JP2017033904A - 非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池 - Google Patents

非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池 Download PDF

Info

Publication number
JP2017033904A
JP2017033904A JP2015156093A JP2015156093A JP2017033904A JP 2017033904 A JP2017033904 A JP 2017033904A JP 2015156093 A JP2015156093 A JP 2015156093A JP 2015156093 A JP2015156093 A JP 2015156093A JP 2017033904 A JP2017033904 A JP 2017033904A
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
electrolyte battery
electrode
battery
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015156093A
Other languages
English (en)
Inventor
有紀 太田
Arinori Ota
有紀 太田
俊充 田中
Toshimitsu Tanaka
俊充 田中
俊相 趙
Shunso Cho
俊相 趙
岩崎 秀治
Hideji Iwasaki
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2015156093A priority Critical patent/JP2017033904A/ja
Publication of JP2017033904A publication Critical patent/JP2017033904A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】非水電解質電池用バインダーの結着性を損なうことなく、非水電解質電池の電池特性の向上を図ること。【解決手段】バインダー組成物と活物質と溶媒とを含有する、非水電解質電池電極用スラリー組成物であって、前記活物質が結晶性炭素であり、前記バインダー組成物が、α−オレフィン類とマレイン酸類とが共重合したα-オレフィン−マレイン酸類共重合体の中和塩を含み、かつ、前記共重合体におけるマレイン酸類から生成するカルボン酸に対する中和度が0.3〜0.9である、非水電解質電池電極用スラリー組成物、並びにそれを用いた非水電解質電池負極、及び非水電解質電池等の提供。【選択図】なし

