JP2017031863A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2017031863A
JP2017031863A JP2015151787A JP2015151787A JP2017031863A JP 2017031863 A JP2017031863 A JP 2017031863A JP 2015151787 A JP2015151787 A JP 2015151787A JP 2015151787 A JP2015151787 A JP 2015151787A JP 2017031863 A JP2017031863 A JP 2017031863A
Authority
JP
Japan
Prior art keywords
crank angle
pulse
angle pulse
control
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015151787A
Other languages
English (en)
Inventor
由幸 小林
Yoshiyuki Kobayashi
由幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015151787A priority Critical patent/JP2017031863A/ja
Publication of JP2017031863A publication Critical patent/JP2017031863A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 複数の制御ユニットによって構成される制御装置であって、クランク角センサの検出信号にノイズが重畳しているような場合においても、クランク角パルスを用いる制御の制御精度を維持することができる制御装置を提供する。
【解決手段】 クランク角センサから入力されるクランク角パルスCRPのフィルタ処理を行い、フィルタ処理されたクランク角パルスの立ち上り時点から所定時間TPLSの幅を有する修正クランク角パルスCRPMを一つの制御ユニット(IG−ECU11)において生成し、他の制御ユニット(FI−ECU12,TH−ECU13,VT−ECU14)に接続線22〜24を介して供給する。IG−ECU11,FI−ECU12,TH−ECU13,及びVT−ECU14は、修正クランク角パルスCRPMを用いて各ECUに割り当てられた制御を実行する。
【選択図】 図2

Description

本発明は、内燃機関の制御装置に関し、特に制御機能を分担する複数の制御ユニットで構成される制御装置に関する。
特許文献1は、複数の制御装置と、インジェクタや点火コイルなどの駆動装置とを通信線を介して接続することによって構成される制御システムを開示する。このシステムでは、クランク角センサの検出信号は点火コイル駆動装置に入力され、点火コイル駆動装置において波形整形される。波形整形されたクランク角信号は、上記通信線とは別の信号線を介して、インジェクタ駆動装置、及びI/O処理装置に直接入力される(図2)。
特開平7−180603号公報
上記特許文献1に示された制御システムでは、点火コイル駆動装置に入力されるクランク角センサの検出信号にノイズに起因するノイズパルスが重畳している場合には、単に波形整形しただけでは、そのノイズパルスを除去することはできない。例えば、隣り合う正常なクランク角パルスの中間にパルス幅の小さいノイズパルス(短時間ノイズパルス)が重畳する可能性、あるいは正常なクランク角パルスの立ち上り時期の近傍で短時間のうちに高低レベルが変動する短周期変動が発生する可能性がある。そのような短時間ノイズパルスの重畳あるいは短周期変動が発生すると、クランク角パルスの発生タイミングが誤検出され、クランク角パルスを用いた制御(点火時期制御、燃料噴射時期制御)の制御精度が低下する。
本発明はこの点に着目してなされたものであり、複数の制御ユニットによって制御機能を分担して内燃機関の制御を行う制御装置であって、クランク角センサの検出信号にノイズが重畳しているような場合においても、クランク角パルスを用いる制御の制御精度を維持することができる制御装置を提供することを目的とする。
