本体には、圧縮機の吐出口にD継手を介して接続されて高圧冷媒を流入させる流入ポートと、圧縮機の吸入口にS継手を介して接続されて冷媒を圧縮機に還流させる流出ポートと、室内熱交換器にE継手を介して接続される室内側ポートと、室外熱交換器にC継手を介して接続される室外側ポートと、が設けられている。そして、スライド式切換弁は、一方側にスライドさせた弁体によって流出ポートと室内側ポートとを連通させるとともに、弁本体内部によって流入ポートと室外側ポートとを連通させる冷却モードと、他方側にスライドさせた弁体によって流出ポートと室外側ポートとを連通させるとともに、弁本体内部によって流入ポートと室内側ポートとを連通させる加温モードと、が切り替えられるようになっている。
このようなスライド式切換弁を利用するルームエアコンやパッケージエアコン等において、APF(Annual Performance Factor:通年エネルギー消費効率)の向上を意図し、流路抵抗による冷媒の流量低下や熱ロスを低減させるための構造が提案されている(例えば、特許文献1参照)。
特許文献1に記載のスライド式切換弁は、図6に示すように、流入ポート101、流出ポート102、室内側ポート103、および室外側ポート104を有する弁本体105と、この弁本体105の内部にスライド自在に設けられた弁体106と、を備え、流入ポート101に高圧側導管(D継手)111が接続され、流出ポート102に低圧側導管(S継手)112が接続され、室内側ポート103に室内側導管(E継手)113が接続され、室外側ポート104に室外側導管(C継手)114が接続されている。
弁体106は、弁本体105の弁座107に摺動可能な弁部材108を有し、この弁部材108は、弁座107に向かって凹状に開口した椀部108Aと、この椀部108Aの開口縁から外方に延びるフランジ部108Bと、を有して形成されている。そして、弁体106は、椀部108Aによって流出ポート102と室内側ポート103とを連通させる第一位置と、図5に示すように椀部108Aによって流出ポート102と室外側ポート104とを連通させる第二位置と、の間を移動し、この弁体106の移動によって流路が切り換えられるようになっている。
以上のように、従来のスライド式切換弁は、流入ポート101と室内側ポート103とが互いに正対する位置、すなわち互いの軸線Gが一直線上(同軸上)となる位置に設けられ、すなわち、高圧側導管111と室内側導管113とが同軸上に設けられ、弁体106が第二位置にある加温モードにおいて、流入ポート101から流入させた高圧冷媒を室内側ポート103に向かって直線的に流すようにすることで、流路抵抗を低減させてエネルギー消費効率の向上を図ろうとするものである。
特開2011−47530号公報
しかしながら、特許文献1に記載されたような従来のスライド式切換弁においてもエネルギー消費効率が十分に向上されているとは言えず、さらなる改善が望まれている。すなわち、特許文献1に記載のスライド式切換弁では、図5に示す加温モードにおいて、流入ポート101から室内側ポート102へと向かう冷媒の流路中に、弁部材108のフランジ部108Bの一部が張り出して流路を狭めている。このため、冷媒の流れがフランジ部108Bに阻害されることから、冷媒の流量低下が生じてしまい、エネルギー消費効率の向上が不十分になるという問題がある。
本発明の目的は、流体の流量低下を極力抑制してエネルギー消費効率の一層の向上を図ることができるスライド式切換弁及び冷凍サイクルシステムを提供することである。
本発明のスライド式切換弁は、筒状の弁本体と、該弁本体の内部にスライド自在に設けられた弁体と、前記弁本体の周面に開口して設けられた複数のポートと、を備えたスライド式切換弁であって、前記複数のポートは、前記弁本体の内部に流体を流入させる流入ポートと、該流入ポートに対して前記弁本体の径方向反対側に設けられる第一ポート、第二ポート、及び、第三ポートと、を有し、前記弁本体の軸方向に沿って前記第一ポートの一方側にて前記流入ポートに対向して前記第二ポートが設けられ、前記第一ポートの他方側に前記第三ポートが設けられ、前記弁体は、前記弁本体の軸方向に沿った一方側にスライドして前記第一ポートと前記第二ポートとを連通させる第一位置と、前記弁本体の軸方向に沿った他方側にスライドして前記第一ポートと前記第三ポートとを連通させる第二位置と、の間を移動することで流路を切り換え、前記第二位置にある該弁体の一部と前記第二ポートの他方側の一部とが重なって設けられ、前記流入ポートは、前記第二ポートよりも内径が小さく形成されるとともに、前記第二ポートよりも中心が一方側に偏心して設けられていることを特徴とする。