Description

本発明は、非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池に関する。
近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、非水電解質電池が多用されている。携帯端末は、より快適な携帯性が求められるため、小型化、薄型化、軽量化、高性能化が急速に進み、様々な場で利用されるようになった。この動向は現在も続いており、携帯端末に使用される電池にも、小型化、薄型化、軽量化、高性能化がさらに要求されている。
非水電解質電池は、正極と負極とをセパレーターを介して設置し、LiPF、LiBF LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有する。
上記負極および正極は、通常、バインダーおよび増粘剤を水に溶解、または分散させ、これに活物質、必要に応じて導電助剤(導電付与剤)などを混合して得られる電極用スラリー(以下、単にスラリーということがある)を集電体に塗布して、水を乾燥することにより、混合層として結着させて形成される。より具体的には、例えば、負極は、活物質であるリチウムイオン吸蔵・放出可能な炭素質材料、および、必要に応じて導電助剤のアセチレンブラックなどを、銅などの集電体に二次電池電極用バインダーにより相互に結着させたものである。一方、正極は、活物質であるLiCoOなど、および、必要に応じて負極と同様の導電助剤を、アルミニウムなどの集電体に二次電池電極用バインダーを用いて相互に結着させたものである。
これまで、水媒体用のバインダーとして、スチレン−ブタジエンゴムなどのジエン系ゴムやポリアクリル酸などのアクリル系が使用されている(例えば、特許文献1および2)。増粘剤としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロポキシセルロース、カルボキシメチルセルロース・ナトリウム塩(CMC−Na)、ポリアクリル酸ソーダなどが挙げられるが、この中でCMC−Naがよく用いられている(例えば、特許文献3)。
しかしながら、スチレン−ブタジエンゴムなどのジエン系ゴムは、銅などの金属集電極との接着性が低く、集電極と電極材の密着性を高めるために使用量を下げることが出来ないという問題がある。また、充放電時に発生する熱に対して弱く、容量維持率が低いという問題もある。最近では、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、電池の高容量化(低抵抗化)、寿命(サイクル特性)、充電速度(レート特性)の向上が急務となっているなか、特に障害となっている。
非水電解質電池において、電池容量は活物質の量に影響されるため、電池という限られた空間内で活物質を増加させるには、バインダーおよび増粘剤の量を抑えることが有効である。また、レート特性についても、電子の移動の容易さに影響されるため、非導電性で電子の移動を妨げるバインダーおよび増粘剤の量を抑えることが有効である。しかしながら、バインダーおよび増粘剤の量を少なくすると、集電極と電極材および電極内の活物質間の結着性が低下し、長時間の使用に対する耐久性(電池寿命)が著しく低下するだけでなく、電極として脆いものとなってしまう。このように、これまで、集電極と電極材の結着性を保持したまま電池容量などの電池特性の向上を図ることは困難であった。
特開2000−67917号公報 特開2008−288214号公報 特開2014−13693号公報
本発明は上記課題事情に鑑みてなされたものであり、スラリー組成物に含まれるバインダーとしての機能、すなわち、活物質間および集電極との結着性を損なうことなく、電池特性の向上を図ることを目的とする。
本発明者らは、上記課題を解決すべく鋭意研究した結果、下記構成の非水電解質電池用スラリー組成物を使用することで、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。
すなわち、本発明の一局面に係る、バインダー組成物と活物質と溶媒とを含有する非水電解質電池電極用スラリー組成物(以下、単にスラリー組成物ともいう)は、前記活物質が結晶性炭素であり、前記バインダー組成物が、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩を含み、かつ、前記共重合体におけるマレイン酸類から生成するカルボン酸に対する中和度が0.3〜0.9であることを特徴とする。
このような構成により、集電極間、活物質間の結着性を損なうことなく、電池特性の向上を図ることができると考えられる。
特に、前記バインダー組成物において、前記水溶液の中和度が0.3〜0.9であることによりマレイン酸類から生成するカルボン酸が増加し、集電箔との接着性や分子同士の結着性が高くなる。結果的に、増粘剤や分散剤などを使用する必要がなくなるという利点を有する。
本発明のさらに他の局面に係る非水電解質電池負極は、集電体に、上記非水電解質電池用スラリー組成物を少なくとも含有する混合層を結着してなることを特徴とする。
また、本発明のさらに他の局面に係る非水電解質電池は、上記負極と、正極と、電解液とを備えることを特徴とする。
本発明によれば、結着性に優れた非水電解質電池用バインダー組成物と活物質と溶媒とを含むスラリー組成物を得ることができ、さらにそれを用いて、非水電解質電極の電池特性の向上を実現することができる。
以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。
本実施形態の非水電解質電池電極用スラリー組成物に含まれる、非水電解質電池用バインダー組成物(以下、単にバインダー組成物とも称す)は、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩を含み、かつ、前記共重合体における中和度が0.3〜0.9であることを特徴とする。