上記目的を達成するため請求項1に記載の発明は、内燃機関(1)の回転に同期したクランク角パルス(CRP)を出力するクランク角センサ(21)と、複数の制御ユニット(11〜14)とを用いて前記機関を制御する内燃機関の制御装置において、前記クランク角パルスは、前記複数の制御ユニットの一つの制御ユニット(11)に供給され、前記一つの制御ユニット(11)は、前記クランク角パルス(CRP)の発生に同期して所定時間(TPLS)幅のパルスを修正クランク角パルス(CRPM)として生成する修正クランク角パルス生成手段を備え、該修正クランク角パルス生成手段によって生成された修正クランク角パルス(CRPM)を、前記複数の制御ニットの前記一つの制御ユニット以外の他の制御ユニット(12〜14)に供給し、前記一つの制御ユニット(11)及び前記他の制御ユニット(12〜14)は、修正クランク角パルス(CRPM)を用いて、各制御ユニットに割り当てられた制御を実行することを特徴とする。
この構成によれば、クランク角センサから出力されるクランク角パルスは、複数の制御ユニットのうちの一つの制御ユニットに供給され、その一つの制御ユニットによって、クランク角パルスの発生に同期して所定時間幅のパルスが修正クランク角パルスとして生成され、他の制御ユニットに供給される。一つの制御ユニット及び他の制御ユニットおいては、修正クランク角パルスを用いて、各制御ユニットに割り当てられた制御が実行される。すなわち、一つ制御ユニットでクランク角パルスの同期した新たなパルスとして修正クランク角パルスが生成され、複数の制御ユニット全体で使用されるので、ノイズの影響を排除または低減して全ての制御ユニットでクランク角パルスの周期及び発生タイミングに応じた制御を高い精度を実行することが可能となる。
請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置において、前記修正クランク角パルス生成手段は、入力されるクランク角パルス(CRP)に含まれる短周期変動成分を除去するフィルタ処理を実行するフィルタ処理手段を有し、該フィルタ処理後のクランク角パルスの発生に同期して前記所定時間幅のパルスを生成することを特徴とする。
この構成によれば、入力されるクランク角パルスに含まれる短周期変動成分を除去するフィルタ処理が実行され、そのフィルタ処理後のクランク角パルスの発生に同期して所定時間幅のパルスが生成されるので、クランク角パルスが短時間ノイズパルスや短周期変動成分を含んでいても、フィルタ処理によってその影響を排除して修正クランク角パルスを生成することができる。
請求項3に記載の発明は、請求項1または2に記載の内燃機関の制御装置において、前記複数の制御ユニットは、前記修正クランク角パルス(CRPM)が入力され、前記修正クランク角パルスを設定時間だけ遅延させることが可能なタイミング調整回路(51〜54)を備え、該タイミング調整回路から出力されるパルスを用いて前記割り当てられた制御を実行することを特徴とする。
この構成によれば、タイミング調整回路によって修正クランク角パルスのタイミングを遅らせることが可能となるので、例えば一つの制御ユニットから他の制御ユニットへの伝送経路中に存在する寄生容量の影響などによるタイミングずれを修正して、各制御ユニットにおける修正クランク角パルスのタイミングを最適に調整することが可能となる。
請求項4に記載の発明は、請求項1から3の何れか1項に記載の内燃機関の制御装置において、前記一つの制御ユニット(11)は、前記他の制御ユニット(12〜14)のそれぞれに対応する出力回路(42〜44)を備え、前記出力回路は、対応する前記他の制御ユニット(12〜14)とそれぞれ個別の接続線(22〜24)によって接続されており、前記修正クランク角パルス(CRPM)は、前記出力回路及び接続線を介して前記他の制御ユニットに供給されることを特徴とする。
この構成によれば、他の制御ユニットへの修正クランクパルスの供給は、他の制御ユニットのそれぞれに対応する出力回路及び接続線を介して行われるので、他の制御ユニット相互間の干渉(例えば一つの他の制御ユニットで発生したノイズの影響がその他の制御ユニットに及ぶこと)を防止できる。
請求項5に記載の発明は、請求項4に記載の内燃機関の制御装置において、前記一つの制御ユニット(11)は、前記出力回路(42〜44)の出力側で前記接続線(22〜24)の異常を検出する機能を有し、前記接続線の異常が検出されたときは、前記修正クランク角パルス生成手段は、修正クランク角パルス(CRPM)の生成を停止することを特徴とする。
この構成によれば、接続線の異常、すなわち断線または地絡が出力回路の出力側で検出可能であり、異常が検出されたときは、修正クランク角パルスの生成が停止されるため、他の制御ユニットへの修正クランク角パルスの供給が同時に停止される。その結果、一部の接続線の異常によって、例えば点火が停止したが燃料噴射は実行されるといった不具合を回避できる。