このような本発明によれば、流入ポートに対向して第二ポートが設けられているので、弁体が第二位置にある状態(例えば、加温モード時)において、流入ポートから弁本体内部に流入させた流体を第二ポートに向かって直線的に流すことができ、流路抵抗の低減を図ることができる。さらに、第二ポートよりも内径が小さく形成された流入ポートが第二ポートに対して一方側(弁本体の反対側)に偏心していることで、第二位置にある弁体の一部と第二ポートの他方側の一部とが重なって設けられていても、弁体と第二ポートとの重なり部分による流路の縮小を緩和することができ、流入ポートから第二ポートへ向かう流体の流量低下を抑制することができる。
この際、前記流入ポートは、その投影周縁が前記第二ポートの一方側周縁に内接する位置における互いの中心距離を基準偏心距離として、該基準偏心距離に対する偏心比が0.2以上かつ3.0以下となる範囲に設けられていることが好ましい。
さらに、前記流入ポートは、その投影周縁が前記第二ポートの一方側周縁に内接する位置における互いの中心距離を基準偏心距離として、該基準偏心距離に対する偏心比が0.6以上かつ2.4以下となる範囲に設けられていることがより好ましい。
さらに、前記流入ポートは、前記偏心比が1.0以下となる範囲に設けられていることがより一層好ましい。
以上の構成によれば、流入ポートの投影周縁が第二ポートの一方側周縁に内接する位置における互いの中心距離を基準偏心距離(偏心比=1.0)として、この基準偏心距離に対する偏心比を適宜に設定して流入ポートを設けることで、第二ポートに対する流入ポートからの流路を適切に確保することができる。ここで、偏心比としては、0.2以上かつ3.0以下が好ましく、0.6以上かつ2.4以下がより好ましい。さらに、偏心比を1.0(基準偏心距離)以下に設定することで、流入ポートの投影周縁が第二ポートの一方側周縁からはみ出ることがなく、流入ポートをバーリング加工によって形成することができるため、加工性の観点からより一層好ましい。
本発明の冷凍サイクルシステムは、流体である冷媒を圧縮する圧縮機と、冷却モード時に凝縮器として機能する第一熱交換器と、冷却モード時に蒸発器として機能する第二熱交換器と、前記第一熱交換器と前記第二熱交換器との間にて冷媒を膨張させて減圧する膨張手段と、前記いずれかのスライド式切換弁と、を備え、前記スライド式切換弁は、前記弁体が前記第一位置に位置した状態において、前記圧縮機で圧縮した冷媒を前記流入ポートから前記弁本体の内部に流入させるとともに、前記第三ポートを介して前記第一熱交換器へ冷媒を流出させ、前記第二熱交換器から前記第二ポートに流入した冷媒を前記第一ポートから前記圧縮機に還流させるか、又は、前記弁体が前記第二位置に位置した状態において、前記圧縮機で圧縮した冷媒を前記流入ポートから前記弁本体の内部に流入させるとともに、前記第二ポートを介して前記第二熱交換器へ冷媒を流出させ、前記第一熱交換器から前記第三ポートに流入した冷媒を前記第一ポートから前記圧縮機に還流させることを特徴とする。
このような本発明の冷凍サイクルシステムによれば、弁体が第二位置に位置した状態において、圧縮機で圧縮した冷媒を流入ポートから第二ポートを介して第二熱交換器へ流出させ、第一熱交換器から第三ポートに流入した冷媒を第一ポートから圧縮機に還流させることで、加温モード(暖房)運転が実施される。この加温モード(暖房)運転時において、前述と同様に、流入ポートから第二ポートに向かう冷媒の流路抵抗を低減させ、冷媒の流量低下を抑制することができる。
本発明のスライド式切換弁及び冷凍サイクルシステムによれば、流体の流量低下を極力抑制してエネルギー消費効率の一層の向上を図ることができる。
本発明の一実施形態に係る冷凍サイクルの概略構成図である。 前記冷凍サイクルに用いられるスライド式切換弁を示す断面図である。 前記スライド式切換弁の弁部材と第二ポートとの関係を示す平面図である。 前記スライド式切換弁の流量係数と熱ロス量の変化を示すグラフである。 本発明の変形例に係るスライド式切換弁を示す断面図である。 本発明の従来例に係るスライド式切換弁を示す断面図である。
次に、本発明の実施形態を図面を参照して説明する。本実施形態の冷凍サイクル1は、ルームエアコン等の空気調和機に利用されるものであって、冷媒を圧縮する圧縮機2と、冷却モード時に凝縮器として機能する第一熱交換器としての室外熱交換器3と、冷却モード時に蒸発器として機能する第二熱交換器としての室内熱交換器4と、室外熱交換器3と室内熱交換器4との間にて冷媒を膨張させて減圧する膨張手段としての膨張弁5と、スライド式切換弁である四方切換弁10と、四方切換弁10の流路を切換え制御するパイロット電磁弁6と、を備え、これらが冷媒配管によって連結されている。なお、膨張手段としては、膨張弁5に限らず、キャピラリでもよい。