本実施形態において、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体は、α−オレフィンに基づく単位(A)とマレイン酸類に基づく単位(B)とからなり、(A)および(B)の各成分は(A)/(B)=1/1〜1/3(モル比)を満足することが好ましい。また、重量平均分子量が10,000〜500,000である線状ランダム共重合体であることが好ましい。
本実施形態において、α−オレフィン類に基づく単位(A)とは一般式−CHCR−(式中、R1およびR2は同じであっても互いに異なっていてもよく、水素、炭素数1〜10のアルキル基またはアルケニル基を表わす)で示される構成を意味する。また本実施形態で使用するα−オレフィンとは、α位に炭素−炭素不飽和二重結合を有する直鎖状または分岐状のオレフィンである。特に、炭素数2〜12とりわけ2〜8のオレフィンが好ましい。使用し得る代表的な例としては、エチレン、プロピレン、n−ブチレン、イソブチレン、n−ペンテン、イソプレン、2−メチル−1−ブテン、3−メチル−1−ブテン、n−ヘキセン、2−メチル−1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、2−エチル−1−ブテン、1,3−ペンタジエン、1,3−ヘキサジエン、2,3−ジメチルブタジエン、2,5−ペンタジエン、1,4−ヘキサジエン、2,2,4−トリメチル−1−ペンテン等が挙げられる。この中でも特に、入手性、重合成、生成物の安定性という観点から、イソブチレンが好ましい。ここでイソブチレンとは、イソブチレンを主成分として含む混合物、例えば、BB留分(C4留分)をも包含する。これ等のオレフィン類は単独で用いても2種以上組合せて用いても良い。
本実施形態において、マレイン酸類に基づく単位(B)としては、無水マレイン酸、マレイン酸、マレイン酸モノエステル(例えば、マレイン酸メチル、マレイン酸エチル、マレイン酸プロピル、マレイン酸フェニル等)、マレイン酸ジエステル(例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジフェニル等)等の無水マレイン酸誘導体、マレイン酸イミドまたはそのN−置換誘導体(例えば、マレイン酸イミド、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−n−ブチルマレイミド、N−t−ブチルマレイミド、N−シクロヘキシルマレイミド等のN−置換アルキルマレイミドN−フエニルマレイミド、N−メチルフエニルマレイミド、N−エチルフエニルマレイミド等のN−置換アルキルフエニルマレイミド、あるいはN−メトキシフエニルマレイミド、N−エトキシフエニルマレイミド等のN−置換アルコキシフエニルマレイミド)、更にはこれ等のハロゲン化物(例えばN−クロルフエニルマレイミド)、無水シトラコン酸、シトラコン酸、シトラコン酸モノエステル(例えば、シトラコン酸メチル、シトラコン酸エチル、シトラコン酸プロピル、シトラコン酸フェニル等)、シトラコン酸ジエステル(例えば、シトラコン酸ジメチル、シトラコン酸ジエチル、シトラコン酸ジプロピル、シトラコン酸ジフェニル等)等の無水シトラコン酸誘導体、シトラコン酸イミドまたはそのN−置換誘導体(例えば、シトラコン酸イミド、2−メチル−N−メチルマレイミド、2−メチル−N−エチルマレイミド、2−メチル−N−プロピルマレイミド、2−メチル−N−n−ブチルマレイミド、2−メチル−N−t−ブチルマレイミド、2−メチル−N−シクロヘキシルマレイミド等のN−置換アルキルマレイミド2−メチル−N−フエニルマレイミド、2−メチル−N−メチルフエニルマレイミド、2−メチル−N−エチルフエニルマレイミド等の2−メチル−N−置換アルキルフエニルマレイミド、あるいは2−メチル−N−メトキシフエニルマレイミド、2−メチル−N−エトキシフエニルマレイミド等の2−メチル−N−置換アルコキシフエニルマレイミド)、更にはこれ等のハロゲン化物(例えば2−メチル−N−クロルフエニルマレイミド)が好ましく挙げられる。これらの中では、入手性、重合速度、分子量調整の容易さという観点から、無水マレイン酸の使用が好ましい。また、これらのマレイン酸類は単独で使用しても、複数を混合して使用してもよい。
本実施形態の共重合体における上記各構造単位の含有割合は、(A)/(B)がモル比で1/1〜1/3の範囲内にあるのが望ましい。水に溶解する高分子量体としての親水性、水溶性、金属やイオンへの親和性という利点が得られるからである。特に、(A)/(B)のモル比にあっては1/1またはそれに近い値であることが望ましく、その場合にはα−オレフィンに基づく単位、すなわち−CH2CR1R2−で示される単位と、マレイン酸類に基づく単位が交互に繰り返された構造を有する共重合体となる。
本実施形態の共重合体を得るための、α−オレフィン類及びマレイン酸類の仕込み混合比は目的とする共重合体の組成により変わるが、マレイン酸類モル数の1〜3倍モル数のα−オレフィンを用いるのがマレイン酸類の反応率を高めるために有効である。
本実施形態の共重合体を製造する方法については、特に限定はなく、例えば、ラジカル重合により共重合体を得ることができる。その際、使用する重合触媒としてはアゾビスイソブチロニトリル、1,1−アゾビスシクロヘキサン−1−カルボニトリル等のアゾ触媒、ベンンゾイルパーオキサイド、ジクミルパ−オキサイド等の有機過酸化物触媒が好ましい。前記重合触媒の使用量は、マレイン酸類に対し0.1〜5モル%となる範囲を必要とするが、好ましくは0.5〜3モル%である。重合触媒およびモノマーの添加方法として重合初期にまとめて添加しても良いが、重合の進行にあわせて遂次添加する方法が望ましい。