本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図である。 クランク角パルス(CRP)の伝送経路を説明するためのブロック図である。 修正クランク角パルス(CRPM)を生成するためのバッファリング処理のフローチャートである。 修正クランク角パルスを生成するためのタイマ割り込み処理のフローチャートである。 クランク角パルスのフィルタ処理を説明するためのタイムチャートである。 クランク角パルス(CRP)と、修正クランク角パルス(CRPM)との関係を示すタイムチャートである。 複数の制御ユニットにおける修正クランク角パルス(CRPM)の立ち上り時期の調整を説明するためのタイムチャートである。 修正クランク角パルスを生成する制御ユニットで実行される故障検知処理のフローチャートである。
以下本発明の実施の形態を図面を参照して説明する。
図1は、本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図である。図1において、例えば4気筒を有する内燃機関(以下単に「エンジン」という)1は、吸気弁及び排気弁と、これらを駆動するカムを備えるとともに、吸気弁作動位相可変機構9を備えている。吸気弁作動位相可変機構9は、エンジン1の吸気弁を駆動するカムの、クランク軸回転角度を基準とした作動位相を連続的に変更することにより、吸気弁の作動位相を変更するための機構である。
エンジン1の吸気通路2の途中にはスロットル弁3が設けられ、スロットル弁3には、スロットル弁3を駆動するアクチュエータ8が接続されている。エンジン1は、各気筒の吸気弁の少し上流側に気筒毎に設けられ、吸気通路2の吸気ポート内に燃料を噴射する燃料噴射弁6と、各気筒に設けられた点火プラグ7と備えている。
エンジン1の作動を制御する制御装置は、点火プラグ7による点火の制御を行う点火制御電子制御ユニット(以下「IG−ECU」という)11と、燃料噴射弁6による燃料噴射の制御を行う燃料噴射制御電子制御ユニット「以下「FI−ECU」という)12と、アクチュエータ8を駆動してスロットル弁3の開度を変更し、吸入空気量制御(スロットル弁開度制御)を行うスロットル弁制御電子制御ユニット(以下「TH−ECU」という)13と、吸気弁作動位相可変機構9による吸気弁作動位相制御を行う吸気弁作動位相制御電子制御ユニット(以下「VT−ECU」という)14とによって構成される。各ECU11〜14は、バス10を介して相互に接続されており、必要な情報はバス10を介して相互に伝送可能に構成されている。
エンジン1のクランク軸4の近傍には、クランク軸4の回転角度(クランク角)を検出するクランク角センサ21が設けられており、クランク角センサ21の検出信号は、IG−ECU11に供給される。クランク角センサ21は、本実施形態では、クランク角6度周期のクランク角パルスCRPを出力する。
図示は省略しているが、エンジン1の運転状態を検出するための各種センサ(例えばスロットル弁3の開度THを検出するセンサ、吸入空気量GAIRを検出するセンサ、エンジン1の冷却水温TWを検出するセンサ、カム軸の回転角度を検出するセンサなど)が、エンジン1の適所に配置されるとともに、エンジン1によって駆動される車両のアクセルペダルの操作量APを検出するセンサや大気圧PAを検出するセンサなどが当該車両の適所に配置されており、それらのセンサの検出信号は、上記ECU11〜14の何れか1つまたは2以上のECUに供給される。なお、本実施形態では、IG−ECU11にクランク角センサ21からクランク角パルスCRPが供給され、FI−ECU12,TH−ECU13,及びVT−ECU14には、以下に説明する修正クランク角パルスCRPMが供給されるため、エンジン1の回転速度(回転数)NEは、各ECU11〜14で算出される。
本実施形態では、クランク角センサ21から出力されるクランク角パルスCRPは、IG−ECU11のみに供給され、IG−ECU11によってクランク角パルスCRPに同期する修正クランク角パルスCRPMが生成され、修正クランク角パルスCRPMが接続線22、23、及び24を介してFI−ECU12,TH−ECU13,及びVT−ECU14に供給される。以下、IG−ECU11における修正クランク角パルスCRPMの生成及び他のECU12〜14への伝送について詳細に説明する。