この冷凍サイクル1は、図1に示す加温モード(暖房運転)において、圧縮機2、四方切換弁10、室内熱交換器4、膨張弁5、室外熱交換器3、四方切換弁10及び圧縮機2の順に冷媒が流れる暖房サイクルを構成する。一方、冷却モード(冷房運転)において、圧縮機2、四方切換弁10、室外熱交換器3、膨張弁5、室内熱交換器4、四方切換弁10及び圧縮機2の順に冷媒が流れる冷房サイクルを構成する。この暖房サイクルと冷房サイクルとの切換えは、パイロット電磁弁6による四方切換弁10の切換え動作によって行われる。
本発明の実施形態に係る四方切換弁を図2、3に基づいて説明する。図2に示すように、本実施形態の四方切換弁10は、円筒状の弁本体11と、この弁本体11の内部にスライド自在に設けられた弁体12と、圧縮機2の吐出口に連通する高圧側導管(D継手)13と、圧縮機2の吸込口に連通する低圧側導管(S継手)14と、室内熱交換器4に連通する室内側導管(E継手)15と、室外熱交換器3に連通する室外側導管(C継手)16と、を備えて構成されている。
円筒状の弁本体11は、その軸方向両端部を塞ぐ栓体17,18と、弁本体11の内部に固定された弁座19と、を有し、全体に密閉されたシリンダーとして構成されている。栓体17,18には、それぞれパイロット電磁弁6に連通された導管17A,18Aが接続されている。弁座19には、低圧側導管14、室内側導管15、及び室外側導管16の先端が挿入されるとともに、後述する第一〜第三のポート11B,11C,11Dを構成する開口が設けられている。弁座19の内面19Aは、弁体12をスライド案内する案内面となっている。
弁本体11には、その周面に開口した複数のポート11A,11B,11C,11Dが形成されている。すなわち、高圧側導管13が接続されて弁本体11の内部に冷媒を流入させる流入ポート11Aと、流入ポート11Aに対して弁本体11の径方向反対側にて弁座19に開口する第一ポート11B、第二ポート11C、及び、第三ポート11Dと、が設けられている。第一ポート11Bは、弁本体11の軸方向略中央に設けられ、第二ポート11Cは、弁本体11の軸方向に沿って第一ポート11Bの一方側(図2の左側)に隣り合って設けられ、第三ポート11Dは、弁本体11の軸方向に沿って第一ポート11Bの他方側(図2の右側)に設けられている。
流出ポートとしての第一ポート11Bには、低圧側導管14が接続され、第二ポート11Cに室内側導管15が接続されることで、当該第二ポート11Cが室内側ポートを構成し、第三ポート11Dに室外側導管16が接続されることで、当該第三ポート11Dが室外側ポートを構成している。流入ポート11Aと第二ポート11Bとは、互いに弁本体11の径方向に対向して設けられ、これにより高圧側導管13と室内側導管15とが略一直線上に位置して接続されている。高圧側導管13は、流入ポート11A周辺の弁本体11にろう付け固定され、低圧側導管14、室内側導管15及び室外側導管16は、それぞれ第一〜第三のポート11B,11C,11D周辺の弁本体11及び弁座19にろう付け固定されている。
弁体12は、弁本体11の内周面に摺接する左右一対のピストン体21,22と、一対のピストン体21,22を連結して弁本体11の軸方向に沿って延びる連結部材23と、連結部材23に支持される弁部材24と、を有して構成されている。弁本体11の内部空間は、一対のピストン体21,22間に形成される高圧室R1と、一方のピストン体21と栓体17との間に形成される第一作動室R2と、他方のピストン体22と栓体18との間に形成される第二作動室R3と、に仕切られている。
連結部材23は、金属板材からなり、弁本体11の軸方向に沿って延び弁座19の内面19Aと平行に設けられる連結板部23Aと、連結板部23Aの一方側端部が折り曲げられてピストン体21に固定される固定片部23Bと、連結板部23Aの他方側端部が折り曲げられてピストン体22に固定される固定片部23Cと、を有して形成されている。連結板部23Aには、弁部材24を保持する保持孔23Dと、冷媒を流通させる2箇所の貫通孔23Eと、が形成されている。
弁部材24は、合成樹脂製の一体成形部材であって、弁座19に向かって凹状に開口した椀部25と、この椀部25の開口縁から外方に延びるフランジ部26と、を有して形成されている。椀部25は、平面視で長円形状を有したドーム状に形成され、連結部材23の保持孔23Dに挿入されている。椀部25の内部には、第一ポート11Bと第二ポート11Cとを連通させて第三ポート11Dを連通させないか、又は、第一ポート11Bと第三ポート11Dとを連通させて第二ポート11Cを連通させないような連通空間R4が形成されている。
フランジ部26は、図3にも示すように、平面視で外形が長方形状に形成され、弁座19の内面19Aと摺接する摺接面26Aには、椀部25の開口25Aが形成されている。このフランジ部26は、弁座19と連結部材23との間に配置される。そして、弁部材24に作用する高圧と低圧の圧力差により摺接面26Aが弁座19の内面19Aに密接され、椀部25の連通空間R4が弁座19に対して閉じられるようになっている。なお、図3では、フランジ部26が平面視で外形が長方形状に形成されている場合を説明したが、端面が弁部材24の移動方向に向かってわずかに膨出する略楕円形状でもよい。