本実施形態の共重合体の製造方法において、分子量の調節は主にモノマー濃度、触媒使用量、重合温度によって適宜行なうことができる。例えば、分子量を低下させる物質として周期律表第I、IIまたはIII族の金属の塩、水酸化物、第IV族の金属のハロゲン化物、一般式N≡、HN=、HN−もしくはHN−で示されるアミン類、酢酸アンモニウム、尿素等の窒素化合物、あるいはメルカプタン類等を、重合の初期または重合の進行中に添加することによって共重体の分子量を調節することも可能である。重合温度は40℃〜150℃であることが好ましく、特に60℃〜120℃の範囲であることがより好ましい。重合温度が高すぎると生成する共重合物がブロック状になり易く、また重合圧力が著しく高くなるおそれがある。重合時間は、通常1〜24時間程度であることが好ましく、より好ましくは2〜10時間である。重合溶媒の使用量は、得られる共重合物濃度が5〜40重量%あることが好ましく、より好ましくは10〜30重量%となる様に調節することが望ましい。
上述したように、本実施形態の共重合体は、通常、10,000〜500,000の重量平均分子量を有することが好ましい。より好ましい重量平均分子量は、15,000〜450,000である。本実施形態の共重合体の重量平均分子量が10,000未満となると、結晶性が高く、粒子間の結着強度が小さくなるおそれがある。一方、500,000を超えると、水や溶媒への溶解度が小さくなり、容易に析出する場合がある。
本実施形態の共重合体の重量平均分子量は、例えば、光散乱法や粘度法によって測定することができる。粘度法を用いて、ジメチルホルムアミド中の極限粘度(〔η〕)を測定した場合、本実施形態の共重合体は極限粘度が0.05〜1.5の範囲にあることが好ましい。なお、本実施形態の共重合体は通常16〜60メッシュ程度の粒のそろった粉末状で得られる。
本実施形態において、共重合体の中和塩とは、マレイン酸類から生成するカルボニル酸の活性水素が、塩基性物質と反応し、塩を形成して中和塩となっているものであることが好ましい。本実施形態で使用するα−オレフィン−マレイン酸類共重合体の中和塩においては、バインダーとしての結着性の観点から前記塩基性物質として、一価の金属を含む塩基性物質および/またはアンモニアを使用することが好ましい。
本実施形態において、一価の金属を含む塩基性物質および/またはアンモニアの使用量は、特に制限されるものではなく、使用目的等により適宜選択されるが、通常、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6〜1.8モルとなる量であることが好ましい。このような使用量であれば、本実施形態のバインダー組成物の中和度を所定の範囲に調整することが可能となると考えられる。なお、一価の金属を含む塩基性物質の使用量を、好ましくは、マレイン酸共重合体中のマレイン酸単位1モル当り0.8〜1.6モル量とすると、アルカリ残留の少なく水溶性の共重合体塩を得ることができる。
α−オレフィン−マレイン酸類共重合体と、一価の金属を含む塩基性物質および/またはアンモニアとの反応は、常法に従って実施できるが、水の存在下に実施し、α−オレフィン−マレイン酸類共重合体の中和塩を水溶液として得る方法が簡便であり、好ましい。
本実施形態で使用可能な一価の金属を含む塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属の酢酸塩;リン酸三ナトリウムなどのアルカリ金属のリン酸塩等が挙げられる。これらの中でもアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。特に、非水電解質電池用のバインダーとしては、アンモニア、水酸化リチウムの使用が好ましい。一価の金属を含む塩基性物質および/またはアンモニアは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また電池性能に悪影響を及ぼさない範囲内であれば、水酸化ナトリウムなどのアルカリ金属の水酸化物などを含有する塩基性物質を併用して、α−オレフィン−マレイン酸類共重合体の中和塩を調製してもよい。
次に、本実施形態において、前記バインダー組成物の前記共重合体における、マレイン酸類から生成するカルボン酸に対する中和度は0.3〜0.9である。中和度が0.3未満になると、水や溶媒への溶解度が小さくなり容易に析出し、スラリー塗工が困難となる。一方、中和度が0.9より高くなると、電極との接着性が得られず、脆い電極となってしまい、電池性能の低下、短絡の原因となってしまう。より好ましくは、前記中和度が0.3〜0.8の範囲であることが望ましい。それにより、より塗工性に優れたスラリー組成物を得ることができる。
本実施形態において、中和度は、塩基による適定、赤外線スペクトル、NMRスペクトルなどの方法を用いることができるが、簡便且つ正確に中和点を測定するには、塩基による滴定を行うことが好ましい。具体的な滴定の方法としては、特に限定されるものではないが、イオン交換水等の不純物の少ない水に溶解して、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性物質により、中和を行うことによって実施できる。中和点の指示薬としては、特に限定するものではないが、塩基によりpH指示するフェノールフタレインなどの指示薬、PHメーターを使用することが出来る。
本実施形態において、前記バインダー組成物の中和度は、例えば、バインダー組成物の中和度を調整することで調整してもよいし、バインダー組成物を溶解させた水溶液の中和度を直接調整してもよい。具体的には、例えば、中和度の調整は、上述したような一価の金属を含む塩基性物質(アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等)の添加量を調整することによって、前記範囲に調整することが可能であるが、それに限定はされない。なお、具体的には、前述の通り、一価の金属を含む塩基性物質および/またはアンモニアを、好ましくは、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6〜1.8モルとなる量添加することによって、前記範囲に調整することができる。より好ましくは、一価の金属を含む塩基性物質および/またはアンモニアを、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6〜1.8モルとなる量添加することにより、より確実に前記範囲に調整することができる。