図2に示すように、ECU11,12,13,14は、それぞれCPU(Central Processing Unit)31,32,33,34を備えている。IG−ECU11は、入力回路51と、出力回路42,43,44を備え、FI−ECU12,TH−ECU13,及びVT−ECU14は、それぞれ入力回路52,53,54を備えている。
IG−ECU11のCPU31は、ポートP1に入力されるクランク角パルスCRPに基づいて修正クランク角パルスCRPMを生成し、ポートP2,P4,P5,P6から出力する。ポートP2は、入力回路51を介してポートP3に接続されている。CPU31は、ポートP3に入力される修正クランク角パルスCRPMを用いて、点火制御を行う。
FI−ECU12,TH−ECU13,及びVT−ECU14は、それぞれIG−ECU11からCPU32,33,34のポートP1に供給される修正クランク角パルスCRPMを用いて、燃料噴射制御、スロットル弁開度制御、及び吸気弁作動位相制御を実行する。
出力回路42〜44は、それぞれ接続線22〜24の断線及び地絡(アースとの短絡)が発生してもCPU31に悪影響が及ばないように構成され、且つその出力端子はプルアップ抵抗を介して電源に接続されるとともに、CPU31のポートP7〜P9に接続されている。CPU31は、出力回路42〜44の出力端子が低レベル(アース電位)に固定されたときに、対応する接続線の地絡が発生したと判定し、高レベル(電源電位)に固定されたときに、対応する接続線の断線が発生したと判定する。
入力回路51〜54は、修正クランク角パルスCRPMを予め設定される遅延時間TD1〜TD4だけ遅延可能に構成されている。
図3及び図4は、修正クランク角パルスを生成するためのバッファリング処理及びタイマ割り込み処理のフローチャートである。図3の処理は、ポートP1の入力レベルが低レベルから高レベルに変化した時点から開始され、一定時間毎に実行される。図4の処理は図3の処理でスタートされるタイマTMの値が「0」となった時点において実行される。
図3のステップS11では、入力されるクランク角パルスCRPのフィルタ処理を行う。図5は、このフィルタ処理を説明するためのタイムチャートであり、クランク角パルスの立ち上り部分を時間方向に拡大して示す。図5(a)は、入力されるクランク角パルスであって、立ち上り部分に短周期変動を含む例が示されている。図5(a)の上部に示す縦線はサンプリング時期を示しており、比較的短いサンプリング周期TSMPで入力パルスのサンプリングを行い、例えばサンプリング値が4回連続して高レベルとなったときに、入力パルスのレベルが高レベルに変化したと判定する。したがって、フィルタ処理後のクランク角パルスCRPの立ち上り時期は、図5(b)に示すtRとなる。以下の説明では、サンプリング後の高レベルは「1」とし、低レベルは「0」とする。このフィルタ処理により、連続する2つの正常なクランク角パルスCRPの中間に重畳した短時間ノイズパルスも除去される。
ステップS12では、入力されるクランク角パルスCRPの入力レベルLVLINを確定し、ステップS13では、出力レベルLVLOUTを入力レベルLVLINに設定し、ステップS14でポートP2,P4〜P6に出力レベルLVLOUTを出力する。ステップS15では、出力レベルLVLOUTが「1」であるか否かを判別し、「0」である間は処理を終了する。
出力レベルLVLOUTが「1」となると、ダウンカウントタイマTMを所定時間TPLSにセットしてスタートさせる(ステップS16)。なお、ステップS16が実行された後は、次のクランクパルスCRPが入力されるまで、図3の処理は実行されない。
ステップS16が実行された後、タイマTMの値が「0」となると(立ち上り時期tRから所定時間TPLSが経過すると)、図4に示すタイマ割り込み処理が開始され、出力レベルLVLOUTを「0」に戻し(ステップS21)、ポートP2,P4〜P6に出力レベルLVLOUTを出力する(ステップS22)。ステップS23では、タイマTMをオフする。
図3及び図4の処理より、CPU31のポートP2,P4〜P6には、クランク角パルスCRPの立ち上りより若干遅れた時期(tR)に立ち上がり、時間幅TPLSの修正クランク角パルスCRPMが出力される。クランク角パルスCRPは、本実施形態ではクランク角6度周期であり、エンジン1の回転速度が高くなるほどパルスの発生時間間隔は短くなるので、エンジン1の回転数が高くなった場合(例えば5000rpm)でも、修正クランク角パルスCRPMの発生周期と、入力されるクランク角パルスCRPの発生周期との同一性が維持されるように、所定時間TPLSが設定される(例えば180マイクロ秒程度に設定される)。