以上の四方切換弁10では、パイロット電磁弁6及び導管17Aを介して第一作動室R2に圧縮機2から吐出された高圧冷媒が導入されると、図2に示すように、ピストン体21が押圧されて弁体12が弁本体11の軸方向他方側にスライドされる。また、パイロット電磁弁6及び導管18Aを介して第二作動室R3に高圧冷媒が導入されると、ピストン体22が押圧されて弁体12が弁本体11の軸方向一方側にスライドされる。ここで、弁本体11の軸方向一方側にスライドされた弁体12の位置を第一位置とし、弁本体11の軸方向他方側にスライドされた弁体12の位置(図2に示す位置)を第二位置とする。
弁体12が第二位置にある状態において、図3に示すように、弁部材24の椀部25は、その連通空間R4によって第一ポート11Bと第三ポート11Dとを連通させる。また、椀部25が第二ポート11Cよりも他方側に位置することから、この第二ポート11Cは、弁本体11の内部(高圧室R1)を介して流入ポート11Aと連通される。すなわち、弁体12が第二位置にある状態は、流入ポート11Aと第二ポート11Cとが連通され、第一ポート11Bと第三ポート11Dとが連通された加温モード(暖房運転)となる。
このように弁体12が第二位置にある状態(加温モード)において、弁部材24のフランジ部26の一部は、図3(A)に示すように、第二ポート11Cの他方側の一部に重なって設けられている。すなわち、第二ポート11Cの他方側の一部は、フランジ部26が重なる平面D字状の重なり部Pによって、弁本体11の軸方向に沿った重なり距離aだけ開口が覆われている。
ここで、流入ポート11Aの内径φAは、例えば8.8mmであり、第一〜第三ポート11B,11C,11Dの内径φBは、例えば11mmである。すなわち、流入ポート11Aの内径φAは、第二ポート11Cの内径φBよりも小さく形成され、その内径比φA/φBは0.8となっている。なお、流入ポート11Aと第二ポート11Cとの内径比φA/φBは、0.8に限らず、0.6以上かつ1.0未満の範囲であればよい。また、連結部材23の貫通孔23Eは、流入ポート11Aの内径φA以上の内径を有して形成されるとともに、弁体12が第二位置にある状態において、第二ポート11Cの直上に位置するように構成されている。
このような内径φBを有した第二ポート11Cに対するフランジ部26の重なり距離aは、例えば3.3mmであり、その重なり比a/φBは0.3となっている。すなわち、第二ポート11Cの内径φBからフランジ部26との重なり部Pを差し引いた残り距離bは、7.7mmとなる。従って、このような寸法関係とした場合には、流入ポート11Aの内径φAは、第二ポート11Cの残り距離bよりも大きく形成される。このような場合、後述する冷媒の流量増加および熱ロスの低減の効果はより顕著なものとなる。なお、重なり距離aと第二ポート11Cの内径比φBとの重なり比a/φBは、0.3に限らず、0.1以上かつ0.5以下の範囲であればよい。なお、フランジ部26の形状が、前述のように略楕円形状の場合には、重なりの最大長さを基準とし、重なり距離を設定すればよい。
以上の第二ポート11Cに対し、流入ポート11Aは、その中心が一方側(第二位置にある弁部材24から離れる側であり、図2、3の左側)に偏心して設けられている。すなわち、図2に示すように、流入ポート11Aおよび高圧側導管13の軸心E−Eは、第二ポート11Cおよび室内側導管15の軸心F−Fよりも一方側に偏心して設けられている。図3(A)に示すように、流入ポート11Aと第二ポート11Cとが同軸に設けられて互いの中心が一致する位置、すなわち偏心距離Lが0(L=0)となる位置よりも一方側に流入ポート11Aが設けられている。ここで、偏心距離Lは、流入ポート11A及び第二ポート11Cの互いの中心距離であり、弁本体11の軸方向に沿った距離である。
このような偏心距離Lを変化させて流入ポート11Aから第二ポート11Cに流れる冷媒の流量と熱ロスを検証した結果について、図4も参照して説明する。図4は、電子計算機を用いた熱流体解析により算出したCv値(流量係数)と熱ロス量の結果を示すグラフである。このグラフにおける横軸は、第二ポート11Cに対する流入ポート11Aの偏心比Rである。この偏心比Rは、図3(B)に示すように、流入ポート11Aの投影周縁が第二ポート11Cの一方側周縁に内接する位置における互いの中心距離(偏心距離L)を基準偏心距離L1とし、この基準偏心距離L1に対する流入ポート11Aの各位置における偏心距離Lの比率を意味し、偏心比R=L/L1で定義される。