次に、本実施形態において、共重合体の開環率とは、マレイン酸類として無水マレイン酸を用いた場合の、α−オレフィン類と重合する無水マレイン酸類部位の加水分解率を表す。本実施形態の共重合体において、好ましい開環率は、60〜100%であり、より好ましくは、70%〜100%、更に好ましくは、80〜100%である。開環率が低すぎると、共重合体の構造的自由度が小さくなり、伸縮性に乏しくなるため、隣接する極材粒子を接着する力が小さくなるおそれがあり、好ましくない。さらに、水に対する親和性が低く、溶解性が乏しいという問題点を生じるおそれがある。開環率は、例えば、無水マレイン酸のα位に位置する水素を基準として、開環したマレイン酸のα位の水素を1H−NMRで測定して比率を求めることも出来るし、マレイン酸のカルボニル基と開環した無水マレイン酸に由来するカルボニル基をIR測定によって比率を決定することも出来る。
本実施形態の非水電解質電池用スラリー組成物は、上述したバインダー組成物に加えて、活物質である結晶性炭素及び溶媒を含むことを特徴とする。
本実施形態の非水電解質電池用スラリー組成物に添加される活物質である結晶性炭素(活物質と略記する場合がある)としては、例えば、グラファイト、天然黒鉛、人造黒鉛、カーボンナノチューブなどの炭素質材料、および、金属酸化物とこれら結晶性炭素との複合材料などが例示される。このような結晶性炭素を活物質として使用することによって、作製時のハンドリングが良く、安全性が高い電池を作製できるという利点がある。
前記非水電解質電池用スラリー組成物において、活物質である結晶性炭素100重量部に対する、α−オレフィン−マレイン酸類共重合体の中和塩の使用量は、通常、0.1〜20重量部であることが好ましく、より好ましくは0.3〜10重量部、さらに好ましくは0.5〜8重量部である。共重合体の量が過度に少ないと電極用スラリーの粘度が低すぎて混合層の厚みが薄くなるおそれがあり、逆に、共重合体が過度に多いと放電容量が低下する可能性がある。
一方、上記非水電解質電池用スラリー組成物における溶媒の量は、活物質である結晶性炭素100重量部に対し、通常、10〜150重量部であることが好ましく、より好ましくは30〜130重量部である。
本実施形態の非水電解質電池用スラリー組成物における溶媒としては、例えば、水、メタノール、エタノール、プロパノール、2−プロパノールなどのアルコール類、テトラヒドロフラン、1,4−ジオキサンなどの環状エーテル類、N,N−ジメチルホルミアミド、N,N−ジメチルアセトアミドなどのアミド類、N−メチルピロリドン、N−エチルピロリドンなどの環状アミド類、ジメチルスルホキシドなどのスルホキシド類などが例示される。これらの中では、安全性という観点から、水の使用が好ましい。
また、本実施形態の非水電解質電池用スラリー組成物の溶媒として水を使用する場合、次に記す有機溶媒を、溶媒全体の好ましくは20重量%以下となる範囲で併用しても良い。そのような有機溶媒としては、常圧における沸点が100℃以上300℃以下のものが好ましく、例えば、n−ドデカンなどの炭化水素類;2−エチル−1−ヘキサノール、1−ノナノールなどのアルコール類;γ−ブチロラクトン、乳酸メチルなどのエステル類;N−メチルピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などの有機分散媒が挙げられる。
本実施形態では、前記非水電解質電池用スラリー組成物に、必要に応じて、さらに増粘剤、導電助剤を添加することができる。
添加できる増粘剤としては、特に限定されるものではなく、種々のアルコール類、特に、ポリビニルアルコールおよびその変性物、セルロース類、でんぷんなどの多糖類を使用することができる。
非水電解質電池用スラリー組成物に必要に応じて配合される増粘剤の使用量は、活物質である結晶性炭素100重量部に対し0.1〜4重量部程度であることが好ましく、より好ましくは0.3〜3重量部、さらに好ましくは0.5〜2重量部である。増粘剤が過度に少ないと非水電解質電池用スラリーの粘度が低すぎて混合層の厚みが薄くなる場合があり、逆に、増粘剤が過度に多いと放電容量が低下する場合がある。
また、非水電解質電池用スラリー組成物に必要に応じて配合される導電助剤としては、例えば、金属粉、導電性ポリマー、アセチレンブラックなどが挙げられる。導電助剤の使用量は、活物質100重量部に対し、通常、0.3〜10重量部であることが好ましく、より好ましくは0.5〜7重量部である。
本実施形態において非水電解質電池負極は、集電体に、少なくとも本実施形態の非水電解質電池用スラリー組成物を含む混合層を結着させてなることを特徴とする。
上記負極は、上述の非水電解質電池用スラリー組成物を集電体に塗布してから溶媒を乾燥などの方法によって除去することにより形成することができる。
本実施形態の非水電解質電池負極に使用される集電体は、導電性材料からなるものであれば特に制限されないが、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料を使用することができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
特に、負極集電体として銅を用いた場合に、本発明の非水電解質電池用スラリーの効果が最もよく現れる。集電体の形状は特に制限されないが、通常、厚さ0.001〜0.5mm程度のシート状であることが好ましい。