図6は、入力されるクランク角パルスCRPと、修正クランク角パルスCRPMとの関係を示すタイムチャートであり、修正クランク角パルスCRPMの立ち上り時期は、クランク角パルスCRPの立ち上り時期より時間TDだけ遅れるが、クランク角パルスCRPの発生に同期した所定時間TPLSの時間幅を有するパルスとなる。時間TDは、上述した図3に示す処理に要する時間である。なお、本実施形態のクランク角センサ21では、クランク角パルスCRPが抜ける部分が設けられているため、図6にはその抜けた部分を含むパルス列が示されている。
次に入力回路51〜54のタイミング調整機能について説明する。接続線22〜24の寄生容量の相違やCPUの割り込み応答時間の相違などに起因して、各ECUにおける修正クランク角パルスCRPMの立ち上り時期、あるいはその立ち上り時期から実行されるべき割り込み処理の実際の開始時期に差がでる可能性を考慮して、入力回路51〜54は、修正クランク角パルスCRPMをそれぞれ遅延時間TD1〜TD4だけ遅延させる機能を有する。遅延時間TD1〜TD4は、修正クランク角パルスCRPMの伝送系ハードウエアが確定した段階で実験的に最適値に設定される。
図7は、VT−ECU14のCPU34に入力される修正クランク角パルスCRPM(図7(e))の遅れが大きい例を示している。この例では、入力回路54の遅延時間TD4は「0」に設定し、入力回路51〜53の遅延時間TD1〜TD3を図に示すTDXに設定して、4つのECUのCPU31〜34に入力される修正クランク角パルスCRPMの立ち上り時期を、tRMとして一致させている。図7(b)〜図7(d)に破線で示す波形が、入力回路51〜53の入力波形であり、実線で示す波形がCPU31〜33の入力波形である。
図8は、IG−ECU11のCPU31で一定時間毎に実行される故障検知処理のフローチャートである。
ステップS31では、出力回路42〜44の出力端子の監視を行い、何れかの端子のレベルが低レベル固定または高レベル固定となっている故障が検知されたか否かを判別する(ステップS32)。この答が否定(NO)であるときは、故障カウンタCFAILの値を「0」に設定し(ステップS33)、処理を終了する。
ステップS32の答が肯定(YES)であるときは、故障カウンタCFAILの値を「1」だけ増加させ(ステップS34)、故障カウンタCFAILの値が判定閾値CFAILTH(例えば「3」)より大きいか否かを判別する(ステップS35)。ステップS35の答が否定(NO)である間は直ちに処理を終了し、肯定(YES)となると、ステップS36に進んで故障判定を確定し、ポートP2,P4〜P6へ出力レベルLVLOUTを出力することを停止する(ステップS37)。次いで、故障部位(接続線22,23,24の何れにおいて断線または地絡が発生したか)を記憶する(ステップS38)。
以上のように本実施形態では、クランク角センサ21から出力されるクランク角パルスCRPは、4つのECU11〜14のうちのIG−ECU11に供給され、IG−ECU11によって、クランク角パルスCRPの発生に同期して所定時間TPLSの時間幅を有するパルスが修正クランク角パルスCPRMとして生成され、FI−ECU12,TH−ECU13,及びVT−ECU14に供給される。ECU11〜14によって、修正クランク角パルスCRPMを用いて、各ECUに割り当てられた制御が実行される。すなわち、IG−ECU11でクランク角パルスCRPの同期した新たなパルスとして修正クランク角パルスCRPMが生成され、ECU11〜14で使用されるので、ノイズの影響を排除または低減して全てのECUでクランク角パルスCRPの周期及び発生タイミングに応じた制御を高い精度を実行することが可能となる。特にエンジン1の回転数が高い状態では、クランク角パルスCRPの発生周期に対する所定時間TPLSの比率が大きくなるため、連続する正常なクランク角パルスの中間に重畳する短時間ノイスパルスの影響を排除または低減する効果が高めることができる。
また入力されるクランク角パルスCRPに含まれる短周期変動成分を除去するフィルタ処理が実行され、そのフィルタ処理後のクランク角パルスの立ち上り時期tRから所定時間TPLS幅のパルスが生成されるので、クランク角パルスCRPが短周期変動成分や短時間ノイズパルスを含んでいても、フィルタ処理によってその影響を排除して修正クランク角パルスCRPMを生成することができる。