図4のグラフにおける左縦軸は、Cv値(流量係数)の変化を表し、偏心比Rが0(R=0)のときのCv値、すなわち流入ポート11Aが第二ポート11Cと同軸の場合のCv値を基準とし、そのCv値に対する割合として表されている。また、図4のグラフにおける右縦軸は、熱ロス量の変化を表し、偏心比Rが0(R=0)のときの熱ロス量を基準とした割合として表されている。このグラフによると、偏心比Rが0から3.4程度までの範囲において、Cv値は常に1以上(偏心比Rが0のときのCv値以上)の値となり、熱ロス量は常に1以下(偏心比Rが0のときの熱ロス量以下)の値となっている。
さらに、偏心比Rに応じたCv値の変化を詳しく見てみると、偏心比Rが0から0.2までの範囲において、Cv値は急激に増加し、偏心比Rが0.2のときに約5%の増加率となる。偏心比Rが0.2から0.6までの範囲において、Cv値のグラフの傾きは徐々に緩やかになるものの増加し続け、偏心比Rが0.6のときに約10%の増加率となる。さらに、偏心比Rが0.6を超えた範囲では、偏心比Rが1.4程度まで緩やかに増加し続けた後、減少に転じて、偏心比Rが2.4のときに約10%の増加率となり、偏心比Rが3.0のときに約5%の増加率となり、偏心比Rが3.0を超えても偏心比Rが0のときの値以上(1以上)となっている。
一方、偏心比Rに応じた熱ロス量の変化を詳しく見てみると、偏心比Rが0から0.2までの範囲において、熱ロス量は急激に減少し、偏心比Rが0.2のときに約5%の減少率となる。偏心比Rが0.2から0.6までの範囲において、熱ロス量は減少し続け、偏心比Rが0.6のときに約10%の減少率となる。さらに、偏心比Rが0.6を超えた範囲では、偏心比Rが1.6程度まで緩やかに減少し続けた後、増加に転じて、偏心比Rが2.4のときに約10%の減少率となり、偏心比Rが3.0のときに約5%の減少率となり、偏心比Rが3.0を超えても偏心比Rが0のときの値以下(1以下)となっている。
以上のように、偏心比Rが0.2以上かつ3.0以下の範囲において、Cv値が5%以上の増加率となることから、偏心比Rが0の場合と比較して冷媒の流量増加が見込めるとともに、熱ロス量が5%以下の減少率となることから、エネルギー消費効率の向上が見込めることが判る。さらに、偏心比Rが0.6以上かつ2.4以下の範囲において、Cv値が10%以上の増加率となり、熱ロス量が10%以下の減少率となることから、偏心比Rが0の場合と比較して冷媒の流量増加および熱ロスの低減がより一層期待できることが判る。
また、偏心比Rが1.0以下であれば、図3(B)に示すように、流入ポート11Aの投影周縁が第二ポート11Cの一方側周縁に内接する、すなわち第二ポート11Cを延長した内部に流入ポート11Aが位置することから、流入ポート11Aをバーリング加工によって容易に形成することができるため、良好な加工性が期待できる。ここで、バーリング加工とは、第二ポート11C側から矢(ピン)を通し、この矢を弁本体11に貫通させて流入ポート11Aを形成する加工方法である。このため、第二ポート11Cの延長上から外れた位置には、バーリング加工によって流入ポート11Aを形成することが極めて困難であり、切削加工等によって流入ポート11Aを形成することはできるものの、加工コストが増加する可能性がある。
以上の本実施形態によれば、第二ポート11Cに対向して流入ポート11Aが設けられるとともに、第二位置にある弁部材24から離れる一方側に偏心して流入ポート11Aが設けられているので、流入ポート11Aから第二ポート11Cに向かって冷媒を直線的に流して流路抵抗の低減を図るとともに、冷媒の流量低下を抑制することができる。すなわち、第二位置にある弁部材24のフランジ部26と第二ポート11Cの他方側の一部とが重なって設けられていても、流入ポート11Aを一方側に偏心させることで、重なり部Pによる流路の縮小を緩和することができる。従って、弁体12が第二位置にある加温モードにおいて、流体の流量低下を極力抑制するとともに熱ロスを低減させ、エネルギー消費効率の一層の向上を図ることができる。
また、流入ポート11Aの偏心比Rを0.2以上かつ3.0以下に設定することで、偏心比Rが0の場合と比較して、Cv値が5%以上の増加率となり、熱ロス量が5%以下の減少率となることから、冷媒の流量増加と熱ロスの低減を期待することができる。さらに、偏心比Rを0.6以上かつ2.4以下に設定することで、偏心比Rが0の場合と比較して、Cv値が10%以上の増加率となり、熱ロス量が10%以下の減少率となることから、さらなる冷媒の流量増加と熱ロスの低減を期待することができる。
さらに、偏心比を1.0(基準偏心距離L1)以下に設定することで、流入ポート11Aをバーリング加工によって容易に形成することができるため、良好な加工性により加工コストの増加を抑制することができる。なお、流入ポート11Aの加工方法は、バーリング加工に限られるものではなく、切削加工によって流入ポート11Aが形成されてもよいし、鍛造によって成形される弁本体11に流入ポート11Aが一体に形成されてもよい。このような切削加工や鍛造による一体成形の場合には、偏心距離Lが基準偏心距離L1を超えても(L>L1)流入ポート11Aを形成することができる。