非水電解質電池用スラリーを集電体へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、溶媒または分散媒を乾燥などの方法によって除去した後に形成される活物質、導電助剤、バインダーおよび増粘剤を含む混合層の厚みが好ましくは0.005〜5mm、より好ましくは0.01〜2mmとなる量が一般的である。
非水電解質電池用スラリー組成物に含まれる水などの溶媒の乾燥方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲となる中で、できるだけ早く溶媒が除去できるように調整するとよい。更に、電極の活物質の密度を高めるために、乾燥後の集電体をプレスすることは有効である。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。
さらに、本発明には、上記非水電解質電池負極と、正極と、電解液を備えた、非水電解質電池も包含される。
本実施形態では、正極は、非水電解質電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO−P、MoO、VO5、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、上記負極と同様の導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリーを、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。
また、本実施形態の非水電解質電池には、電解質を溶媒に溶解させた電解液を使用することができる。電解液は、通常の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来より公知のリチウム塩がいずれも使用できLiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C)4、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。
このような電解質を溶解させる溶媒(電解液溶媒)は特に限定されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ−ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3−ジオキソラン、4―メチル−1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3−メチル−2−オキサゾリジノンなどのオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独もしくは二種以上混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。
本実施形態の非水電解質電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、ポリプロピレン多孔膜などのセパレーターを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型など何れであってもよい。
本実施形態の非水電解質電池は、接着性と電池特性の向上を両立させた電池であり、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても非常に有用である。
以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。
(実施例1)
<バインダー組成物>
バインダー組成物として水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.8、開環率99%)25g(0.16mol)を用い、10w%水溶液を調整して以下の試験で用いた。中和度の調整は、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し1.6当量(0.256mol)添加することによって行った。
<非水電解質電池用スラリーの作製>
スラリー作製は活物質として天然黒鉛(DMGS、BYD製)100重量部に対して、負極用バインダー組成物の10w%水溶液を固形分として6.45重量部、および導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.08重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=100:1.08:6.45である。また、溶媒としての水は活物質に対して48.4wt%であった。
<非水電解質電池用バインダー組成物のpHの測定>
ガラス電極pHメーター(D−51、堀場製)を用いて、上記バインダー組成物の10w%水溶液についてpH測定を行った。結果を下記表1に示す。
<非水電解質電池用負極の作製>
得られたスラリーをバーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<非水電解質電池用負極の剥離強度測定>
上記で得られた電池用塗工電極の剥離強度を、電極を構成する粒子(バインダー)間で剥離した強度を測定することによって評価した。当該剥離強度は、ダイプラウィンテス社製SAICASを用い、切刃の種類はダイヤモンド、刃幅1mm、スクイズ角は20°、逃げ角は10°、負極活物質層表面からの切込み量35μm、切刃の水平速度10μm/secで測定した。剥離強度は0.19kN/mであった。上記結果を下記表1に示す。
<電池の作製>