また入力回路51〜54によって修正クランク角パルスCRPMの立ち上り時期を調整可能であるので、例えばIG−ECU11から他のECU12〜14への接続線22〜24に存在する寄生容量の影響などによるタイミングずれを修正して、各ECU11〜14における修正クランク角パルスCRPMのタイミングを最適に調整することが可能となる。
またIG−ECU11は、他のECU12〜14のそれぞれに対応する出力回路42〜44を備え、出力回路42〜44から接続線22〜24を介して修正クランク角パルスCRPMがECU12〜14へ供給されるので、ECU12〜14相互間の干渉(例えばECUで発生したノイズの影響が他のECUに及ぶこと)を防止できる。
またIG−ECU11のCPU31は、接続線22〜24の断線または地絡を出力回路42〜44の出力側で検出可能であり、異常が検出されたときは、修正クランク角パルスCRPMの生成が停止されるため、他のECU12〜14への修正クランク角パルスCRPMの供給が同時に停止される。その結果、例えば接続線23の異常が検知されて、点火が停止されたが燃料噴射は実行されるといった不具合を回避できる。
本実施形態では、CPU31がフィルタ処理手段を含む修正クランク角パルス生成手段を構成し、入力回路51〜54がタイミング調整回路に相当する。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では、4つのECUによってエンジン1の制御を分担して実行する例を示したが、本発明は制御装置を構成するECUの数が2以上の場合に適用可能である。また、上述した実施形態では、クランク角パルスCRPがIG−ECU11に入力され、IG−ECU11が修正クランクパルスCRPMを生成するようにしたが、FI−ECU12,TH−ECU13,またはVT−ECU14の何れか一つにクランク角パルスCRPを入力し、そのECUが修正クランクパルスCRPMを生成して他のECUに供給するようにしてもよい。
またエンジン1の運転状態に応じてエンジン1への燃料供給を停止する燃料カット運転を実行するときには、IG−ECU11からFI−ECU12への修正クランク角パルスCRPMの供給を停止することによって、燃料噴射弁6による燃料噴射を停止することが可能である。またクランク軸4の逆回転を公知の手法によって検出し、逆回転が検出されたときは、修正クランク角パルスCRPMの生成を停止することが望ましい。
1 内燃機関
11 点火制御電子制御ユニット
12 燃料噴射制御電子制御ユニット
13 スロットル弁制御電子制御ユニット
14 吸気弁作動位相制御電子制御ユニット
21 クランク角センサ
22,23,24 接続線
31〜34 CPU
42,43,44 出力回路
51〜54 入力回路
CRP クランク角パルス
CRPM 修正クランク角パルス

Claims (5)

  1. 内燃機関の回転に同期したクランク角パルスを出力するクランク角センサと、複数の制御ユニットとを用いて前記機関を制御する内燃機関の制御装置において、
    前記クランク角パルスは、前記複数の制御ユニットの一つの制御ユニットに供給され、 前記一つの制御ユニットは、前記クランク角パルスの発生に同期する所定時間幅のパルスを修正クランク角パルスとして生成する修正クランク角パルス生成手段を備え、該修正クランク角パルス生成手段によって生成された修正クランク角パルスを、前記複数の制御ニットの前記一つの制御ユニット以外の他の制御ユニットに供給し、
    前記一つの制御ユニット及び前記他の制御ユニットは、修正クランク角パルスを用いて、各制御ユニットに割り当てられた制御を実行することを特徴とする内燃機関の制御装置。
  2. 前記修正クランク角パルス生成手段は、入力されるクランク角パルスに含まれる短周期変動成分を除去するフィルタ処理を実行するフィルタ処理手段を有し、該フィルタ処理後のクランク角パルスの発生に同期して前記所定時間幅のパルスを生成することを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記複数の制御ユニットは、前記修正クランク角パルスが入力され、前記修正クランク角パルスを設定時間だけ遅延させることが可能なタイミング調整回路を備え、該タイミング調整回路から出力されるパルスを用いて前記割り当てられた制御を実行することを特徴とする請求項1または2に記載の内燃機関の制御装置。