また、流入ポート11Aの投影周縁がフランジ部26および第二ポート11Cの一方側周縁との少なくとも一方に重なる場合であっても、流入ポート11Aが第二ポート11Cに対して一方側に偏心して設けられていることで、できるだけ大きな流路面積を確保することができ、流量低下を抑制することができる。
なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。例えば、前記実施形態では、ルームエアコン等の空気調和機に利用される冷凍サイクル1を例示したが、本発明の冷凍サイクルは、空気調和機に限らず、加温モードと冷却モードとが切り換えられる機器であればどのようなものにも利用可能である。また、本発明のスライド式切換弁は、冷凍サイクルにおける切換弁に利用されるものに限らず、気体や液体などの様々な流体を流通させる各種の配管システムに利用可能である。
また、前記実施形態では、弁本体11において、高圧側導管13が接続される流入ポート11Aと、室内側導管15が接続される第二ポート11Cと、が弁本体11の径方向に対向して設けられ、加温モードにおいて、流入ポート11Aから流入した高圧冷媒が第二ポート11Cに向かって直線的に流れる構成を説明したが、これに限定されるものではない。すなわち、流入ポート11Aと、室外側導管16が接続される第三ポート11Dと、が弁本体11の径方向に対向して設けられ、冷却モードにおいて、流入ポート11Aから流入した高圧冷媒が第三ポート11Dに向かって直線的に流れる構成であってもよい。
また、前記実施形態では、第二ポート11Cに重なる弁体12の一部として、フランジ部26を例示したが、弁体12の一部としては、フランジ部26に限らず、連結部材23の連結板部23Aである場合も想定される。
すなわち、前記実施形態では、連結板部23Aの貫通孔23Eが流入ポート11Aの内径φA以上の内径を有して形成されていたが、このような場合、貫通孔23Eの寸法によっては、偏心した流入ポート11Aから第二ポート11Cへの流れが連結板部23Aによって阻害される場合がある。
そのため、例えば、図5に示すように、貫通孔23Eも流入ポート11Aと同様に第二ポート11Cよりも一方側に偏心させ、貫通孔23Eと流入ポート11Aとを同軸に設けることで、前述した効果を奏することができるだけでなく、流入ポート11Aから流入した流体をよりスムーズに第二ポート11C側に流すことができる。
以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
1 冷凍サイクル
2 圧縮機
3 室外熱交換器(第一熱交換器)
4 室内熱交換器(第二熱交換器)
5 膨張弁(膨張手段)
10 四方切換弁(スライド式切換弁)
11 弁本体
11A 流入ポート
11B 第一ポート
11C 第二ポート
11D 第三ポート
12 弁体
26 フランジ部
L 偏心距離
L1 基準偏心距離
R 偏心比

Claims (5)

  1. 筒状の弁本体と、該弁本体の内部にスライド自在に設けられた弁体と、前記弁本体の周面に開口して設けられた複数のポートと、を備えたスライド式切換弁であって、
    前記複数のポートは、前記弁本体の内部に流体を流入させる流入ポートと、該流入ポートに対して前記弁本体の径方向反対側に設けられる第一ポート、第二ポート、及び、第三ポートと、を有し、前記弁本体の軸方向に沿って前記第一ポートの一方側にて前記流入ポートに対向して前記第二ポートが設けられ、前記第一ポートの他方側に前記第三ポートが設けられ、
    前記弁体は、前記弁本体の軸方向に沿った一方側にスライドして前記第一ポートと前記第二ポートとを連通させる第一位置と、前記弁本体の軸方向に沿った他方側にスライドして前記第一ポートと前記第三ポートとを連通させる第二位置と、の間を移動することで流路を切り換え、前記第二位置にある該弁体の一部と前記第二ポートの他方側の一部とが重なって設けられ、
    前記流入ポートは、前記第二ポートよりも内径が小さく形成されるとともに、前記第二ポートよりも中心が一方側に偏心して設けられていることを特徴とするスライド式切換弁。
  2. 前記流入ポートは、その投影周縁が前記第二ポートの一方側周縁に内接する位置における互いの中心距離を基準偏心距離として、該基準偏心距離に対する偏心比が0.2以上かつ3.0以下となる範囲に設けられていることを特徴とする請求項1に記載のスライド式切換弁。