上記で得られた電池用塗工電極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。正極には金属リチウム箔(厚さ0.2mm、φ16mm)を用いた。また、セパレーターとしてポリプロフィレン系(セルガード#2400、ポリポア製)を使用して、電解液は六フッ化リン酸リチウム(LiPF6)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M−LiPF、EC/EMC=3/7vol%、VC2wt%)を用いて注入し、コイン電池(2032タイプ)を作製した。
<評価方法:充放電特性試験>
作製したコイン電池は、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、充電はリチウム電位に対して0Vになるまで活物質量に対して0.1C(約0.5mA/cm)の定電流充電を行い、更にリチウム電位に対して0.02mAの電流まで0Vの定電圧充電を実施した。このときの容量を充電容量(mAh/g)とした。次いで、リチウム電位に対して0.1C(約0.5mA/cm)の定電流放電を1.5Vまで行い、このときの容量を放電容量(mAh/g)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。コイン電池の直流抵抗は、1回の充電を行った後(満充電状態)の抵抗値を採用した。上記結果を下記表1に示す。
コイン電池の放電容量維持率(%)は、前記の充放電条件を用いて1回目の放電容量に対する20回目の放電容量の比率をとした。結果を下記表1に示す。
(実施例2)
バインダー組成物として水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.5、開環率96%)の10w%水溶液を調整して以下の試験で用いた。中和度の調整は、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し1.0当量(0.160mol)添加することによって行った。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。上記実施例1と同様の方法によって測定した剥離強度は0.22kN/mであった。上記結果を下記表1に示す。
(実施例3)
バインダー組成物として水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.3、開環率82%)の10w%水溶液を調整して以下の試験で用いた。中和度の調整は、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し0.60当量(0.096mol)添加することによって行った。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。上記実施例1と同様の方法によって測定した剥離強度は0.30kN/mであった。上記結果を下記表1に示す。
(比較例1)
バインダー組成物として水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度1.0、開環率10%)の10w%水溶液を調整して以下の試験で用いた。中和度の調整は、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し2.0当量(0.32mol)添加することによって行った。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。上記実施例1と同様の方法によって測定した剥離強度は0.01kN/mであった。上記結果を下記表1に示す。
(比較例2)
水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し0.4当量(0.064mol)を添加することによって、中和度0.2の水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000)を得ようとしたが、溶解性が低く水溶性樹脂を得ることができなかった。よって、バインダー組成物の製造ができなかった。
(比較例3)
活物質としてSiO(シグマアルドチッリ製)100重量部に対して、実施例2に記載の非水電解質電池用バインダー組成物の10w%水溶液を固形分として5.56重量部、および導電助剤(導電付与剤)としてデンカブラック(電気化学工業株式会社製)を固形分として5.56重量部を用いたスラリー作製を行った。スラリー中の活物質とバインダーの組成比は固形分として、SiO:バインダー組成物:導電助剤=100:5.56:5.56である。また、溶媒としての水は活物質に対して70wt%であった。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、電解液に六フッ化リン酸リチウム(LiPF)のエチレンカーボネート(EC)とジエチルカーボネート(DEC)混合溶媒系(1M−LiPF、EC/DEC=1/1vol%)を用いたコイン電池を得て、充放電特性試験を行った。上記実施例1と同様の方法によって測定した剥離強度は0.07kN/mであった。上記結果を下記表1に示す。
Figure 2017033904
(考察)
バインダー組成物の中和度が0.3〜0.9の範囲であった実施例1〜3のスラリー組成物は、増粘剤を添加しなくても集電体に対して十分な剥離強度を示し、優れた接着性を示した。そして、表1から明らかなように、実施例1〜3の電池では、低抵抗化及び高い放電容量維持率が実現することが示された。
これに対し、中和度1.0のバインダー組成物を用いた比較例1では、金属箔との接着性が悪く、電池抵抗が高く、放電容量維持率が低くなるという結果となった。また、前記中和度が本発明の範囲未満であった比較例2では、バインダー組成物を製造することができなかった。さらに、活物質として結晶性炭素ではなく金属酸化物を用いた比較例3では、接着性が低く、充放電中に電極が剥がれ易く容量維持率が低かった。