  4. 前記一つの制御ユニットは、前記他の制御ユニットのそれぞれに対応する出力回路を備え、前記出力回路は、対応する前記他の制御ユニットとそれぞれ個別の接続線によって接続されており、前記修正クランク角パルスは、前記出力回路及び接続線を介して前記他の制御ユニットに供給されることを特徴とする請求項1から3の何れか1項に記載の内燃機関の制御装置。
  5. 前記一つの制御ユニットは、前記出力回路の出力側で前記接続線の異常を検出する機能を有し、前記接続線の異常が検出されたときは、前記修正クランク角パルス生成手段は、修正クランク角パルスの生成を停止することを特徴とする請求項4に記載の内燃機関の制御装置。
JP2015151787A 2015-07-31 2015-07-31 内燃機関の制御装置 Pending JP2017031863A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015151787A JP2017031863A (ja) 2015-07-31 2015-07-31 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151787A JP2017031863A (ja) 2015-07-31 2015-07-31 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2017031863A true JP2017031863A (ja) 2017-02-09

Family

ID=57986856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151787A Pending JP2017031863A (ja) 2015-07-31 2015-07-31 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2017031863A (ja)

Similar Documents

Publication Publication Date Title
JP6253707B2 (ja) 制御装置
US8688351B2 (en) Modification of engine control signal timing by emulation of engine position sensors
CN107035561B (zh) 发动机同步装置及其控制方法
JP4795876B2 (ja) ガソリン代替燃料エンジンの点火制御方法およびその装置
JP2009092067A (ja) 電動バルブ駆動を備えるエンジンの制御システム、同エンジンの制御方法及び同エンジンを運転するためのコンピュータ読み取り可能な記憶媒体
KR102101639B1 (ko) 양방향 센서에 의해 공급된 신호를 프로세싱하기 위한 방법 및 대응하는 디바이스
KR101509958B1 (ko) 인젝터 특성 보정 장치
JP2001355556A (ja) 内燃機関用ノック制御装置
JP2017031863A (ja) 内燃機関の制御装置
JP2009150335A (ja) 点火制御装置
CN109751143B (zh) 用于补偿曲柄传感器的噪声的方法
KR20160011828A (ko) 엔진의 가변 기통정지 제어장치 및 제어방법
JP4973987B2 (ja) 内燃機関の気筒判別装置
JP5948230B2 (ja) 車載制御装置
JP2016142270A (ja) コンピュータで実現される、制御装置による制御パルスの計算及び出力方法
CN105257420A (zh) 基于相位判断的跛行回家功能实现方法
EP3130788B1 (en) Apparatus and method for controlling internal combustion engine
CN111164289B (zh) 可变阀控制装置及系统以及可变阀机构的控制方法
JP6763847B2 (ja) 内燃機関の制御装置
JP6565660B2 (ja) 電子制御装置
JP6056744B2 (ja) 燃料噴射駆動装置
KR101515009B1 (ko) 가변 밸브 타이밍 제어 장치의 고장 회피 방법
JP4466533B2 (ja) 内燃機関の点火装置
JP5852914B2 (ja) 電子制御装置
US7367321B2 (en) Erroneous connection detecting method of ignition devices and apparatus of the same