  3. 前記流入ポートは、その投影周縁が前記第二ポートの一方側周縁に内接する位置における互いの中心距離を基準偏心距離として、該基準偏心距離に対する偏心比が0.6以上かつ2.4以下となる範囲に設けられていることを特徴とする請求項1に記載のスライド式切換弁。
  4. 前記流入ポートは、前記偏心比が1.0以下となる範囲に設けられていることを特徴とする請求項2又は3に記載のスライド式切換弁。
  5. 流体である冷媒を圧縮する圧縮機と、冷却モード時に凝縮器として機能する第一熱交換器と、冷却モード時に蒸発器として機能する第二熱交換器と、前記第一熱交換器と前記第二熱交換器との間にて冷媒を膨張させて減圧する膨張手段と、請求項1〜4のいずれか一項に記載のスライド式切換弁と、を備え、
    前記スライド式切換弁は、
    前記弁体が前記第一位置に位置した状態において、前記圧縮機で圧縮した冷媒を前記流入ポートから前記弁本体の内部に流入させるとともに、前記第三ポートを介して前記第一熱交換器へ冷媒を流出させ、前記第二熱交換器から前記第二ポートに流入した冷媒を前記第一ポートから前記圧縮機に還流させるか、
    又は、
    前記弁体が前記第二位置に位置した状態において、前記圧縮機で圧縮した冷媒を前記流入ポートから前記弁本体の内部に流入させるとともに、前記第二ポートを介して前記第二熱交換器へ冷媒を流出させ、前記第一熱交換器から前記第三ポートに流入した冷媒を前記第一ポートから前記圧縮機に還流させる
    ことを特徴とする冷凍サイクルシステム。
JP2015157389A 2015-08-07 2015-08-07 スライド式切換弁及び冷凍サイクルシステム Active JP6254980B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015157389A JP6254980B2 (ja) 2015-08-07 2015-08-07 スライド式切換弁及び冷凍サイクルシステム
CN201610639181.1A CN106440550B (zh) 2015-08-07 2016-08-05 滑动式切换阀以及冷冻循环系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157389A JP6254980B2 (ja) 2015-08-07 2015-08-07 スライド式切換弁及び冷凍サイクルシステム

Publications (2)

Publication Number Publication Date
JP2017036766A true JP2017036766A (ja) 2017-02-16
JP6254980B2 JP6254980B2 (ja) 2017-12-27

Family

ID=58048697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157389A Active JP6254980B2 (ja) 2015-08-07 2015-08-07 スライド式切換弁及び冷凍サイクルシステム

Country Status (2)

Country Link
JP (1) JP6254980B2 (ja)
CN (1) CN106440550B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111911660A (zh) * 2019-05-07 2020-11-10 株式会社不二工机 流路切换阀

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110274052B (zh) * 2018-03-13 2021-10-22 浙江三花智能控制股份有限公司 流体切换装置及热管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146661U (ja) * 1983-03-18 1984-10-01 日本ランコ株式会社 切換弁
JPS61109974A (ja) * 1984-10-31 1986-05-28 Saginomiya Seisakusho Inc 四方逆転弁の製造方法
JP2002022315A (ja) * 2000-07-04 2002-01-23 Ranco Japan Ltd 高効率四方切換弁
JP2009299762A (ja) * 2008-06-12 2009-12-24 Sanden Corp 制御弁及びこの制御弁を備えた空調機
JP2011041530A (ja) * 2009-08-24 2011-03-03 Emura Tekkosho:Kk 根菜類の皮むき機
JP2015068501A (ja) * 2013-09-27 2015-04-13 浙江三花制冷集団有限公司 四方切換弁及びその主弁