Claims (3)

  1. バインダー組成物と活物質と溶媒とを含有する、非水電解質電池電極用スラリー組成物であって、
    前記活物質が結晶性炭素であり、
    前記バインダー組成物が、α−オレフィン類とマレイン酸類とが共重合したα-オレフィン−マレイン酸類共重合体の中和塩を含み、かつ、前記共重合体におけるマレイン酸類から生成するカルボン酸に対する中和度が0.3〜0.9である、非水電解質電池電極用スラリー組成物。
  2. 請求項1に記載のスラリー組成物を含有する混合層を集電体に結着してなる、非水電解質電池負極。
  3. 請求項2に記載の非水電解質電池負極を有する、非水電解質電池。






JP2015156093A 2015-08-06 2015-08-06 非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池 Pending JP2017033904A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156093A JP2017033904A (ja) 2015-08-06 2015-08-06 非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156093A JP2017033904A (ja) 2015-08-06 2015-08-06 非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池

Publications (1)

Publication Number Publication Date
JP2017033904A true JP2017033904A (ja) 2017-02-09

Family

ID=57989370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156093A Pending JP2017033904A (ja) 2015-08-06 2015-08-06 非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池

Country Status (1)

Country Link
JP (1) JP2017033904A (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210883A (ja) * 2004-12-27 2006-08-10 Matsushita Electric Ind Co Ltd 分極性電極体とその製造方法、及びこれを用いた電気化学キャパシタ
WO2006085416A1 (ja) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. エネルギーデバイス電極用バインダ樹脂エマルション及びこれを用いたエネルギーデバイス電極並びにエネルギーデバイス
WO2008029502A1 (en) * 2006-08-29 2008-03-13 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode
JP2010009940A (ja) * 2008-06-26 2010-01-14 Denso Corp 二次電池電極用バインダー、並びに該バインダーを用いた二次電池用電極及び非水電解液二次電池
WO2014051043A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 電気化学素子電極用導電性接着剤組成物、接着剤層付集電体及び電気化学素子用電極
JP2014510362A (ja) * 2011-01-27 2014-04-24 ネグゼオン・リミテッド 二次電池セル用バインダー
JP2014098151A (ja) * 2012-11-14 2014-05-29 Samsung Electronics Co Ltd 高分子、それを含むリチウム電池用電極及びそれを具備したリチウム電池
JP2015128006A (ja) * 2013-12-27 2015-07-09 花王株式会社 水性導電性ペースト

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210883A (ja) * 2004-12-27 2006-08-10 Matsushita Electric Ind Co Ltd 分極性電極体とその製造方法、及びこれを用いた電気化学キャパシタ
WO2006085416A1 (ja) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. エネルギーデバイス電極用バインダ樹脂エマルション及びこれを用いたエネルギーデバイス電極並びにエネルギーデバイス
WO2008029502A1 (en) * 2006-08-29 2008-03-13 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode
JP2010009940A (ja) * 2008-06-26 2010-01-14 Denso Corp 二次電池電極用バインダー、並びに該バインダーを用いた二次電池用電極及び非水電解液二次電池
JP2014510362A (ja) * 2011-01-27 2014-04-24 ネグゼオン・リミテッド 二次電池セル用バインダー
WO2014051043A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 電気化学素子電極用導電性接着剤組成物、接着剤層付集電体及び電気化学素子用電極
JP2014098151A (ja) * 2012-11-14 2014-05-29 Samsung Electronics Co Ltd 高分子、それを含むリチウム電池用電極及びそれを具備したリチウム電池
JP2015128006A (ja) * 2013-12-27 2015-07-09 花王株式会社 水性導電性ペースト

Similar Documents

Publication Publication Date Title
TWI580102B (zh) Lithium ion secondary battery negative electrode water-soluble adhesive composition, and a lithium ion secondary battery negative electrode composition, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6138383B1 (ja) 非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用スラリー組成物、非水電解質電池負極、及び非水電解質電池
JPWO2018131572A1 (ja) 非水電解質電池電極用増粘安定剤、並びに、それを含むバインダー組成物、非水電解質電池電極用スラリー組成物、非水電解質電池電極及び非水電解質電池
JP2016189253A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2018101134A1 (ja) 非水電解質電池電極用バインダー組成物およびそれを原料とするハイドロゲル、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極、及び非水電解質電池
KR102101574B1 (ko) 비수 전해질 전지 전극용 슬러리 조성물, 그리고, 그것을 사용한 비수 전해질 전지 정극 및 비수 전해질 전지
JP2018063799A (ja) 非水電解質電池電極用バインダー組成物、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極及び非水電解質電池
JP2019071233A (ja) 非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池負極、及び非水電解質電池
JP6138382B1 (ja) 非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用スラリー組成物、非水電解質電池負極、及び非水電解質電池
JP6856972B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189251A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189255A (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2017069162A (ja) 非水電解質二次電池用バインダー組成物、並びにそれを用いた非水電解質二次電池用スラリー組成物、非水電解質二次電池負極、及び非水電解質二次電池
WO2016158637A1 (ja) 非水電解質電池電極用バインダー組成物、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極及び非水電解質電池
TWI614936B (zh) 非水電解質電池負極用漿體組成物、以及使用其之非水電解質電池負極及非水電解質電池
JP6731723B2 (ja) 非水電解質電池用バインダー水溶液用組成物、並びに非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池負極及び非水電解質電池
JP2017033904A (ja) 非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池
TWI605634B (zh) Slurry composition for electrode of non-aqueous electrolyte battery, and non-aqueous electrolyte battery anode and non-aqueous electrolyte battery using the same
JP2016189254A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189252A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189256A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191126