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573497A (en) * 1984-08-23 1986-03-04 Ranco Incorporated Refrigerant reversing valve
JP5249818B2 (ja) * 2009-02-27 2013-07-31 株式会社不二工機 四方切換弁
JP5300657B2 (ja) * 2009-08-25 2013-09-25 日立アプライアンス株式会社 空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146661U (ja) * 1983-03-18 1984-10-01 日本ランコ株式会社 切換弁
JPS61109974A (ja) * 1984-10-31 1986-05-28 Saginomiya Seisakusho Inc 四方逆転弁の製造方法
JP2002022315A (ja) * 2000-07-04 2002-01-23 Ranco Japan Ltd 高効率四方切換弁
JP2009299762A (ja) * 2008-06-12 2009-12-24 Sanden Corp 制御弁及びこの制御弁を備えた空調機
JP2011041530A (ja) * 2009-08-24 2011-03-03 Emura Tekkosho:Kk 根菜類の皮むき機
JP2015068501A (ja) * 2013-09-27 2015-04-13 浙江三花制冷集団有限公司 四方切換弁及びその主弁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111911660A (zh) * 2019-05-07 2020-11-10 株式会社不二工机 流路切换阀
CN111911660B (zh) * 2019-05-07 2024-04-26 株式会社不二工机 流路切换阀

Also Published As

Publication number Publication date
CN106440550A (zh) 2017-02-22
JP6254980B2 (ja) 2017-12-27
CN106440550B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP6261008B2 (ja) スライド式切換弁及び冷凍サイクルシステム
CN107489786B (zh) 滑动式切换阀以及冷冻循环系统
CN103742410B (zh) 旋转式压缩机及其压缩装置、空调器
JP2017075675A (ja) スライド式切換弁及び冷凍サイクルシステム
JP6449196B2 (ja) スライド式切換弁および冷凍サイクルシステム
WO2007034745A1 (ja) 空気調和装置
JP5870760B2 (ja) 四方弁とそれを備えたヒートポンプ装置
WO2012101672A1 (ja) 空気調和装置
KR102014616B1 (ko) 공기 조화 장치
JP2018066536A (ja) 熱交換器およびそれを用いた冷凍システム
JP6254980B2 (ja) スライド式切換弁及び冷凍サイクルシステム
JP5275948B2 (ja) 四方切換弁
JP2019090541A (ja) スライド式切換弁および冷凍サイクルシステム
JP6762023B2 (ja) 複合弁及びそれを備えた冷凍サイクル装置
JP6602711B2 (ja) スライド式切換弁、スライド式切換弁の製造方法および冷凍サイクルシステム
JP2017155887A (ja) スライド式切換弁および冷凍サイクルシステム
CN106838374B (zh) 换向阀及具有该换向阀的制冷系统
JP6832266B2 (ja) スライド式切換弁および冷凍サイクルシステム
CN107806717B (zh) 制冷系统和具有其的空调器、热泵
JP6426644B2 (ja) スライド式切換弁及び冷凍サイクルシステム
CN215980946U (zh) 换向阀及制冷系统
JP6471124B2 (ja) スライド式切換弁および冷凍サイクルシステム
JP6329513B2 (ja) 切換弁及び冷凍サイクルシステム
CN110220324B (zh) 四通阀和空调系统
JP2024010289A (ja) スライド式切換弁及び冷凍サイクルシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171201

R150 Certificate of patent or registration of utility model

Ref document number: 6254980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150